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Abstract—The bias andmean square error (MSE) analysis of the
frequency estimator suggested in [1] is given and an improved ver-

sion of the estimator, with the removal of estimator bias, is sug-

gested. The signal-to-noise ratio (SNR) threshold above which the
bias removal is effective is also determined.

Index Terms—Cramer–Rao bound, frequency estimation,

threshold effect.

I. INTRODUCTION

T HE frequency estimation method suggested in [1] is revis-
ited by analytically characterizing the estimator bias and

mean square error (MSE). Using the results of the bias analysis,
a simple bias-removal stage is proposed to eliminate the effect
bias on the estimator studied in [1].
Frequency estimation of complex exponential signals ob-

served under additive white Gaussian noise is a fundamental
problem of statistical signal processing naturally emerging in
many applications. In [1], a frequency estimation method with
two stages, namely coarse and fine frequency estimation stages,
is described. In the coarse estimation stage, N-point Discrete
Fourier Transform (DFT) of the input is calculated and the DFT
bin with the maximum magnitude and its immediate left and
right neighbors are detected. In the fine estimation stage, the
complex valued outputs of the bins detected in the first stage
are substituted in the following relation

(1)

to generate the fine frequency estimate. Here, is index of the
DFT bin detected in the first stage having the peak magnitude.
By combining the results of two stages, we can write the final

frequency estimate as with the units of DFT bins or

in terms of the normalized frequency (see
Fig. 1).
The estimator given in (1) is the bias-corrected version of the

estimator suggested by Jacobsen, [2]. In [1], a derivation for
the Jacobsen estimator for small is provided and a bias-cor-
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Fig. 1. A typical first stage output of the examined method in the absence of
noise.

rection term, which is the multiplier
appearing in (1), is suggested to improve the performance. In
this letter, we further extend the analysis by characterizing the
bias andMSE of the estimator and suggest a bias-removal stage,
following the correction stage, significantly improving the per-
formance at high SNR.

II. PRELIMINARIES

A complex exponential signal of unknown amplitude, phase
and frequency is observed under white Gaussian noise:

(2)

The frequency variable in (2) is the normalized frequency de-
fined in . In the present work, the frequency is also denoted
in terms of the DFT bins, that is where is an
integer in and is a real number in .
It is assumed that noise is circularly symmetric complex
valued Gaussian noise with zero mean and variance,

. The signal-to-noise ratio (SNR) definition used in
this work is the input SNR which is .
The maximum likelihood (ML) frequency estimator is

known to be the periodogram, ([3], p. 539). Typically, the
periodogram search is implemented by calculating a large
point Fast Fourier Transform (FFT) and searching for the
maxima in the magnitude spectrum. For sufficiently high
number of FFT points, the error variance of the periodogram
estimate is expected to approach the Cramer–Rao (CR) bound,

, ([3], eq. (15.72)), as SNR

increases.
The two-stage method described in [1] calculates the N-point

DFT of and then a peak search in the magnitude spec-
trum is conducted. This stage aims to estimate the coarse part

1070-9908/$31.00 © 2013 IEEE



914 IEEE SIGNAL PROCESSING LETTERS, VOL. 20, NO. 9, SEPTEMBER 2013

of the frequency as shown in Fig. 1. In the second stage,
the fractional part of the frequency is estimated. Since

, the CR bound for the estimation of , or equiva-
lently the CR bound for estimation of frequency in terms of
DFT bins, becomes

(3)

III. MAIN RESULTS

Bias for Noiseless Case: The estimator given by (1) can be

expressed as where
and .

In the absence of noise, the N-point DFT of the input
with the frequency

becomes

(4)

where . Using elemen-
tary complex algebra, and appearing in the relation

can be written as follows:

(5)

The output of the Jacobsen estimator in the absence of noise is
. We denote this ratio as :

(6)

Since , the Jacobsen estimator is biased even in the ab-
sence of noise. The estimator given by (1) is the bias-corrected
version of the Jacobsen estimator. The correction is achieved
via the multiplication of (6) by :

(7)

Here, is the bias value after the correction which can be ap-
proximated with for .
SNR Value for Which Bias Meets Cramer–Rao Bound: It

is well known that , [3]. Since
the CR bound decreases with SNR; the bias of an estimator,
however small, is expected to dominate the MSE at sufficiently
high SNR. By equating the CR bound in (3) to , we can
get the following expression for the SNR threshold:

