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Abstract

Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology,
psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the
literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is
determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This
paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization
objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the
dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method.
Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for
numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that
of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these
waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-
amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms
corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales
with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require
higher coil voltage than longer pulses.
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Introduction

Background
Magnetic stimulation is a standard tool for noninvasive

activation of neurons. It can be applied to the brain, where it is

known as transcranial magnetic stimulation (TMS) [1], and in the

periphery, e.g., for neuromuscular stimulation [2]. Based on the

principle of electromagnetic induction, this technology is not

impeded by low-conductivity tissue, such as bone, causes little

distress, and can be relatively well focused. In both central and

peripheral magnetic stimulation, the key advantage is its tolera-

bility.

Compared to other stimulation methods, however, magnetic

stimulation is extremely energy inefficient. The electrical pulse

energy transferred to the stimulation target is less than one percent

[3,4]. Although a substantial fraction of the field energy can be

retrieved and used in a subsequent pulse, the high pulse currents in

the stimulator circuit in the range of kiloamperes lead to significant

ohmic losses. In repetitive stimulation protocols, the high losses

heat the coil and limit either the treatment duration or the pulse

parameters, such as repetition rate and strength. Neuromuscular

magnetic stimulation, which targets neurons in order to activate

muscles, is in this context very critical [2]. The high powers limit

sessions with standard equipment to a few minutes–which is

insufficient for treating, for instance, atrophy–and compromise a

successful clinical application.

Furthermore, driving the high currents necessitates voltages up

to 4000 V which requires reliable high voltage insulation. Mobile

devices with battery-powered pulse sources have been proposed

but are at present not practical for repetitive protocols due to the

high power consumption.

While the efficiency of magnetic stimulation in the spatial

domain has been studied extensively with appropriate coil designs

[5–9], including the incorporation of magnetic materials [10,11],

the role of waveforms in this aspect has received less attention.
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In the temporal domain, the induction process, wherein an

alternating coil current induces an electric field, is approximately

linear. However, the neuron dynamics are complex and nonlinear,

resulting in a nontrivial relationship between the pulse waveform

and the neural response. Nevertheless, the conventional wave-

forms are limited by the relatively simple and inflexible stimulator

circuit topologies rather than derived from consideration of what is

optimal from the perspective of a neuron.

Presently, there are two waveforms–monophasic and biphasic–

commonly found in magnetic stimulation devices. Standard

monophasic stimulators generate an overdamped sine current

pulse and dissipate the whole pulse energy as heat [12]. In biphasic

(and multiphasic) devices, the oscillation is underdamped, which

leads to an almost sinusoidal waveform, and can recover a

substantial amount of the pulse energy [8,13–16]. Recent

stimulator designs enable the generation of approximately

triangular current pulses, corresponding to near-rectangular

electric field pulses [17]. Whereas such pulses seem to be more

efficient than conventional sinusoidal pulses [17,18], they have not

been shown to be optimal.

The question of the optimal pulse shape for neural activation

has been studied in more detail in electrical stimulation. An

analytic variational approach with a linear first-order neuron

model, also known as leaky integrate-and-fire model [19], resulted

in the so-called rising-exponential waveform for a minimum pulse

energy [20]. This work was reproduced later [21]. However, the

results are compatible neither with more sophisticated neuron

models [22.nor with experiments [23].

In contrast to linear dynamics, nonlinear models cannot be

inverted easily and chaotic behavior of the corresponding

differential equations renders numerical handling problematic.

Therefore, many parameter studies in models as well as in

experiments were instead performed with specific predefined

waveforms [23–28]. A general, largely unbiased optimization of

the waveform for electrical stimulation minimized the ohmic losses

of monophasic electrical pulses [29]. The reported optima are

better described by a Gaussian curve than by the rising

exponential function predicted by the linear neuron model.

For magnetic stimulation, there are few studies of different

waveforms with experiments [15, 16, 18, 30.or numerical models

[31–34]. Likewise, these studies explored limited sets of predefined

pulse shapes. Thus, the question of the optimality of magnetic

stimulation waveforms remains largely unanswered. In this paper,

we optimize the waveform for magnetic stimulation for minimum

energy loss, which is equivalent to coil heating, using a nonlinear

neuron model and without constraining the pulses shape

unnecessarily.

Objectives and Method Overview
The magnetic stimulation pulse waveform could be optimized

with respect to several aspects. In this work, we minimize the

energy loss during a pulse, which affects the required power supply

and causes coil heating. The device power consumption and

heating of the stimulation coil are both approximately propor-

tional to the energy loss and limit the maximum duration of a

stimulation session as well as the pulse repetition rate [35]. The

approach avoids any unnecessary constraints, such as limitations of

existing stimulation technology, which provides only a limited set

of waveforms and is furthermore not able to generate all of these

existing pulse shapes with energy recovery from the coil.

