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Abstract

It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small
fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained
by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or
acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific
antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole
blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction.
Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor
increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of
a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions.
Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced
CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-
dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG,
wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not
Fc sialylation.
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Introduction

Replacement therapy with plasma-derived immunoglobulin G

(IgG) is the standard of care to treat primary and secondary

immunodeficiency. For this purpose IgG is applied either in-

travenously (IVIG) or subcutaneously (SCIG). IVIG/SCIG is

prepared from large plasma pools from more than 109000 donors,

which ensures a diverse antibody repertoire. Additionally, over the

years IVIG/SCIG has been increasingly used for immunomodu-

lation of acute and chronic autoimmune diseases (for an overview

see ref [1]). Commonly treated disorders include idiopathic

thrombocytopenic purpura (ITP), Kawasaki disease, Guillain-

Barré syndrome, chronic inflammatory demyelinating polyneuro-

pathy (CIDP), myasthenia gravis and several rare diseases; several

other indications are currently under investigation [2–6]. Despite

the wide use of IVIG, its mechanism of action is still not fully

understood. A number of possible non-exclusive mechanisms have

been proposed to explain the immunomodulatory effects of IVIG.

They include interference with complement components and the

cytokine network, modulation of B and T cell function, Fc receptor

blockage and effects on the anti-idiotype network. Probably there

are multiple pathways operating in parallel [7–11].

In autoimmune and inflammatory diseases, patients are treated

with high doses of IVIG in the range of 1–2 g/kg bodyweight. The

need for these high doses might be explained by a limited amount

of the active component present in IVIG. Identification and

enrichment of such a putative ‘‘active fraction’’ would potentially

allow development of a product with improved efficacy. In a series

of studies from the group of Jeffrey Ravetch, the small fraction of

Fc-sialylated IgG was proposed as a constituent of IVIG with

increased protective effect in a mouse model of rheumatoid

arthritis (K/BxN) [12–15]. They showed that a subfraction of

IVIG enriched for sialic acid by lectin affinity fractionation with

the sialic acid specific lectin Sambucus nigra agglutinin (SNA), had

ten times higher efficacy in the K/BxN model [12]. Subsequently,

using recombinant Fc fragments that were highly sialylated by

in vitro enzymatic glycoengineering (S+ Fc), the component

responsible for the anti-inflammatory effects in the K/BxN model

was identified as a2,6-linked terminal sialic acid in the Fc region of

IgG [14] and reviewed in [16]. Based on a series of sophisticated

experiments, a new mechanism triggered by the sialylated Fc

region in IVIG binding to DC-SIGN on myeloid regulatory cells

resulting in secretion of IL-33 was proposed. The increased IL-33

level apparently stimulates the expansion of IL-4 producing

basophils leading to an increased expression of the inhibitory Fc
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receptor FccIIB on effector macrophages and to the suppression of

the K/BxN serum induced arthritis [15]. In this study we aimed to

test if the effects observed so far only in the K/BxN mouse model,

could be reproduced in an in vitro human system and if the

proposed Fc-sialylation dependent mechanism contributes in

general to the overall anti-inflammatory effect of IVIG.

Results

Production of Sialic Acid-enriched IVIG by Lectin Affinity
Chromatography
In earlier studies lectin chromatography with sialic acid-specific

Sambucus nigra agglutinin (SNA) was applied to produce highly

sialylated IVIG fractions [12,17,18]. We adapted this method by

up-scaling and sub-fractionating the elution fractions. Instead of

combining the eluted SNA+ fractions in one pool, the fractions

obtained by elution with neutral lactose (elution fraction 1; E1) and

by elution with acidic lactose (elution fraction 2; E2) were collected

and analyzed separately (Fig. 1A). This process yielded on average

8–10% of the loaded IVIG in E1 and 1.5–2% in E2.

Characterization by SDS-Page and Lectin Blotting
Sialylation of the different fractions was assessed by SDS-PAGE

under non-reducing and reducing conditions (Fig. 1B), followed by

lectin blotting with biotinylated SNA (Fig. 1C). A strong

enrichment of sialylated IgG was observed in E1 and E2 when

the SDS PAGE was run under non-reducing conditions (Fig. 1C,

left panel). These results are in agreement with results reported by

Kaneko et al. [12]. However, when the electrophoresis was

performed under reducing conditions, we found that in addition to

the Ig heavy chains, there was a clear enhancement of sialic acid

content in the Ig light chains of E1 and E2. This indicated that

IgG sialylated in the Fab-region was enriched by lectin chroma-

tography (Fig. 1C, right panel). In addition, the flow-through

fraction (FT) showed a weak positive signal in the lectin blot

indicating that the FT was not free of sialylated IgG and therefore

could not be used as a ‘‘sialic acid free’’ control preparation. If the

FT was re-applied to an SNA column no additional material was

recovered in the binding fractions, indicating that the affinity

column had not been overloaded, but rather that the remaining

sialic acid might not be accessible for SNA (data not shown).

