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Chapter

Analysis and Modeling of
Polygonality in Retinal Tissue
Based on Voronoi Diagram and
Delaunay Tessellations
Nazario Bautista-Elivar and Ricardo Cruz-Castillo

Abstract

Several important properties of biological systems are directly related and even
determined by the spatial distribution of their constituent elements. Those elements
interact with each other and tend to use space in an optimal way, regarding their
specific function and environmental constraints. A detailed methodology, based on
Voronoi polygons and Delaunay triangles method employed to extract information on
the spatial distribution of cells, is presented. On the other hand, diabetic retinopathy
(DR) is defined as microvascular pathology. However, some data have suggested that
the retinal photoreceptor (RPs) might be important in the pathogenesis of this ocular
disease. In this study, the organization of the PRs in control and diabetic-induced rats
was compared, using multiphoton microscopy. The PR mosaic was imaged at different
locations in non-stained retinas. Thus, this work investigated the pathological changes
in the cellular structures of the retina in the early stages of diabetes in laboratory
animals. Of the different proposed tools that are highly reliable to be tested with
human retinas, the metrics mean averaged distance and the mean square deviation of
the angles are found (P < 0.05).

Keywords: multiphoton microscopy, diabetic retinopathy, Voronoi tessellations,
computational geometry, bioinformatics

1. Introduction

Several biological/physical systems involve two-dimensional spatial arrangements
with elements such as molecules, or cellular tissue, and the profiling in space has
important repercussions to biological and physical investigations. The analysis of
biological tissues often requires quantitative measurements to explore cell organiza-
tion, in order to understand, identify, and monitor changes during pathology
development and healing processes.

Measurements of cellular organization might not be always able to distinguish
healthy and diseased tissues from each other [1]. It has also been revealed that the
existing density measurements in cells present multiple restrictions [2–7]. In
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particular, some studies have reported that the density of retinal cones is not an
appropriate parameter to identify pathological states in early stages of retina
diseases [8, 9].

Maps of cellular distribution have to be considered linked to morphogenesis,
mechanical structural stabilities and functional state of a given healthy tissue.
Finding the connection that links form to disorder and is based on distance networks
partition constructed from the position of cells when defined as mathematical nodes
generators of Voronoi tessellations, then they can be used to construct summary
functions [10], see Table 1. For example, Sudbø and Marcelponil Reith developed
27 algorithms based on Voronoi diagrams to describe the architecture of tissues [11].
Chiu showed that the minimum angles and areas of Delaunay triangles are
responsive parameters when it concerns cellular distributions [12]. Voronoi analysis
has also been used to determine the packing arrangement of cones at different
retinal storage bins displayed with adaptive optics (AO) and hexagonal packing was
found [13, 14]. Other authors have proposed to measure the regularity of convex
polygons by successive measurements of irregular polygonal reconfiguration until
regularity [15].

However, side number, distance between cones, according to proportion, any
measurements derivative from the least distance will cause statistics to fail to
identify healthy tissues and pathological tissues, which yield identical statistical
densities measured from the shortest distances [1]. Other serious constraints
developed from the method of counting the number of Voronoi cell sides result

Retinal

photoreceptor

Real image

(healthy tissues)

Voronoi polygon Delaunay triangulation

Sprague-
Dawley male
rat

Multiphoton microscope

Human

Adaptive optics scanning
laser ophthalmoscope
(AOSLO)

Table 1.
Voronoi polygons and Delaunay triangles in a retinal tissue.
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from the fact that the number of cell sides will not change except for gross
perturbations of the particle system. In addition, in Delaunay triangulation, no signif-
icant differences are observed by using Delaunay segments and Delaunay areas in
tissues [16].

The general aim of this chapter is to establish an analysis for a comparison of the
distribution of PRs in tissues with retinopathy diabetic, which is an important prob-
lem to mechanically understanding of the processes that lead to the experimental
observations. This research presents only the model of the photoreceptor’s spatial
location (cones and sticks) considering photoreceptors small enough, in the suitable
scale, to contemplate them as mathematical points. Then, Voronoi polygons and
Delaunay triangles are formed by using these points. Therefore, Voronoi polygons do
not represent the photoreceptor’s shape. So, in this chapter, Voronoi polygons are not
used to model biological cells nor their surrounding tissues.

This chapter is organized as follows: in Section 2, the description of several metrics
using Voronoi polygon and Delaunay triangles and its integrated platform based on
computational geometry, is given; in Section 3, multiphoton microscopy and image
analysis is provided; in Section 4 we continue with a detailed description of retinal
tissues, using Voronoi and Delaunay metrics described in Section 2; the Discussion is
presented in Section 5, and finally the Conclusions are in Section 6.

