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ABSTRACT 

Healthcare Associated Infections (HAIs) are infections acquired by patients admitted in 

healthcare facilities. These infections can be contagious or even worse, fatal, which has 

prompted the medical community to put guidelines in place to isolate patients who may pose a 

risk of spreading or be susceptible to an infection(s). These isolation practices also have the 

unwanted consequence of constraining the options for inpatient bed assignments since infected 

patients cannot be assigned to a room where uninfected patients reside.  

Historically, hospitals in the United States have been built with single and double 

bedrooms to provide inpatient care. As long as demand for a bedroom is less than the number of 

bedrooms in the hospital, bed assignment is a trivial process. Difficulties for determining bed 

assignments occur when hospital units operate at full or nearly full bed utilization and must 

continue to admit new patients. When this occurs, the units’ administrators must determine when 

to admit new patients, whether current patients need to be discharged to make room for new 

more critical patients, or if there is a need to exchange the rooms of already admitted patients 

(i.e., internal movement). These decisions are complicated by the limited bedroom capacity 

(number of rooms and occupancy threshold in rooms) and by the need to implement isolation 

guidelines necessary to prevent and contain the occurrence of HAIs.  

This study presents two optimization models to suggest how to accommodate admitted 

and incoming patients in a hospital unit to satisfy all isolation requirements, while 

simultaneously maximizing the total criticality of patients admitted into the unit and minimizing 

the number of internal movements. These models provide bed assignment recommendations 

based on available bed demand and patient characteristic information for a current planning 

period first for current (known) demand, and then considering uncertain future demand. 
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Additionally, we explore the use of the first model to suggest a methodology for determining the 

number of single and double bedrooms in a hospital unit as well as the stockpile of spare 

resources necessary to ensure a desired service level for inpatient hospitalization demand, when 

isolation requirements are considered. Finally, the second model which considers future demand 

is explored to examine the effect on bedroom assignments incurred from the number of periods 

used in the planning horizon given a small subset of hypothetical, yet realistic hospital data. 
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1.  INTRODUCTION 

In recent years, Healthcare Associated Infections (HAIs) rates have become a significant 

concern in the health care community [1,2].  HAIs are infections that patients acquire while 

receiving medical care at a healthcare facility most commonly after surgery or during prolonged 

stays for treatment [3]. In 2002, it was estimated that in United States hospitals 1.7 million 

patients were infected by HAIs, and 6% of those patients died from complications of the 

infection [4]. To prevent HAIs the Centers for Disease Control and Prevention (CDC) as well as 

other health care organizations such as the World Health Organization, the Infectious Disease 

Society of America, the Society of Healthcare Epidemiology, the Association for Professionals 

in Infection Control, the European Centre for Disease Prevention and Control, and the 

Department of Health in the United Kingdom have created isolation guidelines to help hospitals 

prevent HAIs [5–11].The cost of treating and preventing these HAIs in the United States 

exceeded $USD 30 billion in 2007[3]. 

 

Clinical studies have proven that properly following these HAI guidelines reduces their 

occurrence [3]. However, despite this improvement in care, the implementation of isolation 

precautions still presents challenges that affect hospitals’ ability to deal with many operational 

aspects including patient bed assignments. For example, Shenoy et al. indicates that for patients 

with methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant 

enterococcus (VRE)  infections the time to receiving a bed assignment was longer than that of a 

patients that did not suffer from these complications [12]. The study attributed the isolation 

precautions as the sole reason for this delay in bed assignments.   
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Currently, hospitals make bed assignments primarily relying on the judgment of 

experienced nurses. A typical nursing process to assign patients to beds is described in detail in 

Figure 1 [13]. Nurses need to use this process several times a day. Determining the best patient-

bed assignments and patient movements among the thousands of potential alternatives becomes 

difficult for this multi-criteria decision problem. The problem is especially critical in units with 

high utilization rates. The questions that arise from this process are as follows: Should an 

incoming patient be admitted? Should a less critical admitted inpatient be released to have more 

available beds? Should a reassignment of patients within the unit (i.e., internal movement) be 

performed to facilitate accommodating more patients?  

 

These decisions must be made considering each patient’s diagnosis, characteristics (e.g., 

gender, age, mental status, medical needs), and the isolation requirements necessary to prevent 

the patient from acquiring HAIs or from infecting other patients in the unit. Therefore, in order 

to admit a new inpatient to a unit while considering all the aforementioned restrictions, it is 

often necessary to perform multiple internal movements, in which a pair of patients exchanges 

their bed assignments. However, these internal movements are expensive to implement since 

each movement requires two room disinfection procedures and hospital staff must devote time 

to accommodate the moved patients into their new beds.  Internal movements consume valuable 

nursing time that could be otherwise used to care for patients.  Furthermore, internal movements 

can create a higher risk for infection since the patients are exposed to more people.  

  

A technique to approach this problem is to use a mathematical program to model the bed 

assignment decision-making process using the objective function to describe the most important 
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goals.  For example, assigning the largest number of patients into a unit while mitigating the 

number of internal movements may be a desired goal for this problem. To ensure all assignments 

are valid the constraints would consider patient characteristics such as gender and isolation 

requirements. In this thesis we formulate a methodology to model this decision-making process. 

 

Figure 1: Nurse Bed Assignment Process [13] 

 

Assigning Patient Rooms Using the Steps of the Nursing Process

Room Assignment Process

1. Gather available data using medical diagnosis and pertinent history

2. Determine whether the patient needs require placement close to nurse's 

station

3. Determine need for isolation or special precautions

4. Identify rooms available

5. Gather information about current patients and circumstances in rooms 

available

Analysis

1. Analyze the disease processes of the newly admitted patient

2. Evaluate physical layout of the room being considered for the new patient

3. Compare the needs of the new and current patients to room availability

Outcome Indentifications

1. Indentify who the roommate of the new patient will  be.

2. Evaluate the expected effects for the new and current patient

Plan

1. Determine what room placemen would be the best for the patient based on 

his/her functional status

Implementation

1. Place patient in assigned room

Evaluation

1. Continue to monitor, evaluate and reevaluate patient's status based on 

changes in laboratory data, further diagnostic test findings, and changes in 

patient conditions

2. New room reassignment may need to be made. For example, diagnostic test 

indicate the need for isolation or occurrence of confusion indicates the need to 

move patient close to nurse's station for more careful observation
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The research presented in this thesis was developed in collaboration with the Pulmonary 

and Critical Care Unit (PCCU) at Rochester General Hospital (RGH) in Rochester, NY. The 

PCCU provided historical data and clinical expertise to support this study. In the remainder of 

this document we will refer to the PCCU simply as “the unit”. Patients in the PCCU are very ill, 

need critical respiratory care, require lengthy hospitalization stays, and may be subject to one or 

multiple isolation requirements. These considerations combined with the number and type of 

bedrooms available in the unit produce a complex environment for bed assignments. The PCCU 

is comprised of 10 single-patient and 8 double-patient rooms giving the unit 26 beds in total. 

Moreover, the unit commonly operates at or near full capacity since typical patients stay for 

extended periods of time. 
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2.  PROBLEM STATEMENT 

It is evident that bed assignments require more than the availability of a bed. Multi-

patient rooms, infectious agents, and critical medical needs add complexity to patient care, more 

specifically to patient bed assignments. The focus of this study is to address the operational and 

strategic bed management challenges considering isolation requirements by the application of 

optimization based solutions. To support bed assignment decision-making, two optimization 

models were developed to maximize the criticality of patients in a hospital unit while minimizing 

the number of internal movements that occur within the unit; the first model, considers patient 

information available for a single planning period, and the second model considers likely patient 

information over multiple planning periods. In this work, criticality is a patient characteristic 

assigned to all patients to describe their relative medical conditions. In the first model critically is 

assigned as a numeric value from 0-10 where the value of 10 is considered to be the most critical 

value. A slight variation on criticality values is made for the second model and is discussed in 

section 4.4.1. Additionally, the model minimizes the number of internal movements by a penalty 

expression in the objective function.  

 

Moreover, we integrate the single-period optimization model into a Monte Carlo 

experiment to strategically determine the optimal number of single and double bedrooms in a 

particular hospital setting that results in the best tradeoff between occupancy levels and the 

number of internal movements performed. This analysis was also used to suggest target 

inventory levels of key resources to accommodate a random inpatient demand for given service 

levels in the PCCU. 
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Furthermore the second optimization model proposed in this thesis aims to examine the 

implications of considering the likelihood of seeking admission by potential inpatients (i.e. 

patients from the ICU) on current bed assignment decisions. Experimentation with this multi-

period model aims to illustrate how to determine the optimal number of periods into the future a 

hospital unit should observe to determine the best bed assignment for the current planning 

period.  

 

One benefit of developing these methodologies for the bed decision-making process 

would be an application hospital assignment staff could use to receive valid bed assignment 

suggestions with minimal effort and in a relatively small amount of time. We have included an 

application of this suggestion in section 4.1.1.  Furthermore, the experimentation done using the 

models presented in this study would be advantageous in hospital unit planning. The models 

provide a general approach for assignments which can be tailored to make decisions based on 

any target population of a specific unit by altering the data set.  
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3.  LITERATURE REVIEW  

This section reviews previous literature on inpatient bed-placement, bed capacity 

planning, and hospital placement policies that dictate what type of bedrooms each unit should 

have and the criteria for inpatient admission.  

 

The use of mathematical models for scheduling medical services is not new.  

Optimization methods have been used in hospitals to schedule surgeries, lab tests, scans, dialysis, 

and staffing purposes[14–21]. However, despite the benefits of these solutions, most applications 

have not been implemented across hospitals, due to costs, and the fact that most solutions are 

highly customized for specific hospital needs.  

 

3.1 Operations Research in Hospital Inpatient Bed Assignments 

Demeester et al.[22], and Ceschia and Schaerf [23] propose optimization models that can 

be used to determine how to assign inpatients to beds across a hospital comprised of six 

departments and under hypothetical information considering patient gender, diagnosis, room 

type, age, and patient preference. However, these studies fail to consider the effect of isolation 

requirements in patient placement which is what this work includes. 

 

Demeester et al.[22] proposes a search method to allocate inpatients to beds, while trying 

to increase service levels and reduce the number of bed transfers between different hospital 

rooms, offering gender-specific rooms, and satisfying other specific healthcare needs. In this 

study, the authors consider a search space of all available beds across different units of a 

hospital. The service level in this model is measured by how often patients are assigned to 
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appropriate departments based on medical needs and patient preferences while keeping 

department admissions balanced (i.e. all departments within the hospital have roughly the same 

number of patients within each departmental unit). Demeester’s model assigns as many patients 

as possible to the rooms of their preference while maintaining hospital constraints such as gender 

separation, age separation, medical condition separation, among others [22]. 

 

  Ceshcia and Schaerf [23] extend Demeester et al. [22]  work and propose a multi-

neighborhood local search method to improve the solution time of assigning patients to subsets 

of beds. This model applies two pre-processing steps to reduce computational efforts; the first 

step restricts the search area to a set of rooms instead to a set of beds. The second step uses a 

penalty matrix to assess the value of assigning a patient to a bed within a group of beds, while 

considering the suitability of its room to the patient’s needs and preferences. 

 

3.2 Simulation Studies for Hospital Bed Management 

 Simulation models have also been commonly used to deal with patient placement 

problems [24–28]. For example, Harper and Shahani [24] use discrete event simulation across 

multiple hospital units to analyze several patient admissions and bed allocation policies used to 

determine the optimal number of beds in a unit. Similarly, Dumas[25], Vassilacopoulos [26], 

Khare [27], and Williams [28] propose simulation studies that focus on determining the optimal 

number of beds per unit while maintaining effective hospital systems. Dumas [25] focuses on 

assigning patients to the proper units based on their care needs and suggests policies for re-

assigning patients when they are “misplaced.”  Such “misplacement” occurs when patients are 

not assigned to the most suitable units of care due to lack of capacity. Vassilacopoulos [26] 
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analyzes the appropriate number of beds to have in different hospital units while abiding by a 

priority policy in which all hospital’s emergency patients are assigned to inpatient rooms 

immediately under limited bed capacity. Through Monte Carlo simulation experiments,  Khare 

[27] and Williams [28] ascertain that increasing the number of beds in the emergency department 

can reduce the overall length of stay of inpatients.   

 

3.3 Hospital Bed Admission Policies 

Hospital bed management also involves determining whom to hospitalize into a unit 

when patient bed demand exceeds availability. Shmueli [29] proposes a stochastic model that 

maximizes the overall survival rate in an intensive care unit by recommending a first-come-first-

serve admissions policy for patients who exhibit survival benefits that exceed a minimum 

threshold level. The threshold level results from factoring in the decline in admissions into the 

ICU and the improved probability of survival of each admitted patient. The survival probability 

is calculated from mapping the expected improvement of the survival rate that results from 

admitting a patient into the unit compared to the rate if the patient has not been admitted. The 

patient’s survival score that is used in comparison to the threshold level results from considering 

the patient’s age, gender, general diagnosis, and the number of patients already in the unit.  

 

3.4 Hospital Bed Allocation 

  Bed assignment is also affected by the way hospitals determine the number and type of 

rooms available in their units [26–28]. However, these decisions are typically taken using 

approaches that are tailoring to particular hospital realities. Two of the most common means to 

determine the number of beds in a unit are the target bed occupancy rate and the ratio-based 
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methodology [30]. However, neither of these approaches takes into consideration that bed 

demand fluctuates over time. Nguyen et al. [30] propose an alternative model to determine the 

number of beds needed for surgical and internal medicine departments based on the number of 

internal patient transfers, the number of days with no possibility for unscheduled admissions, and 

the number of days having pre-established blocks of unused beds. The model’s goal is to 

minimize the number of unoccupied beds. Similarly,  Gong et al.[31] proposes a multi-objective 

comprehensive learning particle swarm optimization model with a binary search-based 

representation to maximize admission rates and bed utilization simultaneously.  

