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ANALYSIS AND OPTIMIZATION OF BLOOD TESTING

PROCEDURES

SHAUL K. BAR-LEV1, ONNO BOXMA2, DAVID PERRY3, AND LAZAROS P. VASTAZOS4

Abstract. This paper is devoted to the performance analysis and optimization of blood

testing procedures. We present a queueing model of two queues in series, representing

the two stages of a blood testing procedure. Service (testing) in stage 1 is performed in

batches, whereas it is done individually in stage 2. Since particular elements of blood

can only be stored and used within a finite time window, the sojourn time of blood

units in the system of two queues in series is an important performance measure, which

we study in detail. We also introduce a profit objective function, taking into account

blood acquisition and screening costs as well as profits for blood units which were found

uncontaminated and were tested fast enough. We optimize that profit objective function

w.r.t. the batch size and the length of the time window.

1. Introduction

This paper is devoted to the performance analysis and optimization of blood testing proce-

dures. We evaluate the performance of a few blood testing alternatives, mainly focussing

on the aspect of time. That focus is instigated by the fact that certain blood components

have a limited “shelf life”, after which they can no longer safely be used.

One of the major issues in securing blood supply to patients worldwide is to provide

blood of the best achievable quality, in the needed quantities. Blood is collected from

human donors, by Blood Services worldwide, using specially designated blood bags and

equipment, as “hole blood” units. In most developed countries these units are separated

into different components: packed red blood cells, plasma, cryoprecipitate and platelets.

The various components are subsequently stored according to the different blood types,

under the corresponding temperatures, storage conditions and expiration dates. Each

individual blood donation undergoes various tests, to define the donor’s blood type and to

detect agents that may cause transfusion-transmitted diseases.

Hospitals and other Transfusion centers order certain quantities of the different blood com-

ponents from the Central/Regional Blood Services (CBS) according to their operational

needs. The CBS each day has to decide which quantities of blood components of each

type are sent to each hospital, based on their requests and on the need to keep a sufficient

inventory.
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Blood donations are performed in fixed donor sites or using blood mobiles. The bags con-

taining the donated blood are transferred to the CBS laboratories for testing, processing,

storage and supply.

In the CBS laboratories, each blood donation goes through multiple tests for the presence

of various pathogens which are able to cause transfusion-transmitted diseases. In most

countries it is mandatory to screen all blood donations for hepatitis B (HBV), hepatitis C

(HCV), human immunodeficiency virus (HIV) and syphilis. One remarkable fact is that

about 35 years ago, before HBV and HCV testing of blood donations was mandatory,

about 20% of the hepatitis cases were caused by blood transfusions. In the US, the

FDA has progressively strengthened the overlapping safeguards that protect patients from

unsuitable blood and blood products. Blood donors are asked specific questions about

risk factors that could affect the safety of the donation and are deferred from donation

if risk factors are acknowledged. FDA also requires blood centers to maintain lists of

unsuitable donors to prevent further donations from these individuals. After donation, the

blood is tested for several infectious agents. All tests must be negative before the blood is

suitable for transfusion. In addition to these safeguards, FDA has significantly increased

its oversight of the blood industry. The agency inspects all blood facilities at least every

two years, and ‘problem’ facilities are inspected more often. Blood establishments are now

held to quality standards comparable to those expected of pharmaceutical manufacturers.

The cost of this screening is rising in developed countries and is a major economic burden

in developing countries. See Schottstedt et al. [14], Chiavetta et al. [5], Jackson et al.

[12], Stramer et al. [15], Marshall et al. [13], Hourfar et al. [11], Ghandforoush and Sen

[8] and Stramer et al. [16].

The blood laboratories have developed two different test procedures. The older one is

called ELISA (Enzyme Linked Immuno-Sorbent Assay). This procedure detects virus-

specific antibodies in the blood. The benefit of this procedure is that it has high sensitivity

and specificity, so the blood sample could be screened properly. There is one disadvantage

though. There are viruses such as HIV, for which the immune system requires a lot of

time to develop a high concentration of antibodies. As a result, the ELISA test can

not detect the virus during the first days (or weeks) after infection. Thus, the ELISA

procedure has a lower analytic detection limit. Actually the period elapsing from the time

a person is infected by some virus until antibodies can be detected, is called window period.

Examples of average window periods for some viruses are: 22 days for HIV, 60 days for

HBV and 70 days for HCV. During the window period, the ELISA method might provide

wrong information about the blood sample. This problem was the motivation for the

development of a new test procedure which is called PCR (Polymerase Chain Reaction).

