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Abstract— Within any incremental development paradigm, 
there exists a tension between the desire to deliver value to the 
customer early and the desire to reduce cost by avoiding 
architectural refactoring in subsequent releases. What is 
lacking, however, is quantifiable guidance that highlights the 
potential benefits and risks of choosing one or the other of 
these alternatives or a blend of both strategies. In this paper, 
we assert that the ability to quantify architecture quality with 
measurable criteria provides engineering guidance for iterative 
release planning. We demonstrate the use of propagation cost 
as a proxy for architectural health with dependency analysis of 
design structure and domain mapping matrices as a 
quantifiable basis for iteration planning.  

Keywords: architecture quality; dependency management; 
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I.  INTRODUCTION  
Within any iterative and incremental development 

paradigm, there exists a tension between the desire to deliver 
value to the customer early and the desire to reduce cost by 
avoiding architectural refactoring in subsequent releases [1]. 
The choice between these two competing interests is 
situational. In certain contexts, early delivery might be the 
correct choice, to enable for example, the release of critically 
needed capabilities or to gain market exposure and feedback. 
In other contexts, however, delayed release in the interest of 
reducing later rework might be the choice that better aligns 
with project and organizational drivers and concerns. What is 
lacking, however, is quantifiable guidance that highlights the 
potential benefits and risks of choosing one or the other of 
these alternatives (or perhaps a blend of both strategies). In 
this paper, we seek to provide such guidance using 
dependency mapping and analytic techniques that provide 
insight into the cost and value implications of specific 
iterative delivery strategies. 

In iterative release planning, a range of dependencies1

1. Dependencies between capabilities, including both 
functional and non-functional requirements 

 
must be taken into consideration: 

                                                           
1 A dependency exists between two elements if an element requires 
another element for its specification (semantics) or implementation 
(structure). 

2. Dependencies between capabilities and 
architectural elements 

3. Dependencies between architectural elements 
Understanding the dependencies between capabilities 

allows for optimization of development activities within a 
given release and also ensures that a coherent and useful 
feature set is released to the end user [2]. Understanding the 
dependencies between capabilities and architectural elements 
allows for a staged implementation of the architecture in 
support of the delivery of customer value. Understanding the 
dependencies between architectural elements also supports 
the staged delivery of customer value. In addition, an 
analysis of dependencies between architectural elements 
provides insight into potential downstream architectural 
refactoring costs that may be incurred as a result of choosing 
to incrementally develop and release the architectural 
infrastructure. 

Depending upon the organization and life cycle adopted, 
analysis of these dependency types may be seen as the 
provenance of distinct stakeholder roles, performed by 
different people, who may even be working in separate 
organizations. This can result in fragmented communication 
and sub-optimal solutions and delivery strategies. In our 
paper, we illustrate the use of a technique that can be used to 
integrate the analysis of these three types of dependency 
relationships. 

We posit that the ability to quantify architecture quality 
with measurable criteria provides engineering guidance for 
iterative release planning. We can improve the visibility of 
the quality of the architecture by providing quantifiable 
quality models of the architecture module structure during 
system development. These models can be applied earlier in 
the life cycle using the architecture as an analytic model (as 
opposed to code). We are starting with models of 
propagation cost as a proxy for architectural health. In this 
paper, we present the relevance of the propagation cost 
model and demonstrate its use.  

We conducted a study with the goal of identifying 
whether there are distinct return-on-investment outcomes of 
development paths if contrasting business goals are at stake 
and whether it is possible to monitor the outcomes at each 
delivery release. The two contrasting goals we studied are i) 
maximizing value for the end user; and ii) minimizing 
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implementation cost due to rework. We analyzed how 
propagation cost changed from iteration to iteration as we 
optimized for these different outcomes.  

The structure of the paper is as follows. In section 2, we 
review dependency management as manifested by design 
structure matrixes. In section 3, we review our development 
path analysis approach to iteration planning. In section 4, we 
present the details of our study conducted on the 
Management Station Lite system [3] and lastly in section 5 
we discuss our findings and conclusions.  