 

3.5 Hospital Room Occupancy Studies 

There are opposing opinions regarding whether single-patient rooms are more cost 

effective than multi-occupancy rooms. In 2011, Boardman and Forbes [32] claimed that the net 

social benefit of a bed in a single-patient room in the USA was $USD 70,000 higher than that for 

a bed in a multi-patient room. Chaudhury et al.[33] concludes that the net social impact for 

single-patient rooms is lower than those for multi-occupancy rooms. Factors such as reduced 

transfers, higher occupancy rates, and fewer medication errors associated with having single 

patient rooms contribute to cost reductions. Therefore, it is inconclusive at this time to claim 

which rooms are more cost effective. Further studies need to be performed. 

 

3.6 The Need and Potential Impact of Additional Bed Assignment Optimization Methods 

As shown in the literature review, there are several areas of study regarding inpatient bed 

scheduling. First, there is the process of assigning a patient to an appropriate bed. Furthermore, 

hospitals must determine how many beds should be assigned to each specialty unit or floor. In 
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addition to these considerations a hospital must determine what admission criteria will be used 

for qualifying patients to different units within the hospital. Lastly, hospitals must determine the 

type of rooms that will be included in each unit. Operation research methods, simulation, and 

surveys have been utilized as methods to solve these problems [11,14,22–33]. Here we also 

present a methodology that includes operation research methods and simulation. Yet, this work 

expands upon the studies presented here by including isolation requirement considerations. 

 

This inclusion is paramount since it is law for health care facilities to follow these 

isolation precautions. Creating a model for assigning patients to beds without this consideration 

could result in inappropriate bed assignments. Not considering these requirements may also 

result in oversimplified models that are not reflective of actual hospital scenarios leading to 

inappropriate conclusions for hospital planning. Therefore, it is in the interest of the medical 

community to include this feature into patient bed scheduling methodology to create the most 

applicable suggestions. 

 

The following section describes the methodology proposed in this thesis, which aims to 

bridge the voids existing in current literature that does not consider isolation requirements in 

patient bed scheduling, admission policies, bed allocation, and occupancy planning problems.  
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4. PATIENT SCHEDULING METHODOLOGY 

 The methodologies presented here are general formulations that are later tested using 

historical data from a partnership with a local hospital. Detailed information regarding data 

creation and simulation methods will be included in the appendix section for reference. 

 
4.1 Single Period Methodology 

This section describes a single-period deterministic model that suggests how to 

accommodate groups of admitted and incoming patients within a hospital unit (PCCU). The 

model captures the decision process a unit administrator would use to determine bed assignments 

by considering the relative criticality and isolation requirements of each patient. The model aims 

to maximize the critical level of the unit and minimize the number of internal movements. 

Additionally, the resulting allocation plan must avoid moving patients with user-specified 

restrictions (for example, due to the use of specialized equipment, morbidly obese patients, or 

patients who have recently been moved.) Lastly, the model must respect gender requirements 

and isolation requirements for double patient rooms. Different genders and isolation 

requirements cannot be assigned to the same multi-occupancy room. 

 

The model requires several assumptions. First it is assumed that the configuration of the 

unit (i.e., number of double and single rooms) is known and will not change during the current 

decision period. It is also assumed that the isolation requirements and criticality of each patient 

are known and will not change during the current period. Furthermore, if a patient has ended his 

or her length of stay in the unit he or she will immediately be discharged during the current 

period. Of course, discharges may not occur instantaneously in a real hospital setting due to other 

factors such as difficulties arranging transportation for the patient to go home. 
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To perform all these objectives the model was developed as a binary integer 

programming model. This type of model was appropriate due to its application in scheduling 

problems. Furthermore, the instances of this problem contain a small number of variables due to 

the size of the unit therefore choosing a nonlinear approach does not propagate extensive 

computational time. 

 

The formulation of the model is described below:   :  set of patients currently occupying beds within the unit   :  set of patients seeking admission  :  set of all patients (i.e.,          )  :  set of all available rooms  :  triage room,     

D:  discharge room,       :  number of beds available in room         :       set of single-patient rooms.   :  gender of patient         :  isolation type of patient        :  critical state of patient     , relative to other patients in P (this could be assessed 

as a number e.g. 1 less critical, 10 more critical). 

       {                                                                                                              

       {                                                                                                                       
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The problem decision variables are given by: 

       {                                                                                             

       {                                                                                                         

       {                                                                                                                     

 

Therefore, the resulting optimization problem corresponds to the following binary integer 

programming problem: 

        Maximize              ∑ ∑ (          |       |)                     (0) 

                        s.t.  ∑                                                                                      ( )     

                                         (      )          ( )                                           (      )          ( ) ∑                                                     (      )        ( )    

∑                                                        (      )        ( )    

∑                                                                                              ( ) 
                                                                                                 ( )                                                                                                  ( ) ∑                                                        ( )            

                                                       (   )                  (  ) 
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The proposed model assumes that on any given day, the hospital unit must manage a set 

of patients,   including those patients that already have an assigned bed (i.e., patients currently 

admitted to the unit),  , and the group of incoming patients seeking admission into the unit,   .  

The hospital unit has   rooms available to accommodate patients. Two of the rooms, T and D 

correspond to the triage and discharge areas where patients are stationed before and after 

entering the unit, respectively. It is assumed that these two areas have ample capacity to 

accommodate a large number of patients and do not represent any specific hospital area. The 

remaining rooms in   are single-patient and multi-patient rooms, where the number of beds in 

room j is given by Bj.  Additionally, the model considers that there is a finite set of isolation 

requirements which must be taken into account to accommodate incoming patients. These 

isolation requirements dictate that patients who have a particular isolation cannot be assigned a 

room with another patient who does not require the same isolation precaution.  

 

The optimization model assigns patients to beds considering the patient’s criticality level, 

gender, isolation requirements, current placement within the hospital, and if the patient is 

flagged. The flag is an indicator used to mark if a particular patient cannot be moved to another 

room in the unit. For example, a flag could be used if the patient is using equipment that is 

extremely difficult to move or if a patient recently moved into the unit. 

 

 The objective function (0) penalizes the number of internal movements needed to 

accommodate incoming patients, while maximizing the number of highly critical patients in the 

unit. For implementation purposes, the model’s objective function was linearized using a similar 

approach to the one used by Love and Yerex [34].  To linearize the function, the absolute value 
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expression was altered by introducing two new variables and one new constraint for assigning 

values to those new variables. This altered form of the objective function and the additional 

constraint are shown below. 

Maximize              ∑ ∑ (          (         ))               

                                              (   )   
 

There are several constraints in place to facilitate that only proper room assignments 

occur. Constraint (1) ensures that every patient must be assigned a room in the set of R rooms 

(including T and D). Constraint (2) assigns a value to all the gender variables,     . Constraint (3) 

assigns a value to all isolation variables,    . Constraints (4) and (5) ensure that each multi-

patient room host patients with only one type of isolation requirement at most, and with the same 

gender. Constraint (6) ensures that the number of patients in a room does not exceed the number 

of beds available in the room. Constraint (7) prevents moving patients that currently have a room 

within the unit into the Triage area. Constraint (8) prohibits patients from being directly moved 

from the triage to discharge area without being assigned a bed in the unit. Constraint (9) prevents 

moving patients assigned to private rooms to another private room within the unit. Constraint 

(10) ensures that patients that have a flag are not moved from their rooms.  

 

4.1.1 PCCU Hospital Application 

 Using the methodology presented in the prior section we created a simple, user friendly 

tool that hospital bed assignment staff can utilize to facilitate bed assignment decisions. The 

interface of this tool was created in Microsoft Excel and the solver utilized for computing the 

assignments was GLPK. GLPK was chosen since it is an open source solver that would not 
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require the hospital to purchase any licenses for operation. The entire tool operates as shown in 

Figure 2.  

Figure 2: Flowchart for Assignment Tool 

 

 

The template in Excel serves as the means for bed assignment staff to input patient 

characteristics. An example of the template is shown in Figure 3. The tool requires as inputs the 

patient information regarding both the patients in the unit and those seeking admission. When the 

user requests the tool to generate a bed assignment, the Excel interface internally generates a data 

file that can be used by GLPK to solve the model presented in 4.1. The solution is automatically 

read from GLPK and translated into a spreadsheet for the users to view. An example of the 

displayed results is shown in Figure 4. 

  

Input Patient Data 
into Template 

Template 
Connects to Solver 

Solver Runs 

Solution Found 

Solution Displayed 
as Text File 
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Figure 3: Example of Excel User Interface 

 

 

 
  

patient ID gender isolation
criticial 

state
flag

in room 

before?

4 A 1 M 2 1 1 Y

4 B 3 M 2 1 1 Y

8 A 2 M 1 2 0 Y

8 B

9 A

9 B 4 F 3 1 0 Y

13 A 5 M 4 1 0 Y

13 B 6 M 4 4 1 Y

16 A 7 F 3 8 0 Y

16 B 8 F 3 1 1 Y

19 A 9 M 0 1 0 Y

19 B 10 M 0 3 0 Y

20 A 11 M 1 5 1 Y

20 B 13 M 1 2 1 Y

23 A 14 F 2 3 0 Y

23 B

6 15 M 1 1 1 Y

7 16 F 3 4 1 Y

10

11

12

15 20 F 2 4 1 Y

17 21 M 5 5 0 Y

18 22 F 5 5 1 Y

21 23 M 2 2 1 Y

22

0 Triage 12 M 1 1 1 N

0 ICU 24 M 2 2 0 N

0 ER 25 F 3 5 0 N

0 ICU 26 M 4 10 0 N

0 27 F 1 9 0 N

0 28 F 1 3 0 N

0

0
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s
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List below the patients waiting for 

admision in 5400 unit:     

rooms
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Patient ID Patient Identifiers

Gender M = Male

F = Female

Isolation

1= "TB"

2= "O"

3= "C"

4= "V"

5= "Comb"

6= "Flu"

critical 1-less critical, 10-most critical

state

flag 1= "don't move"
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Figure 4: Example Output from Assignment Tool 

 

 

To examine the benefits of this tool, consider an assignment scenario described in the 

Table 1 below.  This example depicts a typical day at the Pulmonary Critical Care Unit at RGH 

(PCCU). In this example, the unit has 22 hospitalized patients, 13 and 9 in double and single bed 

rooms, respectively. The unit can accommodate 4 additional patients, 3 in double bedrooms, and 

1 in a single bed room.  Eight patients, with different criticalities and isolation requirements are 

seeking admission from a triage area. Now the questions arise of which patients should be 

admitted, which patients should be discharged, and should any internal movements be 
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performed? The last three columns of Table 1 show the recommendations from the 

implementation of assignment tool. The tool suggests that 5 patients can be admitted after 

performing only 1 internal movement and 1 discharge. 

 

Table 1: PCCU Unit Example 

 

 

  

Rooms (beds) Patient ID Gender
Isolation 

Requirement
Criticality Flag Rooms (beds) Patient ID

4 (A) 1 M 2 10 0 4 (A) 1

(B) 3 M 2 10 0 (B) 3

8 (A) 2 M 1 2 0 8 (A) 2

(B) (B) 10

9 (A) 9 (A) 25

(B) 4 F 3 1 1 (B) 4

13 (A) 5 M 4 9 0 13 (A) 5

(B) 6 M 4 2 1 (B) 6

16 (A) 7 F 3 8 1 16 (A) 7

(B) 8 F 3 4 1 (B) 8

19 (A) 9 M 1 1 0 Discharge 19 (A) 27

(B) 10 M 1 3 0 Move to room 8 (B) 28

20 (B) 11 M 1 5 0 20 (B) 11

(A) 13 M 1 2 0 (A) 13

23 (B) 14 F 2 3 0 23 (B) 14

(A) (A) 29

6 15 M 1 1 1 6 15

7 16 F 3 4 1 7 16

10 31 F 2 10 0 10 31

11 32 M 3 10 0 11 32

12 12 26

15 20 F 2 4 1 15 20

17 21 M 5 6 0 17 21

18 22 F 5 5 1 18 22

21 23 M 2 2 1 21 23

22 33 F 3 7 0 22 33

Triage 12 M 1 1 Triage 12

Triage 24 M 2 2 Triage 24

Triage 25 F 3 5 admit

Triage 26 M 4 10 admit

Triage 27 F 1 9 admit

Triage 28 F 1 3 admit

Triage 29 F 2 10 admit

Triage 30 F 1 2 Triage 30
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4.2 Experimenting with the Single Period Model: Addressing Strategic Bed Assignment 

Challenges  

The experimentation conducted for this study was designed to determine the optimal 

number of single and double bedrooms in the PCCU and to ascertain if an increase in the 

historical arrival rate to the unit would affect the suggested unit configuration. For implementing 

this experimentation, a large simulation model was developed in Visual Studio 2010 using C++ 

and GLPK. The detail of the C++ code is included in Appendices B & C. 

 

In the first set of experiments, the configuration of the unit was analyzed to determine the 

ideal mix of single and double bedrooms for the PCCU unit. Initially the simulated unit 

contained 18 single bedrooms. Then successively for each new subset of experiments, one of the 

single bedrooms was replaced by a double bedroom. This continued until there were only double 

bedrooms in the unit. A detailed explanation of the simulation is provided in the next section. 

 

4.2.1 Simulation 

To address the strategic challenge of determining the optimal mix of single and double 

bedrooms in a hospital unit, we propose a large simulation model that for each possible unit 

configuration emulates the utilization of rooms over 5 years of simulated inpatient demand. 

 

The simulation model is described by the event graph in Figure 5.To begin, the unit was 

populated with a set of patients for day 0. Next, a random number of incoming patients was 

generated following the distribution of inpatient demand per day at the PCCU (see Figure 6). 

Every patient seeking admission to the unit was characterized by the following characteristics: a 
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unique ID; a randomly generated length of stay (LOS), which followed the distribution described 

in Figure 7, a discharge day and a criticality level, an isolation category, and a gender randomly 

generated following discrete uniform distributions. To elaborate, a patient had an equal chance to 

be assigned any value of 0-7 for isolation, 0 being they did not have an isolation requirement. 

Next, it was determined if any patient should be discharged from the unit. 