2. Metrics/algorithm to computational biology

2.1 Description of metrics/algorithm

2.1.1 Internal distance

The internal distance di in a particular Voronoi cell, is the distance measured from
the internal mathematical node (black dot, see Figure 1) of the Voronoi polygon to
each neighboring point (blue dot, see Figure 1) which forms the polygon. This is an
Ulam tree modified to measure distances, Figure 1.

2.1.2 Angular graph

The numbers ψ i are the angles between the horizontal line which contains
the internal mathematical node and the line which joins each neighboring point to
the internal node, it is measured anticlockwise (Ulam tree modified to angles),
Figure 2.

Figure 1.
Distance graph (Ulam tree modified) between neighbors in a 6-tides Voronoi polygon.
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2.1.3 Internal angles of Delaunay triangles

These are the internal angles of any triangle in the Delaunay triangulation ωi; the
angles are measured in the positive direction (counterclockwise), Figure 3, using the
following procedure:

i. First, measure the angle between two points containing the generating
interior point of each cell.

ii. Arrange angles from least to greatest.

iii. Then measure the edge distances of the Delaunay triangulation containing the
generating point.

iv. Finally, measure the angle between consecutive edges in which such a vertex
is the generating point.

The sequence to measure the angle ωi is in the following order: if you select first point
1 (vertex 1) then select point 2 (vertex 2), these points will form a starting line where the
angle measurement starts, the point 3 (vertex 3) is where the angle measured ends. The
selection and sequence of generating points will indicate the final angle obtained.

Figure 3.
Procedure to measure angles between three neighbors that form a Voronoi polygon and choosing one angle.

Figure 2.
Angle measurement between nearby points from a horizontal axis.
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2.1.4 Mean distances average

This metric/algorithm determine the mean of average distances from the inner
point in every Voronoi cell to its n neighbors and it is calculated by

X

n

i¼1

di
n2

(1)

where di is the internal distance defined above. It also represents a way to measure
the cell size and it could be interpreted as a coefficient of expansion or contraction,
Figure 4.

2.1.5 Polygonality index

This metric/algorithm generates the measure Ξ,

Ξ ¼
1

P

n

i¼1
χi � βj j þ 1

(2)

where χi is the formed angle between consecutive neighbors for Delaunay triangle
(irregular polygon, dotted arrow), β is the angle between consecutive vertex for a
regular polygon (solid arrow), β ¼ 360degree=n and n is the number of neighbors of
the Voronoi cell, Figure 5. The angle χi is invariant under any rotation movement. The
measurement is performed counterclockwise.

If the value of Ξ is close to 1, then the Voronoi polygon is close to regularity, angles
χi and β will have similar value. If Ξ is close to 0, then Voronoi polygon is irregular.
The units of Ξ is the inverse in degrees.

Figure 4.
Modified Ulam tree graph to measure distances in Voronoi cell.

Figure 5.
The solid line is a regular polygon, the irregular polygon is represented by the dotted line, and the neighbors are the
black circle. The internal black dot is a mathematical node.
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2.1.6 Mean-square deviation of angles

This metrics/algorithms evaluate ε,

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

χi � βð Þ2

s

(3)

the root square of mean deviation from the angles χi, with respect to angle β ¼
360degree=n where n is the number of neighbors of the Voronoi cell for each Voronoi
polygon. The magnitudes χi, β, and n are defined above (Figure 5). The metric ε is
invariant under any rotation movement.

2.1.7 Variation index angle of differences

This metric algorithm gets δ ,

δ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1
χi � βð Þ2 þ 1

s (4)

where χi and β ¼ 360degree=n are defined as above (Figure 5). If the value of δ is
close to 1, then the Voronoi polygon is close to regularity, if δ is close to 0, then
Voronoi polygon is irregular.

2.2 Software description

In view of the foregoing, we suggest development of an integrated platform based
on computational geometry for bioinformatics and computational biology for analyzing
spatial cellular organization which in turn use both Voronoi tessellation and Delaunay
triangulation, for the purpose to measure the distance, internal angles, radius of
circumscribed circle, amid nearby points mean distances average, angular polygonality,
polygonality index, mean-square deviation of angles, and variation index angle of
differences. The platform holds two options, either being performed by a user or
operating with an automatic formulation. This software allows to create Voronoi poly-
gons and Delaunay triangles from a set of XY coordinates, or generated by selecting in
an imported image. It locates XY coordinates, using an auxiliary window S, Figure 6.

