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During the recent COVID-19 pandemic, quarantine and testing policies have been of vital importance since the causative agent
has been a novel virus and no vaccine was developed at the time. In this work, a new epidemiological deterministic model is
proposed, analyzed, and discussed. Such a model includes quarantine periods of people with symptoms that have been tested
positive, and it will trigger a trace of their close contact, who will be also tested and put in quarantine if the result is positive.
Moreover, how the model parameters affect its stability is analyzed with the basic reproduction number R0. Since the COVID-19
outbreak in Spain (approximately 13/03/2020) until 25/04/2021, different restrictions have been applied. For discussion of a real
case study, data have been gathered and used from the Spanish Autonomous Community of Cantabria to estimate the parameters
and to see how the restrictions have affected their values. In the parameter estimation process, it has been assumed that the
constructed model follows the structure of an ARX model. Finally, by considering that the gathered data are subject to certain
errors, the paper discusses how to adequate the model usefulness for its use in fitting and processing data through an estimation
mechanism involving the provided daily total and positive performed tests.

1. Introduction

In late December of 2019, China reported to the World
Health Organization (WHO) several cases of pneumonia
apparently linked to the Hunan Wholesale Seafood Market
in Wuhan City, and they pointed out that this disease might
be caused by a new virus. Chinese scientists analyzed the
virus from a hospitalized person, and the 11th of January,
China confirmed that the abnormal arising of pneumonia
cases was due to a novel coronavirus, similar to SARS and
MERS, so they named it SARS-CoV-2 (afterwards it will be
renamed to COVID-19). It was also found out that fever and
sore cough were the common symptoms, and that pneu-
monia was a less common consequence of the disease
causing virus [1]. An abundant background literature on

many medical aspects and transmission mechanisms of
COVID-19 is available, some of them being linked with
general description of epidemic models. See, for instance,
[2–23] and references there in and also [24–28] for some
general results on epidemic model parameterizations of
interest. Some specific related details are now described. By
late January of 2020, some cities of China locked down so as
to slow down the increase in hospitalized people, and some
airlines decided to suspend flights to (or from) China. On the
30th of January, the WHO (World Health Organization)
reported that there were 7,818 confirmed cases all over the
world, from which 7,736 cases were in China, 1,370 were
severe and 170 deaths [21]. Moreover, the Centers for
Disease Control and Prevention (CDC) wrote a press release
which outlined the first case of person-to-person spread in
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U.S, and consequently world countries geared up [8]. 'e
applied prevention measures were not enough to avoid the
virus spreading and on March 11 determined that COVID-
19 was a global pandemic [19] since there were 132,758
confirmed cases in the world and 4,955 deaths [18]. On
March 17, Europe and Russia closed the borders, and by the
time, many countries announced lock downs (for instance,
Spain, France, and so on) [1].

When Spain imposed a quarantine period on the 13th of
March of 2020, its epidemiological situation was critical:
there were 4,209 confirmed cases from which 575 were new
ones, and 42% of the total cases were hospitalized [5]. Even if
the rules were very restrictive (only on necessary situations it
was allowed going outside and wearing the face mask was
mandatory), the cases continued raising until 25/03/2020
with a pick value of 720 new cases and 825 deaths [6], and it
was not until 25/05/2020, when the number of new cases was
approximately 2,000 and 68 the number of deaths [6], that
more permission was given to the inhabitants (i.e., it was
possible working out outside at certain time ranges). On the
21th of June 2020, the Spanish Government announced the
so-called “new normality,” the mask face and social dis-
tancing (1.5m) were still mandatory although at this point
each autonomous community could imposemore constrains
but their capability was limited [7]. During summer vaca-
tion, the situation maintained stable; however, when people
started working (approximately after 09/09/2020), the epi-
demiological situation worsen. To tackle this problem, each
Autonomous Community (AC) combined and applied
differently restrictions (as, for instance, curfew or bars close
down), and considering the later results, inhabitants cast
doubt on whether the imposed rules were worth or not.
'erefore, a mathematical model which could represent the
COVID-19 behavior over certain conditions could be very
useful.

'e aim of epidemiological models is to understand and
predict the dynamics of the propagation of a disease, and it
must exhibit an equilibrium between three elements [11],
namely, accuracy, transparency, and flexibility. Accuracy is
the capacity to reproduce the real life behavior and a nec-
essary feature to establish good control actions, perhaps the
complexity of the model is proportional to the mentioned
accuracy. On the other hand, transparency considers how
themodel components interact in the dynamics, and it has to
be noticed that it is a property that is opposed to complexity
and consequently to accuracy. Finally, flexibility is the ability
to adapt the model to other circumstances.

If the model fits well with the real disease propagation
dynamics, it can be used to infer optimal control actions, so
it makes possible implementing more efficient measures and
optimizing the use of resources. In 2001, the epidemic foot-
and-mouth outbreak in the UK and the result of three
different models applied to this case predicted a large-scale
spreading and a better control of the epidemic if the infected
and exposed animals were culled [26]. In many research
studies, it has been considered a spreading of a very high
death rate virus such as smallpox [11] to verify whether a
massive vaccination, which could generate health problems,
is advantageous or not. However, the obtained results differ

from each other since there are many epidemiological un-
certainties. As far as COVID-19 is a pandemic, there are
many data sources that provide information about the ep-
idemiological situation, so it is feasible to create a parametric
model from real data and reduce epidemiological uncer-
tainties. 'us, clear control strategies could be built up and
implemented.

In this work, a deterministic mathematical model is built
up, which spans the well-known SEIR epidemic model by
adding people in quarantine and those being asymptomatic.
To reduce the model dimension, the infected people with
symptoms and asymptomatic will be gathered, so a SEIQR
epidemic model is obtained which is integrated by the
following subpopulations: Susceptible (S), Exposed (E),
Infectious (I), Quarantined (Q), and Recovered or Immune
(R). In this model, it is assumed that only exposed and
infectious people will cause new infections since people inQ,
which represent the individuals who stay in hospital and at
home during some period due to the disease, are concerned
about their illness, and they try not being in contact with
others. On the other hand, it will be considered that some
percentage of the individuals in the infectious subpopulation
I, more precisely the symptomatic ones, will be reported and
carried to Q, and it will trigger a tracing method as it is
shown in [3, 23]. 'us, we can say that there are the sub-
populations including infected individuals which are the
exposed, the infectious, and the quarantined subpopula-
tions. In particular, the asymptomatic infected subpopula-
tion is included in the exposed one.

After constructing the SEIQR model schematic, defining
how individuals interact, and defining the necessary pa-
rameters, the respective nonlinear system of differential
equations will be obtained and analyzed. 'e theoretical
expression for the basic reproduction number, which is a
feature dependent on the system’s parameters and a
threshold that determines whether the disease is out of
control or not, will be obtained through the next generation
matrix [27]. For stability analysis purposes, the equilibrium
points, that is, the disease-free one and the endemic equi-
librium one, which determine the states in which the disease
is extinguished from the society and when the disease prevail
(i.e., the usual flu disease), respectively, are calculated. 'e
system is linearized around the equilibrium points, and the
eigenvalue problem is solved to evaluate when their real
parts become positive/negative (condition instability/sta-
bility of the system).

Some of the model parameters (for instance, the virus
incubation period and the probability to get infected by
symptomatic/asymptomatic people) are a disease charac-
teristic, so their values have been collected via other studies
[2, 3, 12, 13, 27, 29]. On the other hand, in [30], a model with
susceptible, exposed, infectious, quarantined, and removed
is discussed with parametrical values fitted to Saudi Arabia
data which test the model and analyze the effects of hospital
beds availability, quarantines, and media effects on the
foreseen dynamics. In [31], a sliding-mode vaccination
controller is designed to fight against COVID-19 and testing
simulations are performed on data of Iran and Russia. In
[32], machine learning designs are used in a

2 Discrete Dynamics in Nature and Society



susceptible-infected-recovered model to discuss the influ-
ence of vaccination in the COVID-19 pandemic evolution in
Brazil as well as the impacts of the immunization speed and
vaccines efficacy.

However, parameters that depend on the society be-
havior (i.e., the average number of contacts per day) must be
determined with the respective real data. Since the auton-
omous community of Cantabria gathers wide data about the
epidemiological situation, it has been used to estimate the
unknown parameters, such as the average contact rate and
the tracing effectiveness. It has been assumed that the dis-
crete differential expressions of variables such as Q and I
follow an ARX model structure. 'us, the ARX model
parameters have been estimated with the least square
method and their values have been used to infer the un-
known epidemiological values of the parameters. Finally, the
differential equations have been solved with the obtained
parameters, and the results have been compared with real
data.

'e paper is organized as follows. Section 2 describes the
new proposed epidemic SEQIR (Susceptible-Exposed-
Quarantined-Infectious-Recovered) model. Such a model
has several specific novel characteristics, whose effects are
integrated and analyzed together in a coordinated way,
namely,

(a) 'e proportions of asymptomatic and symptomatic
individuals in the quarantined group and in the
infectious group have, in general, different average
transmission rates of contagion to susceptible in-
dividuals as it is also potentially distinct from the
above mentioned ones the average transmission rate
of the exposed individuals to the susceptible ones.

(b) Various average transmission rates are parameter-
ized by the infective contacts between individuals. In
particular, the values of the average transmission
rates are directly proportional to the average po-
tentially infectious contacts. 'ose contacts occur
among the various infected types of individuals (that
is, those being currently allocated in the exposed
subpopulation, including the asymptomatic infec-
tive, in the symptomatic infectious subpopulation,
and in the quarantined subpopulation) with sus-
ceptible individuals.

(c) Various average transmission rates are also pa-
rameterized in a direct proportion by the corre-
sponding probabilities of infecting susceptible
individuals.

(d) 'e model is also parameterized by the average rate
of attendance to the doctor for disease positivity
testing or evaluation of symptoms checking and by
the effectiveness in tracing the positive cases.

(e) 'e increase in the attendance rate of symptomatic
suspect individuals contributes positively to the
incorporation to the quarantined subpopulation of
those being positively tested.

(f ) 'e total day-to-day quarantined subpopulation
incorporates the individuals who have been tested

positive. 'is includes the hospitalized individuals
including those under intensive care and also those
quarantined at their homes having no serious
symptoms.

