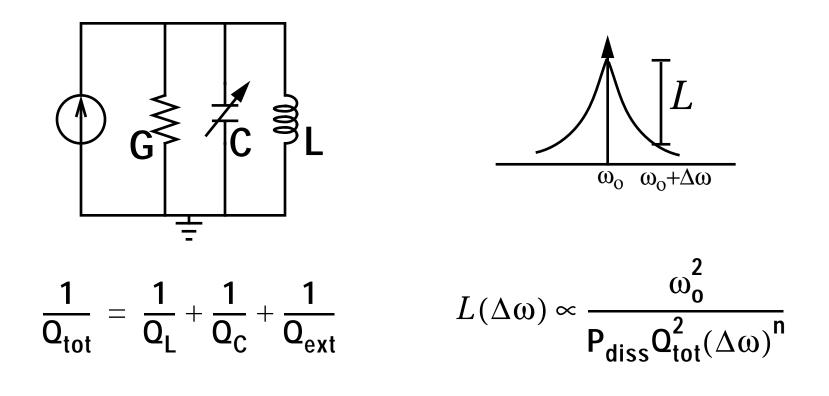
Analysis and Optimization of Accumulation-Mode Varactor for RF ICs

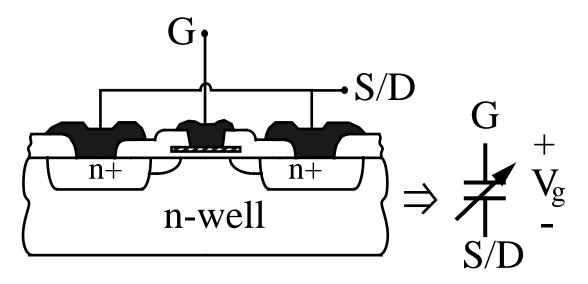

T. Soorapanth, C.P. Yue, D.K. Shaeffer, T.H. Lee, and S.S. Wong

> Center for Integrated Systems Stanford University, CA, USA

Outline

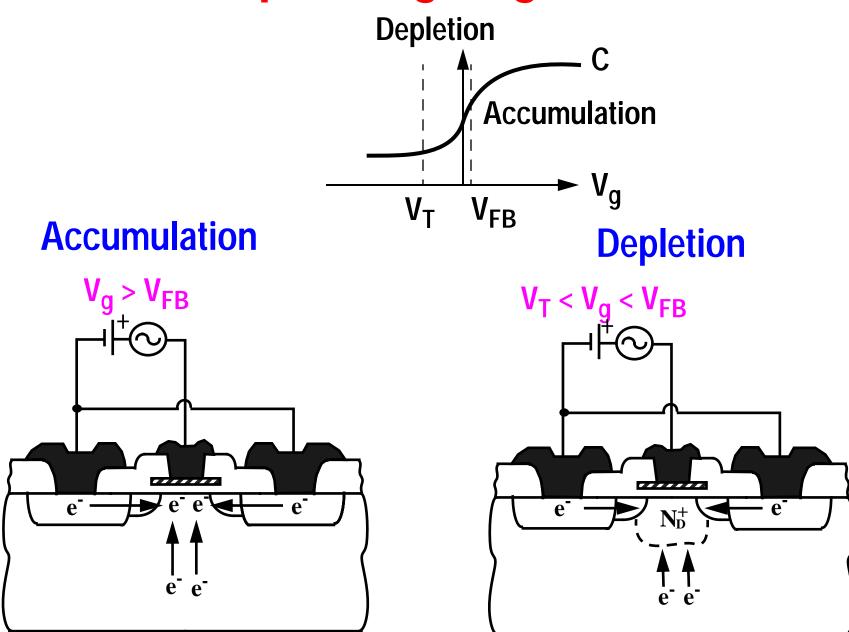
- Introduction
- Operation
- Characterization
- Optimization
- Conclusion