2.2.1 Voronoi frequency

This function displays graphics of frequency with respect to the number of sides in
Voronoi mosaic with a data reading window, wider enough to avoid loss of data of
polygons compared to other platforms [17].

2.2.2 Circumscribed circle

These metrics/algorithms are able to find the magnitude of the circumradius, the
coordinates of the center of the circumcircle, and the coordinates of the vertices
formed in each Delaunay triangle. R is the radius of the circle circumscribing a
Delaunay triangle, some examples (a) and (b), Figure 7.
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2.2.3 Distances selected

These metrics/algorithms are able to get the distance dk between each pair of
points selected by the user. First select the icon distances, located in Diagram Feature
screen, after that choose a point of the polygon, by the icon select points, then select
again the icon select point for another interest point, finally activate the icon selected
file distances from Tools menu to get the data file with its coordinates and the distance
that separates them. You might select different pairs of points to find out their
distances in a single file, activating the icon selected for several couple points, for
example (A), (B), (C), Figure 8.

2.2.4 Angles selected

These metrics/algorithms generate a file formed from each pair of points selected
by the user. The angle υ is relative to the horizontal axis and it works as the
rangefinder. First, activate the angles tree icon (Figure 6), and then you can select
different points for the same file using the select point button, to generate the Angles
Selected file, Figure 9.

Figure 6.
Platform based on computational geometry for Voronoi polygons and Delaunay triangles to biological structures.

Figure 7.
Circumcircle and circumradius for each Delanuay triangle in a Voronoi polygon.
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Internal angles selected. This metric algorithm generates a file for the angles γiof
each Delaunay triangle selected by the user. First, activate radio button internal angles
(Figure 6), then select points radio button to form the Delaunay triangle, selecting
three points. The select order of each point defines the angle to be measured. First, if
the black point is selected, then you can choose the white point. These two points
form a line from which we start measuring the angle and ends at the line formed
between the third point, the striped circle, forming an angle which is measured from
for example, tree forms to obtain several internal angles in a Delaunay triangle, γk, γp,
γi, Figure 10, (A),(B) and (C), respectively.

For example, for four tides polygon, if the option 2 is selected, the angle γi is shown
in Figure 11.

Figure 8.
Selection of distances to be chosen by the user in a Voronoi polygon.

Figure 9.
Selection of angles between neighbors to be chosen by the user in a Voronoi polygon.

Figure 10.
Options to select nearby points to get an angle between them in a Voronoi mosaic.
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3. Multiphoton microscopy, image acquisition and processing

A multiphoton microscope was used to obtain images of the retinal mosaic in 16
healthy (C) mice and sixteen mice with diabetic retinopathy (DR). The multiphoton
microscope combines a fs-laser system (760 nm), a scanning unit, a Z-motor, and a
detector (photon-counting) within an inverted microscope. The whole system was
computer-controlled. Nonlinear microscopy images were acquired using two imaging
modalities: regular XY images and fast 2-photon imaging tomography, Figure 12.

Eight Sprague-Dawley male rats, weighing 200 g were administered intraperito-
neal via with 55 mg/kg from streptozotocin diluted in citrate buffer were housed in a
temperature-and humidity-controlled room maintained on a 12-hour light/dark cycle
(lights on: 07:00–19:00 hours) and had free access to food and water. Retinas were
evaluated after 6 weeks from diabetic-induced.

The retinal mosaic was estimated for each subject (both eyes), at 270, 810, 1350
and 1890 μm of eccentricities from the optic nerve along the nasal, temporal, dorsal
and ventral of both eyes. The photoreceptors arrangement was analyzed using
Voronoi polygon and Delaunay triangulation analysis; estimations were done by using
a sampling window S of 90 � 90 μm image sections, Figure 13.

Through the Voronoi partition, some contours of the tessellations should be
modified if other points outside the analysis window S (90 � 90 μm) were acquired.

Figure 11.
Delaunay triangle, an angle selected between neighbors with option 2, Figure 10.

Figure 12.
Setup for scanning with a multiphoton microscope.
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These points are associated to the outline regions which are closer to the analysis
window than to the considered point. The points which belong to such contour
regions are considered to be at the border. All the marginal points are not noted in the
subsequent calculations, because they cause statistical noise.

4. Retinal tissues analysis

We use some metric/algorithms of Section 2.1 to analyze and model the
polygonality in retinal tissues, especially with DR.

4.1 Mean-square deviation of angles

Using the metric of mean-square deviation of angles ε (Eq. (3)), to know the angular
distributions of photoreceptors in the rodent retina in order to identify healthy tissues
(C) from tissues with pathology (R). The results are shown in Figure 14.