Based on these findings, IgG and various fractions thereof were

enzymatically completely desialylated using neuraminidase to

produce non-sialylated control samples (NAase IVIG). The same

lectin affinity purification method was then applied to different

starting materials finally providing enriched sialylated Fc frag-

ments (S+ Fc) from plasma Fc and sialylated F(ab’)2 (S+ F(ab’)2)

from plasma F(ab’)2 (Fig. 2).

Characterisation by HPLC and LC-MS
Sialylation levels of starting materials, fractions obtained by

SNA-chromatography and by desialylation with neuraminidase

were characterized by HPLC and LC-MS techniques. In Figure 3

the top row shows sialylation patterns measured from IVIG that

was purified by lectin affinity chromatography (Fig. 3A, B, C). In

the lower row sialic acid contents of fragments purified on the

lectin column are shown (Fig. 3D, E, F). In one approach total

sialic acid (Neu5Ac) was quantified by HPLC; results were

expressed as mol sialic acid per mol IgG. Total sialic acid was

enriched in E1 and even more substantially in E2 IVIG, compared

to the respective starting material and the non-binding FT

fractions (Fig. 3A). A similar enrichment of total sialic acid was

observed when purified Fc and F(ab’)2 fragments from plasma IgG

were enriched via SNA chromatography to yield S+ Fc (Fig. 3D)

and S+F(ab’)2 (Fig. 3F), respectively. In all preparations, treatment

with neuraminidase effectively removed sialic acid residues

(Fig. 3A, B, D, E).

Fc-specific sialylation was assessed by LC-MS. We found

a substantial enrichment of sialic acid in the eluted fraction when

Fc fragments were used as the starting material (Fig. 3E). In

contrast, when applying IVIG to the SNA column only a modest

increase in Fc-sialylation from 12% to 14% was observed in the

SNA-enriched E2 fraction (Fig. 3B) and no enrichment in E1

(Fig. 3B). These data strongly suggested that SNA affinity

chromatography preferentially selected for sialic acid residues in

the Fab region of IgG whereas only a modest increase in Fc

sialylation was achieved with this method. This hypothesis was

further supported by a clear enrichment of sialylation in the F(ab’)2
region when IVIG was used as starting material for SNA

chromatography (Fig. 3C). Measurement of total sialic acid by

HPLC in Fc and F(ab’)2 fragments from IVIG fractions further

confirmed these results (Fig. S1 A&B) and cleavage into Fc and

F(ab’)2 fragments was confirmed by SDS-PAGE (Fig. S1 C&D).

No differences in IgG sialylation were found in IVIG from

different manufacturers (data not shown).

Composition of Specific Antibodies in IVIG, FT, E1 and E2
To address whether fractionation of IVIG by SNA chromatog-

raphy might skew the specific antibody pattern, IVIG, FT and

sialic acid-enriched fractions E1 and E2 were tested for binding to

various antigens. As shown in Figure 4, SNA lectin chromatog-

raphy modified the distribution of specific antibodies in the E1 and

E2 fractions. Whereas some specificities were not or only

marginally affected (Fig. 4A; TetTox, EBV (NA)) others were

either decreased (Fig. 4A; RV, MV, B19V, Hib, VZV) or

increased (Fig. 4A; CMV, EBV (VCA)). Similarly, testing on Hep-

2 cells indicated an enrichment of specific anti-nuclear antibodies

(Fig. 4A; ANA) in the E2 fraction. No differences in titres were

observed with IVIG pre-incubated under the same conditions as

E2 (lactose/acetic acid pH 3.5). Furthermore, the anti-CMV titre

was not decreased in desialylated E2 (NAase E2), indicating that

the antibody-antigen interaction was not sialic acid dependent

(data not shown). Binding of IgG to human blood group A and AB

erythrocytes was markedly lowered in E1 and E2 compared to

unfractionated IVIG and the FT fraction (Fig. 4B), while a less

pronounced effect on binding to B erythrocytes was noted. Similar

results were obtained with sheep erythrocytes and less pronounced

with rabbit erythrocytes (data not shown). Treatment with

neuraminidase also did not influence binding of IVIG to human

erythrocytes (data not shown). Overall, these findings demonstrate

that the composition of specific antibodies was skewed in sialic-

acid enriched IgG fractions, supporting the claim that lectin

affinity chromatography fractionation of IVIG is mainly driven by

Fab-interactions. Subclass distribution in the different fractions

was only marginally shifted, with slightly decreased IgG2 in E2

and a modest increase of IgG4 in E1 and E2 (Fig. S2).

Anti-inflammatory Effects in vitro
Potential anti-inflammatory effects of IVIG and sialic acid-

enriched fractions were assessed in a functional in vitro assay (Fig. 5).