This test detects viral genetic material in the blood which is a distinct advantage because

in this way the test has much higher sensitivity and specificity. The PCR method can also

be used during the window period. However, PCR is very expensive relative to ELISA.

The main policy that the blood banks use in the USA and some countries in Europe is

the following: All blood samples are tested in the ELISA station in batches (due to the

lower cost). The batches found clean from this test are re-tested individually in the PCR

station. If a blood sample is found clean from both of the stations, then it is stored and

ready to be used. Batches found contaminated at ELISA, and items found contaminated

at PCR, are discarded.
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Every clean sample is separated into three components: red blood cells, platelets and

plasma. Each of the components may be used for different purposes and has a different

shelf life. Red blood cells have 35 to 42 days shelf life. Plasma has 12 to 15 months shelf

life. Platelets only have 4-6 days shelf life, which means that they must be used within 4

to 6 days.

Obviously, the test procedures must be completed as fast as possible due to the limited life

time of the components of the blood. This gives rise to a quite complicated optimization

problem. On the one hand, high accuracy of the tests is required – hence both the ELISA

test and the PCR test are performed. On the other hand, speed is required. The PCR

test is time consuming, but one could speed up by having several PCR machines available

– which comes at a price.

We develop two blood testing models in this paper. Model I is a model of two queueing

systems in series. The first queueing system models the ELISA testing operation as a

single server queue in which customers (items) are served (tested) in batches of a fixed

size. The second one models the PCR testing operation as a multi-server queue in which

customers are served individually. When a batch service is completed in the first queueing

system, the batch leaves the whole system with some fixed probability (corresponding

to the batch being contaminated), and with the complementarity probability it enters

the second queueing system. We present a detailed performance analysis of Model I.

Furthermore, we define a profit objective function: mean profits minus mean costs. Profits

are made for each blood item that is found clean in the tests, provided the tests took less

time than a certain “window size” l. There is also a reward for each unit of time the

tests are concluded before l. The costs are screening costs and acquisition costs. The key

decision variable is the batch size m; however, in some cases we also take l as an additional

decision variable. We use the results of the performance analysis to optimize the profit

objective function, determining the optimal choices of batch size m and window size l.

Model II explores an option that is not yet common in CBS’s. It is based on the following

observation. The ELISA test is done in batches, and is not that expensive. An interesting

option is to do a first ELISA test with a large batch size m; and if the batch is not found

clean, one could divide the batch in several smaller batches and test again. Probably most

of the smaller batches are found clean, and can still be sent to the PCR. Accordingly, Model

II differs from Model I in the following respect: The first of the two queueing systems in

series is a single server queue in which batches of size m, after service, are not discarded

if they are seen to be contaminated. Instead, such a batch is split into k = m
m1

batches

of size m1 < m (k,m1,m integer), and these batches join the end of the queue to receive

another service. In principle, when such batches have been tested, they may be split once

again, now in batches of size m2; etc. Just as in Model I, batches that are found clean

enter a multi-server queue that represents the PCR testing operation.

While Model I can be and will be analyzed in much detail, Model II is much more involved.

Also in view of the fact that the feedback option of Model II is not yet implemented in

blood banks, we shall only sketch a possible approach to Model II. We shall propose an

approximation approach to Model II, which could be explored in more detail in the future,

to assess the possible benefits of the feedback option.
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The paper is organized as follows. In Section 2 we describe Model I. Section 3 presents

a queueing-theoretic analysis of the model. Section 4 contains numerical results and an

optimization study for the model. Section 5 describes Model II, and sketches a way to

analyse and optimise that model.

2. Model I: Description

Model I is a model of two queues in series: Q1 and Q2. The model is displayed in Fig-

ure 1. Q1 is a single server queue; it represents the ELISA blood testing operation. We

Figure 1. Model I

assume that customers (items) arrive in batches of fixed size m. The arrival process of

batches is a Poisson process of rate λ
m . These batches are served as a whole, one batch

after another, in order of arrival. The service time of the ith batch is denoted by B1i,

i = 1, 2, . . . . Successive service times are independent, and are exponentially distributed

with rate µm = 1
a0+a1m

, with a0, a1 positive parameters. Hence the mean service time

equals a0 + a1m, and therefore is linear in the batch size m. It should be noticed that

m is going to be a decision variable in our model. The above implies that Q1 is a simple

M/M/1 queue.

Assume that an arbitrary item is contaminated with probability ε (this is a value that

is well known by biostatisticians. In the sequel, we shall typically take ε = 0.001; data

recently provided by the Israeli Blood Bank for 2011 and 2012 suggest that ε = 7× 10−4).