II. DEPENDENCY MANAGEMENT AND QUALITY 
In order to reason about alternative development paths 

for a given project, we must take into account the 
dependencies between customer requirements (for example 
sending a command to lower the building temperature 
requires having knowledge and therefore access to the 
current temperature). Dependencies between architectural 
elements are also important, for instance asynchronous 
updates of the client browser require management of user 
sessions. Yet another type of dependency occurs between 
architectural components and the customer requirements 
they support (either functional or quality related). We review 
how to capture each of these dependencies using design 
structure and domain mapping matrices.  

A. Design structure matrix (DSM).  
A design structure matrix (DSM) provides a simple, 

compact and visual representation of a system. DSMs to date 
have not only been used in component-based and 
architecture decomposition and integration analysis, but also 
in organization, project, product planning, and management 
contexts. The use of DSMs in software engineering has 
mostly focused on understanding design rules and has been 
increasingly incorporated into reverse engineering and 
architecting tools [4]. 

A DSM is a matrix mapping dependencies between items 
in a given domain. All elements appear both in the rows and 
the columns and dependencies are signaled at the intersection 
points of the items in the matrix. For instance in Figure 2, the 
mark at the intersection of row 3 with column 1 means that 
element in column 1 (Alarm Notification) depends on 
element in row 3 (Alarm Engine). 

DSMs are single domain square matrices, meaning that 
relations are defined between instances of the same type 
(architectural elements in Figure 2). However, dependencies 
also occur across different domains. Examples include 
dependencies between development staff technical 
competencies and the software components to be developed. 
Another common example is the identification of which 
software components or modules satisfy which customer 
requirements. These multi-domain dependencies often cause 
project delays or even failure when detected too late [5]. 

B. Domain mapping matrix (DMM) 
The term Domain Mapping Matrix (DMM) was coined to 

refer to rectangular matrices that map the relations between 
items in two different product development domains (for 
example task X requires person Y’s expertise) [5] [6]. 

DMMs allow dual-domain analysis by representing 
dependencies between items in one domain (rows) and items 
in another domain (columns). The two domains need not 
have the same number of items, thus the resulting DMM is 
usually a rectangular matrix. Figure 3 illustrates an example 
of a DMM applied to the analysis of dependencies between 
customer requirements and architecture elements.  

For DMMs, only the clustering technique has been 
proved to be applicable and produce meaningful results in a 
similar way to DSM clustering [5]. The goal of clustering is 
to find subsets of DSM elements such that the nodes in a 
DSM cluster are maximally dependent and the clusters are 
minimally interacting. The main difference is that clusters 
within a DMM can occur anywhere in the matrix and not just 
along the diagonal as with a DSM. The clusters will identify 
areas where the two domains are closely related and/or 
interdependent.  

C. Combining DSM and DMMs 
DSM and DMM analysis can be combined to reach 

deeper conclusions about inter and intra-domain 
dependencies in a dual-domain context. Bartolomei suggests 
this can be done in two ways [7]. 

One approach is to create a DSM for each of the two 
domains in order to first analyze the intra-domain 
dependencies. Then create a DMM mapping the inter-
domain dependencies. This approach requires an integrated 
analysis of data from all resulting three matrices in order to 
arrive at meaningful conclusions. The associated benefits 
derive mostly from the discussions among involved 
stakeholders and clarification of the impact of intra-domain 
dependencies on inter-domain relations, as suggested by 
Danilovic in a complex multi-project development with a 
high level of uncertainty [6]. 

The second approach to analyzing dependencies across 
multiple domains combines DSM and DMM analysis within 
a Multiple-Domain Matrix (MDM). In a MDM, all items 
from both domains appear within a single square matrix [7] 
both as rows and columns (with the same ordering along 
both axes). In theory, this approach allows representation of 
mutual dependencies between items in different domains and 
possibly the application of the sequencing algorithm used for 
time-based DSMs. However, there seem to be no case 
studies available yet to draw upon for empirical 
confirmation. The environmental parameters extension, 
EDSM, applied by Sullivan is one attempt to include 
multiple domains within software analysis; however, that has 
not been applied to iteration planning [8] [9].   