Whole blood was stimulated with LPS (Fig. 5A left panels) or PHA

(Fig. 5A right panels) and cell surface expression of CD54 (ICAM-

1) on monocytes as well as MCP-1 secretion into the cell culture

supernatant were quantified. Under the chosen conditions the

results were most pronounced for MCP-1, but other cytokines

were measured as well (IL-6, IL-8, MIP-1b and IL-1ra), yielding

similar results (data not shown). LPS induced upregulation of

CD54 expression on monocytes; this effect was down-regulated by

Consequences of Increased Fab-Sialylation of IVIG
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E2 in a dose-dependent manner (Fig. 5A top left) and could be

abrogated by treatment with neuraminidase (NAase E2). Similarly,

PHA-induced CD54 expression was inhibited by E2 slightly more

efficiently than with all other tested fractions. Again neuramini-

dase treatment abolished the anti-inflammatory effect (Fig. 5A top

right). MCP-1 release into the supernatant was inhibited by E1

and E2 in a dose dependent fashion; the effect was more

pronounced than with IVIG (Fig. 5A, bottom panels). Similar as

for CD54 expression, the inhibitory effect was lost when E2 was

desialylated. Control experiments showed that IVIG and sialic

acid-enriched fractions contained anti-LPS antibodies, however,

the measured amounts did not correlate with the observed anti-

inflammatory effects, suggesting additional mechanisms at work

(E2 showed a lower anti-LPS compared to IVIG, data not shown).

No antibodies against the PHA used in these experiments were

detected. Whereas, in agreement with recently reported data using

PHA-L [19], antibodies to PHA from different providers were

found in IVIG. Interestingly, inhibition of PHA-induced MCP-1

secretion by IVIG was dependent on the F(ab’)2 whereas the Fc

region did not appear to contribute to anti-inflammatory effects in

this system (Fig. 5B left panel). Similarly, highly sialylated Fc

fragments (S+ Fc) tested at 40 mM did not show an inhibitory

effect on the PHA-mediated MCP-1 release. This result supports

the finding, that IVIG effects are sialic acid, in particular Fc-

sialylation independent in this system (Fig. 5B right panel).

Discussion

In this study we have purified IVIG by lectin chromatography

and characterized the resulting highly sialylated IVIG fractions

termed E1 and E2. We show that SNA affinity chromatography

preferentially enriches for sialylated F(ab’)2 fragments, with only

a minor accumulation of Fc sialylated IgG molecules. The

purification process led to skewing of the antibody pattern. Our

functional data from a human in vitro inflammation model indicate

Figure 1. Lectin affinity chromatography. A: Typical fractionation chromatogram of 1 gram IVIG on a 90 mL SNA-agarose column, showing the
SNA non-binding (-SNA IVIG) flowthrough fraction (FT) and the SNA binding fractions (+SNA IVIG) eluate 1 (E1) and eluate 2 (E2). B: SDS PAGE and C:
Lectin Blot (SNA) analysis of the SNA-purified IVIG fractions. IVIG: source IVIG before fractionation, FT: SNA non-binding flowthrough, E1: SNA binding
eluate 1, E2: SNA binding eluate 2, NAase IVIG: Neuraminidase treated (desialylated) IVIG, M: molecular marker, red.: gel run under reducing
conditions, non red.: gel run under non-reducing conditions.
doi:10.1371/journal.pone.0037243.g001

Consequences of Increased Fab-Sialylation of IVIG

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e37243



increased anti-inflammatory activity associated with the Fab

sialylated fragments.

In most previous studies using sialylated IgG molecules

generated by SNA chromatography no distinction of the E1 and

E2 fractions was made. Indeed, in initial studies on the role of IgG

sialylation [12–14] the E1 and E2 fractions were pooled to yield

one single SNA+ fraction. In the recent paper by Guhr et al. [18]

the experiments were performed using the E1 fractions. The

authors mention that the effect of the E2 fraction was addressed as

well yielding identical results [18]. Our present work demonstrates

that a separate analysis of E1 and E2 is important, as our data

suggest that the highly sialylated E2 fraction contains the highest

anti-inflammatory potential, whereas in our hands E1 in most

respects was very similar to the unfractionated IVIG.

Analysis of the eluted E1 and E2 fractions by SDS-PAGE under

reducing conditions (Fig. 1C) yielded the first indication that SNA

chromatography effectively selects for F(ab’)2-sialylated IgG

molecules. This finding is in agreement with the report by

Stadlmann et al. [17]. We confirm and extend this initial finding

by HPLC and LC-MS analyses (Fig. 3 and S1). Our data

comparing IgG, Fc and F(ab’)2 fragments as starting materials for

SNA chromatography even indicate a preferential selection of

F(ab’)2-sialylated molecules. However, when using Fc fragments as

the starting material sialylated fragments are effectively enriched

(Fig. 3D, E), but when the complete IgG molecule is applied to an

SNA column the enrichment of Fc-sialylated IgG is minor

(Fig. 3B). We speculate that the sialic acid residues of the Fab

region are more readily accessible for binding to column-bound

SNA lectins and therefore effectively compete out the sialic acid in

the Fc region. Our data support earlier findings [17].