Phase Noise in VCOs

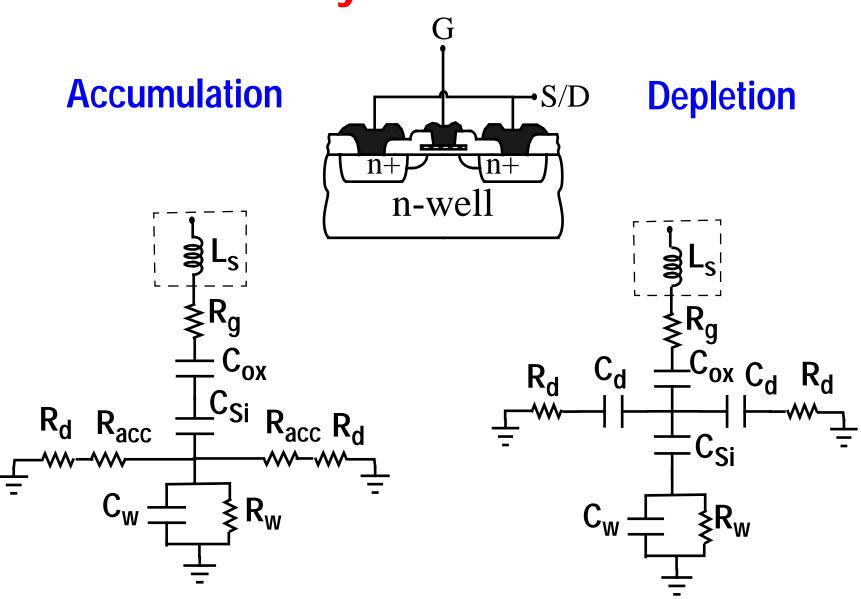

- Q_L ~ 4-8 for 1-10 nH spiral inductor.
- Need $Q_C > 40-80$ to minimize Q_{tot} degradation.

Conventional IC Varactors

	PN junction	MOS capacitor
Bias	reverse	depletion-inversion
С	moderate (0.4 fF/um ²)*	high (2-7 fF/um ²)
Q	low (5-7 for 1-10 pF) [*]	moderate (14/GHz/pF)*
Tuning range	small (33%) [*]	moderate (parasitic S/D junction cap limited)
f _{SR}	4-13 GHz [*]	8 GHz for 2 pF [*]
TC	high (200-1000 ppm/C)	moderate (30 ppm/C)


* [Burghartz, et.al., TED '96]

Accumulation-Mode Varactor



- Standard CMOS process
- Reduce parasitic S/D junction capacitance
- High C per area (increases with technology scaling)
- High Q (increases with technology scaling)
- High tuning range (improves with technology scaling, 200% maximum limit)
- Moderate TC

Operating Regimes

Physical Model

Physical Model Parameters

Parameters	Expression	Description
C _{ox}	NWL _{eox} tox	oxide capacitance
C _{Si} (u _s ,u _b)	$\frac{NWL\epsilon_{Si}}{L_{di}} \left(\frac{\sinh(u_s) - \sinh(u_b)}{F(u_s, u_b)}\right)$ $F(u_s, u_b) = \sqrt{2} \left[\sinh u_b(u_b - u_s) - \cosh u_b - \cosh u_s\right]^{1/2}$	semiconductor capacitance
C _d	NWX _{jldd} Csi ^{(u} s ^{, u} ldd ⁾	channel-to-S/D depletion cap
R _{acc}	$Q_{acc} = \varepsilon_{Si} \left(\frac{kT}{qL_{di}}\right) F(u_{s}, u_{b})$	accumulation- layer resistance
R _g , R _w	$\frac{R_{gsq}W}{3NL}, \frac{R_{wsq}L_{w}}{2NW}$	gate and well resistance
R _d	$\frac{R_{Iddsq}^{L}Idd}{NW} + R_{contact}$	LDD and contact resistance