 

Figure 5: Simulation Event Graph 
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Figure 6: Empirical Distribution of the Number of New Patients Requiring Daily Admission to the PCCU, 
Based on 3 Years of Historical Information 

 

 

Figure 7: Empirical Distribution of the Length of Stay of Patients Admitted into the PCCU, Based on 3 Years of 
Historical Information  

 

Once all the characteristics for the set of incoming patients to be considered for 

admission to the unit were determined then the model presented in Section 4.1 acted as a unit 

administrator. The model determined the best patient-to-room assignment solution in order to 

accommodate the random pool of incoming patients while minimizing the number of internal 

movements and maximizing the unit utilization by admitting the most critical patients. The 

solution for each problem instance was stored and the following statistics were collected: the 

iteration number for the simulation, the clock time, the number of internal movements 
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performed, the number of patients assigned to beds in the unit, the average criticality in the unit, 

the number of internal movements incurred in the day, and the objective value for the 

optimization model.  

 

For each bedroom configuration, the proposed optimization model solved 30 replications 

for 5 years of historic data. After thirty replications were run then the conditions of the unit were 

reset for a different bedroom configuration. The baseline configuration for experimental 

comparison is eight double bedrooms and ten single bedrooms which was the configuration in 

the PCCU. Overall this study simulated more than 500,000 days of inpatient arrivals to the unit. 

 

4.2.2 Results & Analysis of the Single-Period Model 

As stated earlier, the goal of this experimentation was to determine the optimal mix of 

single and double bedrooms for the PCCU as well as to determine an appropriate safety stock 

level of resources to provide a given service level within the unit.  The following discussion 

explains the implications gathered from modifying the number of single and double bedrooms 

within the unit and practical suggestions for managing bed resources. 

 

Figure 8 shows that there is a strong correlation between the average number of admitted 

patients (E[Pa]) and the average number of internal movements (E[N]). The trend line in Figure 

8, results from a linear regression model and describes a polynomial of order 3 relationship 

between E[N] and E[Pa]. This trend line can be useful for daily planning in the unit. In particular, 

it can help determine daily staffing and resources necessary to deal with an expected number of 

internal movements.  
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Figure 8: Correlated Fit Between the Average Number of Internal Movements Per Day & the Average Number of 

Inpatients Per Day 

 
 

Figure 9 describes the relative change of the average number of internal movements and 

the relative change in the average number of inpatients admitted to the unit for varying number 

of double bedrooms in the unit with respect to the base layout of eight double bedrooms. 

Furthermore, Figure 9 shows that when the unit’s capacity is increased, the average number of 

internal movements increases faster than the growth in capacity.  

 

Considering this information it seems that the optimal number of single and double 

bedrooms cannot be determined explicitly since different incentives will lead to different 

conclusions. For example, reviewing Figure 9 shows that reducing the number of double 

bedrooms to 5 would reduce the number of internal movements by 60% and the number of 

admitted patients by 8%. Depending on who the decision maker is, it may be worth it to reduce 

capacity by three beds. Looking at Figure 10(a) shows that the 8% reduction corresponds to an 

average of admitting one fewer patient to the unit. The results of this experimentation may not 

y = 0.0033x3 - 0.1735x2 + 3.0936x - 18.727
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state conclusively the number of single and double bedroom to have within the unit but the 

results can provide the means to develop a business case for a certain unit configuration. 

 
Figure 9: Percent Change in the Average Number of Inpatients Per Day in the Unit and the Average Number of 

Internal Movements as a Result of Different Double Bedroom Configurations 

 
 
 

Furthermore, Figure 10 (a) and 10 (b) show that increasing the number of double beds in 

the unit not only allows an increase in the average number of admitted inpatients and inpatient 

movements, but also in their variability. If variability in the number of admitted inpatients was 

negligible, it will be easy to determine the exact number of additional resources needed to cope 

with the increasing number of patients. However, in order to mitigate the effects of the 

increasing variability in the number of inpatients and internal movements, unit administrators 

can reduce the number of double-patient rooms in the unit or they can rely on securing a buffer 

(or a “safety stock”) of additional resources to cope with potentially high inpatient demand. 

Therefore, in the latter case, the unit must determine the minimum safety stock level of beds and 
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other resources (e.g., nurses and cleaning personnel) necessary to provide a given service level of 

% to patients seeking admission to the unit. A service level of % implies that there is a 

% probability that the unit will not be able to cope with incoming patient demand due to 

insufficient resources (e.g., beds).  We propose that the safety stock levels of different resources 

necessary to cope with the increasing variability in demand can be determined using standard 

manufacturing  practices [26]. Assuming a constant lead time for receiving an order of additional 

resources, L, the safety stock, ss, is expressed by      √     , where     is a standardized 

normal value for the service level  , and      is the variance of the number of admitted inpatients 

associated with the unit layout. 

 

For example in the case of beds, Figure 11(a), shows the necessary safety stock of beds 

(i.e., number of beds to block) to provide a 90% service levels for the unit, as the number of 

double-bed rooms in the unit increases (for L=1). Figures 11(b) and 11(c) report similar results 

but for inpatient arrival distributions, that have on average 1 and 2 more patients per day than 

what is currently faced by the unit, respectively.   Figures 11 (a), (b), (c) indicate that there are 

safety stock levels of beds that are robust to changes in the average patient arrival rate, and 

provide a desired service level. For example, at the current configuration of eight double-patient 

rooms, the unit would need to ensure access to 3 additional beds to cope with the uncertainty in 

patient demand.  

 

 

 

 



 

28 
 

Figure 10 (a): The Average Number of Inpatients and 2 Standard Deviations from the Mean Versus the Number of 
Double Bedrooms 

 
 

Figure 10 (b): The Average Number of Internal Movements and 2 Standard Deviations from the Mean versus the 
Number of Double Bedrooms 
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Figure 11 (a): The Number of Additional Beds Needed to Provide a 90% Service Level at the Historic Patient 
Demand Level 

 
 
 

Figure 11(b): The Number of Additional Beds Needed to Provide a 90% Service Level at the Historic Patient 
Demand Level Plus one Additional Patient on Average 

 
 
 



 

30 
 

Figure 11(c): The Number Additional of Beds Needed to Provide a 90% Service Level at the Historic Patient 
Demand Level Plus Two Additional Patients on Average 

 

 

4.3 Future Knowledge Consideration Methodology 

The single period model was designed for use when inpatient demand is known as well as 

all patients’ characteristics. However, hospital units may also have some additional information 

about patients who may seek admission in the future.  For example, there could be patients in the 

ICU or in the Emergency Room who are expected to seek a bed in the PCCU by the next day. 

Thus, in this section we propose an extension to the bed assignment model provided in section 

4.1 that  incorporates when the likelihood of seeking admission is known for patients currently 

not requiring admission into the unit but who may do so in the upcoming days. Incorporating 

future knowledge in today’s bed assignment decision-making may be advantageous, if for 

example, keeping a bed unused allows for admitting a highly critical patient tomorrow, without 

increasing the expected number of internal movements.  
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This model considers a current planning period (period 1), where a hospital unit has a 

number of patients already admitted in the unit. At this time, the unit contemplates a set of 

patients seeking admission Pn, and a third set of patients, PT, who may seek admission one or 

more periods into the future. Without loss of generality, all PT patients are assumed to be ICU 

patients. The possibility of seeking admission for patients in PT  is modeled by the parameter, pi, 

which describes the likelihood that a patient i in the ICU will be discharged from the ICU  on 

any given day and requests admission to the PCCU. For sets  Pa  and Pn it was assumed that the 

probability that these patients require a bed in the PCCU is one since these patients are known to 

demand a bed in the unit, respectively. Further explanation on the generation of this probability 

parameter is described in section 4.3.1. Moreover, a series of weights,     are used to describe 

the relative importance of the expected bed assignments in day k towards the overall bed 

assignment plan. For example, information available for period 1 in the planning horizon would 

be given the largest weight since it is the period during which the assignments are actually made 

and the available information is the most accurate. The information of subsequent periods would 

be given decreasing weights to reflect the growing uncertainty and their decreasing importance 

towards the overall bed assignment plan. 

 

There are particular assumptions in this model that differ from the implementation 

discussed in section 4.1. First, patients already admitted in the unit can either remain in their 

original assignments or can be moved to another bed within the unit, but they cannot be 

discharged. This assumption results from the fact that admitted patients to the PCCU have a 

longer LOS than a practical planning horizon for bed managing purposes. Second, patients who 

may seek admission in the future can be assigned to a bed in the PCCU only in period 2 and 
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onwards since these periods represent future assignments. Third, it is assumed that the ICU is 

fully occupied at the time of making a bed assignment decision (i.e., at period 1). We also 

assumed that the ICU is always at full capacity. Finally, it is assumed that if a patient in PT is 

recommended for admission in a future period of the planning horizon, he or she cannot be sent 

back to the ICU in any subsequent period. 

 

The configuration of the unit (eight double bedrooms and 10 single bedrooms) is kept 

consistent over all planning periods. Moreover, the criticality and isolation requirements 

assigned in period 1 remain constant over all planning periods. Additionally, patients in set PT  

are assigned criticalities higher than patients in sets Pa and Pn since being in the ICU indicates a 

more critical condition. Moreover, the criticalities for ICU patients are assumed static (i.e.,  they 

do not change after a patient has been assigned a bed in the PCCU) since patients' future health 

conditions are uncertain.  

 

The resulting model provides a bed assignment schedule for the current planning period 

while inducing the lowest expected number of internal movements. The model considers all 

restrictions used in the single-period model of section 4.1, plus additional constraints necessary 

to consider future events.   

 

The notation and formulation of the multi-period model is described as follows:   :  set of patients currently admitted to the unit     set of patient currently seeking admission to the unit  
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     set of patients who are currently not seeking admission and remain in the ICU but 

may seek admission during the planning horizon  :  set of all patients (i.e.,             )  : set of patients in the unit and seeking admission (i.e.,          )  :  set of all available rooms  :  triage room     

D:  discharge room,     

U: ICU,          :  number of beds available in room       

H:   set of planning periods (H=1…t)   :       set of single-patient rooms.   :  gender of patient         :  isolation type of patient        :  the assessed level of how much patient      needs intensive medical care (it can 

take a value 0-10) 

     the smoothing weight factor assigned for each planning period      

     {                                                                   

  :     the probability associated with each patient       seeks a room in the unit 

                 {                                                                                                                         
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Decision variables: 

      {                                                                                                           

      {                                                                                                                        

      {                                                                                                                                             

 

 Maximize ∑   [∑ ∑                |        (   )|                 ]     ∑   [∑ ∑ (               |        (   )|)    (    )                      ]     (0) 

 
  s.t.  
  ∑                                                                                                                 ( )     

                                           (         )                ( )                                             (         )                ( ) 
∑                                                      (         )                ( )    

∑                                                         (        )                ( )    

∑                                                                                                                       ( ) 
∑      (      (   ))                                             ( )            
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                                                                                                                   ( )                                                                                                                   ( ) 
∑ ∑       

                                                                                                                    (  ) 
                                                                                                                                     (  )                                                                                                                      (  ) 
       ∑   (   )                                                                                   (  ) 
                                                                                                                (  ) 

 
As stated earlier, this model focuses on incorporating the use of future knowledge 

regarding patients who may seek admission into the unit. A set,    of patients is added to the 

original formulation having the additional parameter,   . The set H, was added to describe the 

number of periods for which the decision maker will look into the future to make a decision now. 

Furthermore, as mentioned earlier, a series weights,    is included to describe the relative 

importance of periods to the schedules. 

 

 It should also be noted in this multi-period bed assignment model, criticality is defined 

as in the single-period model representation on a scale from (1-10) for patients seeking 

admission and for those patients within the unit. A value of 10 is interpreted as a patient who is 

highly critical. However, patients in PT, who are currently being treated in the ICU are assigned a 

criticality value higher than those of admitted patients (Pa) and those currently seeking admission 

into the unit (Pn).  
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The objective function in (0) consists of two weighted sum expressions. The first 

summation maximizes the expected criticality in the unit while penalizing the expected number 

of internal movements for patients currently in the unit and for those seeking admission. The 

second summation corresponds to the expected criticality and penalty resulting from future 

admission of any ICU patients who do not seek admission in the unit during period 1.  

 

Constraint (1) ensures that all patients are assigned to a room in each period. Constraint 

(2) ensures that for every period, a patient is assigned to a double room only if the room already 

has a patient with the same gender. Constraint (3) ensures that for every period, a patient can be 

assigned to an occupied double room if both patients have the same isolation requirements. 

Constraint (4) prohibits more than one gender in a double bedroom for each period. Constraint 

(5) prohibits more than one isolation condition in a double bedroom for each period. Constraint 

(6) ensures room capacity is not exceeded. Constraint (7) ensures that for each planning period, 

patients assigned to a single-bedroom cannot be moved to another single-bedroom. Constraint 

(8) ensures that admitted patients are not moved to the Triage area. Constraint (9) ensures that 

admitted patients and those seeking admission to the unit are not assigned to the ICU during any 

period. Constraint (10) ensures that patients in PT are not given a room in period 1. Constraint 

(11) and Constraint (12) are necessary to set initial conditions for patients seeking admission and 

those already admitted. Constraint (11) assigns every patient in set Pn to the “Triage” area during 

period 0. Constraint (12) assigns the initial bed assignments to Pa patients which can be 

interpreted as where the patients are assigned for period 0. Constraint (13) does not allow 

patients who have been admitted from the ICU to be sent back to the ICU in subsequent periods. 
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Lastly, Constraint 14 controls if patients can be discharged from the unit during any period. This 

constraint can be modified by changing the µ parameter. 

 

4.3.1 Estimating the Probabilities of Requiring a Bed in the PCCU in a Given Day 

This section describes how to estimate the parameter pi used in the model to describe the 

probability that a patient i (in the ICU but not seeking admission to PCCU today) is discharged 

from the ICU and requires a bed in the PCCU during a later day. 

 

Unfortunately, historical data regarding LOS and hospitalization rates in the ICU at our 

partner hospital were not available for this part of the study; hence, this section relies on a study 

available in literature to develop our estimates.  In particular, we take advantage of Ong et al. 

[35] who surveyed the LOS of 4902 ICU patients over 7 years in a United States Hospital. As a 

result, Ong et al. [35] categorizes ICU patients according to the LOS distribution as presented in 

Figure 12.  
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Figure 12: LOS Distribution from ICU  Patients  
 

 
X axis = length of stay (days) 
Y axis = percentage of all intensive care unit (ICU) patients. 