ELISA analysis shows that SNA chromatography skews the

antibody pattern of the eluted fraction compared to the starting

material (Fig. 4). Our data indicate that this skewing is probably

not due to preferential accumulation or depletion of a specific IgG

subclass, as only a slight depletion of IgG2 and a small

accumulation of IgG4 was noted (Fig. S2). It can be speculated

that the glycosylation profile of F(ab’)2 including the sialic acid

residues nevertheless contributes to and thus can influence the

binding site of a particular antibody. This may also play a role in

idiotype-anti-idiotype interactions. Even though we cannot explain

why for some antigens binding is increased and decreased for

others, our data are in line with the finding that IgG selection by

SNA chromatography is largely F(ab’)2 dependent.

We tested the anti-inflammatory effects of unfractionated IVIG

vs. SNA-binding IVIG fractions in a human whole blood assay,

using CD54 and MCP-1 (CCL2) as two markers for inflammatory

responses. Other cytokines (e.g. IL-6, IL-8, MIP-1b, IL-1ra)

yielded similar results (data not shown), however under the chosen

conditions the effects were most clearly observed with MCP-1. We

induced inflammation in vitro using two different, well established

polyclonal inflammatory stimuli LPS and PHA and focused on

early/rapid responses after over-night stimulation. We found that

anti-inflammatory effects were most robust with E2 (Fig. 5A).

Again this effect was F(ab’)2 but not Fc dependent (Fig. 5B). To

our knowledge no similar data using an in vitro model of human

inflammation have been published to date. In earlier studies

effective binding of SNA+ IgG to human B-cells via CD22 [20]

and S+ Fc binding to human DC-SIGN expressed on CHO cells

[13] was shown; however, no further functional consequences in

a human system have been presented in these papers. In our in vitro

studies great care was taken to assure that all preparations were

endotoxin/LPS free. It is known that prevention of LPS

contamination of such material prepared at lab scale is challenging

and therefore it is essential to exclude that contaminating LPS

influences the results and leads to erroneous interpretations. We

also addressed whether anti-LPS or anti-PHA antibodies present

in IVIG might account for the anti-inflammatory effect. Indeed,

anti-LPS antibodies were found in IVIG, however, the content did

not correlate with the observed anti-inflammatory effect, thus

excluding that this might explain the observed inhibitory effects.

The data presented in this manuscript demonstrate an

improved anti-inflammatory effect of highly sialylated IgG (E2

fraction) in the tested system; however, our results do not indicate

that this is mediated by Fc-sialylation but rather is dependent on

F(ab’)2 sialylation. This seems to be in contrast with data from the

Ravetch group [12–15] claiming that Fc-sialylation is responsible

for the anti-inflammatory effects of IVIG, thus explaining the high

doses of IVIG needed in anti-inflammatory indications. It should

be mentioned that all data published by this group to support this

claim come from the mouse K/BxN arthritis model [12–15]. In

addition, supporting data have recently been reported in a mouse

model for ITP [21]. In contrast, two groups using different models

Figure 2. Overview of SNA affinity chromatography with IgG, Fc and F(ab’)2 fragments. Schematic presentation of purification strategy
showing various starting materials for SNA-chromatography and resulting fractions.
doi:10.1371/journal.pone.0037243.g002
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of ITP failed to show an improved anti-inflammatory effect of

SNA+ IgG compared to normal IVIG [18,22] and no loss of

protective function was observed with desialylated IgG in an

improved therapeutic model of ITP [22]. Thus, it will be

important to investigate the potential contribution of F(ab’)2-

sialylated IgG molecules within IVIG to anti-inflammation in

Figure 3. Analysis of total and Fc sialylation by HPLC and LC-MS. Upper row: sialylation in lectin purified IVIG. Lower row: sialylation in IgG
fragments. A: Total sialic acid in IgG of the indicated fractions by HPLC. B: Percentage of sialylated IgG1 Fc-glycopeptides in the indicated IgG fractions
(LC-MS). C: Percentage of sialylated glycans in F(ab’)2 fragments produced from the indicated IgG fractions (LC-MS). D: Total sialic acid content in
fractions from Fc run over the lectin column (HPLC). E: Percentage of sialylated IgG1 Fc-glycopeptides in the indicated Fc fractions (LC-MS). F: Total
sialic acid content in F(ab’)2 fragments purified over the lectin column (HPLC). Mean values and standard deviations measured from three
independently produced batches are shown. NAase: Neuraminidase treated, S+ Fc: SNA binding fraction of Fc fragments, S+ F(ab’)2: SNA binding
fraction of F(ab’)2 fragments. FT: flow through (SNA non-binding), E1/E2 IVIG: SNA binding fractions of IVIG.
doi:10.1371/journal.pone.0037243.g003

Consequences of Increased Fab-Sialylation of IVIG

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e37243



animal models, particularly the K/BxN or other similar arthritis

models. Likewise, further analyses of Fc- and F(ab’)2-sialylated IgG

in other human in vitro systems is warranted.