Results obtained during this analysis reported that at an eccentricity of 270 μm,
there is a greater angular variation than 6 degrees in 4-sided polygons in tissues with
pathology (R) with respect to its counterpart of healthy tissues (C). At an eccentricity
of 810 μm a greater angular variation is observed in polygons of 10 and 9 sides, in
addition to polygons of 6 and 7 degrees, respectively, in tissues with pathology (R). At
an eccentricity of 1350 μm, an angular variation is presented up to 12 degrees in
polygons of nine sides in tissues with pathology (R). At an eccentricity of 1890 μm,
again the 9-sided polygons present an angular variation of 9 degrees in tissues with
pathology (R). Likewise, we identify that as the eccentricity increases; the training of
a greater number of sides of polygons is increasing in tissues with pathology which
does not present healthy tissues (not presented here).

Figure 13.
Data processing diagram in retinal tissues for healthy photoreceptors and with DR, starting from raw data and
applying image processing and segmentation, feature extraction and classification, and finally polygonality
measurements.
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Is observed that if the angular variation is minor to 6.15 degrees, the value P is
minor to 0.05. It is identified, then that to 810 and 1890 μm the angles of the polygons
are minor to 30 degrees. For photography retinal, it is observed that to major eccen-
tricity, the spacing of the photoreceptors is major, Table 2.

4.2 Detection of modal spacing

Using the metrics/algorithm of radius in a circumscribed circle for estimating
photoreceptor spacing based on the circumradius of Delaunay triangle, as a metric
that allows knowing how is the density/separation of photoreceptors in retinal healthy
tissues and with diabetic retinopathy. This metric is an alternative form at the Yellott’s
ring [18]. The circumradius provides an estimation of the modal spacing in the retinal
image of the photoreceptors. The distributions of density grouped by circumradius
interval are: (a) 1.12–2.24 μm, (b) 2.244–3.36 μm, (c) 3.364–4.48 μm, (d)

Figure 14.
Distribution of angular variation as eccentricity in retinal tissues, both healthy tissues (C) and diabetic retinopathy
tissues (R): (A) 270 μm, (B) 810 μm, (C) 1350 μm, (D) 1890 μm.

Voronoi ties P-value*

270 μm 1350 μm 1890 μm

5 0.006 0.002 0.022

6 0.025 0.0066 0.0204

7 0.001 0.018 0.0078

*Two-tailed.

Table 2.
P-value* to 5, 6, and 7 Voronoi ties.
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4.485–5.601 μm, (e) 5.605–6.721 μm, (f) 6.725–7.842 μm, (g) 7.846–9.62 μm. The
results are shown in Figure 15.

To distribute the density by spacing of photoreceptors, we have proposed a stan-
dard criterion for arbitrary intervals of circumradius: 1.12–2.24 μm, 2.244–3.36 μm,
3.364–4.48 μm, 4.485–5.601 μm, 5.605–6.721 μm, 6.725–7.842 μm, and 7.846–9.62 μm.
By using these intervals with the metrics/algorithms of circumscribed circle to obtain
each circumradius, our results allow us to observe that the two dominant distributions
of grouped density of photoreceptors are at intervals between 3.364–4.48 μm and
2.244–3.36 μm.

With these results, it has been observed that the percentage of circumradius in the
range of 2.244–3.36 μm increases in tissues with DR as eccentricity increases. These
results show a density of separating healthy photoreceptors to 810 μm of eccentricity
with circumradius in the range of 3.364–4.48 μm (42.51%) and in the range of
2.244–3.36 μm (37.68%), Table 3.

It has been also identified that in cellular damaged tissues with DR the training of
circumradius to greater eccentricity and also with a larger radius increases, with

Figure 15.
Distribution of spacing based on the circumradius grouped by eccentricity in retinal tissues: (A) 270 μm, (B)
810 μm, (C) 1350 μm, (D) 1890 μm.

Retinal tissue Range 3.364–4.48 μm Range 2.24–3.36 μm Eccentricity (μm)

R 38.75% 30% 270

C 41.59% 33.61% 270

R 37.42% 32.63% 810

C 42.51% 37.68% 810

R 34.35% 35.11% 1350

C 37.05% 36.04% 1350

R 33.24% 37.56% 1890

C 36.93% 38.69% 1890

Table 3.
Percent density by eccentricity intervals.
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respect to the control tissue, this is because they increase the spaces between photo-
receptors that stop emitting fluorescence. It is also appreciated that the clustered
density decreases in the photoreceptors of tissues with diabetic retinopathy, between
the intervals of 2.244–3.36 μm and in 3.364–4.48 μm, as eccentricity.