The probability that a batch of size m is clean hence equals p(m) := (1−ε)m. So a batch of

size m is discarded with probability 1− p(m), i.e., leaves the system; and with probability

p(m) it enters Q2 upon departure from Q1.
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It is well known that the departure process of an M/M/1 queue is a Poisson process

(Burke’s output theorem; see, e.g., p. 288-289 of [9]). Furthermore, the splitting of a

Poisson process with fixed probabilities also results in (independent) Poisson processes; so,

in particular, the arrival process of successive batches at Q2 is Poisson, with rate λp(m)/m.

Q2 represents the PCR blood testing operation. We assume there are c test machines

available, and customers are served individually, in order of batch arrival; within a batch,

the order of service is completely random. The service time of the ith served customer

in Q2 is denoted by B2i, i = 1, 2, . . . . Successive service times are independent, and are

exponentially distributed with rate µ. All service times at Q1 and Q2 are assumed to

be independent, and also independent of the external arrival process. The above implies

that Q2 is an M [m]/M/c queue. Furthermore, Burke [4] has proven that the sojourn times

which a customer experiences in an M/M/1 queue in series with an M/M/c queue are

independent. One of his two proofs uses reversibility of the queue length process at Q1,

and that reversibility argument still holds in our case. This will allow us to handle the

total sojourn time of a customer in the model of Q1 and Q2 in series, as a sum of two

independent sojourn times. In the next section we turn to this analysis.

Remark. Blood units indeed often arrive in batches, but in reality the batch size will be

random. This would give rise to a single server queue with batch arrivals of random size

and batch services of fixed size. Such a model is tractable (cf. [1]), but (i) the resulting

formulas are very complicated, and (ii) one loses the properties that the departure process

is Poisson and that sojourn times of a customer in both queues are independent. In

this study, we aim to develop an approach which allows one to get useful qualitative and

quantitative insight into the effect of particular blood testing procedures, and into the

effect of choosing particular batch sizes; for those purposes, it is preferable to start with

a relatively simple model. In a future study, we might relax both the assumption of fixed

sizes of arriving batches, as well as the assumption of exponentially distributed service

times.

3. Model I: Analysis

In this section we mainly focus on the steady-state sojourn time S1 which an arbitrary

batch – or, equivalently, an arbitrary individual customer – experiences in Q1, and the

steady-state sojourn time S2 which an arbitrary individual customer experiences in Q2.

The distribution of the steady-state sojourn time of a customer, S1, in the M/M/1 queue

Q1 is known to be exponential [10]:

(1) P (S1 > x) = e−(µm−
λ
m
)x, x ≥ 0.

Now let us turn to S2. Q2 is an M [m]/M/c queue. Batches of size m arrive at the c-server

queue Q2 according to a Poisson process with rate λ̂ = λ
mp(m). Customers are served one

by one, in order of arrival; customers from the same batch are served in random order.

The service times at Q2 are exponentially distributed, with rate µ. An exact analysis of

the queue length distribution and delay distribution in the M [X]/M/c queue with batch

arrivals of random size X has been provided by Cromie et al. [6]. For our purposes, the

approximations that they also provide for these performance measures are more suitable.

We follow the discussion of Tijms [17], pp. 304-305; see also Eikeboom and Tijms [7],
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who approximate the queue length and sojourn time distributions in the more general

M [X]/G/c queue.

Denote by pj , j = 0, 1, . . . , the steady-state probability of j customers being present in

the M [m]/M/c queue Q2. They satisfy the following balance equations:

min(j, c)µpj = λ̂

j−1∑
i=0

pi, j ≤ m,

min(j, c)µpj = λ̂

j−1∑
i=j−m

pi, j > m.(2)

In addition, the pj satisfy the normalizing condition
∑∞

j=0 pj = 1.

Let W denote the steady-state waiting time of an arbitrary customer, and let W (1) denote

the steady-state waiting time of the first customer of a batch. Then, cf. [6, 7],

(3) P (W > x) =
1

ρ

∞∑
i=0

e−cµx
(cµx)i

i!

∞∑
j=1

pc+i+j , x ≥ 0,

(4) P (W (1) > x) =

∞∑
i=0

e−cµx
(cµx)i

i!

∞∑
j=0

pc+i+j , x ≥ 0.

Tijms [17], pp. 304-305, see also Cromie et al. [6], suggests an accurate method of approxi-

mating pj and P (W > x) for x large enough. To reduce the computational effort of solving

the set of equations (2), he suggests to use the asymptotic expansion

(5) pj ≈ στ−j for j large enough,

with τ the unique solution of the equation

(6) λ̂τ(1− τm) = cµ(1− τ),

on the interval (1,∞) and σ being given by

(7) σ =
(τ − 1)

∑c−1
i=0 (c− i)piτ i/c

1− λ̂(m− 1)τm+1/(cµ)
.