The anti-inflammatory effect of highly sialylated Fc has been

extensively and elegantly demonstrated in several publications

[12–14]. Most recently, a putative mechanism involving pro-

duction of IL-33 and secretion of Th2 cytokines by basophils has

been convincingly shown [15]. It remains unclear to what extent

this mechanism contributes to the overall anti-inflammatory effect

of IVIG, which is known to employ a number of different

mechanisms to achieve anti-inflammatory effects, including in-

hibitory signalling through FccRIIB [23], induction of Tregs [24],

attenuation of complement activation [25,26], recently described

new effects on iNKT cells [27] and TH17 cells [28] as well as

many more (reviewed in [6,9,11,16,29–31]). Importantly, the anti-

inflammatory effect of highly sialylated Fc in models beyond K/

BxN needs to be confirmed. A protective effect of plasma-derived

Fc fragments in ITP patients was demonstrated many years ago

[32] and very recently Ramakrishna and colleagues have proposed

a new anti-inflammatory mechanism of isolated Fc by induction of

Tregs and secretion of IL-10 [33]. Similarly, it has been shown by

de Groot et al. that peptide sequences found in human IgG1

Figure 4. Specific antibody concentrations and human erythrocyte binding. A: Concentrations of antibodies against a panel of antigens.
Results are expressed as % of specific concentrations measured in IVIG. RV: rubella virus, MV: measles virus, TetTox: tetanus toxoid, EBV (EBNA):
Epstein-Bar virus (nuclear antigen), B19V: human parvovirus B19, Hib: Haemophilius influencae, VZV: varizella zoster virus, CMV: cytomegalovirus, EBV
(VCA): Epstein-Barr virus (capsid antigen). Concentrations are normalized to IVIG and shown in linear scale (left axes). ANA: anti-nuclear antibodies,
absolute titres are shown in a log2 scale (right axis). Mean values and standard deviations measured from three independently produced batches are
shown. B: Binding of different IVIG fractions to erythrocytes (RBC) from donors with blood group A, B or AB have been analysed by flow cytometry.
MFI: mean fluorescence intensity.
doi:10.1371/journal.pone.0037243.g004

Consequences of Increased Fab-Sialylation of IVIG
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Figure 5. Whole blood stimulation assay. A: Whole blood was stimulated with LPS (left panels) or PHA (right panel). Upper panels: concentration
dependent inhibition of CD54 (ICAM-1) expression on monocytes by the indicated IVIG fractions was monitored by flow cytometry. MFI: mean
fluorescence intensity. Lower panels: concentration dependent inhibition of MCP-1 (CCL2) release by IVIG was quantified by ELISA in the supernatant
of stimulated blood cultures. Mean values from representative experiments using blood from single donors are shown. neg: no stimulation, pos:

Consequences of Increased Fab-Sialylation of IVIG
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termed ‘‘Tregitopes’’ activate natural Tregs [34]. Thus, these

mechanisms need to be seen in context with the newly proposed

mechanism via IL-33/basophils. The power of IVIG in anti-

inflammation lies in the multiplicity of its actions and interference

with multiple pathways in the inflammatory cascade. The

contribution of a single mechanism and more specifically the

putative contribution of the minor fraction of Fc-sialylated IgG

within IVIG is not yet established in the human system.

Materials and Methods

Lectin Affinity Chromatography
Normal IVIG (PrivigenH, CSL Behring AG, Bern, Switzerland)

was fractionated by lectin chromatography, using sialic acid

specific Sambucus nigra agglutinin (SNA), according to the

manufacturer’s description (Vector Laboratories, USA). In a typ-

ical run, 1 g of IVIG in Tris-buffered saline at pH 7.5 containing

0.1 M CaCl2 (TBS-CaCl2) was loaded on 90 mL of agarose-linked

SNA. After washing with TBS-CaCl2, the fraction bound to the

SNA column (+SNA IVIG) was eluted with 0.5 M lactose in TBS

(elution fraction 1, E1) followed by elution with 0.5 M lactose in

0.2 M acetic acid (elution fraction 2, E2). The flow through

fraction (FT) and the two elution fractions E1 and E2 were

collected separately (Fig. 1). Enrichment of plasma derived Fc

fragments produced from IVIG (Privigen) was performed in

a similar manner. 150 mg was loaded on a 20 mL SNA column

and the nonbinding flow through (FT) and one pooled eluate

(S+Fc) were collected. The fractions from three pooled runs were

concentrated and the buffer changed to PBS by diafiltration using

centrifugal filter units with 30 kDa cut off (10 kDa for Fc

fragments) (Millipore, USA or Sartorius, Germany). Similar to

Fc fragments, F(ab’)2 fragments were eluted from the SNA column

in one pooled fraction resulting from elution with 0.5 M lactose

followed by 0.5 M lactose in 0.2 M acetic acid. All fractions were

tested for endotoxin contamination using commercial chromo-

genic LAL tests (Lonza, Switzerland) or with a kinetic turbidimet-

ric LAL assay. Total sialic acid content in IgG was monitored with

lectin blot and quantified by HPLC. Glycoanalysis was performed

by LC-MS.