However, in the interval [3.364–5.601] μm, that represents 55.8% of circumradius,
they have a higher percentage behavior in control tissues than in tissues with DR,
Table 4. Therefore, this shows that frequency of circumradius decreases in tissues
with DR.

4.3 Mean distances average

To measure distances between neighbors that form each Voronoi cell is employed
the metric/algorithm of mean distances average (Eq. (1)), as a measure for expansion
or contraction of the polygon of Voronoi. The results are shown in Figure 16. This is a
modification to the metric Ulam tree in each polygon. A measurement of spacing (or
contraction) between neighbors is explained in terms of a bi-dimensional space with
reference to the populations on flat surfaces. This metric allows us to measure the
space between neighboring cells, as a result of leakage in photoreceptors.

In Figure 16, it can be seen that for the 5, 6 and 7-sided polygons, they have a
similar spacing. In the same way it is observed that for polygons of four, eight and
nine sides have a particular behavior of distance separating, the distances between
diabetic cells increases, in relation to the healthy cells, because the distances between
the cells increase because of the diabetic retinopathy.

Figure 16 depicts the mean averaged distance (Eq. (1)), as a function of the
number of sides of Voronoi polygons for both control and pathological retinas. Since it

Tissue 270 μm 810 μm 1350 μm 1890 μm

C 59.35 % 57.73 % 57.3 % 55.85%

R 55.68 % 56.9% 51.88 % 51.84%

Table 4.
Percentage of circumradius in the interval [3.364–5.601] μm.

Figure 16.
Distribution of cellular spacing in healthy tissue and with diabetic retinopathy according to the eccentricity
measured from the optic nerve.
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has been just showed that the polygon frequency distribution does not change with
retinal eccentricity (Figure 20), the data have been also averaged across all locations
for better comparisons. Differences between both groups of retinas were statistically
significant (paired t-test, P < 0.05).

Using the Ulam tree modified for distances, it is possible to characterize the
environment of each cell and in a more general way, to study cellular interactions.
This metric/algorithm appears to be useful for analyzing the effects of the cell sur-
rounding on a given cellular function and vice-versa.

A topic as suitable to determinate of the average type of the spatial occupation,
following isoperimetric inequality [19], see Eq. (5),

L Xð Þ2 � 4μA Xð Þ2 ≥0 (5)

Where A Xð Þ is the area and L Xð Þ2 is the perimeter for a convex set.

4.4 Angular polygonality

With this metric/algorithm
PNk

i¼1
χi�βj j
n is quantified that the Voronoi polygons of

five, six, seven, and eight sides in healthy tissues and with diabetic retinopathy
maintain a maximum range of angular values between 110 and 130 degrees measured
from an arbitrary horizontal axis, defining an angular cluster of radio 10 degrees. It is
shown that the Voronoi polygons of five, six, seven, and eight sides are sensitives.

However, the polygons of Voronoi in healthy tissues and with diabetic retinopathy
of 3, 4, 9, 10, 11 and 12 sides are very irregular angularly, and the range of angular
variation is from 60 to 180 degrees, defining an angular cluster radius of 60 degrees,
Figure 17.

Other topics as suitable to capture regularity in convex Voronoi polygons is to
measure how well they fit in a regular polygon or a regular polygon fits in them. This
proposal has the characteristics to providing a way of fitting with convex polygons in

Figure 17.
Distribution of the angular polygonality relative to the side number in the Voronoi polygon.
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which they are very similar to regular polygons with a different number of edges [20],
see Figure 18.

The procedure consists in transforming the given irregular polygon into a regular
one, while measuring the amount of deformation required in such a process. The
measurement of the angle variation gives a first parameter to consider in the final
measurement of the regularity of Voronoi polygon. Using the Ulam tree modified to
distances and the Ulam tree modified to angles gives a measure of the amount of
deformation produced. Combining both procedures will be obtaining a measure of the
regularity of the Voronoi tessellations on retinal tissues.

4.5 Frequency of Voronoi polygon

In order to quantify the distribution of polygons according to the eccentricity,
frequency graphs were generated. In these it is observed that five and six sides poly-
gons predominate, in healthy retinal tissues (C) and with diabetic retinopathy (R). In
healthy tissues, with eccentricities of 270 and 810 μm, the frequency of polygons of
five and six sides is greater, with respect to pathological tissues. However, with
eccentricities of 1350 and 1890 μm, predominate 5-sided polygons, in tissues with
diabetic retinopathy, Figure 19.

