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ABSTRACT With the further liberalization of the electricity market of China, customers’ requirements,

characteristics, and distribution, as well as the quality, security, and reliability of power supplies without

interruption, have received considerable attention from power companies, policymakers, and researchers.

How to deeply explore the distribution characteristics of electricity customers and analyze their sensitivities

to electricity blackouts has become an especially important problem. This paper takes over 0.1 billion data,

collected by various smart devices of the Internet of Things in the power system of China, such as smart

meters, intelligent power consumption interactive terminals, data concentrators, and other cross-platform

data, for example, 95 598 telephone records, complaint information, user bills, user information, and main-

tenance records, as study objects, to analyze the consumption characteristics of power users. It has been found

that there is a wide range of power users who pay different electricity bills; a long-tail distribution following

a power law lies in the number of users versus their paid electricity bills. Meanwhile, there are two Pareto

effects (2-8 rule): the number of residents and non-residents versus their electricity bills, and the number of

large industrial users and general industry (business users) versus in their electricity consumption and bills.

Then, a decision tree algorithm is proposed to capture the characteristics of electricity consumers and to

recognize the crowd who is power blackout sensitive. The evaluation indexes and parameters of the decision

tree are discussed in detail, and a comparison with other intelligent algorithms shows that the decision tree

has a good recognition performance over that of others, and the characteristics used to identify the blackout-

sensitive crowd is various. All the results state that except for economic factors, positive social effects should

also be considered. Various marketing strategies to satisfy different requirements of power users should be

provided to promote long-term relationships between the power companies and power customers.

INDEX TERMS Blackout sensitivity, big data, decision tree, electricity market, Internet of Things, long-

tailed, Pareto effect.

NOMENCLATURE

Notations Description

Y The dependent variable, or target variable.

It can be ordinal categorical, nominal cat-

egorical or continuous. If Y is categorical

with J classes, its class takes values in C =

{1, . . . , }.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chunsheng Zhu.

Xi, i = 1, . . . ,M The set of all predictor variables. A pre-

dictor can be ordinal categorical, nom-

inal categorical or continuous.

D = {xi, yi}
N
i=1 The dataset, which consists of

N samples.

Wn The case weight associated with case n.

fn The frequency weight associated with case n. A non-

integral positive value is rounded to its nearest

integer.
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I. INTRODUCTION

In 2015, the state council of China released a file contain-

ing ‘‘some opinions on further deepening the reform of the

electric power system’’. Its core is to establish an electric-

ity market and implement it in such a way that the market

plays a decisive role in resource allocation [1]–[4]. The pri-

mary objective is to create a market-oriented electricity price

that can accurately reflect the relationship between market

supply and demand and a reform of the electricity retail

side becomes a key component of power system reform.

A lot of social capital has inflowed to the electricity retail

business, and active consumers who engage in energy con-

sumption and production and provide ancillary services in a

dynamic and interactive manner will be an integral part of the

future smart grid. In these contexts, the original Power Grid

Corps must improve power quality and security, change the

original extensive operation mode, customer service content

to satisfy the increasingly personalized and accurate require-

ments of customers [5], [6]. Aside from the power quality

and price [7], the security and reliability of the electricity

supply–that is, a high service level and a constant supply of

electricity without interruption of service–are another prin-

ciple consideration for users [8]. However, power failures

caused by natural factors [9] and unnatural factors, result

in huge losses and threaten the integrity of electric energy

systems around the world [8], [10]. The common causes of

outages can be categorized into supply side factors, demand

side factors and political economy factors. In terms of the

different impacts to the residents living in the area and the

different damages (economic and others) [8], [11], [12], the

power supply reliability in China is divided into three lev-

els [13]: (1) The first level load. The interruption of the power

supply at this level can cause personal accidents and large

economic losses. (2) The second level load. The power supply

interruption of this level will cause greater economic losses.

(3) The third level load. This level consists of those who

are not in the first or secondary loads, such as small towns,

housing estates, auxiliary workshops of a factory, etc. Due

to different losses, different power customers have different

reflections and ‘‘degrees of sensitivity’’ to blackouts and

they can be divided into blackout-sensitive and insensitive

classes. Previous works on electricity outages have focused

primarily on the physical and infrastructural causes of power

disruptions and restorations. Such research is essential for

understanding how to reduce the number and duration of

outages. But, they provide little insight into who is more

sensitive to power outages.