The dominating mechanism of energy loss is Joule heating

originating from the intrinsic resistance of all electrical compo-

nents. For coil current i(t), the energy loss of a pulse is

ð
Rz

Rii
2dt!

ð
Rz

i2dt~ :W ð1Þ

for any value of the intrinsic series resistance Ri=0. The second

integral in Equation (1) forms the objective functionalW, referred

to as energy loss, which is used for further analysis and

optimization.

Only two constraints are imposed on the optimization problem.

First, the coil current has to successfully elicit a neuron response.

Second, the coil voltage vc should not exceed a limit vmax, both in

positive and negative polarity, DvcDvvmax. The latter constraint

results from the observation that the coil energy and the ohmic loss

at the excitation threshold fall with shorter pulse durations for

classical waveforms, while the required coil voltage increases

[4,32]. Consequently, optimization that does not impose a

maximum voltage constraint would result in divergence of the

voltage. Furthermore, the voltage constraint is a practical design

limit in magnetic stimulation devices motivated by the limitations

of semiconductor devices, insulation, and related patient safety

considerations. Voltage vc refers to the voltage of the inductance of

the coil only. This voltage does therefore not depend on the

resistance of the coil or other components, such as cables and

connectors.

It should be noted again that this optimization formulation

addresses only the pulse waveform and deliberately disregards

specific device circuit implementations. Consequently, additional

loss mechanisms that are circuit-dependent and can in principle be

avoided or minimized, such as forward bias voltages of semicon-

ductor p-n junctions and capacitive switching losses, are not

considered in the optimization. In addition, only temporal aspects

of the stimulation system are addressed. The coil design and the

spatial characteristics of the induced field are not considered,

except for the coil’s inductive and resistive properties which

pertain to the time domain. This approach relies on the good

separability of space and time in neuronal stimulation and is

commonly deployed to decouple the spatial and the temporal

domain [11,36].

In summary, the optimization approach identifies a function

i(t) : R?R representing the coil current such that the loss per

pulse (W0i(t)) is minimal on condition that the pulse successfully

leads to an action potential and the coil voltage required for

generating this current in a coil with linear inductance is below a

predefined limit.

The functions i(t) are parametrized so that numerical handling

becomes possible. This is based on spline curves and Fourier series

whose degrees of freedom are handed over to an optimization

algorithm. For spline curves, these degrees of freedom are

mathematically equivalent to the location of anchor points; for

Fourier series they involve the amplitude and phase information of

the frequency content. This parametrization is stable and general

so that in principle any waveform, even (bandwidth-limited) noise,

can be approximated for a sufficiently high number of degrees of

freedom. In this study, the maximum duration of the waveforms

i(t) was limited to three milliseconds, since in pilot runs longer

pulses had not been competitive. The waveform parameters are

passed to a hybrid global-local optimization algorithm that

provides both fast local refinement and global convergence.

A peripheral motor axon was used in the neuron model for the

following reasons. First, in functional peripheral stimulation, such

as neuromuscular stimulation, which targets motoric innervations

[37], the problem of high power consumption and heating is most

pressing and limits the application of the technology, for instance,

in rehabilitation [2]. Second, motor axons are next of kin to axons

Analysis and Optimization of TMS Pulse Dynamics
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originating from cortical pyramidal neurons with respect to

channel expression [38, 39.but notably better studied than the

heterogeneous situation in brain axons [40–42]. Consequently,

peripheral motor axons are routinely used as the basis for the

simulation of various neuron types, for example, by incorporating

them as a compartment into cerebral neuron models

[22,23,29,43–47]. Since at present there is limited understanding

of the specific neurons and activation sites recruited in TMS

[48,49], it is not possible to justify specific neuron model

parameters for cortical stimulation. We will show that the

conditions for energy optima in magnetic stimulation are relatively

insensitive to the neuron model characteristics and hence are

qualitatively general. Therefore, our results are likely applicable to

various neuronal stimulation targets, including cortical neurons.

Details of the models, the optimization framework and the

numerical implementation are given in the methods section.

Results

Preliminary Exploration of the Waveform Space
A pre-evaluation of the optimal current waveforms was

performed using the optimization method as an exploration tool

in order to provide an approximate map of the solution space. It

also acted as a test for the stability of the algorithms. The results

are presented in Figure 1 which shows the energy loss as a function

of the maximum coil voltage at the action potential threshold.

Every cross in the graph represents a local minimum that

corresponds to a certain waveform. In addition, data for standard

biphasic sinusoidal (red line) and symmetric triangular current

pulses (cyan line, corresponding to symmetric rectangular voltage

pulses) were added from a parametric study for a frequency range

from 500 Hz to 50 kHz. Moreover, the waveform of a commercial

monophasic device (Magstim 200, Magstim Co., Whitland, Wales)

was added (green star). In all cases, the current direction associated

with the lowest threshold is represented.