'e positivity of the model, in terms of the nonnegativity
of all the components of the state trajectory solution under
any given finite nonnegative initial conditions, is also proved
and discussed in that section. Section 2 also includes a brief
discussion on other approaches given for the pandemic
study including the potential vaccination and treatment
control relevance in the damping of the infection as well as
the influences of the intervention measures in the pandemic
evolution. On the other hand, Section 3 deals with the
disease-free and the endemic equilibrium points which are
proved to be unique. 'e disease-free equilibrium point is
proved to be locally asymptotically stable if the basic re-
production number is less than unity, while the endemic one
is locally asymptotically stable if such a value exceeds unity.
In addition, the endemic equilibrium point is proved to be
nonreachable in the first case since its infective components
are negative so that the eventual convergence of the state
trajectory solution to it would contradict the previously
proved positivity of the model performed in the former
section. Furthermore, it is proved that only one of the two
equilibrium points is a global asymptotic attractor
depending again on the value of the basic reproduction
number. Section 4 gives some simulations with the proposed
model being evaluated for the COVID-19 pandemic with
demographic data from Spain. Section 5 develops in more
detail a case study against COVID-19 which is performed
with official data acquisition taken from the Cantabria
Autonomous Community (a region in North Spain). In
particular, the estimations of the average periods lasted by
people to get to a Health Center or to a doctor for eventual
positivity inspection, the efficiency of the positivity tracing,
and the average number of contagion contacts are estimated
from real data along the initial confinement period and also
for a subsequent period. In this subsequent period, the
formerly applied strong public intervention measures, of
almost total general confinement of the whole population,
were left while still public intervention rules were main-
tained, for instance, a duty of general use of masks, social
distance keeping, partial restrictions of mobility, closing of
nocturnal amusement places or very significant limitation
rules on the number of attendees to spectacles and res-
taurants, and so on. Finally, conclusions end the paper. A
subsection with a glossary of the main symbols is listed
below, and the proofs of the stated mathematical results are
given in appendixes.

1.1. Nomenclature

S, E, Q, I, R: subpopulations of susceptible, exposed,
quarantined, infectious, and recovered individuals. It is
assumed that the exposed subpopulation E includes the
asymptomatic infective individuals, while the symp-
tomatic infective (or infectious) integrated in the
subpopulation I.
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N: total population
Λ: average recruitment parameter
βe, βa, βs: exposed to susceptible, asymptomatic to
susceptible, and symptomatic to susceptible average
transmission rates
σ: average incubation rate
c: average recovery rate
ρ: average immunity loss rate
δ: average quarantine rate
μ: average natural death rate
α: average disease mortality rate
p1: average probability of evolution from exposed to
symptomatic
p2: average probability of evolution from exposed to
asymptomatic
λ: average rate of symptomatic visits to doctor for
testing
ce � βe/pe, ca � βa/pa, cs � βs/ps: average numbers of
close contacts per day of a member from a group of
(either exposed, asymptomatic or symptomatic infec-
tious) to susceptible; and pe, pa, and ps are the re-
spective probabilities to infect a susceptible individual
t , p: daily total and positive tests
r: average number of recovered quarantined individ-
uals who were confined because positive testing

2. Model Setting and Its Description
and Positivity

Epidemic models can operate in either deterministic or in
stochastic frameworks depending on how the population of
one block transforms into the others; that is, deterministic
models consider that the rates (namely, the chance to be
infected) maintain constant with respect to time, and
therefore there is a unique solution for each initial condition.
In contrast, stochastic models add random or probabilistic
variables into the rates, so the model will give a set of
probable solutions. Even if human behavior and infections
have stochastic components, when the real system (sto-
chastic) is composed by a large group of people, deter-
ministic models could be used to represent the system.'en,
the ratios are constant and could be determined by statistical
results [11].

'e graphical representation of the system is made by a
group of blocks (or compartments), each one represents a
certain part of the population, and the arrows make the
connection between two blocks (A⟶B) and specify the
way in which part of the population from A transforms into
the inhabitants of the block B. To build up the model flow
chart, it is important to know the features of the tackling
disease which are the stages of the disease, incubation period,
immunity period, and so on.

Regarding COVID-19, the WHO reported that there
are two main ways in which the disease is transmitted:
presymptomatic and asymptomatic transmissions [20].

Presymptomatic transmission, which is possible during the
incubation period (time between exposure and the
symptoms onset) which is 5-6 days [17, 20], is more likely
to happen 1–3 days before symptoms appear [26]. 'e
preliminary way of transmission is via symptomatic cases,
but even if the percentage of asymptomatic cases is 16%-
17%, [2, 13], it has been seen that they show similar viral
loads [10, 13, 26, 27, 29]. Some research studies have
spotlighted the importance of presymptomatic and
asymptomatic cases since they contribute to the virus high
spread [27, 29]. 'erefore, many countries were forced to
include quarantine periods to reduce the spreading. 'e
flow chart depicted in Figure 1 shows a deterministic model
of COVID-19 which includes the characteristics mentioned
before. Note that Figure 1(a) shows five different com-
partments, namely,

(i) Susceptible (S): this class is constructed by a group
of individuals who can get the disease and are not
yet infected.

(ii) Exposed (E): those individuals of a group S who
have been in contact with infected people and
therefore are infected too, but they do not present
symptoms because they are still incubating the vi-
rus. 'ey move freely; thus, they will maintain an
average number of close contacts per day cfree.

(iii) Symptomatic (Sy): this group consists of people who
got the disease and present symptoms. Soon after
the incubation time, an individual of Sy will prob-
ably move freely (the average number of close
contacts per day will be equal to cfree) since the host
manifests presymptoms, which commonly are
confused with tiredness or symptoms of a common
cold/flu. After the list of symptoms will become
larger and their intensity will increase, therefore, he/
she will go to the doctor and put in quarantine. It is
assumed that the average number of close contacts
of people from Sy is lower than cfree.

(iv) Quarantined (Q): this group is integrated by sub-
groups coming from S and Sy. People from Sy who
presented clear symptoms will have tested positive
and put in quarantine. 'eir positive results will
trigger a tracing through their close contacts, which
is assumed that are individuals from S. Traced
contacts will be tested, and those with positive result
will be put in quarantine. It is assumed that the
average number of contacts per day of people inQ is
nearly zero because they are aware of their disease
and they will interact less with others. Note that Q
covers people who have tested positive and are
staying at home or hospital; therefore, only people
from Q might die due to the disease.

(v) Asymptomatic (A): a group of infected people who
does not present symptoms. 'ey move freely with
an average number of close contacts equal to cfree.

(vi) Recovered (R): when infected, people recover from
the disease and have some immunity to it during a
period of time.
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'e newborns are introduced in the class S with a re-
cruitment Λ, and from the classes, it removed a portion with a
rate μ (daily natural death rate). It is assumed that the pop-
ulation is homogeneously mixed, so it is possible to determine
the transmission rates βe, βa, and βs, which indicate the
probability to infect susceptible people when they are in contact
with exposed, asymptomatic, and symptomatic individuals,
respectively. 'e corresponding expressions are βe � cepe,
βa � capa, and βs � csps where ci is the average number of
close contacts per day of a member from exposed, asymp-
tomatic, and symptomatic, respectively, to susceptible, while pe,
pa, and ps are the respective probabilities to infect a susceptible
individual. As it was mentioned before, it will be assumed that
ce � ca � cfree, ce > cs > 0, andpa ≈ ps >pe.'ese are necessary
parameters to specify how susceptible people get infected; one
individual from S has a probability E/N, I/N, and A/N of
contacting a person from E, I, andA, respectively, so the chance
to get infected is (βeE + βsSy + βaA)/N. 'erefore, all sus-
ceptible people who will get disease per day is

βeE + βsSy + βaA 
S

N
 . (1)

Exposed people after the incubation time (σ− 1 days) will
evolve to asymptomatic people with a probability p2. 'ose
ones evolving to symptomatic individuals may not consider,
at the early beginning, that they are still sick. However, after
λ− 1 days (λ indicates the rate at which people from group Sy

visit the doctor, and it is supposed that its value will be larger
as the test stock, sanitary resources, and the disease impact
on society are increased), their symptoms will increase and
they will go to the doctor, test positive, and put in quar-
antine. 'is will start a tracing, which effectiveness is de-
termined by p1, of the positive tested symptomatic people
with close contacts csλp1SyS/N, and those who test positive
βsλp1SyS/N will go to Q. 'erefore, the number of new
exposed per day will be equal to the susceptible people who
get the disease per day (see expression (1) minus traced
people who have tested positive):

SΛ
E

A

ρR

Q

Sy

βsλp1SyS/N

(βeE+βaA+βs (1-p1λ)Sy)S/N

μA

Qδ

σEp2

σE (1-p2)

Q (μ+α)

Syγ

Aγ μRR

λSyμSy

μS μE

(a)

SΛ E

ρR

Q Qδ

μS

βsλp1 (1-p2)IS/N

(βeE+[βap2+βs (1-p2) (1-p1λ)]I)S/N

μlμE

γlI

σE

(μ+α)Q

λ (1-p2)l

μR
R

(b)

Figure 1: (a) Flow chart of the epidemic model and (b) reduced flow chart of the epidemic model.
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βeE + βs 1 − p1λ( Sy + βaA
S

N
 . (2)

People in Q include those who have been tested positive,
which means hospitalized ones, people in Intensive Care Unit
(ICU), and those who are in their homes. Some people fromQ
will remain there during the quarantine period (δ− 1 days),
and others will die from COVID-19 with a rate α. After c− 1

days, both asymptomatic and symptomatic individuals will
recover from the disease, and they will be part of the recovered
population R during a period ρ− 1. Now, six blocks are shown
in the whole scheme from Figure 1(a), so that six differential
equations are needed to represent the system. Managing with
six equations might be a difficult task; therefore, a new
compartment I involving together A and Sy is defined to
reduce the number of equations from six to five, that is,

I � A + Sy,

A � p2I,

Sy � 1 − p2( I,

(3)

and in Figure 1(b), the block I (infectious) substitutes the
blocks A and Sy. In the following, the dependence on time is
omitted in the equations for the sake of exposition and
simplicity when no confusion is expected. 'e differential
system representing the deterministic model is given by the
following set of first-order differential equations:

_S � Λ + ρR − βeE + p2βa + 1 − p2( βs( I 
S

N
− μS, (4)

_E � βeE + p2βa + 1 − p2(  1 − λp1( βs( I 
S

N
− (σ + μ)E, (5)

_Q � 1 − p2( βsp1λI
S

N
+ λ 1 − p2( I − (μ + α + δ)Q, (6)

_I � σE − λ 1 − p2(  + μ + c( I, (7)

_R � cI + δQ − (ρ + μ)R, (8)

subject to nonnegative initial conditions S(0) � S0, E(0) �

E0 , Q(0) � Q0 , I(0) � I0, and R(0) � R0. 'e above model
is being considered in the sequel for analysis. All the pa-
rameters are nonnegative and, furthermore, p1, p2 ∈ [0 , 1].
'e total population and its time derivative become

N � S + Q + E + I + R;

_N � Λ − μN − αQ.
(9)

'e following result holds on nonnegativity of the tra-
jectory solution for any given finite nonnegative initial
conditions. 'e proof is given in Appendix A.

Theorem 1. Assume that x(0) � x0 � (S0, E0, Q0,

I0, R0)
T ∈ R+

5 . 4en, the following properties hold:

(i) x(t) � (S(t), E(t), Q(t), I(t), R(t))T ∈ R+
5 for all

t ∈ R+ so that the five subpopulations are nonnegative
for all time

(ii) 4e total population is nonnegative and bounded for
all time and then the subpopulations are also bounded
for all time.