Tijms suggests to use (2) for j smaller than some number K, starting with p0 := 1 and

successively computing p1, p2, . . . , pK−1, and then using (5) for j ≥ K. Finally, all pj are

obtained by normalization.

For P (W > x), Tijms [17] suggests the following approximation:

(8) P (W > x) ≈ στ−c

τ − 1
e−cµ(1−1/τ)x, for x large enough.

Optimization problem

We now turn to our optimization problem. We aim to maximize a particular profit objec-

tive function, under certain assumptions on the batch size m and the window size l, i.e.,

the maximum time we allow a blood item to spend in the system so that it can still be

used effectively.

In order to define the objective function, we introduce various cost and profit parameters:
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(1) ke(m) > 0 represents the cost for screening a group of size m at the ELISA station.

This cost is an increasing function of m. We assume that ke(m) = 1 + m−1
16 .

Measurements at the Israeli CBB tend to give this relation between the cost in the

ELISA station and the size of the group. The size of the batch has an upper bound

m0 due to the limited equipment of the station. A realistic value of m0 is 48.

(2) kpcr > 0 is the cost for screening a single item at the PCR station. The screen-

ing cost at the PCR station is much higher than the one at the ELISA station.

Therefore, kpcr satisfies the relation kpcr > ke(m0).

(3) l > 0 represents an upper bound of the residual shelf life. The shelf life of the

blood units is quite limited (the components of the blood, such as platelets, can

not endure for a long time). l can also be considered a decision parameter provided

with an upper bound, say l0 = 96 hours.

(4) r > 0 is a reward for each time unit of residual shelf life of a single item.

(5) r1 > 0 is a reward for each item found clean in both of the stations, provided the

total time it has spent in the system is smaller than l.

(6) d > 0 represents the acquisition cost per item.

Finally we remind the reader that it is possible that a unit is found contaminated in the

PCR station, although it has been declared clean in the ELISA station. The corresponding

conditional probability is denoted by γ ∈ (0, 1). A typical value is γ = 5× 10−5 (based on

data provided by the Israeli CBS). We shall consider the following profit objective function:

R(m) = rλp(m)(1− γ)E[[l − S1 − S2]+](9)

+ r1λp(m)(1− γ)P (l − S1 − S2 > 0)− kpcrλp(m)− ke(m)λ/m− dλ,

under the assumptions: m ≤ m0, l ≤ l0. Here x+ = max(0, x). In some cases we shall

also explicitly take the dependence of R on l into account, and write R(m, l).

We briefly explain the rationale behind this formula. The first term represents the expected

reward for each time unit of residual shelf life of an item provided the unit is found clean

in both stations. The second term represents the expected reward for each clean item

provided its residual shelf life is less than l. The third term represents the cost for the

PCR test. The fourth term represents the cost for the ELISA test and finally the fifth

term is the acquisition cost of an item.

It should be noticed that the costs of having c servers in Q2 is not taken into consideration.

Determining that number of servers (machines) is a long-term decision, whereas we are

mainly concerned with a medium-term planning process.

As we can see, the profit objective function contains the probability P (l− S1 − S2 > 0) =

P (S1 + S2 < l) and the expectation E[[l − S1 − S2]
+]. We will try to find analytical

expressions for these two terms, which both involve the total sojourn time S1 + S2. We

can write S2 = W2 +B2, where W2 denotes an arbitrary waiting time and B2 an arbitrary

service time in Q2 (which is exponentially distributed with rate µ); W2 and B2 are inde-

pendent. Observing that S1 ∼ exp(a) with a = µm− λ
m , cf. (1), and that B2 ∼ exp(µ), and

assuming for the moment that P (W2 > x) = ζe−δx, with ζ = στ−c

τ−1 and δ = cµ(1 − 1/τ),
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i.e., assuming that (8) holds for all x ≥ 0, one would obtain the following result (where,

for expository reasons, we have taken λ1 = µm − λ
m , λ2 = µ and λ3 = δ):

(10)

P (S1+S2 > l) = (1−ζ)

(
λ1

λ1 − λ2
e−λ2l +

λ2
λ2 − λ1

e−λ1l
)

+ζ
3∑
i=1

∏
j 6=i

λj
λj − λi

e−λil, l ≥ 0.

For large values of l, (10) is a good approximation, because the distributions of S1 and

B2 are exact while the approximation in (8) is good for large x. For small values of l,

(10) is not a good approximation, because the approximation in (8) is in general not good

for small values of l. However, we are mainly interested in quite large values of l, and

then P (S1 + S2 > l) typically is very close to 0; and even a 50% error in that probability

translates into a very small error in P (l − S1 − S2 > 0).