In Figure 1, the voltage on the x-axis is in relative or arbitrary

units and not calibrated to a specific threshold, but it lies in the

range of real devices. Calibration of the x-axis can be easily

accomplished based on available threshold data for conventional

pulses. For example, the sinusoidal monophasic pulse generated by

the commercial device Magstim 200 corresponds to an average

motor threshold of about 40:6% of the maximum device

amplitude which is 2800 V [50]. Thus, the typical threshold

voltage for the sinusoidal monophasic pulse is 1137 V, which is

commensurate with the voltage corresponding to the monophasic

pulse in Figure 1.

Notably, the conventional monophasic waveform is insignifi-

cantly less efficient than conventional biphasic pulses, despite its

relatively long current tail. Thus, conventional monophasic

devices are substantially less efficient than biphasic devices not

because of the intrinsic waveform properties, but rather because of

the inefficient electrical circuit that shapes the pulse with

intentional damping by a resistor that dissipates the pulse energy

in the form of heat. This observation might call for better circuit

topologies since monophasic pulses may be preferable in some

applications due to their higher stimulation selectivity and stronger

neuromodulatory effect [14,51], motivating the development of

devices that can efficiently generate monophasic and other pulse

shapes that generate predominantly unidirectional electric field.

Figure 1 demonstrates that for sinusoidal and triangular current

pulses the losses can be reduced with higher coil voltages. This

confirms published observations for conventional harmonic pulses

[4,8,32], also implied in [52–54], and for asymmetric near-

triangular current pulses [17,55]. For sinusoidal and triangular

current pulses, scaling with voltage is associated with simple

temporal dilation or compression corresponding to conventional

strength-duration curves for the neural activation threshold [56].

The energy loss advantage of brief pulses is sometimes used for

reducing the heating in high-power applications, e.g., in rehabil-

itation [2]. Triangular waveforms as well as all pulse shapes that

form the lower edge of the scatter of local minima (see Figure 1)

have a steeper slope of loss versus voltage than sinusoidal pulses,

indicating that the gain in efficiency at higher voltages is larger for

the former than for the latter.

This lower edge of the scatter is smooth and appears to

represent the same class of stimuli. For very high device voltages,

the current waveforms degenerate to pulses resembling a Dirac

delta.

Refined Optimization: Common Features of Optimal
Waveforms

After the pre-evaluation of the waveform space, a refined

optimization was performed for several voltages in the range of

those typical in conventional devices. The number of degrees of

freedom reached up to one thousand during these optimization

runs. Thus, frequency components up to several hundred kilohertz

could be accurately represented. The representative pulses labeled

(a)–(c) in Figure 1 are plotted in Figures 2 and 3.

The best solutions are very similar to one another. The current

always exhibits three relatively distinct phases. A slow first phase

precedes a short large-amplitude second phase with triangular

shape in the opposite direction. A separate third phase becomes

visible after a large number of optimization iterations.

The corresponding coil voltage waveform (see Figure 2) is

dominated by a biphasic rectangular pulse that has equal positive

and negative amplitudes, corresponding to the rising and falling

slopes of the second current phase, respectively. The small slopes

of the first and third current phases make the corresponding

voltage phases virtually indistinguishable from baseline.

The rectangularly shaped voltage during the second phase is

likely a consequence of the second constraint, i.e., the voltage limit.

The system uses the maximum allowed voltage level for the total

duration of the second phase. This explains the positive swing of

the voltage. The subsequent negative swing reduces the current as

quickly as possible after the peak. Although this hyperpolarizing

field might counteract excitation, a lower current level appears to

be more important due to the dependence of the optimization

objective on the squared coil current. The negative voltage is

maintained at its maximum value until a certain low current level

is reached from which the third phase converges to zero in a slow,

approximately exponential decay.

Such reasoning can also be used to explain the slow negative

first current phase. The first phase of the coil current introduces a

negative bias for the onset of the second, depolarizing phase.

While keeping the rise time constant, the peak current of the

second phase is reduced by the magnitude of the shifted baseline at

the end of the first phase. Thus, the negative bias created by the

first phase decreases the energy loss by lowering the peak current

in the second phase without reducing the pulse duration. The first

phase contributes to the loss, of course, but its current amplitude is

relatively low. Since the loss depends on the squared current, the

first phase saves more energy due the reduced current in the

second phase than the additional loss it contributes itself.

Importantly, the slow first phase of the coil current has a

minimal effect on the neural dynamics. Accordingly, it biases the

current and reduces the energy loss without significantly disrupting

the membrane state. The weak influence of the first current phase

on the state of the neuron can be demonstrated by inspecting the

Analysis and Optimization of TMS Pulse Dynamics
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state of the modeled ion channels and the membrane potential. By

the end of the first phase, the membrane potential has changed by

less than 5% for any of the three refined solutions from Figure 3.