Close techniques for evaluating the nonnegativity of the
solution have been used in some background literatures for
other epidemic models. See, for instance, [27–32]. Also, it can
be pointed out that other related alternative mathematical
models for infective disease have been proposed in the recent
literature with applications to parameterizations related to
COVID-19. For instance, in [33], mixed contagions of sus-
ceptible individuals from asymptomatic and symptomatic
infectious ones are studied based on provided official data
taken from some European countries. In [34], SARS-CoV-2
(COVID-19) transmission data from Spain and Italy were
analyzed and processed to estimate the transmission rate
levels through SIR models with undelayed and delayed
propagation infection related to the periods of different public
interventionmeasures. In [35], confinements and quarantines
have been considered as impulsive actions which decrease at
certain time instants, and along certain duration time periods,
the amount of individuals is able to produce contagions. In
[36], an analysis of the contagion propagation levels from
small amounts of exposed and infected outsiders coming in a
certain habitat was studied under eventual delayed resus-
ceptibility. In [37], a model for COVID-19 including a po-
tential herd immunity has been developed for Austria,
Luxembourg, and Sweden. Also, the effect of delaying the
vaccination while assuming unlimited vaccine units supply is
studied in [38]. A very complete recent work on epidemic
modeling is given in [39]. Such a well-organized work dis-
cusses different deterministic, stochastic, and optimization
models and includes also a discussion on the pandemic
evolution in France. On the other hand, some mathematical
techniques of interest for its application in mathematical
epidemic models related to positivity and stability as well as
numerical methods, estimation methods, or probability and
statistics tools can be found in [39–47].

3. Equilibrium Points and Stability Analysis

Now, the disease-free and the endemic equilibrium points of
the above model are seen to be unique, and their components
are characterized. It is also seen that the endemic equilibrium
is not reachable (or, roughly speaking, it does not exist in view
of 'eorem 1 (i)) for small values of the transmission rate
since the infective components are negative.

3.1. EquilibriumPoints. 'e equilibrium points are found by
zeroing the time derivatives of the subpopulations in (4)–(8).
'e disease-free equilibrium point satisfies Edfe � Qdfe

� Idfde � 0. Looking at (8), it is seen that those constraints
imply that Rdfe � 0 and, from the first one, Sdfe � Ndfe �

Λ/μ so that xdfe � (Λ/μ, 0, 0, 0, 0)T is indeed unique. 'e
interpretation is that, in the absence of disease, the whole
population is susceptible. Note that, in the absence of re-
cruitment, i.e., if Λ � 0, then the disease-free equilibrium
point implies the population extinction.
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'e existence, uniqueness, and characterization of the
endemic equilibrium point are discussed in the two fol-
lowing results which are, respectively, proved in Appendixes
B and C.

Lemma 1. Assume that

βc �
(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
.

(10)

'en, the following properties hold:

(i) We have

Iee � fIEee,

fI �
σ

λ 1 − p2(  + μ + c
.

(11)

(ii) We have

See � gSNee,

gS �
(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βe + p2βa + 1 − p2(  1 − p1λ( βs( σ
.

(12)

Let us define the relative transmission rates related
to some transmission rate reference value β leading
to βe � βerβ, βa � βarβ, and βs � βsrβ. 'en, a
necessary condition for the endemic equilibrium
point to exist is that β> βc.

(iii) 'e quarantined value at the endemic equilibrium
point Qee, if it exists (i.e., if Qee > 0), satisfies the
subsequent constraint:

λ 1 − p2( Iee

μ + α + δ
<

μ 1 − p2( βsp1λSee

(μ + α + δ) Λ − αQee( 
+
λ 1 − p2( 

μ + α + δ
 Iee

� Qee,

(13)

and Qee > 0 is unique if λ ∈ [0, λc] for some
λc ≤ (1/p1). Furthermore, Qee <Λ/(μ + α) and
Iee <Λ(μ + α + δ)/λ(1 − p2)(μ + α).

(iv) Qee � fQEee, where

fQ �
1 − p2( λσ

(μ + α + δ) λ 1 − p2(  + μ + c( 
1 +

βsrp1(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
 . (14)

(v) We have

Ree �
cIee + δQee

ρ + μ
� fREee, (15)

where

fR �
cfI + δfQ 

(ρ + μ)
�

1
ρ + μ

cfI +
1 − p2( λδ
μ + α + δ

fI +
βsrp1(σ + μ)σ

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
  . (16)

Note that the reference transmission rate β is fixed for
each given triple of transmission rates βe, βa, and βs with
their relative values being βer � βe/β, βar � βa/β, and
βsr � βs/β.

'e following brief discussion concludes that a unique
feasible endemic equilibrium point can also exist irrespective
of the parameter λwhich describes the attendance rate to the
doctor or Health Service for checking or treatment.
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Lemma 1 leads directly to the next result whose proof is
given in Appendix C.

Theorem 2. Assume that λ ∈ [0, λc] and β> βc. 4en, the
endemic equilibrium point is unique subject to an endemic
equilibrium population given by

Eee �
1 − gS( Λ

μ + fQ μ + α 1 − gS( (  + μ fI + fR( 
. (17)

And, as a result, there is a unique reachable endemic
equilibrium point given by (11), (12), (14), (15), and (17). If
β � βc, then the endemic equilibrium point coincides with
the disease-free one.

Remark 1. 'eorem 2 establishes that the endemic equi-
librium point does not exist for sufficiently small trans-
mission rates so that, in this case, the disease-free
equilibrium point is the only feasible equilibrium point. For
instance, note that if the three transmission rates are zero,
then the susceptible individuals at the endemic equilibrium
would be infinity what contradicts 'eorem 1(ii) so that, for
zero transmission rates, the endemic equilibrium does not
exist, as expected.

Remark 2. Note that it becomes attractive to refer the three
defined transmission rates to a prescribed reference one β by
using the relative values of the defined one with respect to
such a reference transmission rate. In particular, it is easy in
that way to characterize the existence of the endemic
equilibrium point referring to such a reference transmission
rate exceeding a threshold which depends on the remaining
parameters including the three relative transmission rates. It
will be seen later on in Section 3.2 that the necessary
condition β> βc for the reachability of the endemic equi-
librium point (equivalent to its existence from its necessary
positivity for that concern) is also equivalent to the basic
reproduction number to fulfill R0 > 1, which implies in turn
the instability of the disease-free equilibrium point. 'us,
one will conclude that if the disease-free equilibrium point is
locally asymptotically stable, then the endemic equilibrium
one is not reachable. Simulations corroborate that if R0 � 1,
then the disease-free equilibrium point is locally asymp-
totically stable. As a result, the disease-free equilibrium point
is a global attractor if R0 ≤ 1 and equivalently if β≤ βc.

Remark 3. Note that the sufficient conditions λ ∈ [0, λc] and
β> βc of 'eorem 2 for the uniqueness of the endemic
equilibrium point are independent of the equilibrium
subpopulations amount since it is based on the fact that
Iee <Nee.

For the particular case, λ � 0 which reflects that
people, in average, do not go to the doctor under

symptoms since the delayed time to go to the doctor is
λ− 1 � +∞. For such a case, it can be deduced as well that
the endemic equilibrium is unique. However, the rea-
soning has to be specific for the discussion of the par-
ticular model (4)–(8) obtained by zeroing the terms
affected by a factor λ in the differential equations. Since
λ � 0 yields to division by zero in some relevant equations
in the proof of Lemma 1, the next related result is stated
and proved separately from Lemma 1 and 'eorem 2. Its
proof is given in Appendix D.

Theorem 3. If λ � 0, then there are a unique disease-free
equilibrium point and a unique endemic equilibrium. 4e
first one is xdfe � (Λ/μ, 0, 0, 0, 0)T; similarly for λ≠ 0, and the
endemic one satisfies the subsequent relations:

Qee � 0;

Iee �
σEee

μ + c
;

Ree �
cIee

ρ + μ
�

cσ
(ρ + μ)(μ + c)

Eee,

(18)

See �
See

Nee

Nee �
(σ + μ)(μ + c)Λ

μ βe(μ + c) + p2βa + 1 − p2( βs( σ 
, (19)

Eee �
Λ(ρ + μ)(μ + c)[Z − (σ + μ)(μ + c)]

Zμ[(σ + μ)(ρ + μ) + c(σ + μ + ρ)]
, (20)

where

Z � βe(μ + c) + p2βa + 1 − p2( βs( σ. (21)

Furthermore, the endemic equilibrium point is reachable
if the reference transmission rate exceeds a minimum
threshold according to

β> βc0 � βc(λ � 0) �
(σ + μ)(+μ + c)

(μ + c)βer + p2βar + 1 − p2( βsr( σ
. (22)

3.2. Local Asymptotic Stability Analysis. 'e next technical
result, proved in Appendix E, relies on the evaluation of the
Jacobian matrix with respect to any equilibrium point. It will
be then used to characterize the local asymptotic stability of
both equilibrium points.

Lemma 2. 4e Jacobian matrix J∗ � J∗(x∗) �

(z _x(t)/zxT(t))|x∗ of the linearized trajectory x(t) � x(t) −

x∗ around any equilibrium point x∗ � (S∗, E∗, Q∗, I∗, R∗)T is
given by J∗ � (J∗ij) ∈ R

5×5 with entries as follows:
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J
∗
11 � − μ −

βeE
∗

+ p2βa + 1 − p2( βs I
∗

(  N
∗

− S
∗

( 

N
∗2 ,

J
∗
12 � −

βeS
∗

N
∗

− E
∗

(  − p2βa + 1 − p2( βs I
∗
S
∗

N
∗2 ,

J
∗
13 �

βeE
∗

+ p2βa + 1 − p2( βs I
∗

( S
∗

N
∗2 ,

J
∗
14 � −

p2βa + 1 − p2( βs S
∗

N
∗

− I
∗

(  − βeE
∗
S
∗

N
∗2 ,

J
∗
15 � ρ +

βeE
∗

+ p2βa + 1 − p2( βs I
∗

( S
∗

N
∗2 ,

J
∗
21 �

βeE
∗

+ p2βa + 1 − p2(  1 − λp1( βs I
∗

(  N
∗

− S
∗

( 

N
∗2 ,

J
∗
22 � − (σ + μ) +

βeS
∗

N
∗

− E
∗

(  − p2βa + 1 − p2(  1 − λp1( βs I
∗
S
∗

N
∗2 ,

J
∗
23 � −

βeE
∗

+ p2βa + 1 − p2(  1 − λp1( βs I
∗

( S
∗

N
∗2 ,

J
∗
24 �

p2βa + 1 − p2(  1 − λp1( βs S
∗

N
∗

− I
∗

(  − βeE
∗
S
∗

N
∗2 ,

J
∗
25 � −

βeE
∗

+ p2βa + 1 − p2(  1 − λp1( βs I
∗

( S
∗

N
∗2 ,

J
∗
31 �

1 − p2( βsp1λI
∗

N
∗

− S
∗

( 

N
∗2 ,

J
∗
32 � −

1 − p2( βsp1λI
∗
S
∗

N
∗2 ,

J
∗
33 � − (μ + α + δ) −

1 − p2( βsp1λI
∗
S
∗

N
∗2 ,

J
∗
34 � λ 1 − p2(  +

1 − p2( βsp1λS
∗

N
∗

− I
∗

( 

N
∗2 ,

J
∗
35 � −

1 − p2( βsp1λI
∗
S
∗

N
∗2 ,

J
∗
41 � J

∗
43

J
∗
42 � σ,

J
∗
44 � − λ 1 − p2(  + μ + c ,

J
∗
51 � J

∗
52

J
∗
53 � δ,

J
∗
54 � c,

J
∗
55 � − (ρ + μ).