Table I summarized the use of DSM and DMMs within 
the context of an iterative release planning exercise.  

TABLE I.  DSM/DMM IDENTIFICATION 

 Customer Requirements 
(CR) 

Architectural Elements 
(AE) 

Customer 
Requirements (CR)  DSM DMM CR 

Architectural 
Elements (AE) 

-- 
 DSMAE 
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Figure 1.  MSLite top-level runtime [10] architecture view 

 
Figure 2.  DSM representation of MSLite top-level runtime view 

D. Propagation cost 
Architecture quality and visibility are closely related. 

Reasoning about quality with a quantifiable model requires 
certain architectural properties to be represented objectively 
and in a repeatable manner across systems for the model to 
work. It is for this reason that we look more closely into 
using DSM and DMM analysis to provide a representation 
with support for objective metrics generation. We discuss the 
propagation cost metric in this context.  

The propagation cost measures the percentage of system 
elements that can be affected, on average, when a change is 
made to a randomly chosen element [11]. Some existing 
approaches of using DSM analysis examine “direct” 
dependencies and provide metrics measuring complexity and 
[12] decision volatility [9]. Other approaches use a 
propagation cost metric to take into account “indirect” 
dependencies and observe correlations between software 
coupling and the coordination requirements among 
developers [13]. These approaches take a “shapshot” of the 
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current system state using the DSM for improving visibility 
at the architecture level.  For the calculation of cost of 
change, we use the system propagation cost metric that can 
be derived from the DSM of architecture elements, DSMAE

Propagation cost, P
.   

C

  

, is calculated as the density of the 
matrix as represented by the total number of filled cells due 
to direct or indirect dependencies to the entire matrix size: 
 

   

     n
 According to MacCormack 

2 
[11], this metric captures the 

percentage of system elements that can be affected, on 
average, when a change is made to a randomly chosen 
element. 

The module view of the architecture provides visibility as 
displayed in the DSM. Starting with the propagation cost 
calculation our approach uses module as the unit of analysis.  
Hence, the types of dependencies that we model are module 
dependencies. We characterize the structure of design by 
measuring the degree of coupling and propagation cost 
(examining direct and indirect chains of dependencies). 

III. PATH ANALYSIS 
Next we describe our approach to development path 

analysis for iterative release planning. Each release (where a 
release might be an internal engineering release or an 
external release to the customer) in the path is described by 
the following attributes:  

• Sequence number (the release order in the path)  
• Customer requirements delivered  
• Architectural elements implemented  
• Number of dependencies between architectural 

elements implemented and other elements that have 
been implemented in a previous release  

We calculate end-user value and total implementation 
cost of each release, expressed as units. We measure end-
user value at each release by adding the value of all customer 
requirements supported by the implementation of those 
architectural elements present in the release. 

Total cost of release n, Tcn, is the combination of the cost 
to implement the architectural elements selected to be added 
in this release, Icn, plus the cost to rework pre-existing 
elements, Rcn

 
Tc

.  

n = Icn + Rc
 

n 

Implementation cost is incurred when new elements are 
added to the system during this release. Implementation cost, 
Icn
• Sum the implementation cost of all architectural 

elements, AE

, for release n is computed as follows: 

j

• The implementation cost is assumed to be given for all 
individual architectural elements (independent of 
dependencies). 

 implemented in release n (and not present 
in an earlier release).  