Due to the opening power market and fast growing elec-

tricity consumption [7], [13], how to deeply explore distribu-

tion characteristics of electricity customers and analyze their

sensitivities to electricity blackouts has become an especially

important problem. Currently, with a number of smart devices

and sensors of Internet of things (IOT) utilized in the electric

power system, such as different smart meters, various termi-

nals, monitoring equipment, telemetering devices, data con-

centrators, etc., a large volumes of data have been collected,

FIGURE 1. Various data of IOT devices and different information
platforms used to data mining.

as Fig. 1 shown. Meanwhile, big data mining techniques

have been applied to state estimation, forecasting, and control

problems of power devices [14]–[16]. In this paper, we firstly

fuse various over 100 millions data of multiple platforms

and sensors, including smart meters, user information, 95598

telephone records, complaint information, user bills, mainte-

nance records, and so on. And then, we apply statistical anal-

ysis and data mining technologies to capture the consumption

characteristics of power users and identify their sensitive

degrees to electricity blackouts. The main contributions of

this paper are as flowing.

• It is found that power users pay a wide range of elec-

tricity bill amounts and most users (approximately 90%)

pay electricity bills less than RMB 2,000 per year.

A long-tailed distribution lies in the number of users

against their paid electricity bills and when electricity

bills are less than RMB 10,000, the long-tailed distri-

bution follows a power law y = 4∗108x−1531 with

goodness of fit R2 = 0.9808.

• It is found that there are two Pareto effects (2-8 rules):

one is the number of residents and non-residents versus

their electricity consumption, and the other is the the

numbers of industry users and general industry (business

users) versus their electricity consumption and bills.

• The blackout sensitive crowds distribute in all walks

of life. The factors, such as industry types, economic

losses, interruption duration, interruption time, location

(urban or rural area) and so on, will effect the customer’s

sensitivity degree to power outages.

• A decision tree algorithm can effectively capture charac-

teristics of electricity consumers’ behaviors and recog-

nize power blackout sensitive users with a high recogni-

tion recall and precision rate over other methods.

These results can provide reasonable support for planning

for a power outage or normal maintenance operation and loss

assessment in the case of load overload, attaining better social

and economic effects and decreasing consumers’ payments.

II. LITERATURE REVIEW

Compared with the most developed and well-established

European electricity markets [17], the electricity market of
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China is in its initial opening stage, and its reform will be

in favor of economic developments [6], [18]. This requires

an in-depth analysis of customers and the power market.

Currently, a vast amount of data in the power field has

been collected, and researches studying the power market

and users’ requirements have been carried out widely. These

researches focus on using data mining and machine learning

technologies to analyze power market characteristics, mine

electricity customers’ behaviors, evaluate and forecast power

outages, and so on [14]–[16].

Electricity market and consumption. Zhang et al. [18]

propose a novel dynamic system model to clarify causal rela-

tionships between electricity consumption, electricity sup-

ply, electricity price, and their complex interrelationships.

By means of Lyapunov exponents, artificial neural networks

and bifurcation diagrams, they study the statistical data of the

Chinese electricity market from 1997 to 2012, and establish

four efficient single regulatory strategies. The results show

that excessive regulation of Chinese electricity market should

be avoided, and that integrated regulatory strategies and

peak-valley price are better than a single regulatory strategy.

Shiu et al. [19] apply the error-correction model to examine

the causal relationship between electricity consumption and

the real GDP of China during 1971–2000. The estimation

results indicate that the real GDP and electricity consumption

of China are cointegrated and that there is a unidirectional

Granger causality running from electricity consumption to

real GDP but not vice versa. Furthermore, Zhang et al. [20]

provide an extensive overview of the relationship between

Chinese electricity consumption and economic growth in

three dimensions, i.e. the time dimension, the regional dimen-

sion and the industrial dimension. By means of a multivariate

model, Johansen cointegration test and vector error correc-

tion model, Al-Bajjali et al. [21] find that GDP, urbanization,

population, structure of economy and aggregate water con-

sumption are significantly and positively related to electric-

ity consumption, while electricity price is significantly and

negatively related to electricity consumption.

Li et al. [6] summarize the current power demand

response status, feasible demand response market schemes

and demand response pilot projects in China. They point

out that challenges associated with demand response are the

result of lack of a suitable market mechanism for the current

Chinese power industry. Wang et al. [7] present a systematic

review on the research and development status of the resi-

dential tiered electricity price policy in China. By using the

electricity consumption data of smart meters for 10,000 Aus-

tralian households for a year, Bedingfield et al. [22] present

a new adaptable and scalable algorithm to understand elec-

tricity usage behaviors and provide customized electricity

billing. Rathod et al. [23] carry out a K-means clustering

algorithm on data from 20,000 consumer meters in the city

of Sangli to form different clusters. Then, association analy-

sis is employed to discover electricity consumption patterns

at the regional level in a city and extract knowledge con-

cerning electricity consumption with respect to atmospheric

temperature and physical distance from geographic features,

like rivers, farms, the ground and highways. An pattern

characterization framework [24] incrementally explores and

extracts actionable knowledge versus the time from meter’s

stream data. Knowledge discovery in database (KDD) [25]

is applied to identify typical load profiles of medium voltage

electricity customer characterization. A rule set for automatic

classification is also developed to classify new consumers of

a real database. Huang et al. [26] investigate the application

and effectiveness of several data mining approaches for elec-

tricity market price classification, and proposes a new data

model for forming the initial data set for price classification

and forecasting.