(23)
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4e above Jacobian matrix can be decomposed as J∗ �

T∗ − V with the transmission and transition matrices, re-
spectively, − V (being independent of the transmission rates

and of the considered equilibrium point) and T∗ � J∗ + V,
where

− V � J
∗
β�0 �

− μ 0 0 0 ρ

0 − (σ + μ) 0 0 0

0 0 − (μ + α + δ) λ 1 − p2(  0

0 σ 0 − λ 1 − p2(  + μ + c(  0

0 0 δ c − (ρ + μ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

by using the relative transmission rates βer � βe/β, βsr � βs/β,
and βar � βa/β with respect to the reference transmission rate
β.

'e above result is useful for the local stability analysis
around the disease-free and endemic equilibrium points,
respectively, xdf and xee, via the respective Jacobian ma-
trices Jdf � J∗(xdf) � T∗(xdf) − V and Jee � J∗(xdf) �

T∗(xee) − V. In the calculation of the entries of the Jacobian
matrix around x∗, it has been taken into account that the
total population is not constant with respect to time due to
the mortality associated to the disease. For instance,

z(S/N)

zS


x�x∗
�

z(S/(S + E + Q + I + R))

zS


x�x∗

�
N
∗

× 1 − S
∗

× 1
N
∗2 �

1
N
∗ −

S
∗

N
∗2

,

(25)

generates one of the additive terms in J∗11 and so on for the
remaining entries of the Jacobain matrix around the con-
sidered equilibrium point.

'e following remark gives some considerations of
conceptual interest related to the Jacobainmatrix around the
equilibrium points and its partition into the sum of the
transition and transmission matrices.

Remark 4. Note that the transmission matrix (− V) is a
Metzler stability matrix, i.e., its diagonal entries are negative
and its off-diagonal entries are nonnegative so that all its

eigenvalues are real negative and its associated fundamental
(or transition) matrix e− Vt is nonsingular and has non-
negative entries, for all time. Note also that the transmission
matrix T∗ is zero if the transmission rates are zero (i.e., it is
zero in the absence of disease). 'e fact that e− Vt has
nonnegative entries for all time implies that any solution
trajectory is nonnegative for all time under any given
nonnegative initial conditions, in the absence of disease
which is a necessary condition for the nonnegativity of the
whole model to have a nonnegative solution trajectory under
nonnegative initial conditions ('eorem 1).

On the other hand,
J∗ � − V(I − V− 1T∗) � − (I − T∗V− 1)V is stable since (− V)

is stable if and only if the spectral radius of V− 1T∗, identical
to that of T∗V− 1 is small enough. According to equation
(23), this fact happens for the disease-free equilibrium point
if β is small enough. It can be proved that this is equivalent
also to β< βc and it will be seen later on that this is also
further equivalent to the basic reproduction number to be
less than one. Finally, according to (10), this also implies that
the endemic equilibrium point is not reachable.

Local asymptotic stability and instability results around
the equilibrium points are stated in the subsequent result,
whose proof is given in Appendix F.

Theorem 4. 4e following properties hold:

(i) 4e Jacobian matrix around the disease-free equi-
librium point is stable if and only if the basic re-
production number

R0 � ββ− 1
c � β

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
(σ + μ) λ 1 − p2(  + μ + c( 

< 1, (26)

with the average critical reference transmission
rate βc being defined in (10) and then the disease-
free equilibrium point is locally asymptotically
stable. Moreover, the spectral radius of V− 1Tdf

equalizes the basic reproduction number where,
such that for the disease-free equilibrium point, the
transmission and transition matrices are as
follows:
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Tdf � Tdf(β) � Jdf + V � β

0 − βer 0 − p2βar + 1 − p2( βsr(  0
0 βer 0 λ 1 − p2( p1βsr 0
0 0 0 λ 1 − p2(  1 + βsrp1(  0
0 0 0 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

− V � J
∗
β�0 �

− μ 0 0 0 ρ
0 − (σ + μ) 0 0 0
0 0 − (μ + α + δ) λ 1 − p2(  0
0 σ 0 − λ 1 − p2(  + μ + c(  0
0 0 δ c − (ρ + μ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

(ii) 4e disease- free equilibrium point is unstable if
β> βc⇔R0 > 1.

(iii) Assume that λ ∈ [0, λc). 4en, the endemic equilib-
rium point is locally asymptotically stable if and only
if β> βc⇔R0 > 1.

(iv) 4e above conditions in Properties (ii) and (iii) can
be weakened in the sense that the disease-free
equilibrium point is locally asymptotically stable if
and only if R0(β)≤ 1(β≤ βc) and the endemic one is

locally asymptotically stable if and only if
R0(β)≥ 1(β≥ βc).

Remark 5. It is now discussed how the calculation of the
basic reproduction number can be simplified by manipu-
lating the infective variables, that is, the exposed, infectious,
and quarantine subpopulations, only. Note from equations
(27)–(28) that the Jacobian matrix at the disease-free
equilibrium point is as follows:

Jdf �

− μ − βe 0 − p2βa + 1 − p2( βs(  ρ
0 − (σ + μ) + βe 0 p2βa + 1 − p2(  1 − p1λ( βs 0
0 0 − (μ + α + δ) λ 1 − p2(  1 + βsp1(  0
0 σ 0 − λ 1 − p2(  + μ + c(  0
0 0 δ c − (ρ + μ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

which makes obvious by its direct inspection that the lin-
earized subsystem of the infective components E, I, and Q

around the disease-free equilibrium points is not coupled to
the linearized subsystem of noninfective components S and

R. Note that the Jacobian matrix of the infective linearized
subsystem around the disease-free equilibrium point is given
by

J
i
df � − V

i
df I − V

i− 1
df T

i
df  �

βe − (μ + σ) 0 p2βa + 1 − p2(  1 − p1λ( βs

0 − (μ + α + δ) λ 1 − p2(  1 + βsp1( 

σ 0 − λ 1 − p2(  + μ + c( 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (30)

where the corresponding transition and transition matrices
are as follows:

− V
i
df �

− (μ + σ) 0 0

0 − (μ + α + δ) λ 1 − p2( 

σ 0 − λ 1 − p2(  + μ + c( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;

T
i
df � β

βer 0 p2βar + 1 − p2(  1 − p1λ( βsr

0 0 λ 1 − p2( βsrp1

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(31)

which concludes that the local stability around the disease-
free equilibrium point holds if R0 � ρ(Ti

dfVi
df)< 1 which

guarantees that Ji
df is a stability matrix since − Vi

df is a
stability matrix of eigenvalues − (μ + σ), − (μ + α + δ), and
− (λ(1 − p2) + μ + c). 'erefore, the local stability around
the disease-free equilibrium point can be analyzed more
easily from the Jacobian matrix of the infective linearized
subsystem since if E(t), I(t), Q(t)⟶ 0 as t⟶∞ for any
initial conditions sufficiently close to the disease-free
equilibrium point, then the disease-free equilibrium point is
locally asymptotically stable and conversely this happens if
the eigenvalues of Ji

df have negative real parts.
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3.3. Global Asymptotic Stability Analysis. 'e subsequent
result extends 'eorem 4 by proving that the given as-
ymptotic stability results are also global and that only one of
the two equilibrium points is a global asymptotically stable
attractor depending on the range of values of the basic
reproduction number, equivalently, on that of the reference
transmission rate for any given fixed triple of relative
transmission rates. Its proof is given in Appendix G.

Theorem 5. Assume that λ ∈ [0, λc]. 4en, there is only a
globally asymptotically stable attractor which is the disease-
free equilibrium point if R0(β)≤ 1(β≤ βc) and the endemic
one if R0 > 1(β> βc).

4. Computer Simulations on the
Epidemic Evolution

'e subsequent parameterization data to test the epidemic
model for the COVID-19 pandemic correspond to Spain. It
is assumed that the contact rates ce, ca, and cs which conform
the respective transmission rates βe, βa, and βs are supposed
identical and equal to cr. 'e transmission probability of the
exposed pe is 10− 3 times lower than that of the symptomatic
ps which equalizes that of the asymptomatic individuals pa.
'e average time before an infectious individual goes to the
doctor is λ− 1 � 2 days. 'e tracing effectiveness p1 is 0.5
while the average time of staying in quarantine is equal to
δ− 1 � σ− 1 + c− 1. 'e remaining model parameters and the
initial conditions are displayed in Tables 1 and 2.

'e obtained simulation results are depicted in
Figure 2(a); it shows the dynamics of the variables S, R, Q, E,
and I and the cumulative number of deaths with respect to
time. 'e variables show characteristics of an underdamped
dynamical system; its response is a sum of a transient re-
sponse (which is damped sinusoidal) and the steady state. In
this case, the disease persists, which is an expected result
since R0 � 2.36. It is important to note that, approximately,
300 days after the outbreak, the total number of deaths
reaches approximately 1 million, and at the end of the
simulation (600 days after the outbreak) is doubled. 'is
high mortality can be attributed to the high number of
contagious contacts. 'e disease spreading can be decreased
by reducing the value of cr � ce � cs � ca; therefore, in an
alternative simulation, cr was reduced to 4 (R0 � 0.89), and as
it can be seen in Figure 2(b), the disease tends to disappear;
the variables Q, E, and I show an overdamped response, and
their values continuously decrease with respect to time. As
long as their values and the total number of deaths are small
compared with S long over the simulation, the variable S
seems to be unchanging (see the top graph of Figure 2(b)).
'e results of both above simulations correspond to the
expected behavior in the cases of which the basic repro-
duction number is greater and lower than unity. Besides,
considering the cumulative number of deaths of both
simulations, it is clear that reducing the value of the pa-
rameter of average contact rate cr could prevent a substantial
increase in the total deaths.

On the other hand, Figure 3 shows the disease evolution
as the basic reproduction number is unity of close to unity. It

is seen that if the reproduction number is unity so that the
disease-free and the endemic equilibrium points coincide,
the disease-free is asymptotically stable as in the case when it
takes values below unity as expected from the theoretical
discussion performed in the former section. It is also seen
that, for values of the basic reproduction number which are
slightly higher than unity, the endemic equilibrium is a
globally asymptotically stable attractor.

5. A Case Study: Evaluation of the Model with
Data on COVID-19 Taken from Spanish
Cantabria Community

5.1. Data Acquisition. 'is section evaluates the proposed
model with real discrete data from Cantabria Community.
'e tuple of daily discrete data of the k − th day is defined
y(k) � (t(k), p(k), d(k), r(k)) where t(k) is the number of
performed tests, p(k) is the number of positive tested results,
d(k) is the number of deaths, and r(k) is the number of
recovered individuals. Over the above array, the subindices d
and c are used for daily and cumulative data. From cumulative
data, one can obtain the daily ones by using the derivative of
the accumulated ones by Euler forward approximation which
results in yd(k + h) � (yc(k + h) − yc(h))/h, and typically h

will be taken as a period of one day. Some relevant data from
Cantabria, from February 29, 2020, to February 14, 2021, are
displayed in Figure 4.