Series Capacitance

┝━╱┉╱┥╞━●

 C_{ς}

Accumulation

$$C_s = \frac{C_{ox}C_{si}}{C_{ox} + C_{si}}$$

 C_{Si} in accumulation is associated with accumulation-layer charge (e⁻).

$$C_{s} = \frac{C_{ox}(C_{si} + 2C_{d})}{C_{ox}(C_{si} + 2C_{d})}$$

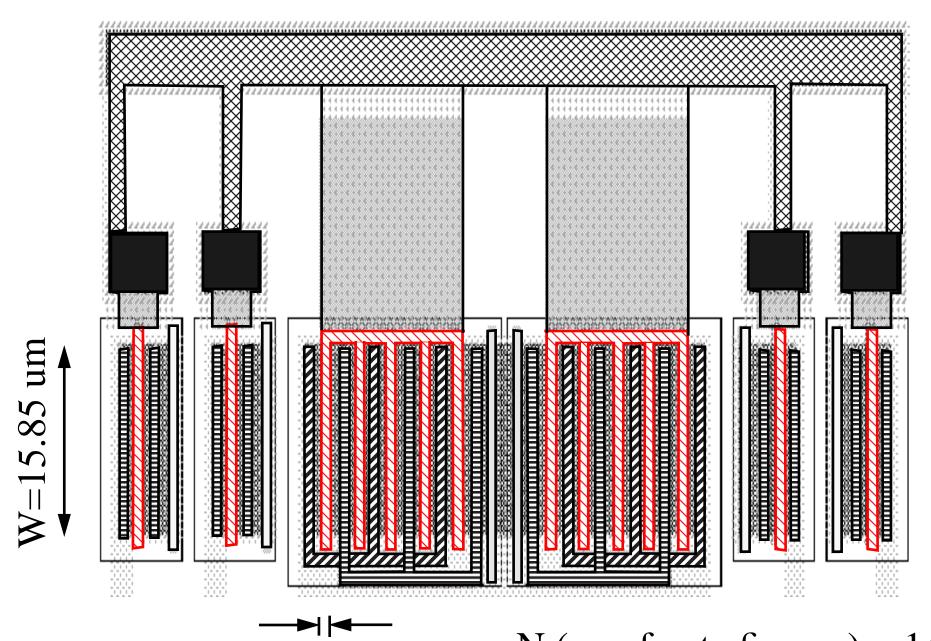
 C_{Si} in depletion is depletion capacitance associated with fixed donor charge (N_D⁺).

 C_s varies with bias voltage as C_{Si} , C_d are bias-dependent.

Series Resistance (Varactor Loss) R_s **Accumulation Depletion** $R_{s} \cong \left(R_{g} + \left[\frac{1}{2} (R_{acc} + R_{d}) || R_{w} \right] \right) \qquad R_{s} \cong R_{g} + R_{w} \left(\frac{C_{si}}{C_{si} + 2C_{d}} \right)^{2}$ $\cong \frac{R_{acc}}{2} \| R_{W}$ $\cong R_{W} \left(\frac{C_{Si}}{C_{Ci} + 2C_{i}} \right)^{2}$

• R_s can be reduced by controlling device geometry.