We now proceed to the calculation of the expectation E[l − S1 − S2]+ = E[l − S1 −B2 −
W2]

+. Let us define g(S1, B2,W2) = [l − S1 − B2 − W2]
+. So, we are looking for the

E[g(S1, B2,W2)]. Distinguishing between W2 = 0 and W2 > 0, we have

(11) E[g(S1, B2,W2)] = (1− ζ)E[g(S1, B2, 0)] + ζE[g(S1, B2,W2)|W2 > 0].

We now calculate these two summands.

• First summand: The variables S1 and B2 are exponential with parameters λ1 and λ2
respectively. Therefore,

E[g(S1, B2, 0)] =

∫ ∞
0

∫ ∞
0

[l − x− y]+λ1e
−λ1xλ2e

−λ2ydxdy

=

∫ l

0
λ2e
−λ2y

[∫ l−y

0
(l − x− y)λ1e

−λ1xdx

]
dy

=

(
1

λ1
− 1

λ1 − λ2

)
e−λ1l +

(
1

λ2
− 1

λ2 − λ1

)
e−λ2l +

(
l − 1

λ1
− 1

λ2

)
.(12)

• Second summand: W2|W2 > 0 is exponential with parameter λ3. Using this fact, we can

write the expectation as

E[g(S1, B2,W2)|W2 > 0]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

[l − x− y − z]+λ1e−λ1xλ2e−λ2yλ3e−λ3zdxdydz

=

∫ l

0
λ3e
−λ3z

∫ l−z

0
λ2e
−λ2y

∫ l−y−z

0
λ1e
−λ1x(l − x− y − z)dxdydz

=
λ2λ3

λ1(λ1 − λ2)(λ1 − λ3)
e−λ1l +

λ1λ3
λ2(λ2 − λ1)(λ2 − λ3)

e−λ2l

+
λ1λ2

λ3(λ3 − λ1)(λ3 − λ2)
e−λ3l + l − 1

λ1
− 1

λ2
− 1

λ3
.(13)

Substitution of (12) and (13) in (11) yields E[g(S1, B2,W2)] = E[[l − S1 − S2]+].
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4. Model I: numerical results

In this section we consider the profit objective function R(m) given in (9) for a particular

choice of the model parameters, and for various values of our decision variables: the batch

size m and the window size for the shelf life, l. For the other parameters we have taken

values which are based on data which were kindly supplied to us by Professor Shinar,

director of the Israeli bloodbank. In each of the first five tables and the plots, these values

are the same (unless indicated otherwise). These values are: λ = 2, µm = 1
0.079m+1.921

hours−1, µ = 1
6 hours−1, ε = 10−3, γ = 5 × 10−5, c = 20, ke(m) = 1 + m−1

16 , kpcr = 5,

d = 1, r = 0.1, r1 = 3.

In Figure 2 we display the graph of the profit objective function R(m) for m = 5, . . . , 48,

keeping l fixed at 72 hours. The optimal choice for m appears to be m = 12 and the

corresponding mean profit value is R(12) = 5.5073. We refer to Section 2.5 of [18] for a

discussion of the accuracy of the approximations we use for P (S1 + S2 > l) and E[[l −
S1 − S2]+], which are both based on approximation (8). The conclusion in [18] was that

the error in the former term is almost negligible, and that the error in the latter term is

in most tested cases below 1%. Precise values of R(m) are presented in Table 1 of [2], the

report version of the present paper.

Figure 2. Profit objective function R(m) for the case l = 72

In Table 1 we let λ and c vary, again taking l = 72. We indicate which value of m ≤ 48

yields the largest profit, and we give that profit.

In Table 2 we print R for a wide range of (m, l) combinations; − denotes that the stability

condition (ρ1 < 1 and ρ2 < 1) is violated. See also Figure 3 of [2] for the plot corresponding

to this table. In Table 3, λ and c are being varied. For each of 27 (λ, c) combinations, we

display the R value that is largest among all (m, l) combinations with m = 4, 6, 8, 10, . . . , 48
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Table 1. Optimal choices for m.

λ c optimal m R(m)

1 10 7 2.8379

1.5 10 5 2.0635

1 15 10 3.0000

2 15 9 4.5273

1 20 11 3.0253

2 20 12 5.5073

3 20 13 3.6650

1 25 11 3.0304

2 25 14 5.6874

3 25 16 7.0838

3.5 25 17 5.9829

1 30 11 3.0314

2 30 15 5.7405

3 30 19 7.6863

4 30 22 7.1480

4.5 30 24 3.4600

and l = 12, 18, 24, 30, . . . , 96. It turns out to be optimal to take l equal to the maximal

value of 96 hours.