Power outages. Societies are highly reliant on power

systems for their energy needs. Reliability assessment is

performed in both planning and operation of the power sys-

tem. Although there has been increasing interest in harden-

ing the power system to be resilient against power outages,

the risk of power outages cannot be completely dimin-

ished. In addition, power blackouts have resulted in vari-

ous impacts to residents’ living spaces, public services and

facilities, and huge damages to the economy [11], [12].

By using publicly available information of historical major

power outages, socio-economic data, state-level climatolog-

ical observations, electricity consumption patterns and land-

use data, Mukherjee et al. [28] have developed a two-stage

hybrid risk estimation model to address power outage risks.

The results suggest that power outage risk is a function of

various severe weather-induced factors, such as the type of

natural hazard, expanse of overhead transmission systems,

the extent of state-level rural versus urban areas, and, poten-

tially, the levels of investment in operations/maintenance

activities.

Data mining and intelligent algorithms are also used to

forecast faults to reduce blackouts and locate faults after

blackouts. Diao et al. [29] present an online voltage secu-

rity assessment scheme using synchronized phasor mea-

surements and periodically updated decision trees (DTs)

to avoid blackouts. By using the past blackout represen-

tative events, the DTs are first trained offline to deter-

mine detailed voltage security, and then forecast 24-h ahead

operating conditions. The DTs are also updated hourly by

using newly predicted conditions for robustness improve-

ment. Morales et al. [30] present a data mining methodol-

ogy to perform signal detection, calculate traveling wave

times and determine the lightning stroke location along the

transmission line after an outage. Since the methodology is

immune to flash currents, it is swift and effective in locating

the impact point, especially in situations that the factors,

such as flash current values, inception angles, distances from

the impact point to protection relays and direct and indirect

lightning, are considered. Han et al. [31] integrate various

data mining techniques to analyze power plant faults and

introduces a random forest to predict fault types of the power

plant and rank important features. Xu et al. [32] extend the

fuzzy classification algorithm to the E-algorithm to alleviate
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the effect of imbalanced data, and then applies this algo-

rithm to identify the distribution of faults on Duke Energy

outage data. Dubey et al. [33] propose DTs and random

forests for enhancing distance relay performance to reduce

power outages during power swings in both compensated and

uncompensated power transmission networks. Meanwhile,

data mining and intelligent algorithms are applied in risk

assessment of power failures. Castillo and Anya [27] review

various models and algorithms that predict hazards and the

losses of energy services to customers. Kamali et al. [34] pro-

pose a new two-stage scheme to predict the risk of a blackout

in electric energy systems. In the first stage, the boundaries

of electric islands are determined by using a mixed integer

non-linear programming model that minimizes the cost of

generation re-dispatch. In the second step, various scenarios,

including the island and non-island conditions, are generated

and a DT classification technique is utilized to predict the risk

of a blackout. The proposed algorithm is simulated over the

IEEE 39-bus test system to demonstrate its performance in

online applications. To overcome the drawbacks of the high

computational cost in classical N-k-induced cascading con-

tingency and outage analysis, a de-correlated neural network

ensembles algorithm [35] is proposed, which is comprised of

a cascading failure simulation module for post-contingency

analysis and a risk evaluation module.

Although most of the aforementioned studies state that the

data mining and intelligent algorithms have been extensively

used in the areas of power markets, power consumption,

power outage faults and other aspects of the power field,

seldom does research focus on studying the crowd who is

sensitive to power failures.

III. CHARACTERISTICS OF ELECTRICITY CUSTOMERS

A. LONG TAIL AND PARETO EFFECT

Long-tail distribution. For a random variable X and all t >

0, there is the following distribution function F :

lim
x→∞

pr[X > x + t|X > x] = 1, (1)

or equivalently

F(x + t) ∼ F(x) as x → ∞. (2)

F is called a distribution with a long tail, a kind of heavy-

tail distribution [36]. Intuitively, it is interpreted as if the

long-tailed quantity exceeds some high level as the proba-

bility approaches 1. In statistics and business, the distribution

could involve popularities, random numbers of occurrences

of events with various probabilities [37]. In business, the term

long tail is applied to rank-size or rank-frequency distribu-

tions, which often form power laws and are thus long-tailed

distributions [36] in the statistical sense.

Pareto effect. The Pareto effect (also known as the 2-8

rule, the law of the vital few) states that, for many events,

roughly 80% of the effects come from 20% of the causes [36].