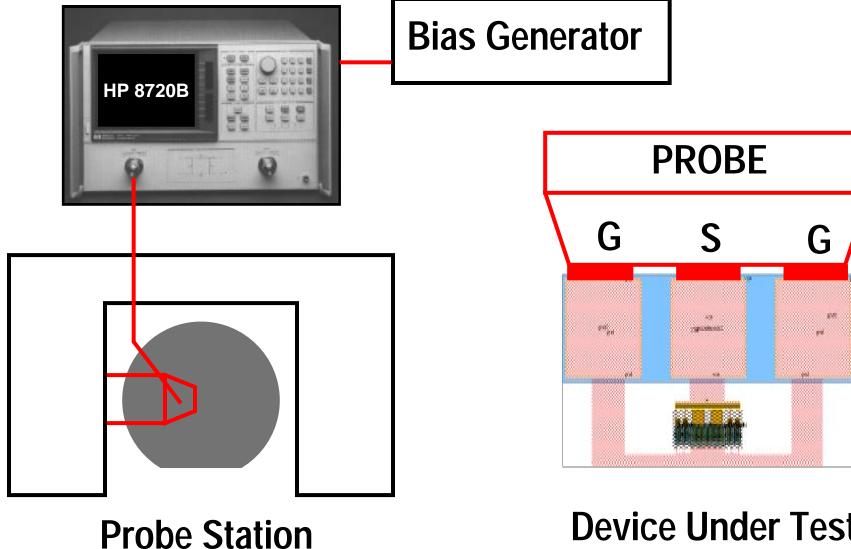
R_s varies with bias voltage as R_{acc}, C_{Si}, and C_d are bias-dependent.


Quality Factor (Q) $R_{s} C_{s}$ $M \rightarrow H$ $Q = \frac{1}{\omega R_{s} C_{s}}$

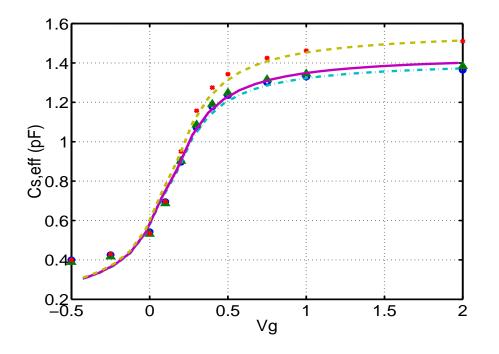
- Frequency-dependent.
- Bias-dependent as R_s, C_s varies with bias.

Tuning Range

- Tuning range = $\frac{2C_{ox}}{C_{ox} + 2C_{Si, min}} \Rightarrow 200\%$ @ maximum limit.
- As technology scales, tuning range increases towards the limit.
- When used with low-TC capacitor (eg. MIM capacitor) temperature stability can be improved by trading-off with tuning range.