It can be pointed out that it is of interest to evaluate from
the data the number of individuals in quarantine, which also
includes the hospitalized ones since, approximately, the deaths
are proportional to the quarantined individuals, i.e., d(k) �

αQ(k) and the fraction of recovered individuals is proportional
to the quarantined individuals, i.e., r(k) � δQ(k). 'us, by
discretizing (8) for one day period, one gets

r(k) � δQ(k) � R(k + 1) − R(k) +(ρ + μ)R(k) − cI(k). (32)

In the first propagation wave of the disease, since the
number of infectious I(k) individuals compared with re-
covered individuals R(k) is close to zero and ρ + μ≪ 1, it can
be stated that r(k) is approximately the daily increment of
the recovered since from the above relation,
r(k) � δQ(k) � R(k + 1) − R(k). Note that r(k) is a part of
the recovered individuals, that is, those recovered individ-
uals from quarantine, since most of the recovered indi-
viduals from the slight or the asymptomatic infection are not
accounted for the data processing. 'erefore, we keep in the
following lowercase notation r(k) for this partial account of
the estimated recovered daily increment R(k + 1) − R(k).
'e period from February 29, 2020, to February 14, 2021,
gave a cumulative of recovered and death people which was
25,500 which is only a 5% of the population of Cantabria.
'erefore, S/N has been taken unity along that period.
Regarding the number of positive tests, death individuals,
and recovered tested daily individuals p(k), d(k), and r(k),
some average delays τ1, τ2, and τ3 exist from the contri-
butions of the daily infectious and quarantined individuals
caused by the transmission process and the delays in data
processing. 'e used evolution equations are as follows:
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p(k) � p(k) + wp(k)

� λ 1 − p2(  1 + p1pscr(  I k − τ1( (  + wp(k),
(33)

d(k) � d(k) + wd(k) � (α + μ)Q k − τ2(  + wd(k), (34)

r(k) � r(k) + wr(k) � δQ k − τ3(  + wr(k), (35)

where the superscript hat stands for the various estimates
and wp(k) 

∞
0 , wd(k) 

∞
0 , and wr(k) 

∞
0 are disturbance

white noises. To reduce noise effects, the centered

Table 1: Values of the model parameters.

Parameter Definition Value Cite
Λ/N Birth rate 2.088×10− 5 day− 1 [9]
cr Contact rate 10.58 day− 1 [23]
ps Transmission probability of infected people 0.23 [29]
p2 Probability to be asymptomatic 0.16 [2, 13]
μ Natural death rate 2.282×10− 5 day− 1 [9]
1/σ Incubation period 7 days [23]
c Removal rate 0.1 day− 1 [3]
α Disease-induced death rate 0.01 day− 1 [23]

Table 2: Initial conditions.

Variable Definition Value
S0 Susceptible population 46× 106
E0 Exposed population 100
Q0 Quarantine population 1
I0 Infected population 1
R0 Recovered population 0
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Figure 2: S, R, E, I, and Q population sizes with respect to time when cr � 10.6 and R0 � 2.360 (a) and cr � 4 and R0 � 0.89 (b).
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Figure 3: Comparison of the infection evolution for the basic reproduction number close to unity: (a) infection evolution for the unity basic
reproduction number, (b) infection evolution for the basic reproduction number slightly below unity, and (c) infection evolution for the
basic reproduction number slightly over unity.
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moving-average filter which takes 14 samples has been
applied to (33)–(35). By combining the above equations, one
gets for the discretization of the estimate of the quarantined

individuals through (6) for h � 1 via the Euler forward
approximation that

Q(k + 1) � Q(k) + λ 1 − p2(  1 + p1pscr( I(k) − (α + μ)Q(k) − δ Q(k)

� Q(k) + λ 1 − p2(  1 + p1pscr( 
p k + τ1(  − wp k + τ1( 

λ 1 − p2(  1 + p1pscr( 
 

−
α + μ
α + μ

d k + τ2(  − wd k + τ2( (  + wr k + τ3(  − r k + τ3( ( 

� Q(k) + p k + τ1(  − d k + τ2(  − r k + τ3(  + wd k + τ2(  + wr k + τ3(  − wp k + τ1( 

� Q(k) + p k + τ1(  − d k + τ2(  − r k + τ3( .

(36)

5.2. Estimation of the Delays. Note that as far as the co-
existence with COVID-19 increases, it is expected faster
responses in the performance of positivity tests and
public supply of data. 'erefore, the potential estimation
of delays can be adapted to various disease evolution
periods. Now, define τ4 � τ2 − τ3 and τ5 � τ1 − τ2. Algo-
rithm 1 has been performed to estimate them from the
registered data.

Algorithm 1 (estimation of τ4 � τ2 − τ3 and τ5 � τ1 − τ2)

Step 1. Initialization: Fix a natural number n and a set
T5 of “a priori” potential delays τ5 as
T5 � − n, − n + 1, · · · , n − 1, n{ } and make ℓ←1 and τ(i)

ℓ5 �

− n for i � 1, 2.

Divide the data set p(k), d(k), r(k)  into subsets for
different disease evolution time periods. In particular,
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Figure 4: Epidemiological situation in Cantabria.
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p(1)(k), d(1)(k), r(1)(k)  for the period from February
29, 2020, to July 17, 2020, and to estimate (τ(1)

4 , τ(1)
5 ),

and p(2)(k), d(2)(k), r(2)(k)  for the period from July
18, 2020, to December 31, 2021, to estimate (τ(2)

4 , τ(2)
5 ).

Step 2. For each subset, seek for delays between r(.) and
d(.) (in particular, the delays between the corre-
sponding additive contributions of d(k + τ2) and r(k +

τ3) to (45)) with MATLAB finddelay() (for delays
between signals) to get τ(i)

4 for i � 1, 2.
Step 3. Compute τ(i)

6 , i � 1, 2, with finddelay() to align
Q(k − τ(i)

2 ) with respect to d(k) and r(k − τ(i)
4 ) since

they are both proportional to Q(k − τ(i)
2 ). 'erefore,

τ(i)
6 � findde lay( Q(k − τ(i)

2 ), d(k)) � finddelay( Q(k

− τ(i)
2 ), r(k − τ(i)

4 )), i � 1, 2.
Step 4. Calculate p(k − τ(i)

5 ) from (33).
Step 5. Calculate (36) under the equivalent form as
follows:

Q k + 1 − τ(i)
2  � Q k − τ(i)

2  + p k + τ(i)
5 

− d(k) − r k − τ(i)
4 .

(37)

Step 6. Apply the linear regression method to the data
sets Q(k − τ(i)

2 ), r(k − τ(i)
4 )  and Q(k − τ(i)

2 ), d(k) 

and compute the coefficients of determinationR
(2r)
ℓi and

R
(2d)
ℓi , i � 1, 2.

Step 7. Compute fℓi � (R
(2r)
ℓi + R

(2d)
ℓi )/2.

Step 8. While ℓ ≤ 2n do ℓ←ℓ + 1 and go to Step 4.
Step 9. τ(i)

5 � Argmax(fℓi)
τ(i)

ℓ5 ∈T5

.
Step 10. End.

Remark 6. Both coefficients of determination R
(2r)
ℓi and

R
(2d)
ℓi , i � 1, 2, are the proportions of variability in the set of

given data due to prediction [35, 36], and they range from

zero to unity. 'e data become better fitted as the corre-
sponding coefficient of determination becomes close to
unity. In contrast, values close to zero lead to a high vari-
ability and a bad prediction as a result.

As a result of applying Algorithm 1, one obtains
τj � τ(i)

j ; j � 4, 5, 6, i � 1, 2, with the values τ(1)
4 � 26 days,

τ(1)
5 � 11 days, and τ(1)

6 � 9 days and τ(2)
4 � 0 days,

τ(2)
5 � − 1 days, and τ(2)

6 � 13 days, and the number of in-
dividuals in quarantine due to positive tests is displayed in
Figure 5.

5.3. Estimation of Average Mortality Rate and Stay in
QuarantinePeriods. 'e estimations of αi and δi, i � 1, 2, are
displayed in Table 3. Note that α1 > α2 as expected from a
higher hospitalization percentage along the first studied
period. Regarding the recovery rate, after the first wave,
tracing techniques were implemented when someone with
symptoms went to hospital and his/her close contacts were
tested to detect new infections, and those tested positive
were quarantined which can explain that δ2 < δ1.

Figures 6 and 7 display the linear regressions along the
first and second evaluation time periods to estimate the
mortality rates and stay in quarantine period.

5.4. Estimations of λ , cr, and p1. By approximating S/N to
unity, we take equations (5) and (7), the infective subsystem
of the epidemic model, and we rewrite the set of third-order
equations of first-order as a differential equation of third-
order with the quarantined subpopulation as variable. 'is
leads to

Q
...

(t) + b1
€Q(t) + b2

_Q(t) − b3Q(t) � 0, (38)

where

b1 � λ 1 − p2(  + c + α + δ + σ + 3μ − crpe,

b2 � (α + δ + μ) λ 1 − p2(  + c + μ(  + σ + μ − crpe(  λ 1 − p2(  + c + α + δ + 2μ( 

− σcrps p2 + 1 − p2(  1 − p1λ( ( ,

b3 � crpe − σ − μ(  λ 1 − p2(  + c + μ(  + σcrps p2 + 1 − p2(  1 − p1λ( (  (α + δ + μ),

(39)

where pe � βe/cr and it has been considered that pa � ps �

βs/cr depending on the average transmission rates βe � βa

and βs and that the average contact rates satisfy
cr � ce � cs � ca. It has been also assumed that λ is the
average rate of visits to the doctor or to hospital for the
particular disease COVID-19. Now, apply the Euler forward
approximation to (38) for discretization which leads to

Q(k) � 3 − b1( Q(k − 1) + 2b1 − b2 − 3( Q(k − 2)

+ 1 − b1 + b2 + b3( Q(k − 3),
(40)

and equalize the above expression by equating corre-
sponding coefficients to the prediction values of the quar-
antined individuals given by

Q(k) � − a1Q(k − 1) − a2Q(k − 1) − a3Q(k − 3), (41)
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Figure 5: Estimated people in quarantine after testing positive for COVID-19 at different time periods.

Table 3: Estimated parameters via linear regression.