 

 

The demand for a bed in the PCCU by an ICU patient i for a given day is a Bernoulli 

random variable with probability pi. Therefore, the number of days until an ICU patient requires 

a bed in the PCCU, N, follows a geometric distribution with parameter p.  Therefore, the 

probability that an ICU patient requires a bed in the PCCU x days after the day of planning is 

given by P(N=x) =  (   )   , which indicates that the patient stays (x-1) consecutive days in 

the ICU before requiring admission to the PCCU in day x. 

 

Since the expected value of a geometrically distributed random variable corresponds to 

the reciprocal of its parameter p,  we can estimate the value of p by the reciprocal of the expected 

number of days for a patient to first seek a bed in the PCCU (i.e.,  p=1/E[N]).  Since ICU patients 

have different LOSs in the ICU, based on Ong et al [35] categorization, the value of p for a given 

ICU patient is estimated by the  average of the minimum and maximum calculated p values 
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corresponding to the patient’s LOS category. For example, consider a category 1 patient 

expected to stay in the ICU for 1 or 2 days. Thus the probability that this patient seeks a bed in 

the PCCU is estimated by the average of ½ and 1, which results in ½ ( ½ + 1/1 )=  ¾.   The 

resulting estimated values for p for all ICU patients according to their LOS are given in Table 2. 

 

Table 2: Estimated Probability Parameters for Each LOS Category 

 

  

4.4 Experimentation of Future Knowledge Consideration Model 

 We use the future knowledge model described in section 4.3 to explore, whether 

considering information about the future results in improved bed assignment plans compared to 

plans resulting from considering patient information only for the day in which planning occurs.  

Therefore, we propose an experimental setting in which the future knowledge model is solved 

using a 22 factorial design, for which each problem instance is solved over different planning 

horizons. A full description of this experimental approach is described in the following two 

sections. Patient characteristics for the elements of these problem sets (i.e., each patient's gender, 

criticality, and isolation requirement) are randomly generated similarly to the single- period 

experimentation.  A detailed explanation on how these patient sets and their characteristics were 

randomly simulated is included in the Appendix F.  

LOS 

Categories 

(days)

Calculation of p Estimated p

1-2 1/2( 1/2 +1) 0.75

3-7 1/2(1/3 +1/7) 0.23

8-15 1/2(1/8 + 1/15) 0.10

16-29 1/2(1/16 + 1/29) 0.05

 30+ 1/2(1/30) 0.02



 

40 
 

 In a preliminary analysis we aim to determine the most effective experimental setting for 

evaluating the performance of applying the future knowledge model over different planning 

horizons. This exploratory exercise, evaluated the bed assignments resulting from the solution of 

our model for a small set of problem instances that differ in the number of patients in their sets 

Pn and Pa, and changes in the criticality values for patients in the ICU (PT). Given this 

understanding of the model, a set of narrowly scoped experiments were designed considering 

different numbers of patients in sets Pn and Pa, where ICU patients (PT) have criticality values of 

11-15.   

 

4.4.1 Exploratory Sampling 

 We consider a baseline configuration in the PCCU with eight double bedrooms and ten 

single bedrooms according to the current arrangement used in the single period model 

experimentation. To explore the effect on bed assignments from the criticality values assigned to 

the ICU patients, we constructed three distinct problem conditions with differing numbers of 

patients in sets Pa, Pn, and PT that resulted in differing number of beds available per condition. 

For each of these problem conditions all patient characteristics were randomly generated with the 

exception of the relative criticality of PT patients (ICU patients). From each problem condition 

we created two problem instances (or data sets), one having a criticality value of 20 for all ICU 

patients (data8a, data10a, data14a), and the other set having randomly generated criticalities 

ranging from 1-10 for the ICU patients ( data8b, data10b, and data14b ).  The future knowledge 

model was then applied to each of these six data sets for five different planning horizons (i.e., 1 

day to 5 days), and the number and type of patients admitted in each period were recorded. These 
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results were used to determine how the different criticality values assigned to ICU patients 

influences bed assignment plans.  

 

  The results of the application of the future model in this experiment are presented in 

tables 4-9, which show that the number of patients admitted was the same for every period in 

each data set (See columns “# Admit” in tables  4-9). The differing criticality values did not  

have an effect on the number of patients admitted or on the types (Pn vs PT) of patients admitted 

into the unit.  

 

Table 3: Data Sets used for Comparing Different Assigned Criticality Values for PT Patients 

 

the columns display the following information                                             
       PA (admitted):     Patients assigned a bed in the unit 
       PN (admitted):     Patients seeking a bed in the unit during period 1 

            PT (admitted):     Patients in the ICU seeking a bed in period 2 or later 
           Beds Open:     The number of beds unassigned in the unit before period 1 

 
  

PA(admitted) PN(seeking) PT (ICU) Beds Open

data8 18 4 18 8

data 10 19 3 18 7

data 14 20 5 18 6
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Table 4: Data Set 8a Results Using Assigned Criticality (1-10) 

 

the columns display the following information 
   H:   (planning horizon): number of periods planned for 
Obj:    the objective value function 

                                                        Data:    the label for the data set used 
                                                     Period:    the specific period in the planning horizon 
                                                   # admit:     the number and type of patients admitted each period admitted 
                                     # int movements:    the number of internal movements that occurred during each period 
                                         Assigned Crit:     the criticality values assigned for the ICU patients 
  

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit 

1 118.405 8 1 4 (PN) 2 (1-10)

8 1 4 (PN) 3 (1-10)

8 2 4 (PT) 2 (1-10)

8 1 4 (PN) 3 (1-10)

8 2 4 (PT) 2 (1-10)

8 3 0 0 (1-10)

8 1 4 (PN) 3 (1-10)

8 2 4 (PT) 2 (1-10)

8 3 0 0 (1-10)

8 4 0 0 (1-10)

8 1 4 (PN) 3 (1-10)

8 2 4 (PT) 2 (1-10)

8 3 0 0 (1-10)

8 4 0 0 (1-10)

8 5 0 0 (1-10)

2

3

4

119.671

120.089

120.445

5 120.706



 

43 
 

Table 5: Data Set 8b Results Using Assigned Criticality 20 

 

 

Table 6: Data Set 10a Results Using Assigned Criticality (1-10) 

 

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit

1 118.405 8 1 4 (PN) 2 20

8 1 4 (PN) 2 20

8 2 4 (PT) 5 20

8 1 4 (PN) 2 20

8 2 4 (PT) 5 20

8 3 0 0 20

8 1 4 (PN) 2 20

8 2 4 (PT) 5 20

8 3 0 0 20

8 4 0 0 20

8 1 4 (PN) 2 20

8 2 4 (PT) 5 20

8 3 0 0 20

8 4 0 0 20

8 5 0 0 20

2 121.616

3 122.859

4 123.913

5 124.649

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit 

1 136.532 10 1 3 (PN) 2 (1-10)

10 1 3 (PN) 2 (1-10)

10 2 4 (PT) 2 (1-10)

10 1 3 (PN) 2 (1-10)

10 2 4 (PT) 2 (1-10)

10 3 0 0 (1-10)

10 1 3 (PN) 2 (1-10)

10 2 4 (PT) 2 (1-10)

10 3 0 0 (1-10)

10 4 0 0 (1-10)

10 1 3 (PN) 2 (1-10)

10 2 4 (PT) 2 (1-10)

10 3 0 0 (1-10)

10 4 0 0 (1-10)

10 5 0 0 (1-10)

5

137.913

138.152

138.367

138.495

2

3

4
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Table 7: Data Set 10b Results Using Assigned Criticality 20 

 

 

Table 8: Data Set 14a Results Using Assigned Criticality (1-10) 

 

  

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit

1 136.532 10 1 3 (PN) 2 20

10 1 3 (PN) 2 20

10 2 4 (PT) 4 20

10 1 3 (PN) 2 20

10 2 4 (PT) 4 20

10 3 0 0 20

10 1 3 (PN) 2 20

10 2 4 (PT) 4 20

10 3 0 0 20

10 4 0 0 20

10 1 3 (PN) 2 20

10 2 4 (PT) 4 20

10 3 0 0 20

10 4 0 0 20

10 5 0 0 20

2 139.957

3 141.188

4 142.229

5 142.952

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit 

1 141.066 14 1 5 (PN) 3 (1-10)

14 1 5 (PN) 3 (1-10)

14 2 1 (PT) 0 (1-10)

14 1 5 (PN) 3 (1-10)

14 2 1 (PT) 0 (1-10)

14 3 0 0 (1-10)

14 1 5 (PN) 3 (1-10)

14 2 1 (PT) 0 (1-10)

14 3 0 0 (1-10)

14 4 0 0 (1-10)

14 1 5 (PN) 3 (1-10)

14 2 1 (PT) 0 (1-10)

14 3 0 0 (1-10)

14 4 0 0 (1-10)

14 5 0 0 (1-10)

2

3

4

5

141.55

141.681

141.798

141.897
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Table 9: Data Set 14b Results Using Assigned Criticality 20 

 

  

The reason why the ICU criticalities do not affect assignments significantly is because 

the objective function of the future knowledge model (i.e., eq (0)) and data available for ICU 

discharge make it hard for an ICU patient to compete for a bed with a patient in sets Pn or Pa. 

The contribution of an ICU patient to the objective function (eq. (0)) is factored twice. First, by 

the probability that the patient is discharged from the ICU and seeks a bed in the PCCU, (1-p)n
 p, 

and second, by the importance given to information for such day, wk  (where k is the day of 

discharge and p is the probability of being discharged in any given day). Consider the values of p 

for the cohort of patients most likely to be discharged from the ICU (p = 0.75), the weighting 

factors ((1-p)n
 p) for the contribution of admitting an ICU patient in days 2, 3 and 4 are  0.1875, 

0.047, 0.012, respectively. In other words, the criticality of an ICU patient (from the 

aforementioned cohort, ie., p=0.75) would need to be more than 20 times higher than that of a 

patient already admitted in the unit to have the ICU patient admitted in day 3 (even when there is 

H (planning 

horizon)
obj Data Period # Admit # int mov

Assigned 

Crit

1 141.066 14 1 5 (PN) 3 20

14 1 5 (PN) 3 20

14 2 1 (PT) 0 20

14 1 5 (PN) 3 20

14 2 1 (PT) 1 20

14 3 0 0 20

14 1 5 (PN) 3 20

14 2 1 (PT) 1 20

14 3 0 0 20

14 4 0 0 20

14 1 5 (PN) 3 20

14 2 1 (PT) 1 20

14 3 0 0 20

14 4 0 0 20

14 5 0 0 20

2 141.993

3 142.289

4 142.631

5 142.893
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no doubt of the importance of the information associated with day 3,( i.e. w3= 1). Therefore, the 

criticality value of ICU patients is important only for deciding which ICU patient should go in 

the unit if any bed remains unoccupied in period 2 or later. 

 

Three additional experiments were also run to understand the effect on the bed 

assignment plans from the number of patients seeking admission (set Pn) and the number of beds 

available. Two of the data sets used in this experimentation had more patients seeking admission 

into the unit than beds available, whereas the third data set had fewer patients seeking admission 

into the unit than beds available. Further explanation regarding the details of the data sets used 

for this experimentation is included in Appendix H.  In almost all problem instances, our 

experiments showed that when the number of patients seeking admission exceeded the number 

of beds available during period 1, considering information about future periods is irrelevant since 

the unit reached full capacity in period 1.  

 

One factor that still needs to be discussed is the manner in which weights for the 

importance of information of future days were chosen. The weighting factors, wk  are arbitrary 

and can take any value depending on the importance that the PCCU's decision makers give to the 

information of day k, therefore we chose not to consider this factor into the experimentation. In 

these experiments, we assume a set of daily weights that monotonically decrease for larger 

planning horizons. The fixed set of values for each planning horizon was defined and used for all 

experimentation (see Table 10). 
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The results of our preliminary experimentation suggest that the number of patients in the 

unit and the number of patients seeking admission during period 1 most directly influenced a bed 

assignment plan. We have reached this conclusion since these two factors seem to affect the 

utilization of the unit during period 1. If the unit reaches full utilization during period 1 then 

considering any additional future information becomes unnecessary since no beds are available 

for those patients. Considering these insights, in the next section we propose an experimental 

design to better understand the effect of considering future information in today's bed assignment 

decision for multiple planning horizons, while controlling these two critical factors.  

 

4.4.2 Experimentation: Exploring the Effect of Different Planning Horizons in Bed 

Assignment Decisions  

The experimental results summarized in this section illustrate a hypothetical, yet realistic 

hospital setting in which decision makers give decreasing importance to information regarding 

bed demand of future days. We propose an experiment to evaluate the effectiveness of 

scheduling for planning horizons of up to 5 days, where such horizons are understood as the 

number of future days a decision maker would consider when making bed assignments. The 

future knowledge model was applied over 4 problem sets, each having 5 different problem 

instances. In each problem set, the five instances have the same number of Pa, Pn , and PT 

patients, yet different (randomly generated) patient characteristics. In total, our analysis is based 

on the results of applying the future knowledge model to 100 different experiments.   

The four problem sets were developed from a 22 factorial design, where the two factors of 

interest result from the preliminary experimentation described in the previous section. The 

number of patients originally admitted (set Pa) and the number of patients seeking admission (set 
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Pn) into the unit significantly affected bed assignments and therefore are the factors to be 

blocked in this experimentation. The levels chosen for the number of patients originally admitted 

into the unit are minimally 20 and a maximum of 24, which equivalently results in having 6 and 

2 free beds, respectively. The levels for the number of patients seeking admission were chosen to 

be 2 as a minimum and 4 as a maximum level.  

For each problem instance, the solution of applying the future knowledge model to data 

sets for planning horizons longer than 1 day were compared with solutions generated from 

planning with only day 1. The planning period extended to only 5 periods since that is a 

traditional work week in our partner hospital. The choice of smoothing weights selected for each 

planning period is shown in Table 10. The weights were chosen to depict the growing 

uncertainty of information surrounding future periods. Hence, period 1 is always weighted the 

highest and all weights following period 1 are assigned monotonically decreasing values. 