SDS PAGE and Lectin Blotting
The resulting fractions were separated with SDS PAGE using

NuPage 10% BisTris gels under non-reducing or reducing

conditions (Invitrogen, USA). The gels were stained with colloidal

Coomassie (Gelcode, Thermo Scientific, USA) or blotted on

nitrocellulose. The blots were blocked with Carbo-Free blocking

solution (Vector Laboratories, USA), probed with biotin-SNA

(2 g/L, Vector) and AP-streptavidin (1.5 g/L, Invitrogen) and

visualised with chromogenic AP conjugate substrate (BioRad,

Switzerland).

Production of IgG Fragments
F(ab’)2 fragments were produced by pepsin digestion of IVIG

(Privigen). IVIG was digested with pepsin (0.5 mg/g IgG; Sigma-

Aldrich, Switzerland) in acetate buffer pH 4.0 for 2 hours at 37uC.

The reaction was stopped by adding 2 M Tris base until a pH of 8

was reached.

Fc fragments were prepared from IVIG (Privigen) by papain

digestion and purification by ion exchange and size exclusion

chromatography. Remaining Fab was eliminated by running over

an Fab-specific affinity chromatography (Athens Research Tech-

nologies, USA). Finally, Fc was polished by EndoTrapHD (Hyglos,

Germany) resulting in endotoxin levels below 0.05 EU/mg.

Elimination of small digestion products followed by concentra-

tion and buffer exchange to PBS was performed by diafiltration

using Vivaspin 10 kDa (Fc) or 30 kDa cut off (Fab) spin devices

(Sartorius, Germany).

Enzymatic Desialylation with Neuraminidase
IgG and fragments were desialylated by enzymatic digestion

with recombinant neuraminidase from Clostridium perfringens

expressed in E. coli (New England BioLabs, USA) to yield NAase

IVIG, NAase E2 and NAase Fc. IgG or Fc was incubated with 7

units enzyme (provider specific) per mg protein for 24 h at 37uC

(48 h for E2) followed by concentration and buffer exchange to

PBS by diafiltration using centrifugal filter units with 30 kDa cut

off (10 kDa for Fc) (Sartorius). The digestion was monitored by

sialic acid detection using HPLC or LC-MS.

Total Sialic Acid Determination by HPLC
Total sialic acid was released by acidic hydrolysis of neuraminic

acid in 0.25 M NaHSO4 followed by derivatization of the glycan

with the fluorophore1,2-diamino-4,5-methylenedioxybenzene di-

hydrochloride (DMB) (method adapted from [35]). Quantification

of the derivatized sialic acid was performed by reverse phase high

performance liquid chromatography (RP-HPLC) using N-acetyl

neuraminic acid (Neu5Ac; Fluka, Switzerland) as a standard and

expressed Neu5Ac per IgG or fragments (F(ab’)2 or Fc) (mol/mol

or weight/weight). IgG fragments from different lectin fractions

have been produced by IdeS digestion using agarose coupled

enzyme (FragIT; Genovis, Sweden). Pure F(ab’)2 fragments were

collected in the flowthrough fraction of the capture select human

Fc affinity matrix (BAC, The Netherlands). Monomeric Fc

fragments were eluted from the matrix with 0.1 M glycine

pH 2.8. To avoid potential contamination by non digested IgG,

Fc was further polished using capture select IgG CH1 affinity

matrix (BAC). The purity of the fragments was confirmed by SDS-

PAGE and Western blotting.

Glycopeptide and Glycan Analysis by LC-MS
Tryptic digestion. A 250 mg portion of IgG was denatured

and reduced by addition of 50 mL 6 M guanidine HCl and 2.5 mL

200 mM dithiothreitol (DTT) and incubation at 90uC for 20

minutes. The sample was alkylated by addition of 10 mL 200 mM

iodoacetamide and incubation for 30 minutes at room tempera-

ture in the dark, followed by addition of 2.5 mL 200 mM DTT

and further incubation for 30 minutes in the dark. Samples were

digested by addition of 5 mL 1 mg/mL trypsin and 300 mL

100 mM NH4HCO3 and incubation at 37uC overnight. Following

digestion, 2 mL of formic acid were added to each reaction.

Tryptic peptides were desalted on homemade C18 spin columns

containing 200 mg C18 resin and dried in a vacuum centrifuge.

