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Abstract

S
ince the laser technlology has been applied for providing highly precise measure-

ment, laser interferometry based systems have found increasing applications in

the distance, displace measurement and related applications. Recently, a simple con-

struction of laser interferometer with the use of so-called optical feedback self-mixing

interferometry (OFSMI) e�ect has become a popular technique in optical measurement

�eld. In comparison with conventional interferometer, OFSMI enables simple, compact

size and cheap interferometer devices to be implemented.

This thesis studies the spectrum characteristics of OFSMI signals and outlines novel

approaches to analysze and process the noisy signal at the time and frequency domain

simultaneously. The work is motivated by the observation that, when OFSMI signal is

given at weak feedback regime (feedback parameter C ≤ 1), the signal is strictly band-

limited, consequently an linear band-pass �lter can be applied to remove the noise

disturbance while preserving the signals waveform unchanged. On the other hand, in

case of OFSMI signal is obtained with C > 1, an e�cient denoising algorithm based on

joint time-frequency representation (TFR) can be applied. It has been found that TFR

approach provides an su�cient prospective for study the behavior of OFSMI signals

for C > 1.

This work contributes to the framework of pre-processing and analyzing of OFMSI

signals. This thesis focus on the spectrum characteristics and the noise attenuation

at weak and moderate feedback regime. To achieve this, the ability of band-pass FIR

�lters and TFR methods in OFSMI signal processing have been evaluated and com-

pared. The results of this work lead to an signi�cant improvement to the performance

of OFSMI based laser measurement system.
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3.8 The �ltered signal ĝ(n) with red solid line and noisy signal ǵ(n) with
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3.9 The �ltered signal ĝ(n) with red solid line and pure signal g(n) with

black cycle dotted line, σ = 0.00563. (C = 0.7, α = 3) . . . . . . . . . . 64

3.10 Impulse response h(n) (left) and frequency response Hw(ejωT ) (right)

for C = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Impulse response h(n) (left) and frequency response Hw(ejωT ) (right)

for C = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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ǵ(n) with cycle dotted line. (C = 2.6, α = 3) . . . . . . . . . . . . . . . 73

3.24 The simulation of �ltered signal ĝ(n) with red solid line and pure signal
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