Figure 19.
Distribution of frequencies in Voronoi polygons by eccentricity in healthy retinal tissues (C) and with diabetic
retinopathy (R).

Figure 18.
In (A), a pentagon that almost looks like an equilateral triangle, (B) hexagon that almost looks like an octagon,
(C) square that almost looks like a rhombus shape.
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We found that the spatial sampling of the images with S window, even using
resizing of the recorded images of 90 � 90 μm, has a significant impact on the
performance of the metric/algorithms, but also that an excessive upsizing does not
substantially improve the measurements. We observed that the percentage of Voronoi
polygon is the parameter in which is most affected by errors in photoreceptors detec-
tion, and for this reason the combined measurements of more parameters could be a
better choice in order to characterize different retinal regions and the different
subjects’ retinas.

4.6 Minimum and maximum angles

Control (C) and diabetic retinopathy (R) tissues were characterized based on
measuring the maximum angles χi and minimum angles χi of the Delaunay triangles in
Voronoi polygons (Figure 5). Greater sensitivity is identified when quantifying
maximum angles than minimum angles; see Figure 20 and Table 5.

5. Discussion

Soliman et al. [21], using AO fundus camera to acquired images of parafoveal
cones, from patients with type II diabetes mellitus with or without retinopathy,
captured the cone mosaic at 0 and 2 degrees eccentricities along the horizontal and
vertical meridians. The density of the parafoveal cones was calculated within
100 � 100-μm squares located at 500-μm from the foveal center along the orthogonal
meridians. They found that the cone density was significantly lower in the moderate
non-proliferative diabetic retinopathy (NPDR) and severe PDR/proliferative DR
groups compared to the Control, No DR, and mild NPDR groups. Also, they found
that the mean percentage of cones with hexagonal Voronoi tiles in the Control and No
DR groups was 44.8% and 45.6%, respectively. In the DR groups, the percentage of
cones with hexagonal Voronoi tiles ranged between 43.4% and 40.0%. They therefore

Figure 20.
Distribution of maximum angles χi relative to the side number (4,5,6,… ) in the Voronoi polygon.
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conclude that decreased cone density may be linked to the prior use of anti-VEGF
therapy in these patients. Since VEGF is known to have a neuroprotective effect on
photoreceptors, anti-VEGF agents may potentially have a deleterious effect on pho-
toreceptors. Other progress against the wet form of the disease has come through the
use of drugs that target vascular endothelial growth factor, or VEGF, a substance in
the body that promotes the growth of new blood vessels. It has also been found that,
cone photoreceptor counts in the control group reported in this study fall within the
range reported in previous studies, high inter subject variability of cone density may
also play a significant role [22].

Likewise, Li and Roorda showed that the percentage of hexagonal Voronois tended
to decrease between 0.25 and 5 degrees from the fovea; a study on a post-mortem
human retina showed that the cones were more hexagonally arranged near the edge of
the fovea (between 0.20 and 0.25 degrees eccentricity) than in the foveal center [7, 23,
24]. According to the current study and previous work from others [25, 26] a model of
the parafoveal mosaic by a lattice with continuous hexagonal regularity cannot be
considered completely adequate to describe the cone mosaic arrangement in a healthy
eye. In addition, in an AO retinal image of the photoreceptor mosaic, deviations from
hexagonal order can be attributed to some phenomena, such as point defects and
linear cracks. ‘Point defects’ of the cone lattice occur within otherwise intact mosaic
areas and may be represented by smaller cones (S cones), cones with no wave guiding
properties or isolated rods (it is plausible that rods cannot be always distinguished by
point defects). Other phenomena that can contribute to change the hexagonal order

Voronoi ties Control Diabetic retinopathy (�) Angular difference P-value*

Maximum angles χ i, 270 μm

5 89.46 98.40 8.94 0.0208

6 79.75 86.66 6.91 0.0258

7 68.05 77.77 9.72 0.006

Maximum angles χi, 810 μm

5 89.47 90.06 0.59 0.092

6 78.70 80.46 1.76 0.0596

7 71.09 71.90 0.81 0.0787

Maximum angles χi, 1350 μm

5 88.79 97.11 8.32 0.0204

6 78.78 86.64 7.86 0.0198

7 71.30 77.45 6.15 0.0478

Maximum angles χi, 1890 μm

5 89.63 91.51 1.88 0.06312

6 79.79 80.56 0.77 0.08258

7 71.13 72.25 1.12 0.07114

*Two-tailed.