Mathematically, the 2-8 rule is roughly followed by a power

law distribution (also known as a Pareto distribution) for a

particular set of parameters, and many natural phenomena

have been shown empirically to exhibit such a distribution

[36]. In economics, the law is 80% of the economic profits

derive from 20% of important customers, and 80% of the

secondary customers generate only 20% of the total profits.

IV. CLASSIFICATION/REGRESSION TREES AND CHAID

ALGORITHM

The classification algorithms are supervised, as the class of

each object in the data set is known a priori. The objective

of these algorithms consists of learning a function or a set of

rules, denoted as a classifier, which allows assigning a new

(unobserved) object to the correct class. There are several

types of algorithms used to train classifiers, which can be

organized by learning strategy:

• Statistical models suppose the classes of objects are

generated in terms of some probabilistic distribution, such as

linear and quadratic discriminant analysis [40];

• Artificial neural networks (ANNs) attempt to model

the human brain mathematically. An example is the back

propagation multilayer perceptron algorithm [41];

• Support vector machine algorithms (SVMs) try to

seek out hyperplanes in a high-dimensional feature space that

separates the data into different categories. A new item is

classified according to its location relative to the established

hyperplanes [42];

• Ensembles of classifiers combine multiple classifiers

construct a more robust classifier, generally by applying a

voting mechanism, such as boosting algorithms [43].

• Classification and regression tree algorithms build

prediction models from observed data. The models are

achieved by iteratively dividing the data space and matching

a prediction model in each partition. As a result, the division

can be graphically described as a decision tree. Regression

trees are designed for dependent variables and take ordered

discrete or continuous values as study objects, with prediction

error usually measured in terms of the squared difference

between the predicted and observed values. Classification

trees study finitely many unordered dependent values and

classify them into different classes with misclassification

costs, as shown in Fig. 2. The algorithms include C4.5,

CART, chi-squared automatic interaction detector (CHAID)

[46], random forest [47], and so on. Since the CHAID algo-

rithm employs an χ2 test, p-value and Bonferroni adjustment

to implement multi-branched trees with high classification

accuracy, this paper uses it to recognize electricity outage-

sensitive users.

A. CHAID

CHAID [45], [46] was originally designed for classification

and then extended to regression, for splitting, which resem-

bles stepwise regression. CHAID can recognize three variable

types: ordered with missing values (called floating), ordered

without missing values (called monotonic) and categorical.

If variable X is floating or monotonic, node Nt is divided into

10 sub-nodes, plus one for missing values, or each sub-node

VOLUME 7, 2019 19491
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FIGURE 2. Decision tree structure (left) and partition (right) of a
classification tree model with three classes, labeled 1, 2 and 3. At each
intermediate node, a case goes to the left child node if and only if the
condition is satisfied. The perfected class is given beneath each leaf node.

is set to an interval of X values. If X is categorical, Nt is

divided into one sub-node for every category of X . Pairs of

sub-nodes are then regarded for merging by applying an χ2

test and Bonferroni-adjusted tests according to the p-value.

The merged sub-nodes are then considered for splitting again

by virtue of Bonferroni-adjusted tests. Each X variable is

evaluated with a Bonferroni adjustment, and the one with the

smallest p-value is chosen to be divided. The algorithm can

be described as follows.

B. ALGORITHM

Merging. For every predictor variable X , non-significant

categories aremerged. IfX is chosen to be split, each category

of X will lead to one sub-node of X . The merging process

computes the p-value as well as in the splitting step.

(1) If X only has 1 class, the p-value is set to be 1 and the

merging stops.

(2) If X has 2 classes, jump to step (8).

(3) Else, for ordinal variable X , the similar pair being

allowed to merge is two adjacent classes. For nominal

variable X , the most similar pair is the pair with the

largest p-value in relation to the dependent variable Y .

The p-value calculation will be presented in subsection

C.

(4) If the pair’s largest p-value is larger than αmerge,

a threshold defined in advance, it is merged and a new

compound category of X is produced; if it is not, jump

to step (7).

(5) (Optional) If the new compound category contains

more than three categories, then a best binary division,

whose p-value is the smallest and not beyond αsplit ,

a user defined threshold, is performed within the com-

pound class.

(6) Return to step (2).

(7) (Optional) A category with observations below the

user-defined minimum size is merged with the most

similar class with the largest p-value.

(8) For the merged classes, the p-value is calculated by

using Bonferroni adjustments (detailed in subsection

D).

Splitting. In the merging process, the adjusted p-value is

obtained, and by comparing the p-value against each predic-

tor, the ‘‘best’’ splitting for each variable X is found.

(1) The predictor X with the smallest adjusted p-value is

selected.

(2) If the adjusted p-value is less than or equal to αsplit ,

the node is split. Else, the node is regarded as an

ultimate node.

Stopping. If any of the following stopping rules is satis-

fied, the growth of the tree should be stopped.

(1) All cases in a node have identical values of the depen-

dent variable.

