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An important issue in the management of supply chains and manufacturing systems is to control inventory
costs at different locations throughout the system while satisfying an end-customer service-level require-

ment. The challenge involved is to solve a nonlinear constrained optimization problem that captures the key
dynamics of a complex production-inventory system. In this paper, we first develop a multistage inventory-
queue model and a job-queue decomposition approach that evaluates the performance of serial manufacturing
and supply systems with inventory control at every stage. We then present an efficient procedure to minimize
the overall inventory in the system while meeting the required service level. Our technique is relatively sim-
ple and delivers accurate performance estimates. Furthermore, numerical studies generate certain managerial
insights into related design and control issues.

Key words : inventory queues; manufacturing systems; supply chains; decomposition; optimal inventory
allocation

History : Accepted by Fangruo Chen, former department editor; received November 10, 2000. This paper was
with the authors 10 months for 2 revisions.

1. Introduction
In electronics, computer, automobile, and many other
industry sectors, a manufacturing and supply sys-
tem usually takes the form of a complex network
of suppliers, fabrication/assembly locations, distribu-
tion centers, and customer locations, through which
materials, components, products, and information
flow (Ettl et al. 2000). Throughout the network,
there are different sources of uncertainties associ-
ated with supplies (availability, quality, and deliv-
ery times), processes (transportation times, machine
breakdown, and human performance), and demands
(arrival times, batch sizes, and types). These uncer-
tainties and other factors affect the performance of a
system, including its service level in terms of fill rate
or delivery lead time, which in turn affects the bottom
line of an enterprise in today’s competitive environ-
ment. Among other things, inventories can be used
to hedge uncertainties and achieve a specific service
level. Because inventory placed at different locations
usually incurs different costs and results in different
service levels for end customers, the efficient alloca-
tion and control of inventory assets presents enor-

mous opportunities and, at the same time, poses a
great challenge to many companies.
Motivated by this challenge, in this paper we

develop an effective approach to deal with com-
plex supply network design problems involving both
queueing delay and stocking control at every node
in the network. By modeling the interactions of the
queueing delay and stocking control in a network set-
ting, we expand the boundary of the system design
methodology.
For a serial supply system, we propose a multi-

stage inventory-queue model. By “inventory queue,”
we refer to a queueing model that incorporates an
inventory control mechanism such as the base-stock
control. To evaluate the performance of a multi-
stage system, we decompose it into multiple single-
stage inventory queues, each with a modified input
(raw material arrival process). Our decomposition
approach is computationally simple and provides
accurate performance estimates. It also enables us to
solve an optimization problem that minimizes the
total inventory cost subject to a required service level.
Our numerical results reveal a number of insights;
some of them are notably different from conclusions
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reached in prior studies. For example, we demon-
strate that, depending on the cost structure, it may be
better to assign less-variable servers to downstream
stations instead of upstream stations, as commonly
suggested in the literature (for systems in which
objectives other than inventory costs are considered).
We also demonstrate that by considering the process-
ing delay and inventory holding costs together, there
is a definite benefit in managing work-in-process
inventory (WIP) actively throughout a supply chain.
The rest of this paper is organized as follows.

The related literature is reviewed in §2, followed
by model formulation in §3, along with some pre-
liminary results. In §4, we propose a decomposition
method that treats the queue length at each stage as
an independent sum of a material queue and mate-
rial backorders (see definitions in §4). Since the mate-
rial queue and backorders can be readily computed,
this decomposition leads to an efficient procedure for
network performance evaluation. In §5, we first relax
the integer requirement on the base-stock level of the
last downstream stage so as to utilize the underlying
quasi-unimodal property of the cost function. Based
on this property, we construct a recursive optimiza-
tion procedure to compute the optimal solution of the
relaxed multistage problem. The optimal solution to
the original problem can be recovered from the solu-
tion to the relaxed problem. In §6, based on exten-
sive numerical experiments, we present results that
demonstrate the impact of various parameters and
provide managerial insights to the design and control
of networks of inventory queues. The concluding §7
summarizes the main findings and points out future
research opportunities.

2. Literature Review
We are concerned with the performance evaluation
and optimization of manufacturing and supply chain
systems. In the research literature, queueing-network
models are usually used for performance evalua-
tion of multistage discrete manufacturing systems,
whereas optimizing inventory control in a network
system is commonly associated with multiechelon
inventory models. Our problem requires an integra-
tion of these two types of models.
Clark and Scarf (1960) consider a multiechelon

serial system under periodic review, with constant
lead times, unlimited processing capacity, stochastic
demands, and a finite decision horizon. This multi-
echelon inventory optimization problem is decom-
posed into a set of single-location inventory control
problems, and the optimal policy is found to be a
modified base-stock policy, i.e., order up to the target
echelon base-stock level and ship as much as possi-
ble if the entire order cannot be filled. This result has

since stimulated significant research efforts in multi-
echelon periodic-review systems; refer to the details
in the survey articles by Graves (1988) and by Feder-
gruen (1993).
The METRIC model of Sherbrooke (1968) has moti-

vated another important stream of research activi-
ties in multiechelon systems under continuous review.
While the original work on the METRIC model pro-
vides an approximate solution, a number of attempts
have since been made to obtain the exact solu-
tion, e.g., Axsäter (1990). Svoronos and Zipkin (1991)
study continuous-review hierarchical inventory sys-
tems with exogenous stochastic replenishment lead
times and a one-for-one replenishment policy. By pre-
serving the order of replenishments, the authors are
able to approximate the steady-state system perfor-
mance and to bring out the important role played
by the lead-time variance (in contrast to the METRIC
model). Refer to Axsäter (1993) for a comprehensive
review of multiechelon models under continuous
review. Recently, a number of authors have developed
models for supply chains based on multiechelon
inventory theory. For example, Lee and Billington
(1993) use a single-node periodic-review inventory
model as a building block to analyze a decentralized
supply chain with normally distributed demands and
processing lead times. The book edited by Tayur et al.
(1999) provides a few more examples of supply chain
models.
An extension of the standard periodic-review

model is to impose a capacity limit at each stage—the
maximum amount of outputs per time unit. Glasser-
man and Tayur (1994) demonstrate that in a serial
system with an echelon base-stock policy, the inven-
tory and backorders are stable if the mean demand
per period is less than the capacity at every node.
Glasserman (1997) develops bounds and approxima-
tions for setting the base-stock levels in the above
system. Glasserman and Wang (1998) use a large
deviations approach to obtain an asymptotic linear
relationship between lead time and inventory as the
fill rate approaches 100%.
Buzacott and Shanthikumar (1993) study a multi-

cell system, where each cell has a stocking point
and the material flow is controlled by a production
authorization card (PAC) mechanism. The focus is on
deriving bounds and approximations for key perfor-
mance measures. Other related studies include those
on kanban-controlled production lines, e.g., Glasser-
man and Yao (1994, 1996).
Closely related to our work are two papers by Lee

and Zipkin (1992, 1995), where the authors study tan-
dem and distributed production systems with expo-
nential processing times and inventory control at
every stage. By assuming that the effective produc-
tion lead time is equal to the sum of order delay
and sojourn time (at the production facility), they
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transform the production system into a multiechelon
model studied by Svoronos and Zipkin (1991). As
such, they are able to use the method from Lee and
Zipkin (1992) to obtain system performance mea-
sures through approximations involving phase-type
distributions. Duri et al. (2000) demonstrate that the
approximation method of Lee and Zipkin (1992, 1995)
can be extended to systems with general service times
with the same phase-type approximation used in
Svoronos and Zipkin (1991). The basic structure of
the system studied in this paper is similar to that of
the systems in Lee and Zipkin (1992, 1995) and Duri
et al. (2000). Like those works, we also use a decom-
position approach. However, ours is based on a very
different idea—decompose the queue at each stage
into two components, a backlog queue and a mate-
rial queue, combined with an effort to characterize the
arrival process from the upstream stage (see the sec-
tions below for details). Furthermore, we optimize the
inventory allocation in the system based on the per-
formance model, whereas prior studies focus entirely
on performance evaluation.
Ettl et al. (2000) develop a network of inventory-