Rework cost is incurred when new elements are added to 
the system during this release, and one or more of the pre-
existing elements have to be modified to accommodate the 

new ones. This includes elements that can be identified with 
their direct dependencies on the new elements as well as 
those with indirect dependencies represented by the 
propagation cost. Rework cost, Rcn

• Compute the rework cost associated with each new 
architectural element AE

, for release n is 
computed as follows: 

k implemented in release n. For 
each pre-existing AEj with dependencies on AEk, 
multiply the number of dependencies that AEj has on 
AEk times the implementation cost of AEj

• Sum the change costs for all new architectural elements 
implemented in the release. 

 times the 
propagation cost of release n-1. 

The algorithm for rework is directional in nature and 
represents an initial effort to formalize the impact of 
architectural dependencies upon rework effort. The cost of 
each architectural element, the number of dependencies 
impacted by each architectural change and the overall 
propagation cost of the system may all be seen as proxies for 
complexity, which is assumed to affect the cost of change. In 
most cases the number of dependencies impacted by 
architectural change is “1” but when there is more than 1 
interface/dependency the cost will increase. The relative 
weighting and relationship between these factors, however, 
is a subject of future research efforts.  Therefore within the 
context of our analysis, rework cost is interpreted as a 
relative rather than an absolute value, used to compare 
alternative paths and to provide insight into the improvement 
or degradation of architectural quality across releases within 
a given path.   

IV. STUDY RESULTS 
We conducted an exploratory analysis to quantify the 

cost and value outcomes of alternate release strategies using 
dependency analysis with propagation cost. For the purposes 
of our example, value reflects the priority points of the 
capabilities. We picked the Management Station Lite 
(MSLite) [3] [10] system for the study, a system with which 
we have previous experience and access to the architecture 
artifacts.  

MSLite is a hardware-based field system for controlling a 
building’s internal functions, such as heating, ventilation, air 
conditioning, access, and safety that automatically monitors 
and control the building’s internal functions. Figure 1 shows 
the component and connecter (C&C) view of the MSLite 
system and the resulting DSM view (Figure 2). In our study 
we are assuming the module structure is similar to the C&C 
view and look at dependencies documented in the 
relationships among architectural elements: call-return, data 
access, events.   The system users are facilities managers, 
and the system broadly performs the following functions:  

• Manage a network of hardware-based field systems 
used for controlling building functions. 

• Issue commands to configure the field systems. 
Define rules on the basis of property values of field 
systems that trigger reactions and issue commands to 
reset these property values. 

• Trigger alarms notifying appropriate users of life-
critical situations. 



5 
 

First we expressed the requirements from MSLite as user 
stories and acceptance test cases. Requirements were 
prioritized according to their relative benefit to the end user 
when implemented and the penalty incurred by the end user 
if postponed. Furthermore, we assigned a user value to each 
user story (US) and architecturally significant acceptance test 
case (ATC) as the weighted sum of benefits and penalties 
[14], as seen in Table II. The dependency analysis was used 
to determine precedence in the implementation of 
capabilities. In the absence of a “Product Owner” we made 
assumptions concerning the acceptability of splitting the 
delivery of functional and non-functional capabilities across 
releases.  In future applications, we plan to expand the 
concept of “minimum marketable features” [2] to the broader 
construct of “minimum releasable capabilities” to ensure that 
inter-dependent functional and quality attribute (also known 
as non-functional) requirements are released in batches that 
deliver acceptable end-user value. 

The components outside the MSLite Server implement the 
core user functionality, namely monitoring building facilities 
and issuing commands to change their properties (for 
example lower the building temperature). Detecting alarm 
conditions and automating rules for property changes are 
other important capabilities of the system. 

The main purpose of the components of the MSLite Server 
is to provide support for the quality requirements. For 
instance one of the main system goals is to support multiple 
field systems. The Virtual FSS component handles all the field 
systems (FSS) descriptions and creates appropriate events for 
the other components in the system to listen. Other 
components such as Cache and Access Control explicitly 
support performance and security, respectively. 