 

Table 10: Weights Assigned to each Period in the Planning Horizon for Experimentation Done for 1-5 Periods 
 

  

 

The following information was collected from each of the 100 problem instances: the 

objective function value of the resulting assignment, the number of internal movements per 

period, the percent change in the objective function value for periods with movements, and the 

unit's utilization. This information was used to compare schedules using future information with 

Number of 

Periods
Weights Assigned

1 1

2 0.8, 0.2

3 0.7, 0.2, 0.1

4 0.6, 0.2, 0.15, 0.05

5 0.5, 0.2, 0.15, 0.1, 0.05
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the schedule made considering available information for only day 1. The tables presented are 

grouped by experimental scenario. When reviewing these tables, it is important to note during 

which periods internal movements occurred and during which period the unit reached 100% 

utilization. Furthermore, the percent increase was only calculated for periods where a patient(s) 

was accepted into the unit after period 1 to help evaluate the value of including future 

information into planning for today. Perhaps a unit administrator would think a 2% increase in 

the objective function translates into a tangible increase in care therefore he or she would 

attribute value in considering future information for planning. This can apply conversely as well. 

Two percent may be perceived as too trivial to consider future information. 

 

Tables 11-15: Results for 20 PA, 2 PN 

Table 11 

 

Table 12 

 

Num. of Periods 

in the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 92.41 2 NA 92%

2 94.61 2 2 2.33 100%

3 95.29 2 4 100%

4 96.01 2 7 100%

5 96.54 3 5 100%

d
a

ta
 4

5
 

Number of Internal 

Movements per 

Period

Num. of Periods 

in the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 109.50 1 NA 92%

2 111.88 1 2 2.12 100%

3 112.53 1 3 100%

4 113.27 1 3 100%

5 113.76 1 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 3

8
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Table 13 

 

 

Table 14 

 

 

Table 15 

 

 

 

 

Num. of Periods 

in the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 114.25 2 NA 92%

2 116.71 3 1 2.10 100%

3 117.61 2 4 100%

4 118.40 2 4 100%

5 118.95 2 4 100%

Number of Internal 

Movements per 

Period
d

a
ta

 4
9

Num. of Periods 

in the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 125.68 1 NA 92%

2 127.81 1 4 1.66 100%

3 128.43 1 4 100%

4 128.97 1 4 100%

5 129.32 1 4 100%

Number of Internal 

Movements per 

Period

d
a

ta
 2

7

Num. of Periods 

in the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 136.66 1 NA 92%

2 138.96 1 1 1.65 100%

3 139.63 1 3 100%

4 140.21 1 3 100%

5 141.73 1 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 2

4
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 Tables16-20: Results for 20 PA, 4 PN 

Table 16 

 

 

Table 17 

 

 

Table 18 

 

 

 

 

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 119.22 2 NA 92%

2 116.35 3 2 -2.47 100%

3 116.71 3 2 100%

4 117.13 3 2 100%

5 117.47 3 2 100%

Number of Internal 

Movements per 

Period

d
a

ta
 1

7

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 135.18 3 NA 92%

2 136.46 3 1 0.94 100%

3 136.84 3 4 100%

4 137.28 3 4 100%

5 137.60 3 4 100%

Number of Internal 

Movements per 

Period

d
a

ta
 1

8

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 121.00 3 NA 92%

2 122.73 4 4 1.41 100%

3 122.81 4 4 100%

4 123.27 4 5 100%

5 123.63 4 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 3

7
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Table 19 

 

 

Table 20 

 

 

Tables21-25: Results for 24 PA, 2 PN 

  Table 21 

 

 

 

 

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 126.52 3 NA 88%

2 127.86 1 6 1.05 100%

3 128.38 1 6 100%

4 128.99 1 5 100%

5 129.40 1 6 100%

Number of Internal 

Movements per 

Period

d
a

ta
 2

6

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 99.17 2 NA 92%

2 100.28 3 1.10 100%

3 100.61 3 100%

4 100.95 1 3 100%

5 101.24 2 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 3

9

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of 

the Unit

1 2 3 4 5

1 125.46 2 NA 100%

2 125.54 2 100%

3 125.60 2 100%

4 125.66 2 100%

5 125.73 2 100%

Number of Internal 

Movements per 

Period

d
a

ta
 4

8
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Table 22 

 

 

Table 23 

 

 

Table 24 

 

 

 

 

 

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of 

the Unit

1 2 3 4 5

1 137.11 3 NA 100%

2 137.29 3 100%

3 137.38 3 100%

4 137.47 3 100%

5 137.55 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 4

7

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of 

the Unit

1 2 3 4 5

1 148.14 4 NA 100%

2 148.46 4 100%

3 148.53 4 100%

4 148.60 4 100%

5 148.66 4 100%

Number of Internal 

Movements per 

Period

d
a

ta
 4

6

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of 

the Unit

1 2 3 4 5

1 128.54 3 NA 100%

2 128.83 3 100%

3 128.98 3 100%

4 129.12 3 100%

5 129.27 3 100%

Number of Internal 

Movements per 

Period

d
a

ta
 4

0
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Table 25 

 

  

Tables26-30: Results for 24 PA, 4 PN 

Table 26 

 

Table 27 

 

 

 

 

 

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of 

the Unit

1 2 3 4 5

1 128.80 1 NA 96%

2 129.38 1 2 0.45 100%

3 129.61 1 2 100%

4 129.80 1 2 100%

5 129.94 1 2 100%

d
a

ta
 4

4

Number of Internal 

Movements per 

Period

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 158.58 2 NA 100%

2 158.67 2 100%

3 158.71 2 100%

4 158.75 2 100%

5 158.79 2 100%

Number of Internal 

Movements per 

Period

d
a

ta
 3

5

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 81.03 2 NA 100%

2 81.22 2 100%

3 81.32 2 100%

4 81.42 2 100%

5 81.51 2 100%

Number of Internal 

Movements

d
a

ta
 2
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Table 28 

 

 

Table 29 

 

 

Table 30 

 

 

The above experiments indicate that including future knowledge did not affect the 

number of internal movements performed during period 1. Only in one data set (26) did the 

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 84.1 2 NA 100%

2 84.28 2 100%

3 84.37 2 100%

4 84.46 2 100%

5 84.55 2 100%

Number of Internal 

Movements
d

a
ta

 3

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 111.47 2 NA 100%

2 111.57 2 100%

3 111.63 2 100%

4 111.68 2 100%

5 111.73 2 100%

Number of Internal 

Movements

d
a

ta
 4

Num. of Periods in 

the Planning 

Horizon

Objective 

Value

Percent 

Increase

Utilization of the 

Unit

1 2 3 4 5

1 96.521 2 NA 100%

2 96.6168 2 100%

3 96.6647 2 100%

4 96.7126 2 100%

5 96.7605 2 100%

Number of Internal 

Movements

d
a

ta
 5
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number of internal movements reduce after period 1 once future knowledge was considered. For 

the remaining 19 problem instances the number of internal movements remained the same as 

occurred in the solution for period 1. Furthermore, if there are not many beds available during 

period 1, as for scenarios with high number of admitted patients (i.e.,  2 free beds)  including 

future information seems irrelevant since the unit reaches full utilization during period 1. 

Therefore, our experiments suggest that it is most advantageous for the type of unit modeled in 

this work to use the single-period model as needed to support bed assignment problems.  

 

However, the future knowledge model may be useful for other areas of the hospital where 

admission into a hospital unit will be more certain for future patients, especially for elective 

procedures. For example, an adaptation of this model might be useful on a surgical floor where a 

bed may be scheduled weeks in advance. Of course, some of the model may need to be adjusted 

to meet the needs for that type of patient. Most likely the isolation requirements would be 

defined differently to represent patient needs (e.g. bariatric, dialysis, HIV, etc) instead of 

isolations.  In this example, the likelihood parameter could describe the likelihood a patient will 

require a bed on that floor due to a scheduled surgery on a given day.  

 

Moreover, considering longer planning horizons for bed assignments may be more 

relevant if the objective function also captures the financial incentives of admitting and 

discharging patients.  Our partner hospital for this study did not disclose any financial 

information. It is common in hospitals to charge higher costs for admitting and discharging 

patients than the cost of care during hospitalization, as a consequence, such behavior could 

dramatically influence the results of the analysis of this section.  
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Additionally, this model could be applied using a rolling horizon to facilitate bed 

assignment planning. One glaring limitation of this approach is the lack of updated patient 

information into the model after period 1. By updating the sets of patients and patient 

characteristics, the model may behave differently. However, the approach used for data 

generation in this study does not facilitate changes to the data sets after period 1.  Specifically, 

this study would need criteria to update criticality values daily as well as determine the arrival 

rate into the ICU.  
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5. CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS  

Through the use of mathematical programming and simulation, this thesis proposes a 

methodology to facilitate the implementation of isolation requirements in bed patient placement 

under stochastic inpatient demand. The proposed single-period mathematical optimization model 

can help unit managers mitigate the impact of internal movements on a day-to-day basis, while 

maximizing unit utilization. By integrating the proposed optimization model with a Monte Carlo 

simulation experiment, we have shown that having more double-bed rooms in a hospital unit can 

be counterproductive, since it increases the expected number of internal movements much faster 

than the expected capacity increase. Additionally, we have shown that increasing a hospital unit 

capacity through multi-occupancy rooms will amplify the variability of the number of internal 

movements and admissions. To cope with the effect of such variability the use of simple safety 

stock modeling can help the unit to provide a desired service level. Additionally we have shown 

for the scenarios considered in this study that it is not worth considering likely and uncertain 

demand information for future days into the current bed assignment planning.  

 

Extensions to the proposed study must consider the effect of complying with isolation 

requirements across multiple units. Additionally, the proposed methodology could be adapted to 

facilitate multi-criteria analysis to determine the unit configuration that provides the best trade-

off in terms of hospital capacity, revenue, and quality of care. Additionally, more work should be 

done to generalize the conclusion made from the future knowledge experimentation. The sample 

of patient scenarios should be broadened to include different bedroom configurations and more 

randomized patients in sets Pa and Pn.  
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APPENDICES 

Appendix A: Single-Period Math Programming Model 

#sets 
set PA;       # subset of patients admitted in the unit 
set PN;       # subset of incoming patients requiring admission in  the unit 
set P:= PA union PN ;     # set of all patients in the system 
set ISOLATION;     # set of isolation needs 
set GENDER;       # set of genders     
 set R;       # set of available rooms 
 
#parameters 
param B {j in R};     # number of beds available in each room j in R  
param G {i in P};     # gender of each patient i in P 
param I {i in P};     # isolation requirement of patient i in P 
param c {i in P};    # relative criticality of patient i in P compared  
       with all other patients 
param y{i in P, j in R}binary, default 0;   # binary parameter that is 1 if patient i was  
         in room j the day before, and 0 o.w. 
param flag {i in P,j in R} binary, default 0;  # binary parameter that is 1 if patient i cannot be moved from  

   current bed assignment room, and 0 o.w. 
 
#variables 
var X {i in P, j in R} binary;    # binary variable: 1 if patient i is moved to room  
          j, and 0 o.w. 
var delta {g in GENDER, j in R: B[j] > 1} binary;    # binary variable : 1 if there is at least one  
           patient with gender g in room j, and 0 o.w. 
var gamma {i in ISOLATION, j in R: B[j] > 1} binary; # binary variable: 1 if there is at least one patient  
          with isolation i in room j, and 0 o.w. 
 
#variables for linearization 
var splus{i in P, j in R} >=0; 
var sminus{i in P, j in R} >=0; 
 
maximize Goal:sum{i  in P, j in R: j <>0 and j<>99} c[i]*X[i,j] - sum{p in P, q in R: q<>0 and  
            q<>99}(1/c[p])*(splus[p,q]+sminus[p,q]); 
 
subject to const0 {i in P, j in R: j <> 0 and j <> 99}:X[i,j]-y[i,j] = splus[i,j]-sminus[i,j];  
subject to const1{i in P}: sum{j in R} X[i,j]=1;  
subject to const2 {i in P, j in R: j <> 0 and j <> 99 and B[j] <>1}: X[i,j] <= delta[G[i],j];  
subject to const3 {i in P, j in R: j <> 0 and j<> 99 and B[j] <>1}: X[i,j] <= gamma[I[i],j]; 
subject to const4{j in R: j <> 0 and j <> 99 and B[j] <>1}: sum {g in GENDER} delta[g,j] <=1;       
subject to const5 {j in R: j <> 0 and j <> 99 and B[j] <>1}: sum {i in ISOLATION} gamma[i,j] <=1;  
subject to const6 {j in R}: sum {i in P} X[i,j] <= B[j];     
subject to const7 {i in PA,j in R: j=0}: X[i,j] = 0; 
subject to const8 {i in PN,j in R: j=99 }: X[i,j] =0; 
subject to const9 {i in P, j1 in R: B[j1]=1 and y[i, j1]=1}:sum {j2 in R: B[j2] = 1 and j1 <>j2} X[i,j2]=0; 
subject to const10 {i in P, j in R: j <> 0 and j <> 99 }: X[i,j] >= flag[i,j]*y[i,j]; 
 
end; 
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Appendix B: Code Development for Experimentation 

This appendix describes in full detail the rationale behind the code developed to run the 

simulation for the single-period model experimentation described in section 4.2.1. 

 
1. Class Descriptions 

Two classes were defined for this code to describe specific structures from the model. A 

patient class was defined that included the following identifiers: ID, isolation, criticality, 

lengthstay, dischargeday, room, and gender. The ID was the unique identifier for each patient. 

“Isolation” was the isolation requirement assigned to each patient. “Criticality” was the critical 

value assigned to each patient. “Lengthstay” was the length of stay for each patient if they were 

assigned a bed within the unit. “Dischargeday” is the day the patient would leave the unit if the 

patient was staying in the unit. This day was calculated by adding the current day in the 

simulation and the “lengthstay” value if the patient was admitted to the unit. The room was the 

current room location of the patient. Lastly, the gender described if the patient was male or 

female. The second class was defined for the rooms described in the model. Each room had a 

“name” which was a numeric identifier and a “numbeds.” The “numbeds” is the capacity of the 

room. For the rooms in the unit, the “numbeds” were one or two whereas for the “Triage” and 

“Discharge” areas that number was much larger. 