queue model to analyze complex supply chains.
Each stocking location is modeled as an MX/G/�
inventory queue operating under a base-stock control
policy. By considering the possible delay caused by
stock-out and modifying the lead time accordingly,
they derive analytical expressions for performance
measures and develop a constrained nonlinear opti-
mization model. Like the METRIC model, the work
was motivated by industrial applications and has
since enjoyed successful implementation. Our study
adopts the inventory-service optimization framework
of Ettl et al. (2000). Our main focus, however, is to
capture the queueing delay at each stage due to lim-
ited production capacity, whereas the infinite-server
model in Ettl et al. is uncapacitated.
Zipkin (2000) provides a systematic discussion of

inventory models with stochastic lead times. Based
on the system structure, the models are divided into
three groups: exogenous sequential systems, paral-
lel systems, and limited-capacity systems. Exogenous
sequential systems (see, for example, Kaplan 1970 and
Zipkin 1986) are essentially standard inventory sys-
tems with constant lead times replaced by stochas-
tic lead times. In a parallel system, an infinite-server

Figure 1 A Tandem Inventory Queue
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queue is used to model the supply process. With
an unlimited capacity, the order lead times are inde-
pendent and identically distributed random variables.
The category of parallel systems (with unlimited
capacity) includes a number of interesting works such
as Sherbrooke (1968), Berg and Posner (1990), and Ettl
et al. (2000). Our model belongs to the third cate-
gory, models with limited capacity. While we draw
heavily on methodologies and results from queueing
theory, our model mainly addresses inventory issues.
By treating each node of a supply chain as an inven-
tory queue, we emphasize the connection between
inventory theory and queueing theory in supply chain
applications.

3. The Model and Preliminary
Analysis

We consider a manufacturing/supply system with
m + 1 stages in series (Figure 1), m ≥ 1, in which
each stage consists of a single production/distribution
facility. We model this system as a multistage
inventory-queue system with m+1 nodes, indexed as
i = 0�1� � � � �m. Each node i in the system consists of
two parts, a server with service rate 	i and service
time SCV (squared coefficient of variation) C2si, and
an output store for semifinished products. We assume
that the setup/order cost in the system is relatively
insignificant, and thus a base-stock policy with a base-
stock level Ri ≥ 0 is used to control the operation
of server i and its output store. The output store of
node m keeps the finished products to supply exter-
nal demands and, as such, the system operates in a
“make-to-stock” mode.
Whenever an order (demand) arrives at store m,

it will be filled immediately if store m has stock on
hand. Otherwise, it will be backordered. In either
case, a job is added to the job queue—the list of jobs
at server m. Concurrently, a job is added to the job
queues at server m − 1, at server m − 2� � � � , all the
way to server 0. Thus, the external demand informa-
tion becomes known to all stations simultaneously,
and the production control follows a one-for-one
triggering mechanism at all stations along the sup-
ply chain. The time to move materials between stages
is assumed to be insignificant and hence ignored.
Thus, the material movement from an upstream out-
put store to a downstream node also follows the
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one-for-one triggering mechanism in response to the
service completion at the downstream node and exter-
nal demand arrivals. For each node i, we use Ii
and Bi to denote the steady-state on-hand inventory
level and backorder level, respectively, at its output
store, and use Ni to denote the steady-state job-queue
length, i.e., the number of outstanding orders in pro-
cess or waiting to be processed at node i. We note
from the above description that an external demand
will trigger the increase of Ni and order placements
at all nodes. Therefore, the effective demand arrival
process at every node is the same as the external
demand arrival process. When a server finishes pro-
cessing a job, the job is stored in the output store (of
the node) if there is no backorder; otherwise, it will be
used to fill the backorders on a first-come-first-served
(FCFS) basis. We further assume that an echelon base-
stock policy is used for each node: Server i stops pro-
cessing when Ii + · · · + Im reaches Ri + · · · + Rm. This
policy is a special case of the �Q� r� policy (see, for
example, Axsäter and Rosling 1993) with a lot size
of one and with the reorder point equal to the base-
stock level minus one. From Proposition 1 in Axsäter
and Rosling (1993), the echelon base-stock policy for
the serial inventory-queue model is equivalent to the
installation base-stock policy defined in Axsäter and
Rosling. Thus, our inventory-queue model is similar
to the standard serial multiechelon inventory models.
External orders (demand) arrive at store m at rate

�, with i.i.d. interarrival times. The traffic intensity at
stage i is �i = �/	i. Jobs are processed one by one fol-
lowing the FCFS policy with i.i.d. processing times at
each node. There is an ample supply of raw materials
at the input buffer 0, and all stores are fully stocked
initially.
To compute the expected total inventory cost, we

classify the WIP in the system into m+1 classes. WIP
class i (i= 0�1� � � � �m−1) refers to those semifinished
products (which we shall refer to as product i) that
have completed processing at node i, but not yet at
node i+1 (including the one in process at server i+1).
Product m is the finished product. Let Hi denote the
number of product i, i= 0�1� � � � �m. We assume zero
replenishment time for raw materials at node 0. Thus,
no raw material inventory should be held there.
For a given vector R = �R0�R1� � � � �Rm� of base-

stock levels, we are interested in the following steady-
state performance measures: the (realized) fill rate f
at node m and the expected values of Hi for 0≤ i≤m.
These performance measures can be derived from Ni,
i = 0�1� � � � �m, using the following well-known rela-
tions. A demand will be filled immediately if and only
if store m has positive on-hand inventory; that is, the
number of outstanding orders is less than the base-
stock level Rm. Hence, the realized fill rate is

f =P�Nm <Rm�� (1)

The expected WIPs are given by

E�Hi�=E�Ni+1�+Ri−E�Ni�� i=0�1�����m−1 (2)

and
E�Hm�=E�Rm−Nm�+� (3)

The following facts and monotone properties are
either obvious or readily obtained through simple
analysis of the system dynamics.
1. The service completion times and material

arrival times at any node are decreasing in the base-
stock level at each of its upstream nodes, but are inde-
pendent of the base-stock level at any other node.
2. The departure times at any node are decreasing

in the base-stock level at each of its upstream nodes
and the node itself, but are independent of the base-
stock level at any other node.
3. The number of outstanding orders at any node

is decreasing in the base-stock levels at each of its
upstream nodes, but is independent of the base-stock
level at any other node.
4. The fill rate at node m is increasing in the base-

stock level at every node.
5. E�Hi�, i= 0�1� � � � �m, is a nondecreasing function

of the base-stock levels at node i and its upstream
nodes, but is independent of those at all other nodes.

4. Performance Evaluation
As mentioned above, the exact performance eval-
uation of the system introduced in the last sec-
tion is very difficult, even with exponential service
times and Poisson demand arrivals. In this section,
we develop a decomposition method to approximate
the performance. Because all performance measures
needed in the optimization model can be derived
from job-queue-length distributions, we focus on the
approximation of Ni for all i = 0�1� � � � �m. Follow-
ing queueing conventions, we shall use X/Y/Z/m/R
to denote a base-stock inventory queue, in which X
signifies the external demand process, Y the service
process, Z the material supply process, m the number
of parallel servers, and R the base-stock level at the
output store. Similar to a standard queue, the funda-
mental process here is the job queue N .