TABLE II.  MSLITE FUNCTIONAL AND ARCHITECTURALY 
SIGNIFICANT REQUIREMENTS 

 Feature Description Value 
US01  Visualize properties of field objects 27 
US02 Change field object properties 25 
US03 Add alarm condition 23 
US04 Alarm notification & acknowledgement 21 
US05 Ignore alarm notification 16 
US06 Add logic condition and reaction 19 
US07 Alarms and logic/reaction pairs persistence 17 
US08 Secure access to system 9 
   
ATC14 Connect similar field system 14 
ATC15 Connect field system using different format 

and interfaces 9 
ATC16 Connect field system providing new 

functionality 13 
ATC17 Field object properties update speed 9 
ATC18 Alarm notification speed 10 
ATC19 No loss of alarm notifications 11 
ATC20 Field object properties data access 9 
ATC21 Field object properties updated 11 
 Total feature value 243 

 
The methodology used for the study consisted first of 

defining the system requirements and system structure using 
DSM and DMM analysis. Next we defined two alternate 
strategies or development paths by which to realize the 

requirements and system structure. The third and final step 
within our method was to analyze the patterns of value 
generation and cost incursion that resulted from each of the 
two development paths. 

A. System Definition 
We first identified the set of DSM/DMM matrices that 

contain all the intra and inter-domain dependencies relevant 
for our system analysis: 

• Customer requirements DSM (DSMCR
• Architectural elements DSM (DSM

) 
AE

• DMM mapping customer requirements to 
architectural elements 

) 

Each DSMCR
• if i is an acceptance test case then i directly depends 

on user story j, if the test case elaborates on the 
environment or criteria under which j takes place 

 matrix cell c(ij) denotes that: 

• if i is a user story, then i directly depends on user 
story j, if the functionality provided by story j is 
required for the functionality in story i to be 
delivered 

Each DSMAE
• element j directly depends on element i, if some 

output provided by element i is an input to element j 
or if element j uses/calls some functionality in 
element i to perform its work 

 matrix cell a(ij) denotes: 

Each DMM element ca(ij) denotes that: 
• if i is an acceptance test case, then i directly depends 

on element j, if j supports the quality scenario 
described by i 

• if i is a user story, then i directly depends on element 
j if the functionality required for story i execution is 
(partially or fully) implemented in element j 

Figure 3 shows the resulting DMM of MSLite 
architecture elements and features. 

 

 
Figure 3.  MSLite DMM view  
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We produced a catalog of relevant architectural elements. 
Some of the high-level components in Figure 1 were 
decomposed into sub-components to be able to separate fine-
grained architectural elements to include in the development 
path. For instance Access Control component was sub-divided 
into Data Access and Data Persistence sub-components. This 
allowed us to consider each of them separately and assign 
their implementation to different releases according to the 
desired business goal (i.e., maximizing early delivery of end 
user value or minimizing cost due to rework).  

The DMM in Figure 3 was created after identifying the 
dependencies from user stories to architectural elements (via 
the functional features they support) and from system-level 
acceptance test cases to architectural elements (via the 
quality requirements they promote) according to the 
following two threads of logic: 
• User story (requires) → (implemented in) architectural 

element(s) 
• System-level acceptance test case (verifies) → quality 

requirements → (promoted by) architectural element(s) 

B. Definition of Development Paths 
We created two development paths with two different 

goals, i) maximizing early delivery of value for the end user; 
ii) minimizing implementation cost.  We used the value of 
the features from Table II and the cost of each element from 
Table III as our basis. Our goal was to see how the two paths 
would differ when using propagation cost as the basis for 
understanding the incurred rework costs. Each path consists 
of a set of software releases where each release implements 
new architectural elements. In this study both paths had the 
same defined end point and used the same catalog of 
architectural elements as building blocks to control for the 
differences in implementation and to highlight the influence 
of the orderings in the paths.  