Parameter Value Error R2

α1 0.0063 0.0001 0.96
α2 7.1∗ 10− 4 0.3∗10− 4 0.75
δ1 0.057 0.8∗10− 4 0.97
δ2 0.043 0.002 0.80

Curve Fitting in the Period 01/03/2020-16/07/2020

d vs. Q
y = 0.0063x-0.4

r vs. Q
y = 0.057x+4
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Figure 6: Linear regression in the period from 01/03/2020 to 16/07/2020 to estimate the parameters α1 and δ1 values.
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which leads to the system of algebraic equations J1x1 � v1
with x1 � (λ, cr,

λcr)
T which are in expanded form:

1 − p2 − pe 0

− (σ + μ) 1 − p2(  pe(c + μ) + psσ 1 − p2(  pe − psp1σ( 

(α + δ + σ + 2μ) 1 − p2(  − pe(c + α + δ + 2μ) + psσ  1 − p2(  psp1σ − pe( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

λ

cr

λcr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a1 + 3 − (c + ε + δ + σ + 3μ)

−
a1 + a2 + a3

α + δ + μ
+(σ + μ)(c + μ)

2a1 + a2 + 3 − (α + δ)c − σ(c + α + δ) − μ(2c + 2α + 2δ + 2σ + 3μ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(42)

where the parameters which are not unknowns are taken
from Table 1.'us, since the third row is not independent of
the two former ones, one takes the minimum square error
solution (λ , cr) of (42) given by

λ, cr  � Argmin
p1∈R+

J1x1 − v1
����

����
2
, (43)

with stopping computational value error less than 10− 4.
Now, proceed in the same way to get a second-order dif-
ferential equation of I(t), by using the combination of (5)
and (7), resulting in

€I (t) � c1
_I(t) + c2I(t), (44)

with

c1 � crpe− σ − λ 1 − p2(  − c − 2μ, (45)

c2 � σcr p2pe + 1 − p2(  1 − λp1( ps 

+ crpe − (σ + μ)  λ 1 − p2(  + μ + c .
(46)

By applying the Euler forward discretization method,
one gets

I(k) � 2 + c1( I(k − 1) + c2 − c1 − 1( I(k − 2). (47)

In this case, one gets proceeding in the same way as
done with (40) to get (42) the algebraic system J2p1 � v2
with the equivalent explicit expanded scalar relationships
as follows:

Curve Fitting in the Period 17/07/2020-02/02/2021
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Figure 7: Linear regression in the period from 17/07/2020 to 02/02/2021 to estimate the parameters α2 and δ2.
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2 + c1 � − λ 1 − p2(  1 + crpsp1( d1, (48)

c2 − c1 − 1 � − λ 1 − p2(  1 + crpsp1( d2. (49)

And the estimation p1 of the effectiveness tracing p1 is
calculated by replacing the necessary values of Table 1 and
the solution (λ , cr) of (43) results to be

p1 � Argmin
p1∈R+

J2x1 − v2
����

����
2
, (50)

with stopping computational error less than 10− 4.'e solution
is found through the Newton–Raphson method [42, 43].

5.5. Relationship between Positive and Total Tests Interpreted
via the Estimations of cr and p1. 'e total and positive tests
are described, respectively, by

t(k) � 1 + cr(k)p1(k)
S(k)

N(k)
 λ 1 − p2( I(k) + ε(k), (51)

p(k) � 1 + pscr(k)p1(k)
S(k)

N(k)
 λ 1 − p2( I(k). (52)

As a consequence of testing symptomatic people with
COVID-19 (1 − p2)λI(k), we traced contacts crλp1(k)(1 −

p2)(IS/N) and other people that present similar symptoms to
COVID-19 but are not infected ε(k). By taking S(k)/N(k) � 1,
one gets

t(k) � ra(k)p(k) + ε(k), (53)

where

ra(k) �
1 + cr(k)p1(k)

1 + cr(k)p1(k)ps

. (54)

'e estimations of the values of λ, cr, and p1 for each one
of the mentioned time intervals are displayed in Table 4. 'e
smaller values of the estimation of λ were found in the period
from 19/12/2020 to 06/01/2021 which matches with winter
holidays when a significant number of people moved to their
relative houses so that people under infection symptoms have
found more difficulty to go to the outpatient. Regarding the
average number of contacts per day cr, as tighter restrictions
were applied, smaller values of cr were observed. 'e smallest
value cr(3) � 2.07 is found from 19/03/2020 to 28/05/2020
approximately as the quarantine was imposed while the next
closer smaller one cr(12) � 3.14 was reached from 25/11/2020
to 13/12/2020 as the state of alertness was still valid.'us, these
values are closely related to the levels of imposed restrictions.

Note that the parameter λ− 1 of time of meeting doctor or
health service for testing varies approximately from 1.58
days to 1.07 days. Assuming that, at first, COVID-19 was
underestimated and its symptoms were mixed up with cold/
flu ones, infected people with symptomsmight typically have
to visit the doctors at lower rates. On the other hand, holiday
seasons could also be associated with lower values of λ since
people might be outside their usual homes so that health
assistance might be reduced.'e tracing effectiveness p1 was
never before implemented in Spain on big scale cases such as

in this pandemic; therefore, there has been notably uncer-
tainty regarding how to implement it. In that way, as the
tested positivity was high, people were tested randomly. 'e
variances of the parameters λ(k), cr(k), and p1(k) are
calculated through the values of Table 4. On the other hand,
Figures 8–10 display the quarantined, death, and recovered
individuals in both periods compared with their estimations
taking account of the variances of the involved parameters,
for instance, and concerning Figure 8, the corresponding
variances, or its associated typical deviations, of Q(k) are
obtained via (36) as follows. For each k − th sample, cor-
responding to a particular day, one takes data from two

Table 4: Estimated parametrical values.

Dates
Natural

positivity rate
λ (days− 1)

Average number of
close contacts per

day cr

Tracing the
effectiveness p1

[29/02/
2020, 10/
03/2020]

λ1 � 0.685 cr(1) � 12.88 p1(1) � 0.06

[11/03/
2020, 18/
03/2020]

λ2 � 0.643 cr(2) � 4.88 p1(2) � 0.9

[19/03/
2020, 28/
05/2020]

λ3 � 0.938 cr(3) � 2.07 p1(3) � 0.25

[28/05/
2020, 30/
06/2020]

λ4 � 0.859 cr(4) � 4.15 p1(4) � 0.9

[17/07/
2020, 06/
08/2020]

λ5 � 0.930 cr(5) � 7.55 p1(5) � 0.06

[10/08/
2020, 02/
09/2020]

λ6 � 0.932 cr(6) � 4.81 p1(6) � 0.02

[04/09/
2020, 17/
09/2020]

λ7 � 0.737 cr(7) � 4.63 p1(7) � 0.42

[17/09/
2020, 14/
10/2020]

λ8 � 0.871 cr(8) � 3.21 p1(8) � 0.28

[15/10/
2020, 30/
10/2020]

λ9 � 0.932 cr(9) � 6.10 p1(9) � 0.14

[30/10/
2020, 09/
11/2020]

λ10 � 0.933 cr(10) � 5.57 p1(10) � 0.25

[09/11/
2020, 23/
11/2020]

λ11 � 0.888 cr(11) � 4.68 p1(11) � 0.36

[25/11/
2020, 13/
12/2020]

λ12 � 0.744 cr(12) � 3.14 p1(12) � 1

[19/12/
2020, 06/
01/2021]

λ13 � 0.628 cr(13) � 6.38 p1(13) � 0.78

[07/01/
2021, 20/
01/2021]

λ14 � 0.881 cr(14) � 5.06 p1(14) � 0.05
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weeks (that is, 14 days) neighboring days, namely, the former
seven ones, the current ones, and the next six ones so there is
one delay of six days to provide the evaluation of the mean
value of the involved data over each day. One proceeds in
this way for the estimations on the mentioned groups of two
weeks for the estimations of d(k), r(k), and p(k). With
those data, one calculates the k-th variance, or its associate
typical deviation, of the estimation of the quarantined
subpopulation Q(k).

Figure 11 shows a linear regression of total tests t(k)

versus positive tests p(k) in two periods of time from 01/03/
2020 to16/07/2020 and from 17/07/2020 to 02/02/2021. 'e
adjustment of the corresponding linear regression equation
t(k) � ra(k)p(k) + ε(k) via least-squares gives the pairs
(ra(k) , ε(k)). Note from (54) that ra(k) ∈ (0, 1] and that
t(k) � ra(k)p(k) + ε(k)≥p(k) so that ε(k)≥ (1 − ra(k))pa

(k)≥ 0 so that, for potentially got negative values of ra(k)

and ε(k), the corresponding data are not collected.
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Figure 8: Comparison between measured people in quarantine per day (black dots) with respect to the estimated people in quarantine per
day (blue solid line) with the estimated parameters. 'e dashed red lines show the standard error of the simulation.
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6. Conclusions

'is paper has proposed a SEQIRmodel which incorporates a
quarantined subpopulation to those of the standard ones in
the common SEIR-type models. 'e quarantined subpopu-
lation contains the individuals who have been tested positive.
'is includes the hospitalized individuals including those
under intensive care and also those quarantined at their

homes having no serious symptoms. 'e model parameter-
izes the average transmission depending on the infective
contacts as the average rate of attendance to the doctor for
disease positivity testing or symptom evaluation checking and
the average effectiveness tracing on positive cases.

'e proposed model considers that the proportions of
asymptomatic and symptomatic individuals in the quar-
antined and the infectious subpopulations can potentially
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Figure 10: Comparison between recovered people per day (black dots) with respect to the estimation (blue solid line) carried out with the
estimated parameters. 'e dashed red lines show the standard error of the solution.
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Figure 11: Linear regression of total tests versus positive tests in the periods of time from 01/03/2020 to 16/07/2020 (a) and from 17/07/2020
to 02/02/2021 (b).
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have different average transmission rates of contagion to the
susceptible group. Also, various average transmission rates
are assumed to be parameterized by the infective contacts
between individuals which allows to evaluate the infection
transmission reduction under public intervention measures
like confinements or mobility restrictions, social distance
maintenance, or use of masks. A main novelty of the pro-
posed model is that it is parameterized by the average rate of
attendance to the doctor for disease positivity testing or
evaluation of symptoms checking and by the effectiveness in
tracing the positive cases. It is proved that the increase in the
attendance rate for testing of symptomatic suspect indi-
viduals contributes positively to the incorporation to the
quarantined subpopulation of those being positively tested
so that the infection transmission might be controlled more
efficiently.

'e model is also proved to be positive, an obvious need
for the coherency of any epidemic model, in the sense that
the state trajectory solution is seen to be nonnegative for all
time for any given set of nonnegative initial conditions while
it is proved to have unique disease-free and endemic
equilibrium points. 'e disease-free equilibrium point is
proved to be locally asymptotically stable if the basic re-
production number is less than unity, and under these
conditions, the endemic one is not reachable, while it is
locally asymptotically stable if such a value exceeds unity.
Both points are globally asymptotically stable under the
abovementioned conditions, and they are locally asymp-
totically stable. 'e mathematical condition for the basic
reproduction number to be less than or larger than unity is
proved to be equivalent to the transmission rates to be less
than or larger than a certain critical transmission rate under
the assumption that the remaining model parameters are
kept unmodified. 'is helps to interpret the eventual
transmission attenuation in terms of reduction of the disease
transmission rates, implying as a result a decrease in the
infective contagion contacts, as being dependent on the
potential intervention measures. 'e model is tested by
computer simulations for COVID-19 with data from Spain.
Subsequently, a detailed case study was performed against
COVID-19 through official data taken from the Spanish
Cantabria Autonomous Community. In particular, the es-
timations of the average periods lasted by people to get to a
health center or to a doctor for eventual positivity inspec-
tion, the positivity efficiency of tests, and the average number
of contagion contacts are estimated from real data under the
confinement period and also for a subsequent period. In this
second period, the first strong public intervention measures
of almost total general confinement were left, while still the
population was under severe rules like general use of masks,
social distance keeping, closing of nocturnal amusement
places, or very important limitation rules on the number of
attendees to spectacles and restaurants.