 

2. Function Descriptions 

 Eight functions were created to run the simulation. The first function 

(ReadExperimentalCondition) reads a text file that lists the experimental conditions for the set of 

experiments that will be run. The text file includes the “endtime” of the simulation. The 

“endtime” refers to the number of days which the simulation will run.  For example if the 
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“endtime” value is 365 then this infers that the program is running for one year. Next, the file 

contains the number of repetitions for each experimental day. Therefore, the total simulated days 

would be calculated by multiplying the “endtime” by the number of repetitions. Next, the file 

contains the type of experimental arrival rate that will be used. In this experiment the historical 

arrival rate, the historical arrival rate plus one additional patient per day, and the historical arrival 

rate plus two additional patients per day were used. The text file would indicate which of these 

three arrival rates would be used for the particular experiment being run. Lastly, the file 

contained the number of double bedrooms for the particular set of experiments. As described 

earlier, the goal of this experimentation was to determine how many double bedrooms should be 

in the unit to meet the demand of the historical arrival rate. 

 

 Following this function, the code proceeded to read the initial conditions of the unit. This 

function (ReadInitConditions) opened a text file that contained patient IDs, length of stays, 

isolation requirements, criticalities, rooms, and genders for those patients who would be in the 

unit at the beginning of the experiment. Furthermore, from the length of stay, the day of 

discharge from the unit was calculated in this function. All of this patient information was stored 

in a list construction. Immediately following this function, a function (DischargePatients) was 

executed to determine if any patient should be discharged from the unit. This function compared 

the current time(experimental day) of the experiment with the value listed for discharge day for 

each patient. If these values matched, the patient would be erased from the unit list.  

 

 Once the configuration of the unit was finalized, the next function (NewPatients) 

determined the number of patients who would be seeking admission into the unit and their 
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respective length of stays. To determine the number of patients who would seek admission for oa 

given experimental day, the code would randomly generate a number between 1 and 50. This 

number would indicate to the code which file of arrival values it should open to read how many 

patients would be seeking admission into the unit. Next, the code would open the file and read in 

the first value in the file. This value is interpreted as the number of patients seeking admission 

for the current day. Next, the code repeated this random number generation to determine which 

file to open to for the length of stay data. Then for each patient seeking admission, the length of 

stay value was read from the file and stored as a vector. This method was used to determine the 

number of patients seeking admission and the length of stay values so that these attributes could 

follow the historical distributions of the respiratory unit in RGH. Merely using a RAND function 

would not achieve this.  

 

 Following this function, the patients seeking admission are assigned their remaining 

attributes. In this function (PopulateNewPatients), each patient seeking admission was given an 

ID, length of stay, a discharge day, a critical value, an isolation requirement, a gender, and a 

room.   

 

 Once the data for the experiment is compiled, the data file can be generated using the 

“GenerateGLPKfile” function. This function writes a data file according to the syntax of the 

Math programming language MATHPROG, which is used by GLPK. Next, the code calls the 

stand alone solver in GLPK to run the outcome of that experimental day (using SolveGLPK 

function). The solver will stop once the solver reaches its maximum runtime which was defined 

in the code. The solution is exported to a text file which is read in the final function 



 

67 
 

(ReadSolution). In the last function, the output file is opened so that the code can read the patient 

information. Most importantly this file indicates the new configuration of the unit which is 

indicated by the room attribute of each patient. Furthermore, this function adjusts the discharge 

day since one experimental day would have elapsed. 

 

3. Main Function 

 The overall code executes through the eight functions described above in that order then 

enters into a loop to proceed through the entire experiment. For each repetition the code will 

perform the following functions until the “endtime” is reached: 

 PopulateNewPatients 

 GenerateGLPKfile 

 SolveGLPK 

 ReadSolution 

 DischargePatients 

If the experiment is designed to run more than one repetition then the current day will 

reset to zero and the initial conditions of the unit will be reinstated. After the unit is essentially 

reset, the loop described above is repeated again until the “endtime” is reached. Once the entire 

experiment is completed then the text file which has been storing all experimental results is 

renamed for the particular experiment that was run.  
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Appendix C: Simulation C++ Code 

// LINUX VERSION 

// Dec 17, 2011 
 

#include <iostream> 

#include <list> 
#include <algorithm> 

#include <functional> 

#include <iterator> 

#include <cstdlib> 
#include <vector> 

#include <fstream> 

extern "C"{ 
 #include "glpk.h" 

} 

#include <stdio.h> 
#include <stdlib.h> 

#include <string> 

#include <sstream> 

#include <time.h> 
 

// used here for convenience, use judiciously in real programs. 

using namespace std; 
 

// definition patient class 

class patient { 
  public: 

    int Id; 

    int Isolation; 
    int Criticality; 

    int LenghtStay; 

    int DischargeDay; 

    int Room; 
    int Gender; 

}; 

 
bool GetDischargeDay(patient pat, int clktime) 

{ 

 return(pat.DischargeDay<= clktime); 
} 

 

class room{ 

public: 
 int name; 

 int numbeds; 

}; 
// function declarations 

 

// reads initial experimental conditions (strings: test, numb of dbrms, endtime, 
repetition, numtest, numdbrms) 

void ReadExperimentCondition(vector<string> &, vector<string> &, int&, int&, int&, int&); 

 
// reads number of new patients per day and their respective length of stay 

void NewPatients(vector<int>&, vector<int> &, vector<int> &, int&, string & ); 

 

// for each new patient object it populates its features 
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void PopulateNewPatients(list<patient> &, vector<int>&, vector<int>&, vector<int>&, int, 

int& ); 
 

// reads the initial list of patients and conditions in the 5400 unit 

void ReadInitConditions(list<patient> &, int); 
 

// removes from the unit, patients who have been discharged 

void DischargePatients(list<patient> &, int); 

 
// generates the input file for glpsol 

void GenerateGLPKfile(list<patient>&, list<room>&, vector<int>&, int&, int&, int&); 

 
// calls glpsol to solve problem instance 

int SolveGLPK(list<patient> &, list<room>&, int&); 

 
// uploads glpsol solution into the unit 

void ReadSolution(list<patient> &, int ); 

 

// uploads initial room conditions at the 5400 unit 
void ReadRoomConditions(list<room>& , int & , int &, int &, string & ); 

 

 
void Welcoming(string&, string&, int&, int&); 

 

// this function declaration is necessary for controlling the mip_gap tolerance in glpk. 
The function is called in SolveGLPK function 

void cb_func(glp_tree *tree, void *info) 

{ if(glp_ios_reason(tree)==GLP_IBINGO) 
 { if(glp_ios_mip_gap(tree)<=0.20) 

  glp_ios_terminate(tree); 

 } 

 return; 

} 

// global constants. number of critical levels and isolation levels used to clasify 

patients 
int Maxcriticality=10; 

int Maxisolation=6; 

 
 

int main() 

{ 

 //initial random seed 
 srand(unsigned(time(NULL))); 

 

 int repetition=0; 
 

 // patients in the 5400 unit 

 list<patient> unit; 

 

 // rooms in the 5400 unit 

 list<room> u5400; 

 
 //vector with the daily number of new inpatients in the unit 

 vector<int> inpatients; 

 
 //vector with the length of stay of the new inpatients 

 vector<int> lengthinpatients; 
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//vector with the position lengthinpatients corresponding to a new inpatients in 

the unit 
 vector<int> indexlength; 

 

 int clktime=0; // execution time 
 int endtime=0; // number of days for each replication ( 1823:= approx. 5  

       years of information) 

 int numnewpat=0; //temp integer 

 int intmovement=0;  //temp integer 
 int nsinglerooms=0; 

 int ndoublerooms=0; 

 int totalrooms=0; 
 int idctr=0; 

//string fldrpath= "/home/rpmeie/CRGHPatFlow/R1"; // in windows: 

"C:\\Users\\rpmeie\\Documents\\Visual Studio 2008\\Projects\\RGH5400\\RGH5400\\" ; 
 string strnumdbrms; 

 string expname; 

 string smryname; 

 
 //initial welcoming message in prompt 

 

 int NUMTESTS=0; 
 int NUMDBBRMS=0; 

 vector<string> tests; 

 vector<string> strarraydbrms; 
 

 ReadExperimentCondition(tests, strarraydbrms, endtime, repetition, NUMTESTS, 

 NUMDBBRMS); 
 

 for(int i=0; i<NUMTESTS; i++) 

 { 

  expname=tests[i]; 

 

  for(int k=0; k <NUMDBBRMS; k++) // change 5 when instruction in green  

        before loop is activated 
  { 

   clktime=0; 

   strnumdbrms=strarraydbrms[k]; 
 

   ofstream outresults; 

   outresults.open("smry.txt", ios::out); 

  outresults<<"NUMITERATIONS\t"<<  
     "CLKTIME\t"<<"NUM_INT_MOVS\t"<<"NUMPATIENTS\t"<<"AVG_CRIT\t"<<"GOAL\n"; 

   outresults.close(); 

 
ReadRoomConditions(u5400,nsinglerooms,ndoublerooms,totalrooms, 

strnumdbrms); 

 

   ReadInitConditions(unit, clktime); 

 

   DischargePatients(unit, clktime); 

 
   NewPatients(inpatients,lengthinpatients,indexlength,numnewpat,  

   expname); 

 
   idctr=unit.size(); 

 

   for(int j=1; j<=repetition; j++) 
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   { 

    while(clktime< endtime) 
    { 

cout<<"Running replication: "<<j<<", day: 

"<<clktime<<"...\n"; 
     PopulateNewPatients(unit, inpatients, lengthinpatients,  

     indexlength, clktime, idctr); 

     GenerateGLPKfile(unit, u5400, inpatients, clktime,  

     Maxisolation, j); 
     intmovement=SolveGLPK(unit, u5400, clktime); 

     ReadSolution(unit, clktime); 

     clktime++; 
     DischargePatients(unit,clktime); 

    } 

    clktime=0; 
    ReadInitConditions(unit, clktime); 

   } 

   smryname+=expname; 

   smryname+="_db_"; 
   smryname+=strnumdbrms; 

   smryname+=".txt"; 

   rename("smry.txt",smryname.c_str()); 
   smryname=""; 

  } 

 
 } 

 

 return 1; 
} 

 

// function definition: 

 

void ReadExperimentCondition(vector<string> & tests, vector<string> & strarraydbrms, int& 

endtime, int& repetition, int& numtest, int& numdbrms) 

{ 
 vector<string> test0; 

 vector<string> strarraydbrms0; 

 string tmpstr; 
 

 ifstream indata; 

 indata.open("./ExperimentalConditions.txt"); 

 
 if(!indata) 

 { 

  cerr<<"Error: file could not be opened"<<endl; 
  exit(1); 

 } 

 

 while(!indata.eof()) 

 { 

  indata >> endtime; 

  indata >> repetition; 
  indata >> numtest; 

  indata >> numdbrms; 

 
  for(int i=1; i<= numtest; i++) 

  { 

   indata >> tmpstr; 
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   test0.push_back(tmpstr); 

  } 
 

  for(int j=1; j<=numdbrms; j++) 

  { 
   indata >> tmpstr; 

   strarraydbrms0.push_back(tmpstr); 

  } 

 } 
 

 tests=test0; 

 strarraydbrms=strarraydbrms0; 
 indata.close(); 

} 

 
 

 

 

void ReadInitConditions(list<patient> & unit, int currentime) 
{ 

 list<patient> unittemp; 

 patient CurrentPatient; 
 ifstream indata; // indata is like cin 

 

 indata.open("../PATINIT.txt"); // opens the file 
 if(!indata) { // file couldn't be opened 

      cerr << "Error: file could not be opened" << endl; 

     exit(1); 
 } 

 

 while (!indata.eof()) { // keep reading until end-of-file 

         indata >> CurrentPatient.Id; 

   indata >> CurrentPatient.LenghtStay; 

   CurrentPatient.DischargeDay=CurrentPatient.LenghtStay+currentime; 

   indata >> CurrentPatient.Isolation; 
   indata >> CurrentPatient.Criticality; 

   indata >> CurrentPatient.Room; 

   indata >> CurrentPatient.Gender; 
 

   unittemp.push_back(CurrentPatient);// sets EOF flag if no value found 

   } 

 
 unit=unittemp; 

   indata.close(); 

 
} 

 

 

void DischargePatients(list<patient> & unit, int currentime) 

{ 

 //unit.erase(remove_if(union.begin(),union.end(),GetDischargeDay()),union.end()); 

 for(list<patient>::iterator it=unit.begin();it != unit.end();) 
 { 

  if(GetDischargeDay(*it,currentime)) 

  { 
   it=unit.erase(it); 

  }else 

  { 
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   it++; 

  } 
 } 

 

} 
 

 

void GenerateGLPKfile(list<patient> &unit, list<room> &u5400, vector<int> &inpatients, 

int& clktime, int& maxisolation, int& repetition) 
{ 

 int tmpctr=0; 

 for(list<patient>::iterator it = unit.begin(); it != unit.end(); ++it) 
        { 

   if((*it).Room != 0) 

   { 
    tmpctr++; 

   } 

        } 

 
 ofstream outdata; 

 outdata.open("glpk_input.dat",ios::out); 

 outdata<<"param numPA:="<<tmpctr<<";\n"; //unit.size()-inpatients[clktime]<<";\n"; 
 outdata<<"param numPN:="<<inpatients[clktime]<<";\n"; 

 outdata<<"param numISO:="<<maxisolation<<";\n"; 

 outdata<<"param repetition:="<< repetition<<";\n"; 
 outdata<<"param clktime:="<<clktime<<";\n"; 

 outdata<<"set PA:="; 

 
 for(list<patient>::iterator it = unit.begin(); it != unit.end(); ++it) 

        { 

   if((*it).Room != 0) 

   { 

    outdata << (*it).Id << " "; 

   } 

        } 
 

 outdata<<";\n"; 

 
 outdata<<"set PN:="; 

 

 for(list<patient>::iterator it = unit.begin(); it != unit.end(); ++it) 

        { 
   if((*it).Room==0) 

   { 

    outdata << (*it).Id << " "; 
   } 

        } 

 outdata<<";\n"; 

 

 outdata<<"set ISOLATION:="; 

 for (int i =1; i <= maxisolation; i++) 

 { 
  outdata<<i<<" "; 