(8)

If the operating SNR exceeds , the estimator bias is ex-
pected to be the dominant term contributing to the MSE.
MSE—General Discussion: The MSE of a non-linear esti-

mator is significantly dependent on the input SNR. Typically,
there exists three operational regions, ([4], p.21). In the low

SNR region, the observations are not “useful” and do not
contribute towards the reduction of MSE. This region is called
no-information region. Contrary to this region, when SNR is
high; MSE is solely determined by the fine estimation errors
and typically follows the CR bound. The threshold region lies
in between these two regions. In the threshold region, the MSE
dramatically improves with a few decibels of signal power.
The SNR threshold of an estimator, the SNR above which
good performance is essentially guaranteed, is critical in many
applications, ([4], p.21).
Specific to the frequency estimator examined in this letter,

the region of no-information is the values of SNR for which the
first stage fails. It is clear from Fig. 1 that when the peak detected
in the first stage is at least one bin away from the true bin; the
estimation error can not reduced to a value less than 1/2 bins.
In this letter, we call such errors as gross errors. The fine error
region of the suggested estimator is formed with the selection of
the true DFT bin in the first stage. In this region, the estimator
MSE is expected to approach the CR bound as SNR increases.
In this letter, we analytically characterize the fine and gross

error performances of the suggested estimator and then proceed
with the estimation of the SNR threshold separating these two
regions.
MSE—Fine Error Characterization: The DFT of the col-

lected samples, , is Gaussian distributed
with a non-zero mean (due to the presence of non-random signal
term) and variance . Furthermore, since the rows of the
DFT matrix are orthogonal to each other; the random variables

for are independent from each other.

The frequency estimate given in (1) can be expressed as

. The random variables and denote the
numerator and the denominator of the ratio in (1). Using inde-
pendence of , it can be easily verified that and are in-
dependent, Gaussian distributed random variables with means
and , with the values given in (5), and variances

and , respectively. Given these, the estimate can be ex-
pressed as follows:

(9)

In the final equality of (9), and are independent zero-
mean Gaussian distributed random variables with the variances

and , respectively. To facilitate the real
part calculation in (9), we express complex valued random vari-
ables as the summation of two real valued entities,

and . (The introduced real valued
random variables have half the variance of their complex valued
counterparts.) As SNR increases, the variance of noise terms di-
minishes and the equation (9) can be approximated with

(10)

The error variance can be written as
.

This result can be further simplified for small values of , by
using and for given in
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(5). With these approximations, becomes
and the error variance can be written as

(11)

where SNR is .
Comparing the MSE of the estimator with the CR bound

given in (3), we see that the MSE of the suggested estimator
is times higher than the CR bound at . The
gap further increases to 2.88 folds at . This shows that
the suggested estimator lacks the statistical efficiency property.
MSE—Gross Error Characterization: Gross errors occur

when the peak detected in the first stage is at least two DFT bins
away from the true bin, that is when the first stage peak is not
under the main-lobe of signal shown in Fig. 1. It can be easily
noted that if the peak detected in the first stage has an index

different from or ; the final estimation error
is guaranteed to be greater than one DFT bin. In this section,
we characterize the probability of the gross error event and give
an upper bound for the contribution of the gross errors to the
overall MSE.
The magnitude of the signal term at the true bin (bin indexed

with in Fig. 1) is , where is the fractional

part of the true frequency and . The
signal term for the DFT bins that can possibly cause a gross error
is . Here, denotes the DFT
bin offset from the true bin.
In the presence of noise, the signal at the true bin becomes

a complex Gaussian distributed random variable with mean
and variance . Similarly, the

bins that can cause a gross error have the distribution of
. A gross error occurs when .