In the proposed model, there is a good trade-off between
accuracy, transparency, and flexibility. Even if the quaran-
tined subpopulation gathers people who were tested positive
and were staying either at home or in hospital, reducing so
the model complexity, a quantitative and qualitative fit of
data, with respect to real data, has been checked. Regarding

the transparency, the calculated basic reproduction number
shows a simple relation with respect to parameters such as
the average number of close contacts per day or the tracing
effectiveness. 'e proposed model has been then evaluated
with real data acquisition from the Spanish Autonomous
Region of Cantabria. From the data source, the number of
positive test result per day and the number of death people
due to the disease and recovered people were gathered.

A noteworthy delay between the quarantined with re-
spect to death and recovered can be interpreted in terms of
delays in providing data and in the eventual attendance for
checking eventual positivity testing. 'e analysis of the
imposed restriction with respect to time gives an overview of
how the limitations might affect the value of contagion
contact rates.

Appendix

A. Proofs of the Mathematical Results (Proof of
Theorem 1)

It can be directly seen from (4)–(8) that
_S(t)]S(t)�0 � Λ + ρR(t);

_E(t)]E(t)�0 � p2βa + 1 − p2(  1 − p1λ( βs 
S(t)

N(t)
 I(t),

_Q(t)]Q(t)�0 � 1 + βsp1
S(t)

N(t)
  1 − p2( λI(t);

_I(t)]I(t)�0 � σE(t),

_R(t)]R(t)�0 � cI(t) + δQ(t).

(A.1)

Now, proceed by contradiction. Assume that there is some
t1 ≥ 0 for which at least one component of x(t1) is negative
and x: [0, t1)⟶ R+

5 with x(0) � x0 ∈ R+
5 . In view of (4)–(8)

and since the trajectory solution is everywhere continuous on
R because it is everywhere time-differentiable on R, one
concludes that for t−

1 � lim
ε⟶0+

(t1 − ε), x: [0, t1)⟶ R+
5 ,

xi(t−
1 ) � 0, andxi(t1)< 0 for all i ∈ 5t1

(≠∅) ⊂ 5 �

1, 2, 3, 4, 5{ } and xi(t)≥ 0 for all i ∈ 5\5t1
, t ∈ [0, t1 − ε) and

all ε ∈ (0, t1) since those components are negative at t1 and
nonnegative for t ∈ [0, t1). It also follows that this event can
only happen for any nontrivial trajectory solution if t1 > 0
since, otherwise, the claimed ε ∈ (0, t1) such that
xi(t1 − ε)≥ 0 and xi(t−

1 ) � 0; ∀i ∈ 5t1
cannot exist for t1 � 0.

However, in view of (A.1), _xi(t−
1 )≥ 0 and ∀i ∈ 5t1

so that
xi(t1)≥ 0 and∀i ∈ 5t1

and then xi(t1)≥ 0 and ∀i ∈ 5. So, there
is no t1 ≥ 0 (and then 5t1

� ∅) for which some component of
x(t1) is negative if x0 ∈ R+

5 . Property (i) has been proved.
Now, one has from (9) and Property (i) since

Q(t)≥ 0;∀t ∈ R+ that _N(t)≤Λ − μN(t) and

N(t)≤ e
− μt

N0 +
Λ
μ
≤N0 +
Λ
μ
< +∞; ∀t ∈ R+

. (A.2)
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Furthermore, again for Property (i), one has that N(t) �

S(t) + E(t) + I(t) + Q(t) + R(t) � 
5
i�1 xi(t)≥ 0 and

xi(t)≥ 0; ∀t ∈ R+, ∀i ∈ 5. 'is also implies that
xi(t)≤N(t)< +∞; ∀t ∈ R+, ∀i ∈ 5. Property (ii) has been
proved.

B. Proof of Lemma 1 and Associated Remark

Property (i) follows directly by zeroing _I(t) in (7). Property
(ii) follows by zeroing _E(t) in (5) that

See �
(σ + μ)NeeEee

βeEee + p2βa + 1 − p2(  1 − p1λ( βs( Iee

, (B.1)

which leads to (12) from (11) since Eee ≠ 0. On the other
hand, note that the total population cannot asymptotically
extinguish if Λ> 0 either for the disease-free equilibrium
point (from (9) sinceQdfe � 0) or for the endemic one since
the endemic equilibrium infected subpopulations should be
positive. 'en, for Eee > 0, See <Nee since the sum of all
infected subpopulations at the equilibrium is necessarily
positive so that one gets from (10) and (12) that

gS �
See

Nee

�
(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βe + p2βa + 1 − p2(  1 − p1λ( βs( σ
< 1. (B.2)

Now, one gets directly from (10) and (12) that gS < 1 is
equivalent to

β> βc �
(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
, (B.3)

as a necessary condition for the endemic equilibrium point
to exist. To prove Property (iii), one gets from _Q(t) � 0 in (6)
that

1 − p2( βsp1λIee

See

Nee

+ λ 1 − p2( Iee � (μ + α + δ)Qee. (B.4)

One also gets Nee � (Λ − αQee)/μ from (9), subject to
Qee <Λ/α for the endemic total population to be strictly
positive, which, combined with (B.4), yields

λ 1 − p2( Iee Λ − αQee( ,

< 1 − p2( βsp1λμIeeSee + λ 1 − p2( Iee Λ − αQee( 

� (μ + α + δ) Λ − αQee( Qee,

(B.5)

which leads to (13). On the other hand, the last equality in
(B.5) may be rewritten compactly as follows:

Q
2
ee − bQee + c � 0, (B.6)

where

b � b Iee(  �
(μ + α + δ)Λ + λ 1 − p2( αIee

α(μ + α + δ)
�
Λ
α

+
λ 1 − p2( Iee

μ + α + δ
�
Λ
α

+
αc

βsp1μSee + Λ
, (B.7)

c � c See, Iee(  �
βsp1μSee + Λ
α(μ + α + δ)

λ 1 − p2( Iee �
βsp1μSee + Λ

α
b −
Λ
α

 . (B.8)

'e zeros of (B.6) are b ±
������
b2 − 4c

√
/2 which are feasible

only if they are positive. Note that, for the endemic equi-
librium point, b> 0 from (B.7) sinceIee > 0. Also, c> 0 from
(B.8) since b>Λ/α from (B.7) since Iee > 0. Regarding (B.6),
there are several possible cases being compatible or not with
the existence of a reachable endemic equilibrium point:

Case 1. If c> b2/4, then Qee is complex.'us, there is no
feasible endemic equilibrium point.
Case 2. If 0< c≤ b2/4, then there are two feasible
positive endemic equilibrium points. We prove by

contradiction arguments that only one of them is
feasible.

Firstly, assume that c< b2/4 since for c � b2/4, the
uniqueness is obvious. Note that for Nee � (Λ − αQee)/μ> 0
(nonextinction equilibrium), Qee <Λ/α. Also, from (B.5),

λ 1 − p2( Iee Λ − αQee( <(μ + α + δ) Λ − αQee( Qee, (B.9)

implying that Qee > λ(1 − p2)Iee/(μ + α + δ). Both con-
straints together conclude that
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Iee <
(μ + α + δ)Qee

λ 1 − p2( 
<
Λ(μ + α + δ)

αλ 1 − p2( 
. (B.10)

'en,

Qee2 �
b +

������
b
2

− 4c


2
<
Λ
α

, (B.11)

so that
������
b2 − 4c

√
< 2Λ/α − b with b< 2Λ/α, or equivalently,

for the plus sign, associated with Qee2, b2 − 4c< b2+

(4Λ2/α2) − (4Λb/α), or equivalently, using (B.7) and (B.8):

c �
βsp1μSee + Λ

α
b −
Λ
α

 >
Λb
α

−
Λ2

α2
�
Λ
α

b −
Λ
α

 , (B.12)

with (2Λ/α)> b> (Λ/α) so that (Λ/α)< b � (Λ/α) + (λ(1 −

p2)Iee/(μ + α + δ))< (2Λ/α) which leads to the previously
got constraint (λ(1 − p2)Iee/(μ + α + δ))< (Λ/α) and to the
obvious one (βsp1μSee + Λ)/α> (Λ/α). One concludes that
Qee2 is feasible. Now, one examines the feasibility of
Qee1 � (b −

������
b2 − 4c

√
)/2. 'e constraint −

������
b2 − 4c

√
<

(2Λ/α) − b should hold, or equivalently,
������
b2 − 4c

√
> b−

(2Λ/α), or equivalently, b2 − 4c> b2 + (4Λ2/α2) − (4Λb/α),
or equivalently, c � ((βsp1μSee + Λ)/α)(b − (Λ/α))<
(Λ/α)(b − (Λ/α)) leading to ((βsp1μSee + Λ)/α)< (Λ/α)

which only holds if and only if See < 0, a contradiction. 'us,
Qee1 is unfeasible.

It has been proved under the assumption c≤ b2/4 that the
endemic equilibrium point Qee � Qee2 > 0 is unique. It re-
mains to prove if c≤ b2/4 to complete the proof of feasibility
of the unique endemic equilibrium point. One gets from
(B.7) and (B.8) that, if λ � 0, then c≤ b2/4 since c � 0 and

b � Λ/α. 'en, by the continuity of the function
z(λ) � (b2/4c) − 1, there exists some real constant
λc ∈ [0, 1/p1] such that, for all λ ∈ [0, λc), the following
constraint holds:

b
2

4c
�
Λ2

α2
+
λ2 1 − p2( 

2
I
2
ee

(μ + α + δ)
2 +

2Λλ 1 − p2( Iee

α(μ + α + δ)
 

4 βsp1μSee + Λ( λ 1 − p2( Iee

α(μ + α + δ)
 

− 1

≥ 1; λ ∈ 0, λc ,

(B.13)

for some λc ∈ [0, 1/p1]. Note also that the above upper
bound Λ/α of Qee can be refined to Qee <Λ/(μ + α) since

Iee + Qee <Nee �
Λ − αQee

μ
⇒ 1 +

α
μ

 Qee <
Λ
μ

− Iee <
Λ
μ
⇒Qee <

Λ
μ + α

,

(B.14)

and then the upper bound Λ(μ + α + δ)/αλ(1 − p2) of Iee

can be refined as a result as follows:

Iee <
(μ + α + δ)Qee

λ 1 − p2( 
<
Λ(μ + α + δ)

λ 1 − p2( (μ + α)
. (B.15)

Property (iii) has been proved.
To prove Property (iv), take identically zero time de-

rivatives in (6) and use Iee � fIEee to yield Qee � fQEee so
that

fQ �
1 + βsp1See/Nee

μ + α + δ
1 − p2( λfI

�
1 − p2( λfI

μ + α + δ
1 + βsrp1

(σ + μ) λ 1 − p2(  + μ + c( 

λ 1 − p2(  + μ + c( βer + p2βar + 1 − p2(  1 − p1λ( βsr( σ
 ,

(B.16)

which leads to (14) after replacing fI from (11). Property (iv)
is proved.