Accordingly, the dynamics of the single channel types (represented

by the variables tm, th, tp, and ts) are practically unchanged. The

state variables of the potassium and slow sodium channels, s and p,

change by less than 0:001% and 0:06%, respectively. The change

in the fast sodium channels is also small, with the activation and

inactivation state variables, m and h, both changing by less than

1%. Changes of this order are too small to significantly affect the

pulse development during the subsequent depolarizing phase of

the pulse. Thus, the first phase of the coil current is optimized to

reduce the electrical loss of the second, depolarizing phase, while

minimally affecting the state of the neural membrane.

It should be noted that such an explanation of the mechanism of

single phases is always a simplification. Ascribing certain functions

to isolated parts of a pulse could be misleading in the context of

nonlinear dynamics. Nevertheless, it is encouraging that the

features of the optimal pulse shape are qualitatively consistent with

simplified considerations of membrane dynamics in combination

with electromagnetic induction.

Dependence of the Optimal Waveform Features on Pulse
Duration

The similarity among the waveforms in Figure 3 suggests that

they can be treated as representatives of the same class. However,

in contrast to sinusoidal or triangular current pulses, these optimal

waveforms are not related by a simple linear transformation such

as temporal scaling. The behavior of the first phase, which

decreases if the amplitude of the second phase is increased, argues

against such a simplification. If the second phase is isolated,

however, a simple time scaling can be assumed in the first

approximation. The pulse duration determines the required coil

voltage level and influences the heating: For shorter triangles, the

amplitude has to be increased, but the losses diminish. The

dynamics of the first phase, however, do not change at all for the

studied range, but only the amplitude is adjusted for the various

voltage constraints.

The detailed behavior of the optimal initial first phase was

analyzed in a separate parameter study. The amplitude of the first

phase, i.e., the value of the most negative point in the current

profile, was set proportional to the main phase peak amplitude by

Figure 1. Heating loss versus maximum coil voltage for various waveforms. The local minima from the pre-evaluation are denoted by
crosses. Sinusoidal biphasic and symmetric triangular current (i.e., rectangular voltage) pulses are plotted with red and cyan lines, respectively. The
voltage and energy loss axes are in arbitrary units. The insets show some examples of current shapes. The lower-case letters refer to solutions which
are shown in Figure 3.
doi:10.1371/journal.pone.0055771.g001
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an adjustable ratio. As a second degree of freedom, the duration of

the rising slope of the main phase was varied; the falling slope

changes proportionally to the rising slope. The optimal amplitude

of the first phase was evaluated for various different main phase

durations. The results are presented in Figure 4.

The top panel of Figure 4 shows the ratio of the first phase

amplitude to the second phase amplitude. The middle panel

displays the contribution of the first phase to the objective

calculated as the ratio between the integral of the squared current

over the first phase to the integral over the whole waveform. For

very short pulses, the first phase nearly vanishes and the pulse

becomes approximately triangular, corresponding to a biphasic

rectangular voltage pulse. For brief pulses, the first phase

contributes relatively little to the overall energy loss. On the other

hand, for the longest depicted durations of the second phase the

initial phase amplitude is almost half of the main amplitude and

contributes a quarter of the energy loss.

Despite the substantial ohmic cost of the first phase, this

investment is rewarding with respect to the total energy loss at the

specific threshold. The bottom panel in Figure 4 visualizes the

ratio of the losses of the optimized class of waveforms to the

corresponding value without the first phase, i.e., an approximately

triangular current. As the pulse duration increases, the advantage

of the optimized waveforms over the simpler triangular current

pulses grows. For a rise time of the second phase of 200 s, the loss

of the best local minimum amounts to 62% of that for the

corresponding triangular current pulse without a first phase.

Again, for very short pulses, the loss ratio tends to one since the

differences in shape between the two pulse types diminish as well.

Generalizability
To explore the robustness of the optima with respect to the

neuron model characteristics, we carried out optimization using

two simpler models: the Motz-Rattay model [57] and the linear

leaky integrate-and-fire model [19]. The Motz-Rattay model has

dynamics that are markedly different from those of human motor

axons. The leaky integrate-and-fire model is a regression model

that is reduced to the absolute minimum requirements. Despite its

limitations, this linear first-order neuron description is popular in

magnetic stimulation because its single parameter–the so-called

membrane time constant–can be extracted from experimental

data [4,55,58]. For details on the neuron models, see the methods

section.

Representative optimal current waveforms for the Motz-Rattay

and integrate-and-fire models are shown in Figures 5 and 6,

respectively. Figure 5 depicts two optima corresponding to two

different values of the coil voltage constraint. Clearly, these

optimal pulse waveforms display the characteristic pulse phases

observed with our nominal model, despite the very different model

types. All optimal pulse shapes have a negative current phase that

precedes and has longer duration as well as lower amplitude than

the subsequent positive current phase. Furthermore, the positive

Figure 2. Current and voltage waveform. These plots correspond to waveform (c) in Figure 1. As defined in Section Objectives and Method
Overview, the voltage refers to the inductive component of the coil and is directly proportional to the derivative of the current. Both voltage and
current are scaled in arbitrary units. The absolute values of the current and voltage waveforms depend on many additional parameters such as coil
design, inductance, distance to target, etc. The rise time of the main phase of the current pulse is 23 ms. The maximum derivative within the first
phase is about 161 times lower than the slopes of the second phase. Despite the low amplitude, the long duration results in an area under the initial
current phase that is higher than the area under the second phase by approximately 15%.
doi:10.1371/journal.pone.0055771.g002
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current phase is nearly triangular, with comparable rising and

falling slopes. The similarity of the key features of the optimal

pulses across this diverse set of neuron models supports the validity

of our nominal results and their robustness with respect to

neuronal type.