 } 

 outdata<<";\n"; 
 

 outdata<<"set GENDER:= 0 1;\n"; 
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 outdata <<"set R:="; 

 for(list<room>::const_iterator it=u5400.begin(); it!=u5400.end(); ++it) 
 { 

  outdata<<(*it).name<<" "; 

 } 
 outdata<<";\n"; 

 

 outdata<< "param B:=\n"; 

 for(list<room>::const_iterator it=u5400.begin(); it!=u5400.end(); ++it) 
 { 

  outdata<<(*it).name<<" "<<(*it).numbeds<<"\n"; 

 } 
 outdata<<";\n"; 

 

 outdata<<"param: "<<" G\t"<<"I\t"<<"c\t"<<"flag\t"<<"lstay:=\n"; 
 for(list<patient>::const_iterator it = unit.begin(); it != unit.end(); ++it) 

    { 

  outdata << (*it).Id << "\t 

"<<(*it).Gender<<"\t"<<(*it).Isolation<<"\t"<<(*it).Criticality<<"\t"<< 
0<<"\t"<<(*it).LenghtStay<<"\n"; 

    } 

 outdata<<";\n"; 
 

 outdata<<"param y:=\n"; 

 for(list<patient>::const_iterator it = unit.begin(); it != unit.end(); ++it) 
    { 

  outdata << (*it).Id << "\t "<<(*it).Room<<"\t"<<1<<"\n"; 

    } 
 outdata<<";\n"; 

 outdata<<"end;"; 

 

 outdata.close(); 

}; 

void ReadSolution(list<patient> & unit, int clktime) 

{ 
 list<patient> glpunit; 

 patient CurrentPatient; 

 
 int unitsize=unit.size(); 

 

 

 ifstream indata; 
 indata.open("gout.dat"); 

 if(!indata) { // file couldn't be opened 

     cerr << "Error: file could not be opened" << endl; 
     exit(1); 

 } 

 

 

 for(int i =1; i<=unitsize; i++) 

 { 

  indata>>CurrentPatient.Id; 
  indata>>CurrentPatient.LenghtStay; 

  indata>>CurrentPatient.Isolation; 

  indata>>CurrentPatient.Criticality; 
  indata>>CurrentPatient.Gender; 

  indata>>CurrentPatient.Room; 

  if(CurrentPatient.Room!=0) 
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  { 

   CurrentPatient.LenghtStay=CurrentPatient.LenghtStay-1; 
 

   for(list<patient>::iterator it = unit.begin(); it != unit.end(); 

++it) 
   { 

    if((*it).Id==CurrentPatient.Id) 

    { 

     CurrentPatient.DischargeDay=(*it).DischargeDay; 
    } 

   } 

 
  }else 

  { 

   CurrentPatient.DischargeDay=CurrentPatient.LenghtStay+clktime; 
  } 

  glpunit.push_back(CurrentPatient); 

 } 

 indata.close(); 
 unit=glpunit; 

} 

 
void NewPatients(vector<int> & vnum0, vector<int> & vlen0, vector<int> & vindx0, int& 

numarrivals,  string & expname) 

{ 
 vector<int> vnum; 

 vector<int> vlen; 

 vector<int> vindx; 
 

 ifstream inarrivals; 

 ifstream inlength; 

 int num; 

 int len; 

 int indx=0; 

 int rndAR=1+rand()%50; 
 int rndLS=1+rand()%50; 

 string str_rndAR; 

 string str_rndLS; 
 stringstream stAR_out; 

 stringstream stLS_out; 

 stAR_out << rndAR; 

 stLS_out << rndLS; 
 str_rndAR = stAR_out.str(); 

 str_rndLS = stLS_out.str(); 

 
 

 string str0="../Experiment"; 

 string str1="/incomingpatient";// windows: "\\incomingpatient"; 

 string str2="/lengthpatient"; // windows\\lengthpatient"; 

 string str3=".txt"; 

 string inpatient_filename; 

 string lengthstay_filename; 
 

 if(expname=="A") 

 { 
  inpatient_filename=str0+expname+str1+str3; 

  lengthstay_filename=str0+expname+str2+str3; 

 }else{ 
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  inpatient_filename=str0+expname+str1+str_rndAR+str3; 

  lengthstay_filename=str0+expname+str2+str_rndLS+str3; 
 } 

 

 inarrivals.open(inpatient_filename.c_str(), ios::in); 
 inlength.open(lengthstay_filename.c_str(),ios::in); 

 vindx.push_back(0); 

 

 while(!inarrivals.eof()) 
 { 

  inarrivals>>num; 

  vnum.push_back(num); 
  if(num!=0) 

  {        

   for(int i=1;i<=num;i++) 
   { 

    inlength>>len; 

    vlen.push_back(len); 

 
   } 

  }             

  indx=indx+num; 
  vindx.push_back(indx); 

 } 

 inarrivals.close(); 
 inlength.close(); 

 numarrivals=vnum.size(); 

 vnum0=vnum; 
 vlen0=vlen; 

 vindx0=vindx; 

 

} 

 

void PopulateNewPatients(list<patient> &unit, vector<int> &vnum,  vector<int> &vlen, 

vector<int> &vindex, int curtime, int &ctr ) 
{ 

 patient NewPat; 

 
 if (vnum[curtime]!=0) 

 {         

 

  for(int i=1; i<= vnum[curtime]; i++) 
  {   ctr++; 

   NewPat.Id=ctr; 

   NewPat.LenghtStay=vlen[vindex[curtime]+i-1]; 
   NewPat.DischargeDay=vlen[vindex[curtime]+i-1]+curtime; 

   NewPat.Criticality= 1+ rand()%Maxcriticality; 

   NewPat.Isolation=1+rand()%Maxisolation; 

   NewPat.Gender=rand()%2; 

   NewPat.Room=0; //0:= TRIAGE 

   unit.push_back(NewPat); 

  } 
 }        } 

 

 
 

int SolveGLPK(list<patient> & unit, list<room> & u5400, int& clktime){ 
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 //problem object for glpk:see glpk manual for more info 

 glp_prob *mip;//defines type of problem 
 glp_tran *tran; 

 glp_iocp parm; 

 
 int ret;//"return" 

 glp_mem_limit(3584); 

 mip = glp_create_prob(); 

 tran = glp_mpl_alloc_wksp(); 
 ret = glp_mpl_read_model(tran, "RGH_simulation.mod", 1); 

 if (ret != 0) 

 { 
  fprintf(stderr, "Error on translating model\n"); 

  goto skip; 

 } 
 ret = glp_mpl_read_data(tran, "glpk_input.dat"); 

 

 if (ret != 0) 

 { 
  fprintf(stderr, "Error on translating data\n"); 

  goto skip; 

 } 
 

 ret = glp_mpl_generate(tran, NULL); 

 if (ret != 0) 
 { 

  fprintf(stderr, "Error on generating model\n"); 

  goto skip; 
 } 

 glp_mpl_build_prob(tran, mip); 

 glp_simplex(mip, NULL); 

 

 glp_init_iocp(&parm); // for controling MIP_gap 

 parm.cb_func=cb_func; // for controling MIP_gap 

 glp_intopt(mip, &parm); // for controling MIP_gap 
 //glp_intopt(mip, NULL);  // function used in original code instead of the above 

 ret = glp_mpl_postsolve(tran, mip, GLP_MIP); 

 if (ret != 0) 
  fprintf(stderr, "Error on postsolving model\n"); 

skip: glp_mpl_free_wksp(tran); 

 glp_delete_prob(mip); 

 
 

 return 0; 

} 
 

void ReadRoomConditions(list<room>& u5400, int & numsinglerooms, int &numdoublerooms, int 

&numrooms, string& strnumdbrms) 

{ 

 list<room> u54temp; 

 room ReadRoom ; 

 ifstream inroom; 
 string str1="../RoomExpConfig/room_info"; // windows:"RoomExpConfig\\room_info"; 

 string str2=strnumdbrms; 

 string str3=".dat"; 
 string roominfo_filename= str1 + str2 + str3; 

 inroom.open(roominfo_filename.c_str(),ios::in); 

 inroom>> numsinglerooms>>numdoublerooms >> numrooms; 
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 for (int i=1; i<=numrooms; i++) 

 { 
  inroom>> ReadRoom.name >> ReadRoom.numbeds; 

  u54temp.push_back(ReadRoom); 

 } 
 

 inroom.close(); 

 ReadRoom.name=0; 

ReadRoom.numbeds=3000;  // initializing TRIAGE AREA as the first room in the list 
of rooms 

 u54temp.push_front(ReadRoom); 

 ReadRoom.name=99; 
ReadRoom.numbeds=3000; // initializing DISCHARGE AREA as the last room in the list 

of rooms 

 u54temp.push_back(ReadRoom); 
 u5400=u54temp; 

} 

 

void Welcoming(string& strnumdblrms, string& expname, int& repetition, int& nsdays) 
{ 

 cout<< "++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"; 

 cout<< "+++            RGH 5400 UNIT SIMULATION              +++\n"; 
 cout<< "+++                                                  +++\n"; 

 cout<< "+++    Copyright Dr. Ruben Proano, Feb 2011 (RIT)    +++\n"; 

 cout<< "+++    rpmeie@rit.edu                                +++\n"; 
 cout<< "++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"; 

 cout<<"\n"; 

 cout<<" This simulation has been written in C++ and aims to determine\n"; 
 cout<<" the effect of the number of single and double rooms at the \n"; 

 cout<<" 5400 unit at RGH.\n"; 

 cout<<" The optimization engine of this simulation was built on \n"; 

 cout<<" GLPK optimization software, and it has been used under the\n"; 

 cout<<" GNU license agreements. \n"; 

 cout<<"\n"; 

 cout<<"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"; 
 cout<<"PLEASE INPUT THE NUMBER OF REPETITIONS FOR THIS SIMULATION: "; 

 cin>> repetition; 

 cout<<"\n"; 
 cout<< "PLEASE INPUT THE NUMBER OF DOUBLE ROOMS IN THIS EXPERIMENT: "; 

 cin>> strnumdblrms; 

 cout<<"\n"; 

 cout<<"PLEASE INPUT THE EXPERIMENT NAME (choose from: A, B0, B1, B2): "; 
 cin>> expname; 

 cout<<"\n"; 

 cout<<" This experiment will simulate the functioning of the \n"; 
 cout<<" 5400 unit for batches of "<<nsdays<<" working days. Each\n"; 

 cout<<" of such batches will be randomly replicated "<< repetition <<" times\n"; 

 cout<<" Please refer to the readme.txt file for details on the output\n "; 

 cout<<" data generated\n"; 

 cout<<"\n"; 

 cout<<"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"; 

 cout<<" STARTING EXPERIMENTATION \n"; 
 cout<<"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"; 

 

} 
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Appendix D: Future Knowledge Math Programming Model 

#sets 
set PA;       #subset of patients admitted in the unit 
set PN;        #subset of incoming patients requiring admission in the unit 
set PT;      #subset of patient who are in the ICU not seeking admission  
         during the initial planning period 1 
set P:= PA union PN union PT;    #set of all patients in the system 
set Q:= PA union PN;    #set of patients who are admitted in the unit and those patients  
       requiring admission 
set ISOLATION;     #set of isolation needs 
set GENDER;       #set of genders         
set R;       #set of available rooms 
set H;      #the set of periods for the planning horizon 
 
#parameters 
param B {j in R};     # number of beds available in each room j in R  
param G {i in P};     # gender of each patient i in P 
param I {i in P};     # isolation requirement of patient i in P 
param c {i in P};    # current relative criticality of patient i in P compared to all  
       patients 
param w {k in H};    # the weight assigned with period     
param y {i in PA, j in R} binary, default 0;  # binary parameter that is 1 if patient i was in room j the day  
         before, and 0 o.w. 
param p {i in PT};    # probability that patient i in PT may be discharged from the  
         ICU in a given period 
 
#variables  
var X {i in P, j in R, k in H} binary;     # binary variable: 1 if patient i is in room j  
           during period k, and 0 o.w. 
var delta {g in GENDER, j in R, k in H: B[j] > 1} binary;   # binary variable: 1 if there is at least one  
    patient with gender g in room j in period k, 

   and 0 o.w. 
var gamma {i in ISOLATION, j in R,k in H: B[j] > 1} binary;  # binary variable: 1 if there is at least one  
            patient with isolation i in room j in period  
            k, and 0 o.w. 
 
#variables for linearization 
var splus{i in P, j in R, k in H} >=0; 
var sminus{i in P, j in R, k in H} >=0; 
 
maximize Goal:  
sum{k in H:k<>0} w[k]*(sum{i in Q, j in R: j <>0 and j<>99} c[i]*X[i,j,k]  
- (1/2)*sum{o in Q, b in R: b <>0 and b<>99}(1/c[o])*(splus[o,b,k]+sminus[o,b,k])) 
+sum{k in H:k<>0} w[k]*(sum{i in PT, j in R: j <>0 and j<>99} c[i]*X[i,j,k]  
-(1/2)*sum{u in PT, d in R: d <>0 and d<>99}(1/c[u])*(splus[u,d,k]+sminus[u,d,k])*((1-p[u])^(k-1)*p[u])); 
 
subject to const0 {i in P, j in R, k in H: j <> 0 and j <> 99 and k<>0}:X[i,j, k]-X[i,j,k-1] = splus[i,j,k]-sminus[i,j,k];  
subject to const1{i in P, k in H}: sum{j in R} X[i,j,k]=1;  
subject to const2 {i in P, j in R, k in H: j <> 0 and j<>50 and j <> 99 and B[j] <>1}: X[i,j,k] <= delta[G[i],j,k];  
subject to const3 {i in P, j in R, k in H: j <> 0 and j<>50 and j<> 99 and B[j] <>1}: X[i,j,k] <= gamma[I[i],j,k]; 
subject to const4 {j in R, k in H: j <> 0 and  j<> 50 and j <> 99 and B[j] <>1}: sum {g in GENDER} delta[g,j,k] <=1;       
subject to const5 {j in R, k in H: j <> 0 and j<>50 and j <> 99 and B[j] <>1}: sum {i in ISOLATION} gamma[i,j,k] <=1; 
subject to const6 {j in R, k in H}: sum {i in P} X[i,j,k] <= B[j]; 
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subject to const7 
     {i in P, j1 in R, k in H: B[j1]=1 and k<>0}:sum {j2 in R: B[j2] = 1 and j1 <>j2} X[i,j2,k] <= (1-X[i,j1,(k-1)]);   
subject to const8 {i in PA, k in H}: X[i,0,k] = 0; 
subject to const9 {i in Q, k in H}: X[i,50,k] = 0; 
subject to const10 {i in PT }: sum {j in R, k in 0..1: j<>50} X[i,j,k] =0; 
subject to const11 {i in PN}: X[i,0,0] = 1; 
subject to const12{ i in PA, j in R}: X[i,j,0]=y[i,j]; 
subject to const13 {i in PT, k in H}: X[i,0,k] =0; 
subject to const14{i in PT, k in H:k<>0}:  X[i,50,k]<= 1- sum {j in R:j<> 50} X[i,j,(k-1)]; 
subject to const15 {i in PN, k in H: k<>0}:X[i,99,k]=1-X[i,0,k-1]; 
subject to constbanddischarged {i in P, k in H: k>0}: X[i,99,k]=0; 
 
end; 
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Appendix E: Determining Number of Patients per LOS Category 

In this appendix an example calculation is provided to understand the logic behind 

determining the proportion of the number of patients from the ICU study done by Ong et al[35] 

that comprise each LOS category. In this study, nearly 5000 patients were considered to 

determine what characteristics could be used to determine LOSs greater than 30 days. However, 

this thesis is only concerned with patients who had a LOS less than 30 days. Therefore, the 

following calculations were performed to separate the data relevant for patients with a LOS less 

than 30 days. 