4.1. Job-Queue Decomposition
Node 0 with ample material supplies can be repre-
sented as GI/G/A/1/R0, where A signifies an ample
supply process. Clearly, the job queue N0 is identi-
cal to that of a standard GI/G/1 queue. Node i is a
GI/G/G/1/Ri inventory queue, with a material supply
process to be determined. The complication here is
that a material supply shortage can cause starvation
at the downstream stations. One way to account for
this is to modify the service time of the downstream
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station by adding to it the residual service time at
the upstream station. With the revised service time,
node i can be analyzed as a standard GI/G/1 queue.
The advantage of this approach is that the external
demand process stays invariant as we analyze each
node. However, the starvation probability, which is
needed to modify the service times, depends on the
operations at both upstream and downstream sta-
tions, and hence is difficult to characterize. We have
developed and tested some approximations for the
starvation probability and found that the accuracy
depends heavily on system parameters.
Here, we propose a more direct decomposition/

approximation scheme based on the fundamental pro-
cess Ni. To do so, we need to make a small but impor-
tant technical modification of how the operation of
the system is viewed. Instead of moving a semifin-
ished product to the downstream station for process-
ing when the server becomes available, a semifinished
product is moved into the input buffer of the down-
stream station whenever its job queue is increased
by one. When the upstream output store is empty,
the request for the semifinished product will be back-
ordered, as shown in Figure 2. Viewed this way, the
job queue Ni consists of two parts: a material queue
Qi at the input buffer of node i plus what is on the
backorder list Ui (the number of units backordered)
at node i.
Hence, we write

Ni =Qi+Ui� (4)

Following the common approach in standard queue-
ing networks (also in Lee and Zipkin 1992, 1995),
we further assume that Qi and Ui are probabilis-
tically independent (although they clearly are not).
We note that this independence assumption is equiva-
lent to the product-form assumption made in most of
the decomposition methods used to analyze queueing
networks (refer to, for example, Bitran and Tirupati
1988, Jackson 1963, Kobayashi 1974, Whitt 1984 and
the review in Liu 1999).
Liu (1999) has conducted extensive numerical

studies with four factors (upstream service-time dis-
tribution, upstream base-stock level, downstream
service-time distribution, and external demand rate)
and a 5×3×5×3 experiment design to investigate the

Figure 2 Job Queue as the Sum of the Material Queue and Backorders
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impact of the independence assumption. The results
demonstrate that the dominating factor is the service-
time distribution at the upstream node i − 1 (repre-
sented by its SCV C2s� i−1), while the impact of the other
three factors is very small. In particular, Ui and Qi

tend to be positively correlated when C2s� i−1 < 1, neg-
atively correlated when C2s� i−1 > 1, and the absolute
value of the correlation coefficient is smaller than 0�01
when 0�5≤ C2s� i−1 ≤ 4. In terms of the impact of C2s� i−1
on the accuracy of the estimation of Ni, the results
show that the second and third moments of Ni tend
to be underestimated when C2s� i−1 < 1 and overesti-
mated otherwise. Furthermore, the relative error of
the second-moment estimate is smaller than 4% for
0�2≤ C2s� i−1 ≤ 8. With these observations, we are con-
fident in the independence assumption.
Because node i is the only demand source to the

output store of node i − 1, we have Ui = Bi−1 =
�Ni−1 − Ri−1�+; hence, the steady-state distribution of
Ui can be easily obtained from that of Ni−1. Thus, what
remains is to derive the probability distribution of Qi,
which is identical to the queue length of a standard
Z/G/1 queue model, with the input process being the
departure process from the output store of node i−1.
Also note that Hi = Ii+Qi+1.
Remarks. As pointed out in §2, our decomposi-

tion scheme is somewhat similiar to the effective lead-
time decomposition of Lee and Zipkin (1992), with Ui
corresponding to the delay and Qi corresponding to
the sojourn time, and both works assume the inde-
pendence of the two components. The key difference
is that Lee and Zipkin (1992) compute the sojourn
time independent of the upstream operations, which
is equivalent to using the external demand process
instead of the departure process from upstream as the
input process, to compute the material queue length.

4.2. The Material Queue Qi

As explained above, we need the departure process
from the output store of node i − 1, which is the
material arrival process at node i, to characterize
the material queue Oi. For multistage systems, the
departure process from a node will often be a gen-
eral (nonrenewal) process, even if the external input
process (to the very first node) is Poisson. Thus,
it is difficult if not impossible to obtain analytical
solutions for the departure process in a multistage
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tandem inventory-queue system. We have to resort
to approximation. In queueing-network literature, a
departure process from a node is often approximated
by a renewal process, characterized by the first few
moments of the interdeparture times (Albin and Kai
1986; Whitt 1982, 1984). This is the approach we adopt
here. Specifically, we characterize the departure pro-
cess from the output store of a general GI/G/G/1/R
inventory queue with a base-stock level R> 0 by the
first two moments of the stationary departure inter-
vals. It is obvious that the mean interdeparture time
is equal to the mean interarrival time of external
demands. What remains is to approximate the SCV of
interdeparture times.
The departure process from an inventory queue is

different from the departure process of a standard
queueing system. A departure from the output store
of node i is either triggered by a service completion at
node i when Bi > 0 or by an external demand arrival
to node i+1 when Ii > 0. Our objective here is to pro-
vide a simple, yet sufficiently accurate, approximation
for this departure process.
Motivated by the widely used approximation of the

SCV of the departure intervals from a standard queue
(e.g., Buzacott and Shanthikumar 1993),

C2d = �1−�2�C2a +�2C2s � (5)

we use the following approximation for the SCV of
the departure intervals from output store j , j = 0�
1� � � � �m− 1. (See Liu 1999 for numerical validations.)
C2dj=

(
1−�2+Rj/2j

)
C2aj+�2+Rj/2j C2sj � 0≤ j≤m−1� (6)

where C2aj is the SCV of interarrival times of the mate-
rial arrival process, and C2sj is the SCV of the service
times at node j . We note that when Rj = 0, (6) is
reduced to (5). Intuitively, when Rj is large, depar-
tures from the node are more likely responding to the
external demands, and hence a larger weight is given
to C2aj . Thus, adding a function of Ri to the power of
�j reflects the impact of the base-stock level on the
departure process.
Note that when C2aj = C2sj = 1, the approximation in

(6) reduces to C2dj = 1, which is consistent with the
Poisson departure process from a standard M/M/1
queue (see Burke 1956). However, the departure pro-
cess from an M/M/A/1/R inventory queue is not
Poisson, as is evident from the following result (refer
to Buzacott et al. 1992 and Liu 1999):

C2d = 1− 2�R+1�1−��/�1+��� (7)

We choose (6) for its simplicity (so as to be able to
handle a large number of nodes) and generality (it
applies to nonexponential service times as well). Fur-
thermore, we can show that 1 − 0�2�Rj+1j < C2dj ≤ 1

holds in the case of exponential times. Consequently,
the error of the approximation in (6) is bounded (see
Liu 1999 for details). Numerical evidence regarding
the accuracy of the approximation will be discussed
in the next subsection.
Having obtained the mean and the SCV of the

departure intervals, we can use the following approx-
imation for the material queue-length distribution
(Buzacott and Shanthikumar 1993), again for its sim-
plicity and accuracy when applied to our model (see
Liu 1999 for details regarding its performance). For
0≤ i≤m,

P�Qi = j�=
{
1−�i� j = 0�
�i�1− �̂i��̂ij−1� j ≥ 1� (8)

where

�̂i =
�i�C

2
ai+C2si�

�i�C
2
ai+C2si�+ 2�1−�i�

(9)

and C2ai =C2di−1.