Discussion

We implemented numerical optimization of the pulse shape for

inductive stimulation of an axon with the objective of minimizing

energy loss. The latter was quantified by the integral of the

squared coil current. The optimization constraints were reduced to

a minimum, comprising only a limit on the maximum coil voltage

and the requirement that the axon model generates an action

potential. Thus, the optimization was not limited to specific device

circuitry or parametrization of predetermined waveforms, but

rather was a practically unconstrained search of the pulse shape

space.

The results were consistent across various initial conditions,

voltage constraints, and alternative neuron models (see Figures 1,

2, 3, 5, and 6). The optimal pulse shapes consist of an initial slowly

falling negative first current phase followed by a rapidly rising and

falling second current phase, trailed by a slow decay to zero. The

structure of these pulses is intuitively reasonable from the

perspective of reducing the energy loss, as discussed in Section

Refined Optimization. Even though intuitive explanations of

phenomena involving nonlinear dynamics could be misleading,

it is encouraging that the features of the optimal pulse shape are

qualitatively consistent with simplified considerations of mem-

brane dynamics in combination with electromagnetic induction.

The robustness of the solution is furthermore important for the

question of generalizability. While the substantial similarity of

motor axons with fibers originating from cortical pyramidal

neurons in terms of channel expression [38,39] suggests the

applicability to this type, the high insensitivity with respect to

specific neuron properties supports an applicability also for most

other neural targets.

Especially, the linear model supports a general character of the

results. First, this model reduces the dynamics to the common

ground which almost all axons in the central and the peripheral

nervous system share. Second, it is a regression of the whole black-

box system using the coil current as its input [55]. Accordingly,

also the three mechanistic uncertainties in cortical magnetic

stimulation–i.e., the site of cortical stimulation, the recruited

neuron types, and the activated segment in these neurons–are

subsumed in this model by black-box regression.

The pulse shapes derived in this study cannot be generated by

existing magnetic stimulation systems. Commercial devices gen-

erate exclusively sinusoidal pulses based on oscillator circuits and

provide only limited control over pulse dynamics. Recently, a

more flexible device that generates near-triangular current pulses

with several degrees of control over the pulse parameters was

presented [17]. Although the described embodiment was designed

for relatively low negative voltages, which leads to asymmetric

pulses, the underlying circuit topology could, in principle, produce

also almost symmetric triangular pulses that notably outperform

existing commercial devices. Alternatively, a variation of this

circuit in form of a full-bridge pulse circuit with two individual

capacitors with small differential voltage for each of the two half-

brigdge subcircuits [59] could generate pulses resembling the

optimal pulse shape. The difference of these two capacitors could

be used for generating the slow first phase. This approach,

however, would require large capacitors. Finally, a more flexible

pulse shaping technology that allows the generation of virtually

Figure 3. Waveform optima for various coil-voltage constraints. The waveforms correspond to the optima labeled (a), (b), and (c) in Figure 1.
The corresponding relative coil voltages in arbitrary units are given in the legend, and the loss values obtained from Figure 1 are 334, 272, and 214,
respectively. The comparison reveals the different roles of the individual pulse phases. Whereas the length of the second phase scales approximately
inversely with the voltage constraint, the duration of the first phase remains constant. Nevertheless, the first phase amplitude varies relative to the
second phase amplitude.
doi:10.1371/journal.pone.0055771.g003
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any waveform could accurately reproduce the optimal pulses

derived here [60].

For the optimal pulse shapes, higher coil voltage results in lower

energy loss, analogously to conventional magnetic stimulation

waveforms (see Figure 1). In standard magnetic stimulation

paradigms, the pulse amplitude is used to control the strength of

stimulation. This is a natural choice since most conventional

devices do not allow pulse-width adjustment due to the inflexible

resonant circuit. Considering efficiency, however, an alternative

approach for controlling the stimulation strength of a pulse may be

advantageous. In devices with adjustable waveforms, the pulse loss

can be reduced by using the highest available voltage level of a

device and modulating the stimulation strength via the pulse width

instead of the amplitude, especially in high-power applications [2].

However, for paradigms where the pulse dynamics are important

for the stimulation outcome, such as selective stimulation of neural

populations, diagnostics, or neural dynamics analysis, the conven-

tional amplitude adjustment could be advantageous.