Determination of Fc specific glycoprofile. Dried IgG

tryptic peptides were resuspended in 0.1% formic acid and

analyzed by liquid chromatography-mass spectrometry (LC-MS)

stimulation without IVIG, FT: flow through, E1/E2 SNA binding IVIG fractions, NAase: neuraminidase treated. B: Inhibition of PHA mediated MCP-1
release by Fc and F(ab’)2 fragments. Left panel: Mean MCP-1 concentration of stimulated minus non stimulated samples from a representative
experiment is shown. Right panel: PHA stimulated whole blood was treated with 40 mM IgG, Fc, F(ab’)2 or highly sialylated Fc (S+Fc). Normalized
values from experiments with blood from two donors are shown. S+ Fc: SNA binding Fc fraction (highly sialylated Fc).
doi:10.1371/journal.pone.0037243.g005
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on an Agilent 1200 HPLC coupled to an Agilent 6520 ESI-

QTOF. Tryptic peptides from 5 mg of IgG were separated on

a reverse phase column (Agilent Poroshell 300SB-C18,

1.0675 mm, 5 mm) using a gradient from 98% mobile phase A

(H2O +0.1% formic acid), 2% mobile phase B (acetonitrile +0.1%

formic acid) to 12.4% mobile phase B in 12 minutes at a flow rate

of 100 mL/min and 40uC. The mobile phase was adjusted to

100% B in 5 minutes, and the column was washed for 3 minutes

prior to a 5 minute re-equilibration at the starting conditions. The

QTOF was operated in positive polarity with a capillary voltage of

4.0 kV and a fragmentor voltage of 170 V. Chromatograms were

extracted and integrated (Fig. S3) for the summed [M+2H]2+ and

[M+3H]3+ ions of each Fc peptide/glycan combination (extraction

range of 20.1 to +0.9 m/z, see Table S1) and the areas were used

to calculate the relative percent of each glycan present on each

peptide.

Glycan Release and Conversion to Alditols. Dried tryptic

peptides from 250 mg IgG were resuspended in 100 mL 50 mM

NH4HCO3. To deglycosylate, 0.5 mL PNGase F (New England

Biolabs, 50,000 U/mL) was added to each sample, and reactions

were incubated at 37uC overnight. Peptides were removed from

the reactions by passing the sample through a C18 spin column

and collecting the glycan containing flow through, which was

dried in a vacuum centrifuge. Glycans were converted into alditols

after resuspension in 20 mL deionised water by reduction with

200 mL 1 M NaBH4, 0.1 M NaOH at 45uC overnight in a vented

tube. After addition of 20 mL acetic acid to quench remaining

NaBH4, the sample was cleaned up by passing through

a homemade cation exchange spin tube (200 mg Dowex

50WX4-400, Sigma-Aldrich) and collecting the flow through.

Samples were dried in a vacuum centrifuge, followed by repeated

resuspension and evaporation of 100 mL portions of 1% acetic

acid in methanol to remove boric acid, then reconstituted in

mobile phase C (10 mM NH4HCO3).

Glycan Alditol Analysis by LC-MS. Glycan alditols derived

from 100 mg of IgG were separated on a graphitized carbon

column (Thermo Scientific Hypercarb, 2.1650 mm, 3 mm) using

a gradient from 95% mobile phase C, 5% mobile phase D (10 mM

NH4HCO3 in 80/20 acetontrile/H2O) to 60% C, 40% D in 12.5

minutes at 500 mL/min and 40uC. The column was then washed

for 2 minutes with 100% D and re-equilibrated at the starting

conditions for 2.5 minutes. The QTOF was operated in negative

polarity with a capillary voltage of 3.5 kV and a fragmentor setting

of 140 V. Chromatograms were extracted and integrated (Figure

S3) for each identified glycan alditol (Table S2), summing the

signals from the [M-1H]12, [M-2H]22, and [M-3H]32 signals

(extraction range of 20.1 to +0.9 m/z). The relative amount of

each glycan alditol was calculated as an area percent of all the total

glycan alditol area. The preparation and analysis of the glycan

alditols is similar to previously reported work [36].

Subclass Distribution, Molecular Size and Endotoxin
Determination
Subclass distribution of the IVIG fractions was performed by

Luminex using the Bioplex isotyping kit (BioRad) and by

nephelometry on a BN ProSpec system (Siemens, Germany) using

the recommended subclass assays (N AS IgG1/2 and N latex

IgG3/4; Siemens, Germany). Molecular size distribution was

performed by analytical size exclusion chromatography (SEC) on

a TSKgel G3000SWXL 7.8 mm630 cm column (Tosoh Bio-

science, Germany). Endotoxin quantification was performed using

commercial chromogenic endpoint or kinetic LAL tests (Lonza) or

with a kinetic turbidimetric LAL assay.

Antibody Titres and Erythrocyte Binding
Antibody titres. Concentrations of antibodies against human

parvovirus B19 (B19 virus), cytomegalovirus (human herpes virus

5), Epstein-Barr virus capsid antigen (VCA) (human herpes virus

4), varicella zoster virus (human herpes virus 3) and Haemophilus

influenzae in IVIG fractions were determined using commercial

ELISA Kits (Biotrin, Ireland; DRG Diagnostics, Germany; Institut

Virion\Serion, Germany; The Binding Site, UK). Antibodies

against, measles virus, rubella virus, tetanus toxoid, Epstein-Barr

virus nuclear antigen (NA) (ELISA) and antinuclear antibodies (IF

on Hep-2 cells) were measured by a certified medical laboratory

(Medics Labor, Switzerland).