(2) All cases in a node have identical values for each

predictor.

(3) The current tree depth is over the user defined maxi-

mum tree depth.

(4) The size of a node is less than the user-specified mini-

mum node size or the number of child nodes is 1.

C. P-VALUE

In the above algorithm, computations of p-values rely on the

type of dependent variables. Themerging process requires the

p-value for a pair category or all categories of X . Suppose that

in data D, there are I categories of independent variables X ,

and J values of dependent variable Y . The p-value calculation

is as follows.

1) CONTINUOUS DEPENDENT VARIABLE

For the continuous dependent variable Y , an ANOVA F test

[48] is performed to check for different classes of X.Hence,

the p-value is derived from the ANOVA F-statistic as

F =

I
∑

i=1

∑

n∈D

wnfnI (xn = i)(ȳi − ȳ)2/(I − 1)

I
∑

i=1

∑

n∈D

wnfnI (xn = i)(yn − ȳi)2/(Nf − I )

, (3)

p = pr(F(I − 1,Nf − I ) > F) (4)

where

ȳi =

∑

n∈D

wnfnyn(xn = i)

∑

n∈D

wnfnI (xn = i)
, (5)

ȳ =

∑

n∈D

wnfnyn

∑

n∈D

Wnfn
(6)

and

Nf =
∑

n∈D

fn. (7)

As a random variable, F(I − 1,Nf − 1) follows an

F-distribution with degrees of freedom I and Nf − I .

2) NOMINAL DEPENDENT VARIABLE

For the nominal categorical dependent variable Y , a count

table is built by applying classes of X as rows and categories

of Y as columns. Under the null hypothesis, the expected cell

frequencies are evaluated. The expected and observed cell
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frequencies are utilized to compute a likelihood ratio statis-

tic or Pearson chi-squared statistic. The p-value is computed

based on any of the frequencies, and they are

G2 = 2

J
∑

j=1

I
∑

i=1

ln(nij/m̂ij) (8)

and

X2 =

J
∑

j=1

I
∑

i=1

(nij/m̂ij)

m̂ij
. (9)

For the cell (xn = i, yn = j), nij =
∑

n∈D fnI (xn = i∧ yn = j)

is the observed cell frequency, and m̂ij is the expected cell fre-

quency. Without case weights, the expected cell frequencies

are

m̂ij =

Ji
∑

j=1

nij

Ii
∑

i=1

nij

Ji
∑

j=1

Ii
∑

i=1

nij

. (10)

The p-value is given by

p =

{

Pr(χ2
d > X2) Pearson′s Chi− square test

pr(χ2
d > G2) likelihood ratio test,

(11)

where χ2
d obeys a chi-squared distribution with degrees of

freedom d = (J − 1)(I − 1).

3) ORDINAL DEPENDENT VARIABLE

For the categorical ordinal dependent variable Y , the null

hypothesis of the independence of X and Y is tested against

the row effects model, where the rows are the categories

of X and the columns are the classes of Y [45]. Under the

hypothesis of independence, expected cell frequencies m̂ij are

estimated, and under the hypothesis of the data following

a row effects model, expected cell frequencies ˆ̂mij are esti-

mated. The likelihood ratio statistic and the p-value are

H2 = 2

I
∑

i=1

J
∑

j=1

ˆ̂mijln( ˆ̂mij/m̂ij) (12)

and

p = pr(χ2
I−1 > H2). (13)

D. BONFERRONI ADJUSTMENTS

Suppose that, originally, a variable with I categories is

reduced to r categories by the merging step. Bonferroni mul-

tiplier B is the number of possible ways in which I categories

can be merged into r categories. For 2 ≤ r ≤ I ,B can be

TABLE 1. Original tables.

obtained by using following equation.

B=











































(

I−1

r−1

)

Ordinal predictor

r−1
∑

v=0

(−1)v
(r−v)I

v!(r−v)!
Nominal predictor

(

I−2

r−2

)

+r

(

I−2

r−2

)

ordinal with a missing category.

(14)

V. DATASET, PRE-PROCESS AND EVALUATION INDEXES

A. DATASET AND PRE-PROCESS

The desensitization datasets come from a developed province

of China during the entirety of 2015, includes 14 tables,

104,249,759 records, a total of 1,968,846 users (where

430,326 users have labels) and 143 attributes, as shown

in Table 1.

The whole data process is shown in Fig. 3, including

data cleaning and filtering, association analysis, data fusion,

statistical analysis, classification and comparison. Datasets

1, 2 and 3 are utilized to perform statistical analysis of the

distribution of electricity customers. By applying union and

intersection operations and association analysis on 14 tables,

some complex text features, repeated data and features

that are irrelevant to power outage sensitivity are filtered

and deleted. By combing and intersecting multiple tables,

the dataset with labels that are sensitive or insensitive to
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FIGURE 3. Data process.