There are, however, practical limits to the use of extremely high

voltages, even though these are in principle more efficient. These

limits are driven by insulation considerations, semiconductor

voltage ratings, high-frequency coil losses, and switching losses due

to circuit capacitance. Such practical aspects are highly dependent

on the implementation. The pulse parameters for specific circuit

Figure 4. Role of the first phase in the optimal waveforms. The ratio of the negative current amplitude to the subsequent positive peak is
shown in the top plot. The x-axis gives the length of the rising current slope (see inlay) which is equal to the duration of the positive voltage phase.
As the pulse duration is increased for lower maximum coil voltage, the amplitude of the first phase rises relative to that of the second phase. The
contribution of the first phase to ohmic losses (middle plot) is not constant, but increases with pulse duration. Although it amounts to a substantial
portion of the total loss, the first phase is advantageous especially for long pulses as the bottom plot demonstrates. The waveform incorporating the
first phase produces approximately two thirds of the energy loss at rise times around 200 ms compared to the same pulse without the first phase,
both evaluated at their individual excitation threshold.
doi:10.1371/journal.pone.0055771.g004
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topologies could be optimized with the described approach by

imposing additional constraints on the waveform shape.

The results of this study were obtained in a systematic way and

show very plausible features. The outcome was not biased by

initialization with current or voltage waveforms that anticipate the

final results. Instead, the waveforms evolved solely based on the

optimization objective and the constraints. The obtained shapes

are relatively stable and reemerged in independent runs with

random initialization of the parameters. Indeed, these solutions

can be global or not far from the global solution.

Still, the optimized waveforms are the best found local minima

of the problem formulation, which in turn is based on a nonlinear

axon model. Each model has limitations and only approximates

reality. Especially in the absolute task of minimization, a

physiologic optimum could look slightly different, and could even

be an individual characteristic of a specific neuron. Nevertheless,

given the robustness of the optimum pulse shape features with

respect to the neuron model, it is likely that these features would

also be present in pulses optimized in vivo. As with any model-

based approach, the numerical results should be considered as a

starting point for experimental studies.

Finally, it should be noted that improving the energy efficiency

is critical to functional and portable magnetic stimulation systems.

The former can have very high power consumption, whereas the

latter have limited battery energy. On the other hand, in some

applications of magnetic stimulation, it may be more appropriate

to improve the pulse shape to ensure best selectivity of stimulation

of specific neural populations and/or to increase a repetitive

stimulation protocol’s neuromodulation potency. For instance, the

neural selectivity of a pulse could potentially be controlled by the

relative amplitude and duration of the various pulse phases

[14,51]. Selective stimulation–which cannot be expected to be

energy efficient–leverages on differences between distinct neural

populations. As a consequence and in sharp contrast to the

robustness of the minimum-energy waveforms with respect to the

neuron, the waveforms obtained with such optimization might be

highly sensitive to the specific characteristics of the target and

nontarget neurons. Whereas the basic pulse features for minimum

energy loss arose robustly for several kinds of linear and nonlinear

low-pass dynamics, high selectivity is almost independent from the

physical principles outside the neuron as long as their constraint of

dc-free waveforms is met. Provided appropriately formulated

objectives, the presented optimization framework, which allows

Figure 5. Optima for two different peak voltage levels for a simple linear first-order integrate-and-fire model with a time constant
of 167 ms. Even in this extremely simplified model, the key pulse shape features obtained with the nominal neuron model (see Figure 3) are
prominent, including the low amplitude, negative first phase and the triangular second phase with larger amplitude and equal rise and fall slope
magnitudes. These examples further support the generalizability of the main optimization results.
doi:10.1371/journal.pone.0055771.g005

Figure 6. Best local minimum from an alternative axon model (Motz-Rattay). The characteristic phases observed in the more realistic model
in the previous figures also appear here, supporting the robustness of the results.
doi:10.1371/journal.pone.0055771.g006
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nearly unconstrained waveform representation and optimization,

is well suited for such alternative optimization goals.

Methods

Optimization Framework
The optimization framework has to describe the temporal

dynamics of magnetic stimulation including all stages from the coil

current to the neural response. The structure of the optimization

setup is depicted in Figure 7 and discussed below.

Magnetic stimulation induces an electric field that is propor-

tional to the coil current rate of change which, in turn, is

proportional to the coil voltage [36]. It is assumed that the tissue

around the axons does not filter nor distort the electric field, so the

excitation current injected in the neural membrane is proportional

to the first derivative of the coil current [36]. The neuron model

hands back the first constraint (generation of action potential). The

second constraint (limited coil voltage) and the objective functional

(energy loss) were generated from the coil voltage vc and current i,
respectively.

The framework was implemented in C and optimized for

maximum speed. For the solution of the differential equations, a

standard second-order Runge-Kutta method was used. The

allowed maximum time step for the final analysis was set to

500 ns. The whole optimization framework implementation

followed a strict parallel design. Every call of the differential-

equation solver was executed in a separate thread. The

computation was performed on three eight-core Xeon servers

for the low-dimensional problems and on a high-performance

system of the Leibniz Supercomputing Centre of the Bavarian

Academy of Sciences and Humanities.