Table 5.
Value-P for maximum angles in 5, 6 and 7 Voronoi ties.
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are represented by local variance of the cone shape and the compression along the
vertical meridian as a consequence of the expansion along the horizontal meridian of
the photoreceptor mosaic [7, 24, 27–29].

Lombardo [30] identified several possible limitations based on the preferred pack-
ing arrangement of the cone mosaic: resolution of AO system, study size, and the
presence of several sources of confounding orbias. Firstly, the resolution of the rtx1
camera is insufficient to assess the density of extremely tightly packed cones at the
center of the fovea. Whether or not this loss of parafoveal cones reflects similar
changes at the foveal center remains unclear. To date, the association of photoreceptor
loss and vision loss in patients with DR remains obscure. Secondly, small sample size is
another limitation of this prospective observational cohort study. This variability
could be attributed to several factors, including the lack of a standardized approach to
cone counting and differences in image processing software, AO systems, sampling
window size, and foveal reference point location.

Methodology based on the optical coherence tomography (OCT) allows it to
quantify retinal thickness in diabetic retinopathy. A total of 136 patients in different
stages of diabetic retinopathy were examined with OCT [31]. In the controls, retinal
thickness was 153 � 15 μm in the fovea, 249 � 19 μm in the temporal parafoveal
region, and 268 � 20 μm in the nasal parafoveal region. In diabetic patients, retinal
thickness was increased to 307 � 136 μm in the fovea, 337 � 88 μm in the temporal
retina, and 353 � 95 μm in the nasal retina, respectively. The differences between
diabetics and controls were highly significant (P < 0.001). There was an
intermediate correlation between retinal thickness and visual acuity, particularly in
patients without macular ischemia. Sensitivity of detecting clinically significant
macular edema by measuring foveal retinal thickness was 89% and specificity was
96%. Apparent correlation between the increase and decreased visual acuity in the
retina thickness, can be explained by the results of an increase in the thickness will
be related to the increase in time axonal loss. In diabetic retinopathy, retinal spaces
can take place between the inner and outer plexiform layer, outer limiting
membrane or the outer plexiform layer. These results demonstrate the retinal tissue
integrity, as a measure of the retention axon connection, and as an index of visual
function. The strength of the correlation between the retention structure and
visual function as expected decreases in the eccentricity increases from the center of
the fovea.

There is disagreement in the literature concerning the effects of age on PR packing
density. Curcio et al. [32] found a nonsignificant change in the number of cone
photoreceptors with age. However, they reported that the range of peak density
variation at older ages was narrower, overlapping the lower end of the cone density
from younger subjects.

As mentioned above, there are mixed results of histology on age-related changes in
PR packing. It is clear that nonhuman primates undergo changes in the central retina
with age [33, 34]. Ordy et al. [35] studied the visual acuity and foveal PR density in the
retina of aged rhesus monkeys, finding that the foveal photoreceptor density
decreased significantly in the oldest age group of macaque monkeys compared with
the middle age group. Other properties of the photoreceptors have been found to
change with age, in addition to the cone packing density. Gartner and Henkind [36]
reported loss of photoreceptor nuclei. Keunen et al. [37] and Kilbride et al. [38] found
that the cone pigment density decreased as a function of age. Elsner et al. [39] showed
that young healthy people typically have steep foveal peaks in photopigment density,
but older people have shallower distributions.
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Our approach emphasizes the local density of the PR rather than the total area.
Thus, we found that a significant decrease in photoreceptor packing density occurred
primarily, at distances less than 1890 μm from the center of the fovea.

Changes in the central fovea are also evident from the analysis of foveal shape by
Gorrand and Delori [40], who found that the curvature of the foveola increases with
increasing age. Elsner et al. [39], Bone et al. [41], and Chang et al. [42] found changes
in the distribution of macular pigment with age, but Delori [43] did not. Since macular
pigment is deposited preferentially in the photoreceptor axons and inner plexiform
layers of the retina. Similarly a loss of PR could cause an increased curvature. An
alternative possibility is that central cones spread outward, and the foveal curvature
increases due to this spread, but again, the mechanism would be more complex and
not easily tested by PR packing measurements alone.

However, despite the seeming transparency of DR pathogenesis and the
progress in its treatment observed in recent years, a number of issues remain that
warrant further study [44–46]. One of them is the temporal sequence of pathological
changes in DR development [47, 48]. Studies in rodents have highlighted that
biomarkers of inflammation, such as leukostasis, overexpression of adhesion
molecules in retinal vascular endothelial cells and leukocytes, vascular permeability
alteration, and aggravated production of nitric oxide, prostaglandins, cytokines, and
other inflammatory mediators appears in the retina during 1–6 months of diabetes
crisis [49].