TABLE 2. Features.

a power outage becomes 430,326 records with 23 features,

as shown in Table 2. 70% of the data with label 0 is ran-

domly selected as the training set, and 30% as the test set,

in which 3.02% of the users of the data are blackout sensitive,

as Table 3 shows.

Meanwhile, different attributes and orders of magnitude

of the features will result in inaccuracy. The traditional

standardizations consist of the maximum-minimum value

TABLE 3. Dataset sensitivity and insensitivity to power outages.

standardization and Z-score standardization. This paper

applies a Z-score to standardize the dataset:

xoi =
xi − µ

δ
(i = 1, . . . , k), (15)

where µ =
∑N

i=1 xi
N

and δ2 =
∑

(x−µ)2

N
.

B. EVALUATION INDEX

To accurately evaluate the performance of a decision tree,

the usual evaluation indexes, described below, are used.

True positive (TP). The users are sensitive to power failure.

True negative (TN). The users are judged to be insensitive

to a power failure.

False positive (FP). The users are judged to be sensitive to

power failure but in fact are insensitive. The false positive rate

(FPR)is the probability of an FP.

FPR =
FP

FP+ TN
. (16)

False negative (FN): The users are judged to be insensitive to

a power failure but the actual are sensitive. The false negative

rate (FNR) is the probability of the FN.

Precision (P): The detected proportion of customers who

really are sensitive to power outages.

P =
TP

TP+ FP
. (17)

Recall (R, probability of detection): The probability of cor-

rectly detecting the proportion of customers who are insensi-

tive to power failure.

R = TPR =
TP

TP+ FN
(18)

and

FNR = 1 − R. (19)

F1 is the harmonic mean of precision and recall.

F1 =
2∗P∗R

P+ R
(20)

Accuracy (A):The proportion of customers who are sensitive

to power blackouts and are recognized as sensitive users and

the customers who are insensitive to power blackouts and are

recognized as insensitive users.

A =
TP+ TN

TP+ FN + FP+ TN
. (21)

Fundamentally, P and FPR reflect the recognition preci-

sion and detection errors. R and FNR reflect the recognition
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TABLE 4. Electricity bill grade, Number of users and electricity bills.

FIGURE 4. User distribution vs. their electricity bills annually.

coverage and missing rate. F1 is the balance of the P and R

values. Usually, a big TN will lead to the accuracy (A) being

far greater than precision (P). Therefore, P, R and FPR can

response to the overall performance of a model.

ROC illustrates the diagnostic ability of a classifier system

as its discrimination threshold is varied. The curve is created

by plotting the true positive rate (TPR) against FPR at various

threshold settings.

AUC is the area under the ROC curve. In general, AUC

is between 0.5 and 1, and the higher AUC is, the better the

differentiation ability of the model is.

VI. CASE ANALYSIS

A. LONG TAIL

According to the amount of electricity consumed in 2015,

a more in-depth hierarchical discussion of electric-

ity customers is conducted. Since there was a total

of 3,275,635 users (without 4383 arrearages) contribute RMB

42,968,069,025 (from RMB 0-32,100,000,000), their ranges

are too big to be displayed clearly. Consequently, we divide

them into different grades to generate statistics and exhibit

them in Table 6, in which, 3,275,635 users pay an electricity

fee between RMB 0 and 50 yearly, 807,921 users are in the

range of RMB 50-100, and the amount of electricity paid is

only 0.04% and 0.14%. An accumulated 80% of users pay

less than 1% of the electricity bills. On the contrary, users

who paid RMB 100K-37.7M per year account for 0.98%

and 0.09%, but the accumulated amount paid is beyond 85%

power bills.

According to Table 4, Fig. 4 displays the users’ distribu-

tion. Overall, if the interval inequality of the electricity bill is

ignored, a long tail of the number of customers versus elec-

tricity bills can be sketched out (the red line in Fig. 3). It can

be seen that the power users pay awide range of electricity bill

amounts, and most users (approximately 90%) pay electricity

bills less than RMB 2,000 per year, in which 80% of users

pay below RMB 400 per-year. Since a too-long tail makes

it difficult to observe the distribution of users against their

electricity bills, to clearly observe the distribution, we extract

1,865,287 users, of which the electricity bills are in the range

of RMB 0-10,000, to fit a curve, as shown in Fig. 5. It is found

that there is a long tail following a power law distribution

with the probability density function y = 4∗108x−1531. Due

to goodness of fit R2 = 0.9808 and R2 → 1, the fitting is

reliable.

Furthermore, to make clear the contributions of different

industries to electricity bills, according to the voltage levels

and types of users [7], power users are divided into four

classes, as Table 5 shows. The transverse one is among similar
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FIGURE 5. A long tail following a power law existing in the number of
power users who pay electricity bills in the range of RMB 0-10,000.