4.3. Algorithm and Accuracy
We are ready to estimate the overall performance of
the inventory-queue network. We start from node 0
and compute Ui, Qi, and Ni node-by-node until node
m. The main steps are summarized below.

Algorithm 1: Performance Evaluation for Multi-
stage Systems.
Step 1. Let U0 = 0 and C2a0 be the SCV of the inter-

arrival time of external demands. Compute Q0 with
(8) and C2d0 with (6), N0 =Q0. Let i= 0.
Step 2. Set i = i + 1 and C2ai = C2d� i−1. Calculate the

steady-state distribution of Ui by Ui = �Ni−1 − Ri−1�+
and Qi by (8). Calculate the steady-state distribution
of Ni by Ni =Qi +Ui. If i =m, go to Step 4. Else, go
to Step 3.
Step 3. Compute the SCV of the departure process

C2di with (6) and then go to Step 2.
Step 4. Compute the performance measures using

relations (1) through (3), and then stop.
Our decomposition method requires only the first

two moments of the service times and interarrival
times at all nodes. The computational complexity of
the procedure is O��m+ 1�K2�, where m is the num-
ber of stages and K is a constant depending on the
required accuracy of the queue-length approximation.
We may require, for example, P�Qi > K� < 0�01. Then,
K = ��ln�0�01�− ln��i��/ ln��̂i��, which increases with
�̂i. It is easy to derive from (9) that when C2ai+C2si < 20
and �i < 0�99, we have �̂i < 0�95 and K ≤ 90. Hence,
if we choose 2K as a conservative cutoff level when
computing Qi, Ui, and Ni, the computational com-
plexity is O��m+ 1�K2�. Note that the computational
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complexity is independent of the service-time and
interarrival-time distributions.
We now illustrate the overall accuracy of our

appoximation in terms of E�Hi� (i = 0�1� � � � �m) and
the fill rate f (both will be used in the optimization
model below). For numerical experiments, we con-
sider a three-stage system (A) with different service-
time distributions at different stages and a four-stage
system (B) with identical service-time distributions
at all stages. We focus on three factors: service-time
distributions (Erlang, Exponential and HyperExponen-
tial with the SCV less than, equal to, or greater than 1,
respectively); the base-stock level at every node; and
the external demand arrival rate.
The approximations are compared with estimates

from simulation. The results, including the relative
errors (err), are presented in Tables 1 and 2 (in which
“s” and “a” represent simulation and approximation,
respectively). These results show that the approx-
imation works well. We also have the following
observations.

Table 1 Performance Estimations of Multistage System A

�C2
s0� C

2
s1� C

2
s2�

�R0� R1� R2� ��0� �1� �2� Method E�H0	 E�H1	 E�H2	 f2

s 2�435 2�270 7�866 0�978
(0.6,0.6,0.6) a 2�540 2�350 7�656 0�976

err% 4�308 3�533 −2�667 −0�262

s 9�086 8�958 1�024 0�212
(0.9,0.9,0.9) a 9�290 9�086 0�920 0�197

err% 2�244 1�425 −10�171 −6�756

(1,1,1) s 4�086 1�624 3�556 0�583
(2,2,10) (0.9,0.8,0.6) a 4�290 1�666 3�290 0�556

err% 4�999 2�595 −7�472 −4�596

s 1�966 9�050 3�235 0�555
(0.8,0.6,0.9) a 2�060 9�549 2�944 0�525

err% 4�757 5�507 −8�982 −5�294

s 9�924 4�118 3�070 0�534
(0.6,0.9,0.8) a 10�040 4�236 2�880 0�517

err% 1�169 2�866 −6�184 −3�144

s 2�463 11�926 7�273 0�877
(0.6,0.6,0.6) a 2�527 11�790 7�063 0�889

err% 2�582 −1�140 −2�883 1�418

s 7�597 26�171 2�155 0�324
(0.9,0.9,0.9) a 7�111 26�097 1�771 0�286

err% −6�393 −0�283 −17�840 −11�605

(0.25,1,6) s 3�335 7�895 6�262 0�801
(2,10,10) (0.9,0.8,0.6) a 3�450 7�616 6�090 0�815

err% 3�462 −3�538 −2�745 1�845

s 1�809 31�891 2�886 0�406
(0.8,0.6,0.9) a 1�942 30�303 2�523 0�377

err% 7�356 −4�980 −12�566 −7�005

s 10�094 14�670 3�752 0�525
(0.6,0.9,0.8) a 9�444 14�837 3�417 0�510

err% −6�444 1�140 −8�932 −2�940

Observation 1. There is no evidence that the error
accumulates as we move down the stages.
This is highly desirable and somewhat unexpected

(see Table 2). We attribute it to the considerable effort
in our decomposition method that is spent on cap-
turing the departure process from upstream. This has
isolated the approximation error in approximating the
queue length at each stage to that stage only.
Observation 2. The relative error becomes smaller

as the fill rate increases.
Based on the numerical examples, the accuracy is

high when the required fill rate is at least 50%. This
is likely due to the exponential tail property of the
geometric approximation. Indeed, in a separate study
(Haque et al. 2002), it is shown through a simple two-
stage system that the actual tail behavior of the job-
queue length is indeed exponential.
Observation 3. The approximation is usually bet-

ter when the base-stock level is higher.
This is consistent with Observation 2 on the fill rate

because a higher base-stock level leads to a higher fill
rate.
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Table 1 (continued)

�C2
s0� C

2
s1� C

2
s2�

�R0� R1� R2� ��0� �1� �2� Method E�H0	 E�H1	 E�H2	 f2

s 12�071 2�967 15�726 0�961
(0.6,0.6,0.6) a 12�045 2�606 16�054 0�969

err% −0�211 −12�159 2�083 0�826

s 28�954 18�537 2�161 0�237
(0.9,0.9,0.9) a 28�335 20�108 2�651 0�263

err% −2�138 8�474 22�712 11�047

(1,6,0.25) s 14�951 2�840 9�786 0�720
(10,2,20) (0.9,0.8,0.6) a 14�943 2�629 9�720 0�726

err% −0�057 −7�431 −0�676 0�897

s 9�920 10�786 9�145 0�783
(0.8,0.6,0.9) a 9�966 11�001 9�533 0�772

err% 0�464 1�995 4�241 −1�316

s 32�729 8�855 5�016 0�448
(0.6,0.9,0.8) a 32�706 8�606 5�228 0�455

err% −0�069 −2�814 4�227 1�568

s 8�720 9�608 18�183 0�996
(0.6,0.6,0.6) a 8�502 9�755 18�227 0�997

err% −2�502 1�527 0�240 0�132

s 19�344 11�499 4�544 0�395
(0.9,0.9,0.9) a 17�332 13�496 4�358 0�394

err% −10�397 17�365 −4�103 −0�247
(6,0.25,1) s 10�250 4�133 10�560 0�683
(10,10,20) (0.9,0.8,0.6) a 9�046 4�804 10�480 0�700

err% −11�748 16�220 −0�763 2�460

s 6�686 17�693 9�271 0�721
(0.8,0.6,0.9) a 6�313 18�656 8�909 0�704

err% −5�575 5�439 −3�908 −2�258

s 14�749 7�770 14�333 0�943
(0.6,0.9,0.8) a 13�743 8�154 14�833 0�960

err% −6�825 4�948 3�488 1�823

Observation 4. The accuracy of performance mea-
sures at intermediate nodes seems to be much less
sensitive to their base-stock levels than the accuracy
of performance measures at the two end nodes.
This is interesting and somewhat unexpected. This

may indicate that inventory at the intermediate nodes

Table 2 The Relative Errors Over Stages

Service Time Method E�H0	 E�H1	 E�H2	 E�H3	 f3

appr. 4�56 4�29 4�18 2�69 0�51
a simu. 4�33 4�08 3�99 3�04 0�55

err% 5�37 5�19 4�70 −11�56 −6�85

appr. 6�18 6�16 6�18 1�51 0�30
b simu 5�90 5�86 5�85 1�59 0�31

err% 4�83 5�08 5�58 −4�93 −4�51

appr. 2�80 2�31 2�12 6�20 0�92
c simu. 2�62 2�40 2�30 6�25 0�90

err% 6�72 −3�48 −7�85 −0�79 1�92

Notes. a: Exponential(1.25), SCV= 1.
b: HyperExponential(0.5,3,0.789474), SCV= 1�78.
c: Erlang(4,5), SCV= 0�25.
R= (2,2,2,10), = 1.