Most developed therapies for DR, have primarily focused on the terminal stage of
this disease, and as thus, failed to address the early potentially reversible stage of this
disease. In addition, most of these therapies have been associated with severe sight
threatening side effects [44]. With that, understanding of the temporal sequence and
stages of pathological disturbances of DR development is of great prognostic and
scientific value, as it might contribute to improvements to current methods or even
the development of new methods of diagnosis and treatment of such a serious com-
plication of diabetes.

6. Conclusions

The general aim of this chapter was to establish an analysis for a comparison of
retinal tissues with retinopathy diabetic and healthy tissues, which is an important
problem to mechanically understanding of the processes that lead to the experimental
observations.

In retinal tissues, metrics as quantification of Voronoi polygons and Delaunay
triangles, are not sensitive to register changes in cellular organization, because in
the first geometry, the number of dominant polygons are both six and five sides
in both cases, and in the second geometry are presented the same amount of
triangles Delaunay, as it has been reported by many authors [2–7]. Similarly, Kaccie
and Roorda [50] showed that Voronoi regions gradually increase in size at higher
eccentricities.

In this chapter, we focused here on the photoreceptor degeneration in an animal
model of retinal degenerative disease, retinopathy diabetic, in which we investigate
how pathology affects mosaic organization. We analyzed 128 retinal tissues here,
eventually we found abnormality in retinal tissues. This spacing rule is enough to
simulate the geometry of mosaics, suggesting that interactions between the mosaic
cells satisfy tessellation formations of healthy tissues and pathological damaged
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tissues. Once generated, cells migrate to their layer, and a simple rule controlling the
spacing between cells of the same type suffices to control mosaic formation [51, 52].
This ensures uniform coverage of the retina by each type of cell, regarding the
mechanisms that control the genesis of the different retinal cells.

From the Voronoi analyses, the parameter of Eq. (1), was also obtained. This has
been reported to be very sensitive to changes in photoreceptors spacing [11]. Inde-
pendently of the number of sides of the Voronoi polygons, the PR spacing increased in
the samples with DR, what represents an expansion in cellular spacing.

Based on the results obtained, the metric that are suggested to detect morpholog-
ical changes in retinal tissues with DR is the metric of the mean averaged distance
(Eq. (1), Figure 17) and the mean square deviation of the angles (Eq. (3), Table 2), in
both cases P value <0.05.

In this study, among the tools presented that are highly reliable and ready to be
tested with human retinas are the mean averaged distance (Eq. (1)) and the mean
square deviation of the angles (Eq. (3)), which have a high sensitivity to detect
changes in DR tissues, by using retinal images obtained with a fundus camera or
AOSLO. We consider that the tools mentioned (Eqs. (1) and (2)) are reliable enough
to perform clinical level tests.

A much more effective developmental design, consistent with the experimental
observations so far available, is that cell genesis and cell positioning are determined
separately, which requires a combination of experimental and theoretical tools.
Although we learn from comparing real data to obtain patterns, a mathematical model
is needed to investigate the contribution from many retinal processes. The under-
standing of the distribution of cone density and spacing as a function of retinal
eccentricity in the same eye and between fellow eyes of the same subject could be of
great clinical utility when monitoring a subject longitudinally over time or when
comparing controls with presumptive pathologic cases.

Several studies of diabetic retinopathy have focused especially on the retinal vas-
culature, but recent studies suggest that the neural retina also is involved. Oxidative
stress and local inflammatory changes have been shown to play important roles in the
pathogenesis of this retinopathy, but the source of reactive oxygen species has been
less clear. Du et al. [53] accumulating evidence suggests that photoreceptor cells play a
previously unappreciated role in the development of early stages of diabetic retinop-
athy, but the mechanism by which this occurs is not clear. The oxidative stress in
retinas of diabetic mice emanates from neural photoreceptor cells, and elimination of
these cells in diabetes inhibits both the oxidative stress and inflammatory changes
shown to cause the vascular lesions of diabetic retinopathy. These studies suggest a
mechanism by which neural cells can initiate the vascular injury characteristic of
diabetic retinopathy.

Finally, we show in this chapter provides new insight into the mechanisms loss of
cells observed of mice retinas, and could be used to rescue inner retinal neurons from
secondary degeneration, enlarging the time window in which receptor transplants or
substitution may be for the benefit of subjects suffering retinal degenerative diseases.
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