TABLE 5. Original types of electricity users.

TABLE 6. Payments of residents and non-residents.

FIGURE 6. Electricity bill payments of residents and non-residents.

users of different voltage levels and the longitudinal one is

between different industrial users under the same voltage

level.

Low-voltage residential electricity accounts for up to

83.90%of electricity usage, while the percentage of high volt-

age electricity usage is only 5.1%. In addition, Table 6 shows

the electricity consumption and payment of electricity,

divided by residents and non-residents.

According to the statistics of Table 6 and Fig. 6, the total

number of users is 1,968,846, and the number of residents

accounts for 82.36% of the total users, contributing over

2.43% of electricity fees. On the contrary, non-residents

account for about 17.63% of the total, paying 97.57% of

electricity bills. This observation is partly in line with the

extended Pareto effects, namely 20% of important customers

make more than 80% of the contributions.

FIGURE 7. Proportion of non-resident electricity customers, electricity
consumption and electricity bills.

The electricity consumption of non-residents mainly

includes large industrial electricity, the farming industry,

and general industrial and commercial electricity, as shown

in Fig. 7. In the non-residents area, the power consumption

of farming only accounts for 1.67% of electricity customers,

0.13% of the electricity consumption, and 0.12% of the total

paid annually. From Fig. 7, it can be seen that the Pareto

effect also exists in general industrial, commercial electricity

consumption and big industrial electricity consumers. 20% of

non-residential electricity customers in large industrial areas

contribute 80% of the profiles.

The long tail theory is an improvement on and perfection

of the Pareto effect [36]. Both the Pareto effect and the long-

tail distribution reflect that, in developed areas of China, low-

voltage residential electricity accounts for 80% of electricity

usage, which results in a higher electrical loss for the power

supply company; the less non-residential users and industrial

electricity have become the dominant electricity consumers.

Electricity sale companies should make different sales strate-

gies for residents and non-residents to gain higher economic

benefits, and ensure power supply reliability and quality for

non-residents. Aside from the economic considerations, addi-

tional factors should also be taken into account. The next

section will continue to analyze other factors and recognize

users who are sensitive to power blackouts.

B. BLACKOUT SENSITIVE

1) PERFORMANCE

After pre-processing, the power outage-sensitive dataset

includes 23 properties (Section V, Table 3) and a total of

430,326 users with labels. Let the p = 0.02. This paper trains

and tests the decision tree model using CHAID. As discussed

in section IV, we firstly use the precision (P), recall (R)

and FPR to evaluate the performance of this model. 70% of

the data is randomly selected as the training set, and 30%

as the test set. Too many branches and layers may result

in a long time delay and over-fitting, while less branches

and layers will lead to a low performance. Therefore, proper

parameters should be taken into account. The model training

and test are carried out under different branches and layers,

and the results of the test are shown in Table 7, as well as

in Figs. 8, 9,10 and 11.

As shown in Figs. 8 and 9, overall, for a fixed branch (or

layer), P and R grow with the number of layer (or branch).

P quickly reaches 90%, while R increases slowly. In light

of R, we divide Table 7 into three parts: R <= 50% in the

blue dashed frame, R > 80% in the red dashed frame and
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TABLE 7. P, R and FPR changes with layers and branches.

FIGURE 8. Precision versus layers under different branches.

FIGURE 9. Recall vs. layers under different branches.

between them is where R is equal to other values. The blue

dashed frame part in Table 7 and Figs. 9 and 10 shows that the

recognition precisions and recalls of the model are more sen-

sitive to branches than layers, and a binary tree is unsuitable

for recognizing blackout-sensitive users. When branch = 2,

the DT evolves into a binary tree (the yellow part in Table 7),

whose recall rates are low. That means identification of power

FIGURE 10. FPR under different layers and branches.

FIGURE 11. Precision vs. recall under different branches.

outage-sensitive users is a multi-class problem rather than

binary classification.

Fig. 10 demonstrates that the FPRs change with the lay-

ers under different branches. Although the FPRs fluctuate

under all parameter settings, the FPRs are very low (10−3).

Fig. 11 illustrates that recall increases with the branches and

layers andwill not result in the decline of P. From the different

colored parts in Table 7 and Figs. 8, 9,10 and 11, it can be

seen that only when there is an increase in both the number

of branches and layers will a good performance be achieved.

Moreover, to more clearly observe the changes in perfor-

mance, we calculate the left three indexes and demonstrate

all of them in three dimensional graphs, as shown in Fig. 12.

The recognition P of the model increases rapidly with the

braches and layers, and is always relatively higher than R.

From the different colors in Table 7 and R in Fig. 12, it can

be seen, in the case of branch >= 7 and layer >= 7, that R is

over 90% and FNR decreases to less than 10%. Because of the

high detection P, the accuracy A is also very high. In terms of

formula (20), the value and change trend of F1 is more similar

to that of R.