Following ([5], p. 619), we call this event as anomaly and
denote its probability as .
The identical anomaly event also appears in the analysis of

non-coherent and differentially coherent communication sys-
tems, ([6], Appendix B) and its probability can be expressed
using ([7], eq. (14)) and ([8] eq. (10)) as follows:

(12)

(13)

where is the Marcum-Q function, is the modified
Bessel function of the first kind and

(14)

(15)

(16)

The integrand in (13) is a monotone increasing function
of with the maximum value of at

. This fact can be used to upper bound with
:

(17)

Examining the last relation, it can be recognized that

is the SNR at the true DFT bin and the
is the ratio of sidelobe level to the peak level

in the magnitude spectrum, (also see Fig. 1). With these defi-
nitions, can be expressed as

.
As expected, an increase in the value of increases the

probability of anomaly. We denote the maximum of
with , and upper bound the anomaly probability

with .
The contribution of an anomaly event caused by the th side-

lobe to the overall MSE can be (roughly) written as times the
probability of that bin being the maxima found in the first stage.
Hence, this contribution is upper bounded by .
The MSE due to all anomalous events becomes

(18)

Approximating with the highest order term in ,
which is can be written as follows:

(19)

Note that, the derivation of the bound for includes
a number of approximations such as neglecting the fractional
part of frequency estimation error and approximating the sum

with . These “rough” approximations only ef-
fect the constant scaling term, which is the term of in
(19). The scaling term has limited influence on the final results,
since the bound in (19) is exponentially tight in SNR.
SNR Value For Which MSE Tracks Cramer–Rao Bound:

A major goal in the estimator analysis is to find the SNR
threshold guaranteeing the fine error operation. At an arbitrary
SNR value, both fine-errors and gross-errors contribute to the
MSE. For sufficiently high SNR, the MSE is dominated by
fine-errors and its value is given by (11). To estimate the SNR
threshold, we find the SNR value for which the MSE due to
gross errors are on the same order with the fine errors. To this
aim, we simply equate the bound for in (19), to the fine
error MSE in (11) and get the following relation:

(20)

The satisfying (20) is denoted as the SNR threshold
above which a “good” performance (fine error region) is
guaranteed.
Improved Estimator Through Bias Removal: From (10),

the bias of the estimator at high SNR can be written as

. Bias becomes the dominant term contributing to the

MSE when SNR exceeds given in (8). To improve the

performance at high SNR, that is when ; we

suggest to apply the inverse function of to

the estimate produced by (1), that is

(21)
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Fig. 2. Comparison of the suggested scheme with the maximum likelihood method and the Cramer–Rao bound. (a) , (b) .

Fig. 3. Comparison of different estimators and the Cramer–Rao lower bound
for a wider SNR range than the one given in Fig. 2(a).

The estimate is unbiased at high SNR and has the error vari-

ance relation identical to the one of given by (11). We call the

estimate as the bias-removed estimate.

IV. NUMERICAL RESULTS

Fig. 2 shows the results of Monte Carlo runs for two different
frequencies at the sample size of . Fig. 2(a) shows the re-
sults when the true frequency has an offset of bin from
a particular DFT bin. We can note that the fine error region of
Monte Carlo runs are in close agreement with the analytical re-
sult of (11). Furthermore, the SNR threshold, which is the inter-
section point of the gross error contribution (dashed blue curve)
and theoretical RMSE result (cyan dashed line) given by (20),
closely matches the threshold observed in theMonte Carlo runs.
In comparison to the ML method, the SNR threshold of the ex-
amined method is 2 dB higher.
Fig. 2(b) repeats the same comparisons for . As

, small assumption utilized in the analysis starts
to depreciate. It can be noted that the analytical prediction for
the SNR threshold is 3 dB higher than the actual threshold for
this case. It should be remembered that satisfying (20)
is a bound guaranteeing good operation when .
Hence, this bound presents a sufficiency condition which gets
looser as .

Fig. 3 presents the results of the simulation given in Fig. 2(a)
for a wider range of SNR values. As expected, the suggested
bias removal operation through (21) becomes important when
SNR exceeds threshold given in (8). For many applica-

tions, threshold, which is 62.8 dB for the case shown in
Fig. 3, is too large to be exceeded. For such applications, the

bias-corrected and the bias-removed estimates are al-
most identical.

V. CONCLUSION

This letter gives a detailed MSE analysis of the estimator
suggested in [1] and presents a further improvement shown to
be effective at high SNR. The presented results encourage the
usage of the suggested method and its variations, such as [9], in
practical applications. Last but not the least, we would like to
note that the approach for threshold calculation can be applied
to study the threshold behaviour of other non-linear parameter
estimation problems, [10].
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