Waveform Parametrization
The objective and all constraints were formulated as functionals;

the optimization task is a variational problem. For numerical

handling, however, this abstract construction has to be translated

Figure 7. Structure of the optimization setup. The three basic blocks are further refined in grey. The minimization system has a hybrid structure.
A global optimizer commands many local workers (l). The algorithms minimize the objective function W (p) in the space of valid constraints C, but
have only access to a finite number of parameters p. The latter are converted to the current function i(t) by which is implemented with three
alternative methods including spline generator functional S and Hilbert transformH coupled with Fourier series F using either Cartesian (p’) or polar
form (p�). The initialization (p0) is performed with either random noise, conventional sinusoidal waveforms, or results from earlier runs (database). The
axon model is incorporated into the constraints as a nonlinear element (NL) which processes the electric field waveform ef (t) and returns a response
r(t).
doi:10.1371/journal.pone.0055771.g007
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into a finite set of numbers. Thus, an appropriate parametrization

is an essential element, which moreover influences the stability of

the optimization system. This mapping from the finite parameter

space to a sufficient (not continuous, but dense in the mathemat-

ical sense) subspace of the Banach space of all waveforms allows a

stable evaluation of all needed operators, such as derivatives, in an

analytical way. Evading the issue of parametrization by taking a

large number of sample points which are handed over to an

optimization algorithm may risk instabilities in the context of

inductive stimulation.

Various waveforms that do not share clear common features are

able to stimulate a nerve. Thus, the objective function (energy loss)

forms a surface in the waveform parameter space that has

numerous local minima. Electromagnetic induction with its

differentiating behavior further complicates the waveform optimi-

zation problem. The selection of an appropriate coordinate system

for the waveform description can remarkably improve the solution

process, but the problem is nonlinear and has no natural discrete

parametrization. Therefore, we used simultaneously three coordi-

nate systems to parametrize the coil current as their combination

stabilizes the numerical processing.

First, the waveform is described by cubic spline curves; their

finite parameters p[Rn act as degrees of freedom for the

optimization algorithm. This approach is similar to the core

principles of the finite element method in numerics. The

predefined solution forms a subspace of the class of all functions

with continuous second derivative C2(T), with T5R being the

compact support, i.e., the limited time span of the nonzero

waveform. This was set to three milliseconds during the piloting

phase as no local minimum was observed to require a longer time

base. At the boundaries of T , a Dirichlet condition forces the

current to zero. However, in the context of inductive stimulation,

this coordinate system still has a high density of local minima in

the objective functional.

Therefore, parameter description in frequency space was added.

A complex-valued parameter vector p’[Cn=2 can be taken without

further constraints. A discrete Hilbert transform provides the

coefficients of a complex-valued Fourier series. The latter is a

smooth function and a member of C?, accordingly.

The optimization algorithm processes only plain one-dimen-

sional floating-point numbers. There are two simple ways for

generating the required complex-valued parameter vector from a

real-valued vector p[Rn. One uses a Cartesian representation with

a real part <p’ and an imaginary contribution =p’; the other

describes the complex plane in polar coordinates with magnitude

Dp�D and phase %p�. For the second method, the phase values are

multiplied by a constant factor in order to match their range with

the magnitude of the complex numbers in a typical parameter

scaling step.

All of the three proposed methods of parametrization have at

least two continuous derivatives. All of them allow a dynamic

change of the coordinate system. This comprises a conversion

from one parametrization to another, as well as increasing or

reducing the degrees of freedom in the same type of description.

The dynamic change of coordinate systems addresses instability

due to the vast number of local minima. A local minimum in one

coordinate space might not be pronounced in another. Many

observed local minima showed artifacts typical for one type of

description, such as Gibbs phenomena or ringing, which are not

stable for the optimizer with another parametrization. Further-

more, a dynamic change of the number of dimensions was used for

adaptive control over stability as described below.

Optimization Algorithm
We implemented a method for multivariate minimization of the

parametrized objective. A global method was chosen due to the

large number of local minima. For a quick convergence, the global

method was combined with a local algorithm in a hybrid

approach. Robust local optimization workers converge rapidly

on dominant local minima. The global framework in turn

combines the information about these local minima.

For the global algorithm, a particle swarm method was selected

[61]. The term particle denotes a single waveform parameter set in

this context. A particle swarm framework with many local workers

allows a concurrent design that is well suited for high-performance

computing.

Two algorithms, a simplex-derived constrained optimization by

linear approximation (COBYLA) [62,63] and an interior-point

method [64], act alternatively as relatively stable local optimizers.

The type of coordinate system of each worker is fixed. The

number of degrees of freedom applies to all workers and is

controlled by the global framework. The degrees of freedom are

increased by a predefined step if convergence is achieved and the

result outperforms the previous step; otherwise, the degrees of

freedom are decreased.