has less impact on the fill-rate performance so that
changing base-stock levels there results in only small
fluctuations in fill rate, and hence small variations in
the accuracy of the approximation.
We note that for a two-stage system with expo-

nential service times and a Poisson demand pro-
cess, our approximation method yields essentially the
same numerical results as those in Lee and Zipkin
(1992, 1995). We noted in §4.1 the difference between
our approximation and that of Lee and Zipkin. Why
then do the two methods yield the same numeri-
cal results for this example? This has to do with the
M/M/1 inventory-queue model, which our approxi-
mation scheme treats with a Poisson departure pro-
cess; and this is equivalent to the use of an extraneous
sojourn time in Lee and Zipkin (1992).

5. Optimization
As demonstrated in the numerical results above, the
base-stock level affects end-customer service (fill rate)
directly, and its impact differs in location. This, along
with the common fact that inventory holding costs at
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different locations in a supply chain are usually dif-
ferent, calls for an optimization model so as to set
the right base-stock levels in terms of minimizing the
overall inventory cost while meeting required end-
customer service level.
The optimization problem can be formulated as

follows:

OP( min TC =
m∑
i=0
ciE�Hi�

s�t�



f �R�≥ f r�
Ri ∈Z+� i= 0�1� � � � �m�

(10)

where f r denotes the required fill rate, Z+ the set of
nonnegative integers, and f �R� the achieved fill rate
given the base-stock vector B.
OP is a multidimensional discrete nonlinear opti-

mization problem. A direct solution approach is by
enumeration, as in Duri et al. (2000), which is obvi-
ously impractical when the number of nodes is large.
Here, we propose a relaxation-recursive approach,
exploiting some special properties of the problem.
Below, we first show that the above objective func-

tion exhibits a unimodal property when we relax the
integral requirement of the base-stock level at node
m. We then construct a set of recursive objective func-
tions that can be optimized sequentially, with the last
one in the recursion being the optimization of the
relaxed problem. Finally, we explain how to recover
a feasible solution to the original problem from the
optimal solution to the relaxation problem, and pro-
vide an error bound.
For easy reference, we list here the notation to be

used in the subsections below.
1. Unit holding costs vector: c= �c0� c1� � � � � cm�.
2. Base-stock vector: R= �R0�R1� � � � �Rm�.
3. WIP vector: H= �H0�H1� � � � �Hm�.
4. Achieved fill rate: f �R�.
5. Upstream base-stock vector: +i = �R0�R1� � � � �Ri�,

0≤ i≤m.
6. Downstreambase-stock vector:,i = �Ri�Ri+1� � � � �

Rm�, 0≤ i≤m.
7. Invariant upstream base-stock vector: +0i = �R00,

R01� � � � �R
0
i ��0 ≤ i ≤ m− 1. Here the base-stock levels

are constants, not decision variables.
8. Downstream partial optimal expected total cost:

hi�+i−1� = min
,i

m∑
j=i
cjE�Hj�+i−1�,i���

i= 0�1� � � � �m� (11)

i.e., the minimum total expected holding cost asso-
ciated with the segment from node i through node
m, given the base-stock levels from node 0 through
node i− 1. (When i = 0, the argument of Hj above is

understood to be just ,0.) Because the inventory held
at stage i does not depend on ,i+1, we have

hi�+i−1� = min
Ri

(
E�Hi�+i−1�Ri��+hi+1�+i−1�Ri�

)
�

i= 0�1� � � � �m− 1� (12)

9. Backward cost functional:

gj�+j−1�Rj�= cjE�Hj�+j−1�Rj��+hj+1�+j ��
j = 1� � � � �m− 1� (13)

g0�R0�= c0E�H0�R0��+h1�+0�� (14)

hence

hi�+i−1�=min
Ri
gi�+i−1�Ri�� i= 0�1� � � � �m− 1� (15)

5.1. Relaxation
We consider two balanced systems C and D with
exponential service times and a workload of 0.8. Sys-
tem C consists of two stages with a unit cost vec-
tor c = �1�10�. System D consists of three stages with
a cost vector c = �1�2�3�. The minimum total inven-
tory holding costs of the two systems as functions of
the base-stock levels at node 0, g0�R0�, are plotted in
marked solid curves in Figures 3 and 4, respectively.
Clearly, both curves have several local minima. This
makes it difficult to design an efficient algorithm to
compute the optimal solution.
We believe that the integrality of base-stock lev-

els is the reason why multiple minima exist. Intu-
itively, because the fill rate and the total inventory
holding cost are both increasing in base-stock levels,
when the base-stock level at one stage is increased,
we should be able to reduce the base-stock level at
one of its downstream nodes while maintaining the
same fill rate. But this may not always be achieved
if the base-stock levels are restricted to integers; for
instance, if the required reduction is a fraction.
Therefore, we first relax the integral requirement

of Rm. Define the fill rate and the expected on-hand

Figure 3 Cost Function of System C, c= �1�10�
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Figure 4 Cost Function of System D, c= �1�2�3�
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inventory corresponding to the real-valued Rm as
follows:

E�H/
i �+i��=

{
E�Rm−Nm�+m��+� i=m�Rm ≥ 0�
E�Hi�+i��� i �=m� (16)

f /�R� = f �+m−1� �Rm��+ �f �+m−1� �Rm��
− f �+m−1� �Rm����Rm−�Rm��� (17)

where �x� is the largest integer no greater than x,
and �x� is the smallest integer no smaller than x; the
superscript / indicates that the notation (that carries
the superscript) corresponds to the real-valued (i.e.,
relaxed) base-stock levels. Obviously, E�H/

i �+i�� and
f /�R� preserve the monotone property of E�Hi� and f ,
respectively, and have the same value as E�Hi� and f
when Rm is an integer.
We now propose the following relaxed optimization

problem OP/ :

OP/( min TC/ =
m∑
i=0
ciE�H

/
i �+i��

s�t�



f /�R�≥ f r�
Ri ∈Z+� i �=m�
Rm ∈R+�

(18)

We have tested a large number of different exam-
ples and found that for any +j , g/j �+j−1�Rj� is always
unimodal in Rj for all j = 0�1� � � � �m− 1. Also, it can
be seen from Figures 3 and 4 that the global mini-
mum of g/0 �R0� is very close to the global minimum
of g0�R0� for both systems.
Hence, we make the following

Hypothesis. For the relaxed optimization problem
OP/ , g/j �+j−1�Rj� is unimodal in Rj for all j �=m.