Figure 13: Composition of the Study Groups.  

 
ILOS<30 = patients with intensive care unit (ICU) length of stay less than 30 days 

ILOS>30 = patients with ICU length of stay greater than or equal to 30 days. 

 

Example:LOS category 1 
 

By looking at Figure 12 in the main body of this paper which shows the percentage of 

patients in each LOS category it was determined that 50% of the admitted patients were 

characterized as LOS category 1. To determine the number of patients in category 1 the total 

number of patients was multiplied by 50% (see equation 1). Next, to determine how many 

patients were in category 1 and had a LOS < 30 days the calculation in equation 2 was 

performed.  Lastly, to determine the percentage of patients who survived their ICU stay, fell into 

category 1, and had a LOS < 30 days the calculation in equation 3 was performed. We can now 
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conclude that about 56.8% of the patients considered in this study had a LOS of 2 days or less 

(category 1 patient). 

    (          )      (                              )                             

 

(1) 

     (                   )     (                    )                                      

 

(2) 

     (                               )    (                   )        

 

(3) 

 



 

83 
 

 
Appendix F: Data File Creation for Future Knowledge Consideration Model 

To create the data sets  to experiment for the future knowledge consideration model a 

combination of Microsoft Excel 2010 and Microsoft Visual Studios 2010 were used. Listed 

below is pseudocode that describes the basic process for creating a single data file with a given 

set of weights and a given planning horizon. 

PSEUDOCODE:  

1) Generate data for set    

a) Randomly determine the number (between 18 and 26) of patients in the set   

b) Randomly assign genders, isolation requirements, and criticality values  

c) Make room assignments randomly to determine initial condition 

d) Review assignments to ensure no constraints would be violated 

e) Perform any modifications to parameters so that all room assignments are valid 

2) Generate data for set   

a) Randomly determine number of patients in the set   

b) Assign genders, isolation requirements, and criticality values  

3) Generate data for set  

a) Randomly assign patients in the ICU to different LOS cohorts 

b) Assign probabilities of being discharged in any given day to ICU patients based on their LOS 

cohort  

c) Randomly assign genders, isolation requirements, criticality values 
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Create Set       
First the number of patients in set       was chosen randomly by the experimenter. Next 

the gender values were ascertained by using the RAND() function and a logic formula in Excel. 

This procedure worked as follows,if the random number generated by the RAND() function was 

less than 0.5 then the value was a determined to be a “1” and “0” otherwise by implementing an 

IF() function. For this data set, male gender was associated with a value of “1” and female 

gender a value of “0.”Isolation requirement values were determined by the RANDBETWEEN()  

function with the parameters 0 and 6. The RANDBETWEEN() function returns an integer value 

0-6 to signify the 6 different isolation requirements and the status of having no isolation 

requirements, “0.” The criticality values were generated utilizing the same method as for 

isolation requirements except different parameters were used. Criticality values range from 1-10 

for patients in the unit thus the parameters 1 and 10 were used. 

 

Create set    

Next, the set of patients,   , who were seeking admission to the unit was determined 

using the C++ code in Appendix G . This code selects a random integer from a stream of integers 

that follows the distribution of the patient demand for the PCCU. Next, a function assigns all 

patient characteristics for each patient.  

 

Create set    

It was assumed in this problem that the ICU would always be fully utilized therefore the 

number of patients in that unit did not need to be generated. Additionally, these patients did not 

need to have randomly assigned criticality values. A value of 20 was assigned to all patients to 
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signify that they were much more critical than the patients in the unit or patients seeking 

admission into the unit. 

 

However, for the set of patients in the ICU the    parameter needed to be determined. 

Excel was used to generate the probability,    that the patient would leave the ICU in the current 

planning period. The procedure for assigning a probability to a patient in the ICU involves a 

three step process. First the RAND() function is instated to generate a random decimal. Then 

nested formulas of IF() functions are used to determine which LOS category the patient should 

be assigned. The nested IF() functions compare the random decimal to each value in the 

cumulative probability column in Table 31 until the decimal is less than the cumulative 

probability. Now, the patient can be assigned a LOS category. Next, a VLOOKUP() function is 

used to determine the proper probability to assign the patient based on what LOS category was 

assigned. 

Table 31: Table used to Assign Probabilities 

 

 

 All other parameters such as     ,   , and set H were assigned purposefully by the 

experimenter to create specific scenarios that are outlined in the beginning of Section 4.4. 

 

 

LOS 

Categories
Proportion Probability

Cumulative 

Probality

1 0.568 0.75 0.568

2 0.25 0.321428571 0.818

3 0.09 0.104761905 0.908

4 0.057 0.050574713 0.965

5 0.034 0.002867106 0.999
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Appendix G: Code Used for Generating PN Patients 

/*Generates Data for ICU patients  

  Author: Christina Cignarale 
  Date:7/20/2012 

  Using 5400 Unit Data:arrival distributions and unit configuration (10 single bedroom & 

8 double bedrooms) 
*/ 

 

#include <iostream> 

#include <list> 
#include <algorithm> 

#include <functional> 

#include <iterator> 
#include <cstdlib> 

#include <vector> 

#include <fstream> 
#include <stdio.h> 

#include <stdlib.h> 

#include <string> 

#include <sstream> 
#include <time.h> 

 

 
// used here for convenience, use judiciously in real programs. 

using namespace std; 

 
// definition patient class 

class patient { 

  public: 
    int ID; 

    int ISO; 

int Crit; 

 int Room; 
 int Gender; 

 string type; 

 
}; 

 

//definition of the room:the number of beds in the room and the room number 
class room{ 

public: 

 int numberbeds; 

 int roomnumber; 
}; 

 

/*bool GetDischargeDay(patient pat, int curtime) 
{ 

 return(pat.DischargeDay<= curtime); 

}*/ 
 

 

/**** Function Definitions ****/ 
void NumberSeekAdmission(int&); 

int MakeSeekAdmissionList(list<patient> &, int &);// adding the parameter planninghorizon 

void FindFile(string &); 

void AssignCharacteristics(patient &, int , int &,int&, list<patient> &); 
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void ReadInitialConditions(list<patient> & , int &, int&, int&); 

int MakeDataFile(list<patient> &, list<room> &,list<patient> &,int&, int&, int&, int&); 
 

// global constants 

int Maxcrit=10; 
int Maxiso=6; 

int numberbedsICU=18; 

 

//Variables 
int numberseek=0;//the number of patients who seek admission 

int ctr=0;//counter used for patient ID 

int planninghorizon=2; 
string inpatient_filename=" "; 

string lengthstay_filename=" "; 

string expname="Test"; 
 

//the vector that lists the weight for each planning period 

vector<double> weight;  

 
//list of all the patients in the system:ICU, unit, seekingadmission 

list<patient> unit; 

 
//the patients who will be seeking admission to the unit today 

list<patient> seeking; 

 
//rooms in the 5400 unit 

list<room>  bedrooms; 

 
//MAIN FX 

int main(){ 

 

 int curtime=0;//the time the computer is running 

 int numICUPat=0;//number of patients who are in the ICU and not seeking admission 

 

 srand (time(NULL)); 
  } 

     

  
 //Determine the number of patients who will seek admission in the current period 

by selecting value from arrival file 

 NumberSeekAdmission(numberseek); 

 //Make Data file  
 MakeDataFile(unit, bedrooms,seeking, numberseek, curtime, Maxiso, numberbedsICU); 

  

 
return 0; 

 

} 

 

/***************************************************************************************/ 

void ReadInitialConditions(list<patient> & unit, int &curtime,int &planninghorizon,int 

&ctr) 
{ 

 list<patient> unittemp; 

 //double prob; 
 vector<double> initprob; 

 patient CurrentPatient; 

 ifstream indata; // indata is like cin 
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 indata.open("PATINIT.txt"); // opens the file 
 if(!indata) { // file couldn't be opened 

     cerr << "Error: file could not be opened" << endl; 

     exit(1); 
 } 

 

 while (!indata.eof()) { // keep reading until end-of-file 

         indata >> CurrentPatient.ID; 
   //indata >> CurrentPatient.LOS; 

  // CurrentPatient.DischargeDay=CurrentPatient.LOS+curtime; 

   indata >> CurrentPatient.ISO; 
   indata >> CurrentPatient.Crit; 

   indata >> CurrentPatient.Room; 

   indata >> CurrentPatient.Gender; 
   CurrentPatient.type="A"; 

   //assigns probabilities to patients currently in the unit, these are 

all "1" because they are in the unit 

   /*for(int i=1;i<=planninghorizon;i++) 
    { 

     prob=1; 

     initprob.push_back(prob); 
    } 

  CurrentPatient.probabilities=initprob;*/ 

  unittemp.push_back(CurrentPatient);// sets EOF flag if no value found 
   } 

  

 unit=unittemp; 
 //ctr is used for assigning patients IDs, initialized for assignment here 

 ctr=unit.size(); 

 indata.close(); 

 

} 

 

 
/***************************************************************************************/ 

 

/***************************************************************************************/ 
void NumberSeekAdmission(int & numberseek) 

{ 

 ifstream inarrivals; 

 FindFile(expname); 
 inarrivals.open(inpatient_filename.c_str(),ios::in); 

 

  //in case of error 
  if(!inarrivals) 

  { 

   cerr<<"Error: file could not be opened"<<endl; 

   exit(1); 

  } 

 

 //select an element from the vector 
 inarrivals >> numberseek; 

 

 //close the LOS file 
 inarrivals.close(); 

  

} 
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/***************************************************************************************/ 

 
/***************************************************************************************/ 

void FindFile(string &expname) 

{ 
 int randAR= 1+rand()%50; 

 //int randLS= 1+rand()%50; 

 

 string str_randAR; 
 //string str_randLS; 

 //stringstream used to convert an integer to a string 

 stringstream strAR_out; 
 //stringstream strLS_out; 

 //assigns random integer to variable str**_out 

 strAR_out<<randAR; 
 //strLS_out<<randLS; 

 //assigns string to str_rand** 

 str_randAR=strAR_out.str(); 

 //str_randLS=strLS_out.str(); 
 

 string str0="RGH"; 

 string str1="\\incomingpatient";//windows: "\\incomingpatient"; 
 //string str2="\\lengthpatient"; 

 

 inpatient_filename=str0+expname+str1+str_randAR+ ".txt"; 
 //lengthstay_filename=str0+expname+str2+str_randLS+ ".txt"; 

 

 //inpatient_filename="incomingpatient1.txt"; 
 //lengthstay_filename= "lengthpatient1.txt"; 

 

 } 

 

 

 

/***************************************************************************************/ 
 

/***************************************************************************************/

void AssignCharacteristics(patient &Pat, int curtime, int &i,int &ctr,list<patient> 
&unit) 

{ 

 

   ctr++; 
   Pat.ID=ctr; 

   //Pat.LOS=vlen[curtime+i]; 

   //Pat.DischargeDay=vlen[curtime+i]+curtime; 
   Pat.Crit= 1+ rand()%Maxcrit; 

   Pat.ISO=1+rand()%Maxiso; 

   Pat.Gender=rand()%2; 

   Pat.Room=0; //0:= TRIAGE 

   //Pat.probabilities=GenerateProbabilities(planninghorizon); 

   Pat.type="N"; 

   unit.push_back(Pat);//adds patients to the entire system (ICU, unit, 
seeking admission) 

} 

/***************************************************************************************/ 
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Appendix H: Data Sets Used in Exploratory Sampling 

These two tables display the summary data for the three data sets used to determine if the 

patient configuration of the unit (where patients are assigned in the unit) affected how many days 

the unit should use for planning with future information. Data sets “Ndata” and “N2data” had 

more patients seeking admission into the unit than beds available during period 1 while data set 

“Ndata10” had fewer patients seeking admission into the unit than beds available. In the second 

table it is clear that no one was admitted during period 2 for data sets “Ndata” and “N2data” 

since full utilization of the unit was achieved in period 1. Therefore ,we concluded that the 

number of patients seeking and the number of beds available may affect how many days the unit 

should use for planning with future information. 

 

Table 32:Data Summary Tables for Patient Configuration Sampling 
 

 
 

Table 33:Results for Patient Configuration Sampling 
 

 

Data file PA(admitted) PN(seeking) PT (ICU) Beds Open H w

Ndata 23 4 18 3 2 0.7, 0.3

N2data 23 5 18 3 2 0.7, 0.3

Ndata10 21 3 18 5 2 0.7, 0.3

Data file Admitted Utilization Admitted Utilization

Ndata 4 (PN) 100% 0 100%

N2data 5 (PN) 100% 0 100%

Ndata10 3 (PN) 92% 2 (PT) 100%

Period 1 Period 2
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