In Table 4 we consider exactly the same cases as in Table 3, except that we restrict l to

values 12, 18, 24, . . . , 48.

From all these instances, we see that this monotonicity of the function R is repeated in

different cases and for different values of the parameters. The conclusion of all these trials

is that the function R is generally increasing for smaller values of m ≤ 48 until it reaches

a local maximum and then it decreases as m becomes larger. That is why we can actually

find a maximal value of R in a particular point m provided l is fixed. Generally speaking,

increasing the value of m provides a benefit for the ELISA station and a disadvantage

for the PCR station. If the size of the group increases, then the testing process in the

ELISA stations is executed faster for more donors. But once this group arrives at the

PCR station, then there are more donors arriving simultaneously and that fact increases

the waiting time in the PCR station.

Remark. If the service times at the PCR queue are not exponentially distributed, then

one may proceed as follows. First consider the case that service times are deterministic

(denoted by D). For that case, Eikeboom and Tijms [7] (see also Tijms [17], pp. 305-

308), present an approximation for P (W > x) that is similar in nature to (8). That

approximation has been implemented in [18], leading to the numerical results contained

in Table 5 (see Tables 53 and 55 of [18] for further numerical experiments). This time we

take the following parameter values: λ = 0.5, µm = 1
0.079m+1.921 hours−1, D = 6 hours,

ε = 10−3, γ = 5 × 10−5, c = 30, l = 72 hours, ke(m) = 1 + m−1
16 , kpcr = 5, kser = 0.5,

d = 1, r = 0.3, r1 = 5.
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Table 2. Results for the profit objective function.

m l R m l R m l R

4 24 - 20 48 0.5936 36 72 4.5047

8 24 -4.6406 24 48 0.4384 40 72 4.2937

12 24 -4.1920 28 48 0.2686 44 72 4.0841

16 24 -4.1618 32 48 0.0932 48 72 3.8779

20 24 -4.2280 36 48 -0.0827 4 84 -

24 24 -4.3317 40 48 -0.2566 8 84 7.6335

28 24 -4.4538 44 48 -0.4267 12 84 7.8786

32 24 -4.5856 48 48 -0.5917 16 84 7.8047

36 24 -4.7224 4 60 - 20 84 7.6501

40 24 -4.8615 8 60 2.8687 24 84 7.4608

44 24 -5.0006 12 60 3.1353 28 84 7.2534

48 24 -5.1380 16 60 3.0808 32 84 7.0366

4 36 - 20 60 2.9458 36 84 6.8151

8 36 -1.9721 24 60 2.7769 40 84 6.5917

12 36 -1.6423 28 60 2.5912 44 84 6.3688

16 36 -1.6642 32 60 2.3979 48 84 6.1484

20 36 -1.7672 36 60 2.2022 4 96 -

24 36 -1.9006 40 60 2.0070 8 96 10.0144

28 36 -2.6466 44 60 1.8145 12 96 10.2499

32 36 -2.1969 48 60 1.6266 16 96 10.1665

36 36 -2.3474 4 72 - 20 96 10.0024

40 36 -2.4965 8 72 5.2522 24 96 9.8036

44 36 -2.6428 12 72 5.3073 28 96 9.5867

48 36 -2.7855 16 72 5.4429 32 96 9.3600

4 48 - 20 72 5.2979 36 96 9.1284

8 48 0.4741 24 72 5.1183 40 96 8.8944

12 48 0.7592 28 72 4.9210 44 96 8.6604

16 48 0.7165 32 72 4.7148 48 96 8.4281

We denote by E the expectation E[[l−S1−S2]+] and by P the probability P (l−S1−S2 > 0).

In addition the terms of cost are denoted by cost1 = −kpcrλp(m)−ke(m)λ/m−dλ. Among

the values of m that we have chosen above, it seems that the optimal one is m = 8. Let us

examine the results. The occupation rates are getting smaller while m increases because

a larger m implies a smaller arrival rate at ELISA and therefore at PCR too. The sojourn

time E(S1) increases as it was expected while E(S2) follows a different behavior. There is

a similarity between the results we get here and the ones that we have obtained above for

the case in which the service times in the PCR station are exponential.