With this hypothesis, we are now in a position to
propose a recursive approach to compute the optimal
solution of the relaxed problem.

5.2. A Recursive Approach
Let

rm�+m−1�=min
{
Rm ∈R+( f /�+m−1� Rm�≥ f r

}
� (19)

Because the total cost and the fill rate are both increas-
ing in Rm, for any given base-stock levels at the
upstream nodes +m−1, the optimal cost is achieved
when the fill-rate constraint is tight. Thus, we call (19)
the last-node optimization. The recursive formulation is
then given by

h/m�+m−1�= cmE�rm�+m−1�−Nm�+m−1��
+� (20)

g/k �+k−1�Rk�= ckE�Hk�+k−1�Rk��+hk+1�+k��
i= 0�1� � � � �m− 1� (21)

h/k �+k−1�=min
Rk
g/k �+k−1�Rk��

k=m− 1�m− 2� � � � �1� (22)

h/0 =min
R0
g/0 �R0�� (23)

We note that in each recursion k, with the hypothesis
made above, g/k �+k−1�Rk� is unimodal in Rj . Thus, the
last recursion will give us the optimal solution of the
relaxed problem; i.e, TC/∗ = h/0 .
An efficient algorithm can be constructed based on

the above recursive scheme. Let r be a pointer to
a list of integers that represent the base-stock lev-
els; typically, ∗�r + k� refers to the base-stock level at
node k, k= 0�1� � � � �m− 1. Let Index be the index for
a particular node. A recursive function OPdown(int
Index, int ∗ r) is the optimal expected total inventory
holding cost given that the base-stock levels at the
predecessors of node Index + 1 are fixed at �∗r� � � � �
∗�r+ Index��. The optimization problem OP/ can then
be solved by finding the value of OPdowm�−1� r�
using the following C++ program (with the base-
stock levels at all nodes initialized at 0).

The Recursive Algorithm. OPdown
double OPdown(int Index, int ∗r)
{
if (Index ==m)
return DealWithLastnode
else
return MinTotalCostGivenTau(OPdown(Index +1� r)).
}
DealWithLastnode andMinTotalCostGivenTau are two

subfunctions. MinTotalCostGiven-Tau returns the min-
imal total inventory holding cost under the condition
that the base-stock levels, at nodes 0� � � � � Index, have
been fixed at ∗r� � � � �∗�r + Index�. Because of the uni-
modal hypothesis, a golden-ratio search method can



Liu, Liu, and Yao: Analysis and Optimization of a Multistage Inventory-Queue System
Management Science 50(3), pp. 365–380, © 2004 INFORMS 375

be used in this step. Function DealWithLastnode con-
sists of the following steps:
Step 1. Calculate the density of N0� � � � �Nm, given

R= �∗r�∗�r+1�� � � � �∗�r+m−1��0�, using the method
described in §4.
Step 2. Obtain the value of r/m , such that f

/�∗r ,
∗�r + 1�� � � � �∗�r +m− 1�� r/m�= f r .
Step 3. Calculate the expected total inventory hold-

ing cost TC/ and update the best total cost TC/∗ and
the best base-stock levels R/∗ if TC/ < TC/∗.
The complexity of this algorithm depends mainly

on how many times the function OPdown is called.
With the unimodal hypothesis, the function in Min-
TotalCostGivenTau is easily evaluated by, say, applying
the standard golden-ratio search method. Given that
h�x� is unimodal in x and x is an integer, we first
identify three points x1 < x2 < x3 such that h�x2� <
min�h�x1��h�x3��. We then reduce the gap between
x1 and x3 by the golden ratio (G = 0�618034). This
is repeated until the gap is less than two. Let the
maximum base-stock level at every stage be denoted
MaxR. The maximum number of iterations needed
for each call of the function in MinTotalCostGiven-
Tau is MaxCall = 2 ∗ �ln 2 − ln�MaxR��/ ln�G�. For
example, whenMaxR= 10�50�100�500, and 1,000, we
haveMaxCall= 8�14�18�24, and 26, respectively. (Our
numerical experiments show that the actual number
of calls needed is generally much lower than Max-
Call.) For each Index < m, MinTotalCostGivenTau calls
OpDown�Index + 1� r� at most Maxcall times. Hence,
OpDown�m� r� is called at most Maxcallm times.

5.3. Recovering the Optimal Solution
We first present a bound for the difference between
the total inventory holding cost of OP and its relax-
ation OP/ , and then introduce a simple method to
derive the optimal solution to OP from the optimal
solution to OP/ . Let TC/∗ and R/∗ be the optimal
(objective) value and the optimal solution to OP/ ,
respectively.

Theorem 1. The optimal values of OP and OP/ satisfy
the following inequalities:

TC/∗ ≤ TC∗ ≤ TC/∗ + cm��R/∗i �−R/∗i �
≤ TC/∗ + cm� (24)

Proof. Because OP/ is a relaxation of OP , we have
TC/∗ ≤ TC∗. Let R′ be the vector whose components
are the ceilings of the corresponding components of
R/∗, i.e., + ′m−1 = +/∗m−1 and R

′
m = �R/∗m �. Then,

f �+ ′m−1�R
′
m�= f /�+/∗m−1�R

′
m�≥ f /�+/∗m−1�R

/∗
m �≥ f r �

Hence, R′ is a feasible solution to OP and

TC∗ ≤ TC�R′��

By definition,

TC�R′�− TC/�R/∗�

= ∑
i �=m
ciE

[
Hi�+

′
i−1�R

′
i�
]+ cmE[Hm�+

′
m−1�R

′
m�
]

− ∑
i �=m
cmE

[
Hi�+

/∗
i−1�R

∗
i �
]− cmE[H/

m�+
/∗
m−1�R

/∗
m �

]
= cmE

[
Hm�+

′
m−1�R

′
m�
]− cmE[H/

m�+
/∗
m−1�R

/∗
m �

]
= cm

(
E
[
R′
m−Nm�+ ′m−1�

]+ −E
[
R/∗m −Nm�+ ′m−1�

]+)
≤ cm�R′

m−R/∗m �
≤ cm� �

This theorem shows that we can easily obtain a fea-
sible solution R′ to OP from the optimal solution to
OP/ , and the difference between the two correspond-
ing objective values is bounded by cm. When f �R′� >
f r , this solution may be further improved by reducing
the base-stock levels at upstream nodes while satis-
fying the fill-rate requirement as follows: If R/∗m is an
integer, then R∗ = R/∗ is the optimal solution to OP ;
hence, stop. Otherwise, R′ = �R/∗� is feasible to OP ,
but the realized fill rate f �R′� > f r . The base-stock
levels at some of the upstream nodes may be further
reduced. Starting from the node with the highest unit
holding cost (node m−1 in this case), reduce its base-
stock level one unit at a time until a further reduction
will violate the fill-rate constraint. Apply the same
procedure to the node with the next-highest unit hold-
ing cost. Repeat this until reaching the node with the
lowest unit holding cost.

6. Numerical Studies
In this section, we investigate a number of design and
control issues using a three-stage tandem system as
an example. Our numerical results have confirmed
some of the classical and intuitive conclusions, for
instance, that the optimal total cost increases in the
service-level requirement and the service-time SCV,
and that the optimal base-stock level increases in the
service-time SCV. We will not discuss these results
here; instead, we focus on several new observations.
We note that while the unit holding costs (ci) here

are increasing (in i) as we move downstream, repre-
senting a value-added production process, the opti-
mization model OP can handle any inventory holding
cost structure. Refer to Liu (1999) for a discussion on
non-value-added systems.