Test Structure

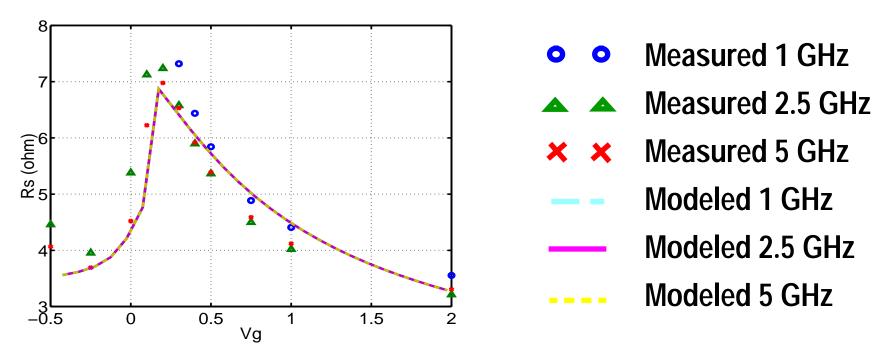
L=1.95 um


N (no of gate fingers) = 14

Measurement Setup

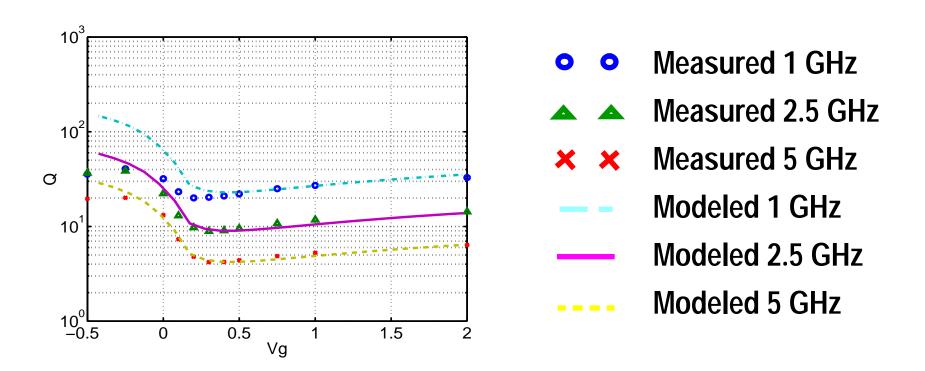
Device Under Test

Measured Series Capacitance



- Measured 1 GHz 0 0
- Measured 2.5 GHz
- Measured 5 GHz XX
 - Modeled 1 GHz
 - Modeled 2.5 GHz
 - Modeled 5 GHz

- At V_g >> V_{FB}, C \approx C_{ox} At V_g < V_{FB}, C $\approx \frac{C_{ox}C_{Si}}{C_{ox} + C_{Si}}$
- Exhibit frequency dependence associated with parasitic


inductance =>
$$C_{s, eff} = \frac{C_s}{1 - \omega^2 L_s C_s}$$
 $f_{SR} \ge 15 GHz$

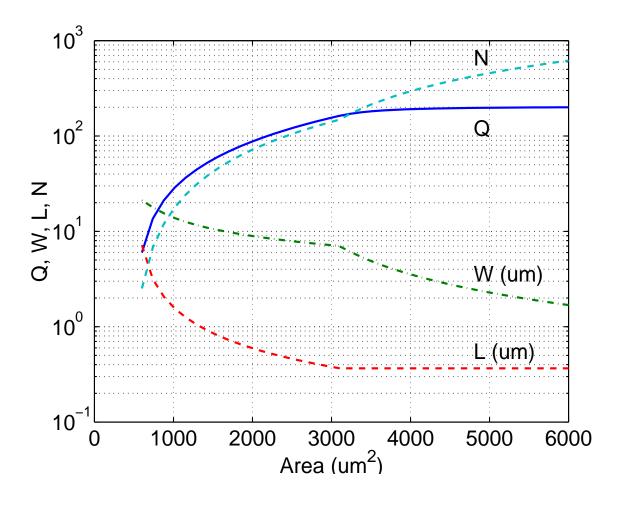
Measured Series Resistance

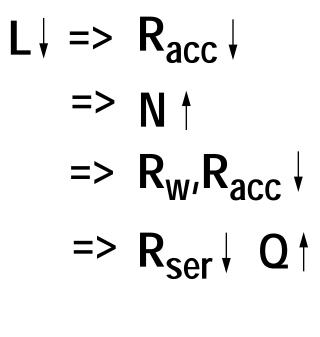
- In accumulation, R_s increases as V_g is swept from deep accumulation towards flatband due to extraction of accumulation-layer charges.
- In depletion, R_s decreases beyond flatband due to the decrease of C_{Si} which reduces the effect of R_w.

Measured Quality Factor

- Q reaches minimum at flatband voltage where changes in capacitance is large.
- ==> trade-off between Q and capacitance tuning.

Optimization Formulation


Objective : maximize Q subject to following constraints


- C = nominal desired capacitance (1 pF)
- Area < max allowed area
- Tuning range > min required tuning range (+/- 30%)
- W > min allowed channel width (0.6 um)
- L > min allowed channel length (0.4 um)
- N > min no of gate finger (1)
- Biased in accumulation mode (to minimize substrate effect) ($V_g > V_{FB}$)

Optimization variables : W, L, N, V_g

Optimization Results (0.5 µm CMOS)

Q_{max}=200!!

Conclusions

- Standard CMOS implementation.
- Varactor model has been developed and used for device optimization.
- Substrate effect can be mitigated by operating in accumulation mode.
- Wide tuning range allows trade-off with temperature stability.
- Performance improves with technology scaling.