TABLE III.  IMPLEMENTATION COST OF EACH ARCHITECTURAL 
ELEMENT 

Architectural Element Implementation Cost 
Alarm Notification 4 

L&R Engine 3 
Alarm Engine 3 

Alarm Manager 6 
Logon 2 

Client Updates 5 
Rule Processor 8 

Adapter Manager 5 
User Sessions Manager 5 

Data Access 9 
Cache 3 

FSS Adapter 6 
Data Persistence 6 

Publish-Subscribe 9 
 
The use of dependency management techniques such as 

DSM and DMM provides strong support in the path 
definition process, allowing us to identify the architectural 
elements to be implemented and the customer requirements 
to be delivered in each release for both development paths. 

Once defined, these two paths served as input for performing 
path analysis and deciding on the best one for the project 
given specific customer needs. In other words, within a 
specific project context how willing is the customer to accept 
additional rework cost in exchange for the early delivery of 
valued functionality. 

1) Path #1: Maximizing value for the end user.  
End-user value optimization is directly derived from the 

value associated with user stories and system-level 
acceptance test cases. The ones providing higher value, as 
summarized in Table II, would be delivered first and 
therefore the development path is directly determined by the 
elements supporting the functionality that the user stories 
require or supporting the system qualities defined in 
acceptance test cases.  

First we identify the top 3 most valuable user stories 
and/or system acceptance test cases. We then look into the 
customer requirements DSMCR

After the complete subset of user stories and/or system 
level acceptance test cases to deliver is defined, we look at 
the DMM to identify the architectural elements they depend 
on. Then we use DSM

 to retrieve the stories upon 
which the high value stories depend. 

AE

2) Path #2: Minimizing implementation cost. 

 to retrieve any additional 
architectural elements upon which the initial set of 
architectural elements depends. The resulting subset of user 
stories, acceptance test cases, and architectural elements 
constitutes the first release. The process repeats by picking 
the next top 3 customer requirements in terms of end-user 
value and following the same steps described until the next 
release is obtained. The final step of this iterative process 
will deal with the 3 (or less) lowest value customer 
requirements to implement. 

Cost is defined both in terms of the cost to implement an 
architectural element as well as in terms of the number of 
architectural elements that will be affected by a change to a 
single element in the system (rework cost). Therefore to 
minimize rework cost the architectural elements with fewer 
dependencies on other elements would be delivered first as 
they are least likely to require modifications when new 
elements are introduced.  Associated with the different goals 
of these two paths were different heuristics for release 
definition. For path #1, each release was conceptualized as 
an external deliverable to an end user. Release definition was 
therefore based upon the attainment of a cohesive set of end-
user value. For path #2, on the other hand, each release was 
conceptualized as a verifiable executable deliverable either 
internally for validation or externally for user adoption.  

Table IV lists the features to be implemented at each 
release of the two paths based on these two different 
approaches. 

C. Analysis of the Paths 

Table VI summarizes the outcomes of the two paths. In 
path #1, the increase in value occurs more rapidly. For 
instance at release 2 the system provides already more than 
50% of the total value to the user. In contrast, in path #2 at 
release 2 there is still no value accrued. 
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TABLE IV.  ALLOCATION OF STORIES TO RELEASES IN EACH PATH 

 Path 1 Path 2 
Release 1 US01: Visualize field object 

properties 
US02: Change field object 
properties  
US03 - Add alarm condition  

none 

Release 2 US04:Alarm notification & 
acknowledgement  
US06:Add logic condition and 
reaction  
US07:Alarms and 
logic/reaction pairs persistence  

none 

Release 3 US05: Ignore alarm 
notification  
ATC14: Connect similar field 
system  
ATC 16: Connect field system 
providing new functionality  

ATC14:Connect similar 
field system  
ATC 15: Connect field 
system using different 
format and interfaces  
ATC 16: Connect field 
system providing new 
functionality  
ATC 21: Field object 
properties updated  

Release 4 ATC 18:  Alarm notification 
speed  
ATC 19: No loss of alarm 
notifications  
ATC 21: Field object 
properties updated  
US 08: Secure access to system  