2) DISCUSSION

Since power failures will cause various influences in the

economy and society. It will affect many aspects of people,

such as work, life, study, travel and so on, and result in

different losses for the enterprise or institution. Due to various

factors, people’s sensitivity degrees to power failures are

different. As Figs 8 to 11 shown, with the branches and layers

growing, these factors are more taken into consideration,
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FIGURE 12. P, R, A, F1, FPR and FNR changing with layers and branches
on the test dataset.

FIGURE 13. The ROC curve and AUC with branch = 7 and layer = 6.

TABLE 8. Percentage of users who are blackout-sensitive in different
industry types.

which improves the performance rapidly. Meanwhile, once

these factors have been considered by the decision tree,

the performance becomes stable, even, more branches and

layers will cause over-fitting and reduce the robustness.

Therefore, branches and layers should be selected carefully.

As discussed in subsections A, since the industry type

determines the economic benefits, as well as economic

losses, caused by power failures, economic factors are impor-

tant for recognizing blackout-sensitive users. Further anal-

ysis finds that the users who are power failure sensitive

are distributed in different industries (elec_type), and the

proportion in each industry has no significant differences,

as Table 8 shows. Aside from economic factors (reflected

by elect_type, lode_attr_code and contract_cap), interruption

duration and time, the type of business accepted by 95598

(busi_type_code), calling (calling numbers and time), the flag

used to indicate urban vs rural users (urban_rural_flag) and

the handle time (handle_time) are also key features. During

a blackout, the power sensitive crowd consisting of both

residents and non-residents will repeatedly dial 95598 to

urge them to restore power. The main reasons may be that

blackouts result in living or work inconveniences, economic

losses, and more.

3) PARAMETERS AND ROC

Considering the trade-off between performance and cost,

reasonable parameters are selected, such as the gray part

in Table 7 (branch = 9 and layer = 5, branch = 8 and layer =

6, branch = 7 and layer = 6 and branch = 6 and layer = 7).

Given branch = 7 and layer = 6, Fig. 13 illustrates the ROC
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TABLE 9. Comparison with other methods.

curve and the AUC. The smooth curves of the ROC ensure

that there is no over-fitting. Meanwhile, the AUC is equal to

0.915 on the training dataset and 0.902 on the test dataset,

which means the model has a good ability to discriminate

between the data.

4) COMPARISON

With reasonable parameter settings, we compare the results of

the decision tree with those of the SVM and logistic regres-

sion model. The results are shown in Table 9. It can be seen

that under reasonable parameters, the decision tree model has

a good identification precision and recall rate over the SVM

and logic regressionmodel, plus a lower FPR and FNR,which

is more suitable for detecting power outage sensitive users.

VII. CONCLUSION AND FUTURE WORK

With the further liberalization of the electricity market of

China, the customers’ requirements, characteristics and dis-

tribution, as well as the quality, security and reliability of

power supplies without interruption, have received consid-

erable attention from power companies, policymakers and

researchers. Meanwhile, a large number of smart devices of

Internet of things are used in smart power grids, and they pro-

vide a huge data support for further understanding the charac-

teristics of Chinese power users. This article adopts statistical

analysis and data mining to analyze the users distribution and

their attitudes toward power security and reliability–that is,

their sensitivity to power outages. The study found that in

Chinese power market, The number of users who paid differ-

ent electricity fees from arrears to tens of millions, and there

are tow Pareto effects and a long tail distribution in number of

users against power bills. In addition, a decision tree model is

used to classify customers and find customers who are sensi-

tive to power failures. The experiments show that the decision

tree can accurately capture the characteristics of the crowd

who is sensitive to power outages, and makes reasonable

classificationswith good identification performances over the

SVM and logistic regression model.

These findings suggest that electricity fees power users

paid annually distribute widely, and users in the large industry

field are very import customers of the electricity companies.

The power company should ensure the reliability and safety

of the power supply to maximize its own benefits. However,

since the crowd who is sensitive to power failures distributes

in all walks of life, and the proportion in each industry

has no significant difference. The factors, such as industry

types, economic losses, interruption duration, time, location

(urban or rural area) and so on, will effect the customer’s

sensitivity degree to power outages. For power suppliers

and policy makers, in addition to economic factors, positive

social effects should also be considered. Companies that

sell electricity may construct more reasonable dispatch and

repair schemes and power blackout plans during the power

consumption peak. Meanwhile, various marketing strategies

to satisfy different requirements of power users should be

provided to promote suppliers’ long-term attractiveness to

power customers, such as time-sharing electricity price and

peak-valley electricity price.

In the next step, we will further quantitatively analyze the

influences of various factors on power failure sensitivity, and

further deepen the algorithm based on decision tree, such as

random forest and bagged tree.
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