Finally, if the service times are generally distributed, one may resort to the approximation

for the waiting time distribution which is proposed in [7], see also [17], p. 309. That

approximation is based on the approximations for M/M/c and M/D/c, interpolating the

corresponding waiting time percentiles for those two models.
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Table 3. Optimal choices for m and l.

c λ optimal m optimal l R

10 1 6 96 5.2191

10 1.5 6 96 5.5576

15 1 10 96 5.3760

15 1.5 10 96 7.7839

15 2 10 96 9.2516

15 2.5 48 96 -5.9564

20 1 10 96 5.4003

20 1.5 12 48 7.9490

20 2 12 96 10.2499

20 2.5 12 96 11.8769

20 3 12 96 10.6075

25 1 10 96 5.4044

25 1.5 12 96 7.9874

25 2 14 96 10.4205

25 2.5 14 96 12.5760

25 3 16 96 14.1689

25 3.5 18 96 14.1787

25 4 18 96 6.3998

30 1 10 96 5.4051

30 1.5 12 96 7.9963

30 2 14 96 10.4706

30 2.5 16 96 12.7635

30 3 18 96 14.7564

30 3.5 20 96 16.2067

30 4 22 96 16.5122

30 4.5 24 96 13.5700

30 5 48 96 -4.7617

5. Model II: Model description, and a sketch of its analysis

Just like Model I, Model II is a model of two queues in series: Q1 and Q2. We first

describe Q1 in detail. Q1 is a single server queue; it represents the ELISA blood testing

operation. We assume that customers (items) arrive in batches of fixed size m = m0. The

arrival process of batches is a Poisson process of rate λ0 = λ̂
m0

, where λ̂ is the arrival

rate of blood items at the ELISA station. A batch of size m0 is clean with probability

(1−ε)m0 ≈ 1−m0ε, which for realistic values likem0 = 48 and ε = 7×10−4 is approximately

0.97. Such a clean batch enters Q2 (the PCR station). However, if a batch of size m0 is

found contaminated then, unlike in Model I, it is not scrapped but split in k1 batches of

size m1 = m0/k1. These batches are instantaneously resent to the queue of Q1. When all

these k1 batches of size m1 have been tested (served), at least one of them will definitely

not be clean. When a batch of size m1 is found clean, it will enter Q2. When a batch of
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Table 4. Optimal choices for m and l.

c λ optimal m optimal l R

10 1 6 48 0.4469

10 1.5 6 48 -1.2987

15 1 10 48 -0.6223

15 1.5 10 48 0.6538

15 2 10 48 -0.2080

15 2.5 48 48 -16.9131

20 1 12 48 0.6501

20 1.5 12 48 0.8316

20 2 12 48 0.7592

20 2.5 14 48 0.0358

20 3 14 48 -2.9662

25 1 12 48 0.6564

25 1.5 14 48 0.8742

25 2 14 48 0.9469

25 2.5 16 48 0.7544

25 3 18 48 -0.0004

25 3.5 18 48 -2.0438

25 4 18 48 -9.0935

30 1 12 48 0.6577

30 1.5 14 48 0.8870

30 2 16 48 1.0062

30 2.5 18 48 0.9496

30 3 20 48 0.5993

30 3.5 22 48 -0.2648

30 4 24 48 -2.0898

30 4.5 24 48 -6.0973

30 5 48 48 -18.4884

Table 5. Results for the profit function when PCR service times are constant.

m E P rλp(m)(1− γ)E r1λp(m)(1− γ)P cost1 R

4 61.7806 1 9.2296 2.4900 -2.1425 9.5772

8 62.1032 1 9.2408 2.4801 -2.0779 9.6429

16 61.9409 1 9.1431 2.4603 -2.0367 9.5667

24 61.4125 1 8.9929 2.4407 -2.0152 9.4184

48 57.2840 0.9999 8.1893 3.3824 -1.9707 8.6664

size m1 is found contaminated, then it may also not be scrapped but split in k2 batches

of size m2 = m1/k2. These batches are instantaneously resent to the queue of Q1. This

recycling process may go on for several cycles, the ith recycle having batches of size mi,
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i = 1, 2, . . . . In principle, one will most likely not do more than two recycles; but let us

assume, generally, that there are at most r recycles.

Before discussing the distribution of an arbitrary batch, let us first specify the service

time distribution of a batch. We assume that all service times are independent (and also

independent of interarrival times), and exponentially distributed with mean µm = a0+a1m

when the batch size is m, with a0, a1 positive parameters. The order of service is FCFS:

service in order of arrival, and when a batch is split into ki batches, these ki batches join

the end of the queue in an arbitrary order. So, just like in Model I, the mean service time

in Q1 is linear in the batch size m: the mean service time of a batch of items which have

already been resent j times equals a0 + a1mj . m0 is again going to be a decision variable

in our model, but now m1,m2, . . . are also decision variables.