US01: Visualize field 
object properties  
US02:  Change field object 
properties  
US 08 : Secure access to 
system  
ATC 17:  Field object 
properties update speed  
ATC 20:  Field object 
properties data access  

Release 5 ATC 15: Connect field system 
using different format and 
interfaces  
ATC 17: Field object 
properties update speed  
ATC 20: Field object properties 
data access  

US03: Add alarm condition  
US04 : Alarm notification 
& acknowledgement  
US05:  Ignore alarm 
notification  
US06 : Add logic condition 
and reaction  
US07: Alarms and 
logic/reaction pairs 
persistence  
ATC 18: Alarm 
notification speed  
ATC 19:  No loss of alarm 
notifications  

 

This is due to the fact that path #2 leads to building first 
structural elements that provide the foundation for those 
quality requirements that cut across the entire system: 

• Publish-Subscribe Bus for performance and 
modifiability in general 

• Data Persistence for keeping the state of the 
system and user preferences 

• FSS Adapter for modifiability 
• Data Access for security  
• Cache for performance  

The reason for this variation is that the release 
identification is based on requirements value for path #1 and 
on the number of dependencies for path #2. TABLE V shows 
the summary of the cost of each release for both paths.  

TABLE V.  COMPARISON OF THE COSTS OF THE TWO PATHS 

 
 

TABLE VI.  COMPARISON OF THE OVERALL OUTCOME OF THE TWO DEVELOPMENT PATHS 

    Release 1 Release 2 Release 3 Release 4 Release 5 

Path #1 Cumulative value 75 132 175 216 243 

% of total value 30.86% 54.32% 72.02% 88.89% 100.00% 

Cumulative cost (Icn + Rcn 30 ) 54.72 65.72 67.72 89.64 

% of total implementation cost 40.54% 71.72% 86.58% 89.28% 118.47% 
Path #2 Cumulative value 0 0 47 126 243 

% of total value 0% 0% 19% 52% 100% 

Cumulative cost (Icn + Rcn 21 ) 33 43 58 74 

% of total implementation cost 28.38% 44.60% 58.11% 78.38% 100% 

Path #1
Implementation 

Cost 
Propagation 

Cost
Rework 

Cost

Release 5 12 0.35 9.92
Release 4 2 0.31 0
Release 3 11 0.33 0
Release 2 19 0.46 5.72
Release 1 30 0.52 0

Cumulative 
Implementation 

Cost

74

Path #2
Implementation 

Cost
Propagation 

Cost
Rework 

Cost

Release 5 16 0.35 0
Release 4 15 0.37 0
Release 3 10 0.39 0
Release 2 12 0.36 0
Release 1 21 0 0

Cumulative 
Implementation 

Cost

74
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Figure 4.  The module view of the emerging architecture at each release along with the DSM and propagation cost for the first two releases 
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The impact of the cost difference of the two paths is 
observed in the rework cost. The rework cost associated with 
path #1 release 2 is 5.72. This cost is incurred because the 
following elements needed to be reworked: 

• Alarm Engine - reworked when Alarm Manager and 
Data Persistence are implemented. 

• User Sessions Manager - reworked when Data 
Persistence is added. 

Figure 4 shows how the different paths manifest 
themselves with different architectural elements and 
corresponding propagation costs. Due to space limitations, 
we show the emerging architecture elements and their DSMs 
and propagation costs for only the first two releases of both 
of the paths for comparison purposes. Figure 1 shows the 
final release which is the same for both paths. 

In an agile project, this type of analysis can raise 
awareness of the cost associated with deciding on an 
implementation path solely focused on delivering value. If it 
is not acceptable for the customer, then the team and the 
customer can decide together on which value/cost trade-offs 
they are willing to accept. 

Let’s take as example the architectural elements 
implemented in release 5 of path #1: Data Access and Cache.  

They increase the cost by nearly 20% while providing 
only about 11% of value. Both elements support quality 
requirements of medium importance, performance and 
security. 