Erythrocyte binding. IVIG, FT, E1 and E2 were assessed

for their binding to human red blood cells (RBC) of healthy

volunteer donors of blood groups A (2 donors, #2 & ref), B (2

donors, #12 & #13) and AB (1 donor, #21) (Blutspendedienst

SRK Bern, BSD - Blood Transfusion Service SRC Bern,

Switzerland). Frozen RBCs were thawed in 0.9% NaCl, contain-

ing 880 mM D-sorbitol (Merck, Germany) and washed 3 times

(centrifugation for 10 min, 300 g) in Hank̀s buffered salt solution

(w/o Ca++/Mg++; Bioconcept, Switzerland), containing 1 mg/mL

BSA (Sigma-Aldrich) (HBSA-1). For the assay, cells were diluted to

16107 RBCs/mL HBSA-1. Blocking of unspecific binding, was

performed by prior addition of human AB serum, diluted 1:4 in

HBSA-1 (BSD), to each tube. The IVIG fractions, all diluted to

8 mg/mL in HBSA-1, were then added to the AB serum and

incubated for 30 min at RT. Next, 100 mL of the RBC

suspensions (all at 16107 RBC/mL) were added and the mixtures

were incubated for 1 h at RT. After washing 3 times with HBSA-

1, the RBC were incubated with a biotinylated anti-Hu IgG mAb

(5 mg/mL in HBSA-1; Nordic Immunology, The Netherlands) for

30 min at 4uC. The cells were then washed twice and bound anti-

Hu IgG mAb was detected by flow cytometry (FACS analysis)

using phycoerythrin-labelled streptavidin (5 mg/mL; Jackson

Immuno Research, UK) on a BD FACS Canto II cell sorter.

10̀000 cells were acquired and the data was analysed using BD

FACS Diva Software (Becton Dickinson, Switzerland). D MFI was

calculated by subtracting the MFI of RBC stained without

addition of IVIG fractions.

Whole Blood Stimulation Assay
Blood was donated voluntarily with signed informed consent

under medical supervision. The donation procedure has been

approved by an in-house ethical committee led by the medical

direction. Heparinised whole blood from healthy volunteer donors

was stimulated with 10 mg/L phytohemagglutinin-M (PHA,

Roche diagnostics, Switzerland) or 100 ng/L LPS (E. Coli

O111:B4; Sigma-Aldrich). Different IVIG fractions were added

to the whole blood simultaneously with stimulating agent, leading

to 50% concentrated whole blood in PBS (no differences observed

to dilutions made with cell culture medium). In control samples,

whole blood was incubated with addition of IgG but without

stimulation. After 2062 h of incubation at 37uC and 5% CO2,

cells and supernatants were harvested for further analysis. The

cells were centrifuged and then resuspended in PBS. Then cells

were incubated with PE-labelled anti-CD54, FITC-labelled anti-

CD14 and PerCP-labelled anti-CD45 (BD Biosciences, USA) for

30 min at 4uC. After red blood cell lysis with BD Pharm Lyse (BD

Biosciences) the cells were taken up in PBS pH 7.4. CD54

expression levels on monocytes were determined by flow

cytometry on a FACS Canto II (BD Biosciences). MCP-1 was

quantified in cell culture supernatants by ELISA (DuoSet, R&D

Systems, USA).
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Supporting Information

Figure S1 Total sialic acid quantification in Fc and Fab

regions of IVIG fractions. A: Total sialic acid content in single

chain Fc fragments produced from the indicated IVIG lectin

fractions by IdeS digestion and quantified by HPLC. B: Total

sialic acid content in F(ab’)2 fragments produced from the

indicated IVIG fractions. C and D: Control of the purity of the

IdeS fragments by SDS PAGE and coomassie staining. lane 1:

IVIG, lane 2: FT, lane 3: E1, lane 4: E2, lane 5: NAase IVIG, M:

molecular weight marker.

(TIFF)

Figure S2 IgG Subclass distribution in the different

IVIG fractions. IgG subclasses have been determined with

Luminex and Nephelometry. Results show the relative subclass

content in the indicated IVIG fractions (mean values of both

methods).

(TIFF)

Figure S3 Extracted ion chromatograms for Fc-glycop-

tides and glycan alditols. Top panel: Example of extracted ion

chromatograms for six of the seven IgG1 Fc-derived glycopeptides.

A description of the glycan representations and calculated masses

of the glycopeptides can be found in Table S1. Bottom panel:

Example of extracted ion chromatograms for the identified glycan

alditols released from a sample of IgG. The glycan alditols and

their masses are described in Table S2. Glycan representations are

drawn according to the legend in Table S1. The peak labelled with

an asterisk (*) was not glycan related. Glycan representations are

described in Table S1.

(TIFF)

Table S1 Peptide sequence, proposed glycan structure,

and calculated monoisotopic masses of identified IgG Fc

tryptic glycopeptides.

(DOC)

Table S2 Proposed structure, molecular formula, cal-

culated monoisotopic mass, and calculated m/z values

of the alditol forms of identified glycans released from

IgG.

(DOC)
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