The global method hands over the parameters to the local

workers who detect a nearby valid local minimum that fulfills all

constraints. Their results are considered in deciding every

particle’s best as well as the total best in each step. In order to

avoid oscillations in the attraction field of local minima, the

position of a given particle is not changed to the result of the

corresponding local worker.

The particle swarm algorithm updates the parameters p of the j-

th particle in the (iz1)-th step

piz1
j ~pi

jzDpiz1
j ð2Þ

Dpiz1
j ~vDpi

jzc1ri
j1(bj{pi

j)zc2ri
j2(bg{pi

j) ð3Þ

where v is the inertia, c1 and c2 are the gravity parameters, and

ri
j1,ri

j2[(0,1) are the modulation variables corresponding to the

local best and the global best, respectively [61]. The modulation

variable values are chosen randomly in every step. The global best

is denoted by bg, while each particle has its own local best bj . For

the constants, several alternatives were tested, and the values

v~0:6, c1~1:7, c2~1:7 were chosen. Notably, the algorithm

performed appropriately even with repellent behavior, which was

used especially for exploration of the parameter space (v~{0:35,

c1~{0:05, c2~5). The number of particles was up to fifty. The

particles were initialized with random numbers. In several runs, a

fraction of the workers was initialized with conventional

waveforms.

Neuron Model
The decision if a pulse elicits an action potential is made by a

nonlinear model of a human motor axon. The nominal model is a

local axon description incorporating fast sodium, persistent

sodium, and dominant slow potassium channels as well as passive

leakage. The formulation and parameters of the membrane

dynamics are based on the Schwarz model [65–67], likewise a

local single-segment approach, and includes parameter updates by

the same collaborators [68,69]. as well as by McIntyre et al. [70].

All model parameters are given in Appendix S1. The first

optimization constraint (action potential generation) was defined
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to be fulfilled if the neuron potential exceeded +10 mV after a

stimulus.

Like other local or single-compartment models common in

neurodynamics [24,65,71,72], this neuron description does not

incorporate signal propagation, but concentrates on the excitation

dynamics. The electromagnetic induction process enforces an

electric field across the membrane locally at a node. This is

reflected by the typical activating function in electrical and

magnetic stimulation which does not interact with the stimulation

dynamics, but extracts the transmembrane component of the

induced electric field differentially, keeping its time course [36,73].

Accordingly, there is a consensus that external stimulation can be

treated equally to intracellular current injection [11,74] as used in

whole-cell patch-clamp measurements from which local neuron

models directly derive.

To check the robustness of the waveform optima with respect to

the neuron model parameters, we also optimized the pulse

dynamics using two alternative models. We implemented the

Motz-Rattay model and a simple leaky integrate-and-fire model.

The Motz-Rattay model is based on a modification of the original

Hodgkin-Huxley equations to account for mammalian body

temperatures and provides a relatively simple and computationally

fast approach for studying pulse dynamics, for example, of

auditory nerve axons [57]. Due to its notable deviation in

dynamics compared to human axons, it is not well suited as a

nominal model in this study, but it can provide a level of validation

for the main characteristics of the optimized waveforms.

The linear leaky integrate-and-fire model is widely used in

computational neuroscience and is commonly deployed as a

regression model in magnetic stimulation to fit experimental

strength-duration data [4,55,58]. At present, this type of model is

the only experimentally derived description of magnetic stimula-

tion dynamics. It reduces the dynamical complexity to a minimum

that almost all axons have in common, encompassing therefore the

excitation of various types of targets including motor, cortico-

spinal, or interneuron axons. However, nonlinearities–which are,

for example, already important in case of brief pulses and for the

explanation of phenomena such as the threshold reduction for

multiphasic waveforms–are missing. Based on the range of neural

membrane time constant values derived with magnetic stimulation

of both cortical and peripheral neurons (116 ms –196 ms; see

[4,55,58]), we chose a value of 167 ms here.

Supporting Information

Appendix S1 Details on the used nominal axon model.

(PDF)

Acknowledgments

The Leibniz Supercomputing Center of the Bavarian Academy of Sciences

and Humanities (www.lrz.de) provided computational resources for the

final stage of this project (2010–2011). Furthermore, we want to thank

Warren M. Grill for our discussions about the waveforms from the present

analysis and optimization in electrical stimulation. We are furthermore

indebted to Andrew Krystal, Zhi-De Deng, and Austin M. Kaiser for

reading this manuscript, their valuable advice on the content, and their

suggestions for improving the presentation.

Author Contributions

Design of the algorithmic approach: SMG. Implementation: MGG CNT

SMG. Parallelization for high-performance computing and fine tuning of

parameters: MGG CNT. Conceived and designed the experiments: SMG

TW. Analyzed the data: SMG TW AVP HGH CNT MGG. Wrote the

paper: SMG AVP TW.

References

1. Weber M, Eisen A (2002) Magnetic stimulation of the central and peripheral

nervous systems. Muscle & Nerve, 25(2): 160–175.
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