6.1. The Value of Intermediate Inventory Control
Here, we are interested in understanding the impact
of an inventory control policy that sets different
inventory targets at different nodes (including all the
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intermediate nodes) of a supply system. We consider
different combinations of workloads and cost param-
eters. For each combination, we calculate the optimal
total inventory holding cost of the network without
intermediate inventory control (called NOP), denoted
by TC∗

wo. This is obtained by letting R0 = 0 and R1 = 0,
and finding the minimal value of R2 such that the
service-level requirement is satisfied. We then com-
pare TC∗

wo with TC
∗
w, the optimal value of OP . The

results are shown in Table 3. It is obvious that TC∗
wo ≥

TC∗
w in all cases. Furthermore, the following observa-

tions can be made.
Observation 5. The impact of intermediate inven-

tory control is more significant when the value-added
is larger.
When the value-added is high from stage to stage,

there is more room for cost savings from optimiz-
ing inventory allocation. In this case, a supply chain
should be organized such that the high value-added
processes are located as close to end customers as pos-
sible. Also in this case, we should keep much of the
total inventory at upstream nodes so as to reduce the
overall holding cost while meeting the service-level
requirement.
Observation 6. The difference between TC∗

wo and
TC∗

w is more pronounced when node 0 has the highest
workload.
This observation may be explained as follows. It

is obvious that the node with the highest workload
will be likely to have a large number of outstanding
orders. Increasing the base-stock levels at its upstream

Table 3 TC∗ With or Without Intermediate Inventory Control

Case R∗
0wo

R∗
1wo

R∗
2wo

TC∗
wo R∗

0w
R∗
1w

R∗
2w

TC∗
w Cost Diff. %

a-1 0 0 10 16�53 0 3 7 15�78 4�74
a-2 0 0 50 76�94 1 19 32 76�47 0�61
a-3 0 0 29 40�92 8 9 12 34�42 18�89
a-4 0 0 29 49�67 0 0 29 49�67 0
a-5 0 0 29 49�67 0 12 18 48�38 2�66
b-1 0 0 10 123�26 4 2 6 96�73 27�42
b-2 0 0 50 539�43 17 19 26 434�29 24�21
b-3 0 0 29 322�76 26 8 7 148�52 117�32
b-4 0 0 29 354�01 11 2 23 338�93 4�45
b-5 0 0 29 339�01 0 19 14 259�46 30�66
c-1 0 0 10 584�46 3 5 5 399�4 46�33
c-2 0 0 50 2�518�42 28 23 24 1�767�72 42�47
c-3 0 0 29 1�559�77 37 9 6 522�59 198�47
c-4 0 0 29 1�632�27 11 2 23 1�516�98 7�6
c-5 0 0 29 1�589�77 1 25 12 995�57 59�68

Notes. C2
si = 1, i = 0�1�2 and f r2 = 0�9.

a: �c0� c1� c2�= �1�0�1�5�1�52�.
b: �c0� c1� c2�= �1�0�4�5�4�52�.
c: �c0� c1� c2�= �1�0�10�102�.
1: ��0� �1� �2�= �0�6�0�6�0�6�.
2: ��0� �1� �2�= �0�9�0�9�0�9�.
3: ��0� �1� �2�= �0�9�0�8�0�6�.
4: ��0� �1� �2�= �0�8�0�6�0�9�.
5: ��0� �1� �2�= �0�6�0�9�0�8�.

nodes will not help because this will just increase the
congestion at its input buffer. On the other hand, if
node 0, which has no upstream nodes, has the highest
workload, increasing its base-stock level while reduc-
ing those of downstream nodes will result in better
inventory allocation and reduced WIP. In other words,
when node 0 is the bottleneck, the optimal inven-
tory allocation is more effective in reducing the total
cost and maintaining a better material flow through
the supply chain. This observation also highlights the
need to consider workload allocation and inventory
allocation simultaneously.

6.2. TC∗ and Workload
Here, we investigate how workloads affect the opti-
mal total cost. First, consider system A with c =
�1�1�5�2�25� and a fill-rate requirement of 0.9. The
relationship between the optimal cost and the work-
load (at every node) is plotted in Figures 5 and 6.
From these figures we can make the following
observation:
Observation 7. TC∗ is increasing and convex in

the workload and is proportional to 1/�1−��.
The phenomenon revealed in Figure 6 is quite inter-

esting, but the rationale behind it is not immediately
obvious. We may, however, use a single-stage model
to investigate this phenomenon. Consider the opti-
mal inventory holding cost of an M/M/A/1/R inven-
tory queue with workload � and fill-rate requirement
f r . Because the inventory holding cost and the fill
rate are increasing in the base-stock level R, the cost
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Figure 5 TC∗ and Workload I
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optimization leads to the minimal base-stock level
that meets the fill-rate requirement. Let R∗ be the opti-
mal base-stock level. Because f = �1 − �R�, we have
f r ≈ �1−�R∗

�. Hence, the optimal total inventory is

E�H� = E�R∗−N�+

=
R∗−1∑
i=0
�R∗−i�P�N = i�

=
R∗−1∑
i=0
�R∗−i��1−���i
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R∗∑
j=1
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�−1
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�

·
(
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))/
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Figure 6 TC∗ and Workload II
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Hence, the optimal total cost is proportional to
1/�1−�� for the M/M/A/1/R inventory queue.
Next, we consider the sequencing of workloads.

Consider a product that needs to be processed first
by station 0, which has a workload of 0.8. The prod-
uct then needs to be processed at both station 1 and
station 2, but the order is not fixed. Suppose all pro-
cessing times are exponential. Station 1 has workload
0.6 and station 2 has workload 0.9. Let station 0 be
assigned to node 0 at the upstream. How should we
then sequence station 1 and station 2?
Suppose that the cost parameters are of the form

c= �1�x�x2� with x > 1 (we consider only the value-
added case, as mentioned earlier). Numerical results
shown in Table 4 suggest that:
Observation 8. It is better to sequence the station

with a higher workload first.
At first glance, this seems counterintuitive, or is

at least inconsistent with known conclusions. For
instance, the “bowl phenomenon” is well known in
the workload-allocation literature (see, for example,
Hillier and Boling 1979), i.e., for throughput max-
imization, the machine with the smallest workload
should be assigned to the middle of the line. This
discrepancy may be explained from two angles. First,
the system considered here has an active inventory
control at every stage with an objective to minimize
the total inventory cost subject to a downstream fill-
rate requirement, whereas the “bowl phenomenon”
focuses on throughput maximization. As there is
a difference in both systems and objectives, it is
not unreasonable that the optimal workload arrange-
ments are different. Second, it is perhaps more impor-
tant to place a higher workload process first at the
upstream (which means node 1, as node 0 is taken
already) than to place the process with the least
workload in the middle. Our results show that it is
important to understand the dynamics and priorities
among workloads, throughput, inventory costs, and
customer service levels. These require further mod-
eling and analysis and more extensive numerical
studies.
When the required fill rate is high, we expect the

advantage of sequencing a bottleneck or high work-
load station first becomes more significant. This is
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Table 4 TC∗ and Workload Sequencing