Property (v) follows directly from equations (11) and
(B.16) by zeroing _R(t) in (8).

Remark B.1. Note that (B.13). is guaranteed if a lower bound
of its left-hand side exceeds unity. 'us, dividing the nu-
merator and denominator of its left-hand side by Iee, to-
gether with the use of Iee > 0, (1/Iee)> (λ(1 − p2)

(μ + α)/Λ(μ + α + δ)) and See <Nee <Λ/μ, leads to

Λ2

α2Iee

+
λ2 1 − p2( 

2
Iee

(μ + α + δ)
2 +

2Λλ 1 − p2( 

α(μ + α + δ)
 

4 βsp1μSee + Λ( λ 1 − p2( 

α(μ + α + δ)
 

− 1

>
Λ2

α2
λ 1 − p2( (μ + α)

Λ(μ + α + δ)
+
2Λλ 1 − p2( 

α(μ + α + δ)
 

4 βsp1 + 1( Λλ 1 − p2( 

α(μ + α + δ)
 

− 1

�
λ 1 − p2( Λ

α
μ + α
α

+ 2 
4 βsp1 + 1( Λλ 1 − p2( 

α
 

− 1

�
3α + μ

4α 1 + ββsrp1( 
.

(B.17)
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'us, (B.13) holds irrespective of λ being under the
sufficiency-type condition ((3α + μ)/4α(1 + ββsrp1))≥ 1,
that is, if β≤ βc1 � (μ − α)/4αβsrp1 subject to α< μ. Since for
the endemic equilibrium point to be feasible β≥ βc, one
concludes that a unique endemic equilibrium point exists
irrespective of λ if β ∈ [βc, βc1] provided that βc1 ≥ βc subject
to α< μ.

C. Proof of Theorem 2

Note from (11), (12), (14), (15), and (9) that

See + Eee + Qee + Iee + Ree � gSNee + 1 + fQ + fI + fR Eee

� Nee �
Λ − αfQEee

μ
,

(C.1)

provided that gs < 1 (that is, if β> βc, see (12)), and
Eee <Λ/αfQ, and equivalently,

1 + fQ + fI + fR Eee � 1 − gS( Nee

� 1 − gS( 
Λ − αfQEee

μ
,

(C.2)

so that

1 + fQ 1 +
α
μ

1 − gS(   + fI + fR Eee � 1 − gS( 
Λ
μ

, (C.3)

which leads to (17) and which has to fulfill the necessary
condition that Eee <Λ/αfQ which holds if and only if

gs > 1 −
μ + fQ μ + α 1 − gS( (  + μ fI + fR( 

αfQ

, (C.4)

which holds trivially since the right-hand side of the above
inequality is negative. 'us, the second necessary condition
for reachability of the endemic equilibrium point invoked in
the proof holds trivially and does need to be considered as a
constraint. On the other hand, if β � βc⇔gS � 1, then See �

Nee and Eee � Iee � Qee � Ree � 0 so that xee � xdf which
completes the proof.

D. Proof of Theorem 3

'e first three relationships follow directly by zeroing the
time derivatives in (6) to (8).'e expressions for See/Nee and
See follow from (13) which is still valid for λ � 0 and
Nee � Λ/μ. 'e use of the above expressions in (4) for _S(t) �

0 leads to

Eee

ρcσ
(ρ + μ)(μ + c)

− (σ + μ)  �
(σ + μ)(μ + c)

Z
− 1 Λ, (D.1)

which once rearranged yields the given expression for Eee

which is positive if β exceeds a minimum threshold, the
particular constraint in (10) for λ � 0.

E. Proof of Lemma 2

It follows by linearizing (4)–(8) around the equilibrium
point x∗ (that is, after neglecting terms of order two and
higher) that the linearized trajectory is given by the linear
dynamic system _x(t) � J∗x(t), where x(t) � x(t) − x∗ is
the differential equation of linearized trajectory x(t) around
the equilibrium point x∗, and the Jacobian matrix
J∗ � J∗(x∗) � (z _x(t)/zxT(t))|x∗ around x∗ is given by
equation (23).

F. Proof of Theorem 4

Proof. By − V∗ in (33) and T∗ � J∗ + V using (23) and (24),
one gets that the eigenvalues of − V are − μ, − (σ + μ),
− (μ + α + δ), − (λ(1 − p2) + μ + c), and − (ρ + μ), which are
stable. Equation (27) follows from T∗ � J∗ + V, via (23) and
(24) since Sdf/Ndf � 1. By direct inspection of Jdf, note that
its eigenvalues are − μ, − (ρ + μ) and − (α + μ + δ), which are
table, plus the eigenvalues of the matrix:

− (σ + μ) + βe p2βa + 1 − p2(  1 − p1λ( βs

σ − λ 1 − p2(  + μ + c( 
 , (F.1)

whose characteristic polynomial is as follows:

p(s) � s + σ + μ − βe(  s + λ 1 − p2(  + μ + c( 

− σ p2βa + 1 − p2(  1 − p1λ( βs( ,
(F.2)

which is stable according to the Routh–Hurwitz criterion, if
its three real coefficients are positive which is equivalent to
the basic reproduction number R0 less than unity.'erefore,
the five eigenvalues of Jdf are stable if and only if R0 < 1.
Since − V is a stability matrix, then nonsingular, and
Jdf � Tdf − V � − V(I − V− 1Tdf), it holds that Jdf is a
stability matrix, if and only if
ρ(V− 1Tdf(βc)) � ρ(TdfV− 1(βc)) � R0 < 1, or still equiva-
lently, if and only if β< βc (see Remark 4). Property (i) has
been proved. Property (ii) is obvious by continuity of the
eigenvalues of the Jacobian matrix with respect to any of its
parameters since ρ(V− 1Tdf) � ρ(TdfV− 1) � R0 � 1, or
equivalently β � βc, gives a critically stable dominant ei-
genvalue of Jdf, so it is allocated at the imaginary complex
axis. 'us, R0 > 1⇔β> βc which leads to its instability.

Now, note from 'eorem 1 that the subpopulations are
finite, so the endemic equilibrium components and the total
endemic equilibrium population are all finite. From 'eo-
rem 2, the endemic equilibrium point is unique and
reachable as β⟶ +∞. From equation(12) in Lemma 1(ii),
limβ⟶+∞gS � limβ⟶+∞See � 0 and limβ⟶+∞Iee � fI

limβ⟶+∞Eee; limβ⟶+∞Qee � fQlimβ⟶+∞Eee, limβ⟶+∞
Ree � fRlimβ⟶+∞Eee, and limβ⟶+∞Nee � (1 + fI + fQ +

fR)limβ⟶+∞Eee are positive and finite with the real coef-
ficients fI, fQ, and fR independent of β according to
Lemma 1. So, as β⟶ +∞, the endemic equilibrium point
is independent of β, susceptible-free, and the remaining
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populations proportional to the endemic one with pro-
portionality factors independent of any local variation of the
reference transmission rate or the eventual local deviations
of the initial conditions around such fixed endemic

equilibrium. Note also from the identity T∗ � J∗ + V, at any
equilibrium point, that the transmission matrix for the
endemic equilibrium point is Tee � Tee(β) � (Teeij(β))

� β(Teeij), where

Tee11 � −
βerEee + p2βar + 1 − p2( βsr Iee(  Nee − See( 

N
2
ee

,

Tee12 � −
βerSee Nee − Eee(  − p2βar + 1 − p2( βsr IeeSee

N
2
ee

,

Tee13 �
βerEee + p2βar + 1 − p2( βsr Iee( See

N
2
ee

,

Tee14 � −
p2βar + 1 − p2( βsr See Nee − Iee(  − βerEeeSee

N
2
ee

,

Tee15 �
βerEee + p2βar + 1 − p2( βsr Iee( See

N
2
ee

,

Tee21 �
βerEee + p2βar + 1 − p2(  1 − λp1( βsr Iee(  Nee − See( 

N
2
ee

,

Tee22 �
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which is a continuous function of the reference transmission
rate on [βc, +∞) and finite for β ∈ [βc, +∞). Sin-
ceβ � βc⇔R0(β) � 1gives a coincidence point between the
disease-free equilibrium point and the endemic with critical
stability from Property (ii). Since the endemic equilibrium
point is unique and since the transition matrix − V is in-
dependent of the equilibrium point, one concludes that the
Jacobian matrix Jee � − V(I − V− 1Tee(β)) at the endemic
equilibrium point is a stability matrix for β ∈ [βc, +∞) or
equivalently R0(β)> 1; ∀β ∈ [βc, +∞) since
ρ(V− 1Tee(βc)) � 1. Assume that λ ∈ [0, λc] (see'eorem 2).
Property (iii) has been proved. Since for β � βc, both
equilibrium points coincide with R0(β) � 1, and since the
disease-free and endemic equilibrium points are, respec-
tively, locally asymptotically stable if R0(β)< 1(β< βc), re-
spectively, if and only if R0(β)> 1 (β> βc), one concludes
that the critical case is also locally asymptotically stable. In
other words, the disease-free equilibrium point is locally
asymptotically stable if and only if R0(β)≤ 1(β≤ βc) and the
endemic one is locally asymptotically stable if and only if
R0(β)≥ 1(β≥ βc) which completes the proof of Property
(iv). □

G. Proof of Theorem 5

Note the following facts under the assumption λ ∈ [0, λc]:

Fact a. If R0 < 1, then the endemic equilibrium point is
not reachable (or it does not exist in the first orthant of
the state space) since it is not positive while the disease-
free one is locally asymptotically stable. So, for R0 < 1,
there is only a unique locally stable attractor and any
potential limit cycle surrounding it at a phase plane of
any two components, if any, would be unstable (so, it
would vanish under any perturbation which would not
be detectable) because of the stability/instability al-
ternation between equilibrium points and limit cycles
from Poincaré’s theory of qualitative differential
equations concerning the presence of mixed equilib-
rium point and limit cycles. Also, no limit oscillation
could affect to the disease-free equilibrium values of the
exposed, infectious, or quarantined individuals since it
would reach negative values contradicting 'eorem 1.
As a result, the disease-free equilibrium point is
globally asymptotically stable if R0(β)< 1(β< βc).
Fact b. If R0 > 1, then the endemic equilibrium point is
unique, reachable, and locally asymptotically stable
while the disease-free one is unstable. Potential limit
cycles at any plane of any two components, if any,
should surround it but not both equilibrium points
since their joint Poincaré index would be “+2” (if the
disease-free equilibrium point is not a saddle point) or
“0” (provided that the disease-free equilibrium point is
a saddle point). Such a limit cycle should also be un-
stable in the case of existence since the endemic
equilibrium point is locally asymptotically stable so that
it could only be potentially surrounded by an unstable
limit cycle in any phase plane of two components.'us,

the endemic equilibrium point is a globally asymp-
totically stable attractor if R0 > 1(β> βc).
Fact c. 'e equilibrium point is still unique for R0 � 1
because both equilibrium points coincide.

As a result of the above Facts a–c, there is only a globally
asymptotically stable attractor which is the disease-free
equilibrium point ifR0(β)≤ 1(β≤ βc) and the endemic one if
R0 > 1(β> βc).
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