In the event that the customer is not happy with the 
overall increase of cost compared to path #2, we can 
envisage multiple scenarios for reducing the overall cost: 

1. Given that Data Access has a high cost 
(implementation and rework cost) and that the Logon element 
already provides basic security the customer decides to drop 
implementation of Data Access. 

2. Given that the customer is willing to incur some 
rework cost and the performance requirement (P1) is 
(partially) addressed by other architectural elements already 
in release 4 (Publish-Subscribe Bus, User Sessions Manager, 
Client Updates) the customer decides to drop implementation 
of Cache. 

3. Given that the customer is not willing to drop any 
value but still wants to reduce cost, the Data Access element 
implementation is moved to an earlier release. Although 
there is an extra cost incurred because Data Access depends 
on Cache, the reduced cost due to avoiding rework of other 
elements that depend on Data Access would compensate. 

V. DISCUSSION AND CONCLUSIONS 
Dependency management has been studied extensively at 

the level of code artifacts and in the context of system 
engineering [15] Applying dependency management at the 
architecture level is beginning to show promising results due 
to increasing tool support for using DSMs for architectural 
analysis [16]. As our exploratory analysis demonstrates, 
metrics, such as propagation cost, can be extracted from the 
architecture, represented in the form of a DSM. DMM 
analysis can augment DSM analyses and be used to represent 
the dependencies between capabilities and architectural 

elements to further focus the goals of iterative release 
planning where courses of action may change as the project 
progresses. 

Metrics associated with dependency also provide data for 
inferring the likely costs of change propagation, especially 
when dependencies between architectural elements are 
considered. One such example is discussed in Carriere et al. 
where the value of re-architecting decisions needed to be 
understood to determine if the expense to implement them is 
justified [17]. 

Making architectural dependencies visible earlier in the 
development life cycle accompanied by metrics improves 
communication of architecture quality similar to code quality 
metrics.  Existing models are based on parameters such as 
the cost of modifying a single element, coupling, cohesion, 
and life-cycle time of modification [18]. Propagation cost 
provides insight into degrading architecture quality and 
identifying the “tipping point” to trigger re-architecting 
decisions, as it also provides insights for future rework costs. 

Metrics alone do not give guidance about how to 
optimize value over time. We can improve project 
monitoring by providing quantifiable quality models of the 
architecture during iteration planning. We are investigating 
the use of the propagation cost metric to model the impact of 
degrading architectural quality in order to understand when 
to invest in improving the architecture as well as to inform 
tradeoff discussion involving architectural investment versus 
the delivery of end-user valued capabilities. Our goal is to 
provide an empirical basis on which to chart and adjust 
course. 

Now that we have a baseline, we plan to investigate 
incorporating uncertainty in the economic framework and 
enhancing the approach to model runtime dependencies. 

We accounted for rework in the current approach using a 
simple cash flow model where cost is incurred at the time of 
the rework. There are economic models that include rework 
cost that is predicted in future releases. These models 
become more complex since there are more choices for when 
to account for the future debt.  

The ability to quantify degrading architecture quality and 
the potential for future rework cost during iterative release 
planning as each release is being planned is a key aspect of 
managing strategic technical debt [19]. Managing strategic 
shortcuts, as captured by the technical debt metaphor, 
requires better characterization of the economics of 
architectural violations across a long-term roadmap, rather 
than enforcing compliance for each release. Our approach 
facilitates reasoning about the economic implications and 
perhaps deliberately allowing the architecture quality to 
degrade in the short term to achieve some greater business 
goal (all the while continuing to monitor the quality of the 
architecture and looking for the opportune time to improve). 

We accounted for module dependencies in the current 
approach to support analysis of modifiability type qualities. 
During this study we were able to account for runtime 
dependencies indirectly because our model system allowed 
us to map the component and connector view to the module 
structure view one-to-one. As an extension of our approach, 
we are looking at directly modeling runtime dependencies so 
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we can reason about the quality attributes (e.g., performance 
schedulability) that they support.  
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