One can easily determine the probability, si := P (X = mi), that an arbitrary batch is of

size X = mi; i.e., the fraction of batches that is in (re-)cycle i. Let Yi denote the number

of contaminated items in an arbitrary batch of size mi, i = 0, 1, . . . . Then it is readily

seen that, for i = 0, 1, . . . , r,

(14) P (X = mi) =

∏i
j=1 kjP (Yi = 0, Yi−1 > 0, . . . , Y0 > 0)

P (Y0 = 0) +
∑r

h=1

∏h
j=1 kjP (Yh = 0, Yh−1 > 0, . . . , Y0 > 0)

.

Sketch of the performance analysis of Model II

Contrary to Model I, which is a simple M/M/1 queue, we are now faced with a quite

complicated feedback queue. In [3] the authors study an M/M/1 queue with feedback

probability p(i) of customers who have already received i services. For that model the

steady-state joint distribution is obtained of the numbers of customers in their first, sec-

ond, ... visit. However, that model does not allow batches and, more importantly, the

exponential service rate of every customer class (i.e., in its first, second, ... visit) is the

same. The latter property gives rise to a product form for the joint queue length distribu-

tion of all classes. For the present model, with batch services and unequal service rates,

it will be very challenging to obtain the steady-state joint queue length distribution, and

subsequently the sojourn time distribution of customers (batches), and one seems forced

to take recourse to approximations.

We suggest to handle Model II by treating Q1 as an M/G/1 queue with r + 1 customer

classes. Class 0 consists of the newly arriving customers (batches) which are clean and

do not require any recycle. Their service times are exponentially distributed, with mean

a0+a1m. Class 1 consists of the batches of size m1 which have first received an exponential

service of mean a0 +a1m, and subsequently an exponentially distributed service time with

mean a0 + a1m1, and who thereafter leave Q1. Classes 2, . . . , r are similarly defined, class

i having service times which are the sum of i + 1 independent, exponentially distributed

times. Assuming (our first approximation assumption) that all customer classes arrive

according to independent Poisson processes with appropriate rates (λ× the probability

that an arbitrary customer is of type i), and that all customers are served FCFS, all

customer types have the same waiting time distribution, which is given by the familiar

Pollaczek-Khintchine distribution. The sojourn time distribution immediately follows via

a convolution of the waiting time distribution with the service time distribution.

In reality the feedback flows are not Poisson. However, the feedback probability of a type-0

batch, 1− p(m) = 1− (1− ε)m, is very small. Typical parameter values are ε = 7× 10−4
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and m = 48, yielding 1−p(m) ≈ mε = 3, 36×10−2. Hence class-0 customers are dominant

in Q1, and feedback is quite rare: approximately 1 out of 30 in the above case m = 48,

and approximately 1 out of 60 if m were 24. It should be noted that type-1 customers

have a relatively high feedback probability, since at least one of the m customers in the

batch is contaminated, implying that at least one of the k1 = m/m1 batches, in which the

original batch is split, will be contaminated. Still, type-2 customers are even more rare

than type-1 customers, and so on.

A second complication, w.r.t. the analysis of Model I, is that the output process of Q1 no

longer is a Poisson process – and hence neither is the input process of Q2. Again, the low

feedback probability of newly arriving batches implies that Q1 behaves quite similarly to

an M/M/1 queue, and hence the output process of Q1 is quite accurately approximated

by a Poisson process (our second approximation assumption).

Let us now describe Q2 in detail. Q2 represents the PCR blood testing operation. We as-

sume there are c test machines available, and customers are served individually, in order of

batch arrival; within a batch, the order of service is completely random. Successive service

times are independent, and are exponentially distributed with rate µ. All service times at

Q1 and Q2 are assumed to be independent, and also independent of the external arrival

process. The above implies that Q2 is a G[X]/M/c queue; and the second approximation

assumption above says that we can view it as an M [X]/M/c queue.

Using the same profit objective function as for Model I, cf. (9), we need to determine the

distribution of the sum of the sojourn times S1 and S2 of a customer (blood unit) in Q1 and

Q2. In Model I, those two sojourn times are independent, because Q1 is an M/M/1 queue.

Once more, the fact that Q1 in Model II behaves very much like an M/M/1 queue allows

us to assume that S2 is (almost) independent of S1 (our third approximation assumption).

Finally, we need to determine the distribution of sojourn time S2 in Q2. For this we can

use the results of Eikeboom and Tijms [7]; in particular, we can again use the sojourn

time expressions for S2 which we used for Model I in Section 3 (our fourth approximation

assumption). If the service times in Q2 are generally distributed, we could use the sojourn

time approximation which was presented in [7]. Some preliminary results, which suggest

that this approximation method has good potential, are contained in [18].
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