�= �0�8�0�6�0�9� �= �0�8�0�9�0�6�

x f r R∗
0 R∗

1 R∗
2 TC ∗ f ∗ R∗

0 R∗
1 R∗

2 TC ∗ f ∗ Diff.%

1.1 0�6 0 0 15 16�63 0�60 0 0 15 15�88 0�60 4�72
1.1 0�9 0 0 29 30�04 0�90 0 17 13 29�67 0�91 1�27
1.5 0�6 0 0 15 24�73 0�60 0 0 15 20�98 0�60 17�88
1.5 0�9 0 0 29 49�67 0�90 0 21 9 40�68 0�90 22�08
3.0 0�6 5 0 12 66�12 0�60 0 11 5 41�72 0�60 58�48
3.0 0�9 7 0 25 163�40 0�90 2 23 7 97�23 0�90 68�06
5.0 0�6 5 0 12 146�90 0�60 0 13 4 80�86 0�60 81�66
5.0 0�9 13 0 24 410�17 0�90 4 22 7 206�80 0�90 98�34

evident in Table 4, when the fill rate increases from
0.6 to 0.9 for x = 1�5�3, and 5. However, when x= 1,
this is not the case. How do we explain this? As
noted above, workloads, fill-rate requirement, and
cost structure interact in the system. Obviously, a
higher fill-rate requirement will increase the optimal
total inventory cost. When the value-added is high, a
higher fill-rate requirement will likely cause an even
higher increase in the optimal total inventory cost.
Thus,
Observation 9. The advantage of a better work-

load sequencing is more significant when the value-
added is high.
When the value-added is small, the significance of

workload sequencing will likely diminish, to the point
when another factor becomes dominant. In the case
when x= 1, the integer requirement of the base-stock
level may play a bigger role so as to diminish the
impact of better workload sequencing when the fill-
rate requirement is high. Nonetheless, a high to low
workload sequencing is still better.

6.3. TC∗ and Service-Time Variation Sequence
Consider a four-node system. Suppose a product
needs to go through node 0 first for an exponential
service time with rate 1.25. It then needs to go through
each of the three remaining nodes exactly once in any
order. Suppose that all three nodes have the same ser-
vice rate 1.1111, and SCVs 0.25, 1, and 6, respectively.
How do we sequence the three nodes?
Suppose the required service level is 0�9 and the

cost vector is c = �1�x�x2�x3�. We consider two
sequences of the nodes in terms of their SCV’s,
a( �0�25�1�6� and b( �6�1�0�25�. The results are sum-
marized in Table 5, from which the following obser-
vations can be drawn.
Observation 10. When there is no intermediate

inventory control in the system, sequence a is better
than sequence b.
This is intuitive and consistent with existing results

(e.g., Hopp and Spearman 1996), because less vari-
ability will be propagated from upstream nodes to

downstream nodes so that both congestion and delay
will be lower.
Observation 11. When intermediate inventory

control is allowed, sequence a is better than b for
small x values. When x increases beyond a certain
point, sequence b becomes better than a.
We know that with a higher SCV there will be more

congestion in front of the corresponding process/
node. If the value-added is high enough, the cost
from the additional WIP at downstream stations may
more than offset the benefit from reduced overall sys-
tem variability when lower SCV processes are placed
upstream. This phenomenon cautions us that when
intermediate inventory control is present, some of the
well-known conclusions and rules may no longer be
valid and have to be reevaluated along with the sys-
tem configuration and the objective function.

7. Concluding Remarks
We have proposed a multistage inventory-queue
model for a class of manufacturing and supply sys-
tems. Each station in the system is modeled by a
single-server queue controlled by a base-stock policy,
namely, an inventory queue. A job-queue decomposi-
tion scheme is developed to approximate key perfor-
mance measures, at a level of complexity comparable
to that of evaluating single-server queues. Because it
is computationally efficient and reliably accurate, the
method is suitable for the analysis and optimization
of complex supply networks.
In this context, the problem of minimizing inven-

tory costs subject to a service-level constraint is a
multidimensional integer optimization problem. We
constructed a relaxation of this problem, and pro-
posed a method to obtain a feasible solution to the
original problem, which is close to the optimal solu-
tion to the relaxed problem. An error bound was also
developed. While the solution so obtained is usually
very close to the optimal solution, it sometimes results
in a service level that is slightly lower than what is
required. In this case, a simulation-based method can
be deployed to fine-tune the solution so as to enforce
the required service level; refer to Liu (1999).
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Table 5 TC∗ and SCV Sequencing

Without Planned Intermediate Inventory With Planned Intermediate Inventory

x f r3 Case R∗
0wo

R∗
1wo

R∗
2wo

R∗
3wo

TC ∗
wo R∗

0w
R∗
1w

R∗
2w

R∗
3w

TC ∗
w

1.0 0�6 a 0 0 0 41 47�225855 0 0 6 34 47�263536
1.0 0�6 b 0 0 0 64 74�744798 1 20 0 33 58�94998
1.1 0�6 a 0 0 0 41 56�493465 0 0 6 34 56�458434
1.1 0�6 b 0 0 0 64 84�681696 1 21 0 32 65�379961
1.2 0�6 a 0 0 0 41 66�958005 0 0 6 34 66�833195
1.2 0�6 b 0 0 0 64 95�910166 1 21 0 32 72�320241
1.5 0�6 a 0 0 0 41 106�188575 0 0 6 34 105�685321
1.5 0�6 b 0 0 0 64 138�356226 0 27 0 28 91�578849
2.0 0�6 a 0 0 0 41 201�628302 0 0 8 33 204�259918
2.0 0�6 b 0 0 0 64 244�369221 0 32 0 25 141�139155
3.0 0�6 a 0 0 0 41 534�707669 0 0 11 30 522�706575
3.0 0�6 b 0 0 0 64 634�161426 0 45 8 14 261�260809
5.0 0�6 a 0 0 0 41 1�999�048327 0 0 15 27 1�857�657657
5.0 0�6 b 0 0 0 64 2�478�741341 0 58 10 11 753�203238
1.0 0�9 a 0 0 0 78 76�528624 0 0 8 69 75�956613
1.0 0�9 b 0 0 0 117 116�288661 1 32 0 58 77�892905
1.1 0�9 a 0 0 0 78 95�495451 0 0 9 68 94�085652
1.1 0�9 b 0 0 0 117 139�976579 1 37 0 53 86�199384
1.2 0�9 a 0 0 0 78 117�59319 0 0 9 68 115�582786
1.2 0�9 b 0 0 0 117 167�697962 2 40 0 50 97�461063
1.5 0�9 a 0 0 0 78 205�085421 0 0 10 67 199�50667
1.5 0�9 b 0 0 0 117 278�566765 2 49 0 44 138�33024
2.0 0�9 a 0 0 0 78 436�050455 0 0 12 65 418�714272
2.0 0�9 b 0 0 0 117 576�720128 1 59 17 25 199�549452
3.0 0�9 a 0 0 0 78 1�325�882435 0 0 13 64 1�252�329449
3.0 0�9 b 0 0 0 117 1�755�845737 1 72 19 21 474�510265
5.0 0�9 a 0 0 0 78 5�661�894465 0 0 20 60 5�203�142894
5.0 0�9 b 0 0 0 117 7�671�724262 3 90 22 18 1�669�911586

Through extensive numerical studies, we have
observed anumber of interestingproperties andgained
some useful managerial insights in many aspects of
such systems. Some recent studies had to simplify their
analyses by, say, not considering queueing processes
or cost objectives, leading to findings that raised
doubts on the value of active local inventory con-
trol. By considering both queueing and inventory
aspects of the network, along with a cost objective
that emphasizes the inventory-service trade-off, our
findings have brought out the value of intermediate
inventory control and demonstrated that the specific
controls need to be responsive to the cost objective.
The inventory-queue model proposed here can be

extended to analyze more complex supply networks.
We are currently modifying the model to study dis-
tributed (disassembly) systems where one has to con-
sider additional management issues such as stock
allocation policies. Another promising direction is the
study of the flow time (cycle time) in an inventory-
queue model. This will enable us to analyze systems
operating under different modes, such as make-to-
order and assemble-to-order systems.
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