University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2008

Analysis and pre-processing of signals observed in optical feedback selfmixing interferometry

Xiaojun Zhang University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Zhang, Xiaojun, Analysis and pre-processing of signals observed in optical feedback self-mixing interferometry, ME-Res thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, 2008. http://ro.uow.edu.au/theses/102

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Analysis and Pre-processing of Signals Observed in Optical Feedback Self-Mixing Interferometry

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Engineering (Research)

from

UNIVERSITY OF WOLLONGONG

by

Xiaojun Zhang

School of Electrical, Computer and Telecommunications Engineering June 2008 \bigodot Copyright 2008

by

Xiaojun Zhang

All Rights Reserved

Dedicated to dedicated to my Family

Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

> Xiaojun Zhang June 23, 2008

Abstract

S^{INCE} the laser technology has been applied for providing highly precise measurement, laser interferometry based systems have found increasing applications in the distance, displace measurement and related applications. Recently, a simple construction of laser interferometer with the use of so-called optical feedback self-mixing interferometry (OFSMI) effect has become a popular technique in optical measurement field. In comparison with conventional interferometer, OFSMI enables simple, compact size and cheap interferometer devices to be implemented.

This thesis studies the spectrum characteristics of OFSMI signals and outlines novel approaches to analysze and process the noisy signal at the time and frequency domain simultaneously. The work is motivated by the observation that, when OFSMI signal is given at weak feedback regime (feedback parameter $C \leq 1$), the signal is strictly bandlimited, consequently an linear band-pass filter can be applied to remove the noise disturbance while preserving the signals waveform unchanged. On the other hand, in case of OFSMI signal is obtained with C > 1, an efficient denoising algorithm based on joint time-frequency representation (TFR) can be applied. It has been found that TFR approach provides an sufficient prospective for study the behavior of OFSMI signals for C > 1.

This work contributes to the framework of pre-processing and analyzing of OFMSI signals. This thesis focus on the spectrum characteristics and the noise attenuation at weak and moderate feedback regime. To achieve this, the ability of band-pass FIR filters and TFR methods in OFSMI signal processing have been evaluated and compared. The results of this work lead to an significant improvement to the performance of OFSMI based laser measurement system.

I would like to express my sincere gratitude to my supervisor and co-supervisors: Professor Jiangtao Xi, Professor Luqi Sheng, Professor Yangguang Yu, Professor Xianjing Huang and Professor Joe Chicharo. Without them, this thesis would not have been possible. I thank them for their patience and encouragement that carried me on through difficult times. Their continuous supervision and mentoring assisted me to advance in my work and explore new territories in my research field step by step.

This work would also not have been possible without the great technical assistance given by the staff in SECTE and TITR, whose presences and kindness have given me a good memory of studying and living in this country. I am also appreciative of the casual teaching jobs provided by the school during my study which have given a valuable experience in addition to financial assistance during my study. I have been extremely fortunate to have the support of very special friends, Hong Meng, Chao Sun and his wife,Lu Wei and Yi Zhang, etc., to whom I am truly grateful.

Last but not least, I am also very grateful to my parents,my sister,my uncle Edin, aunty Xuling Zhang and friends who have always supporting me through the most difficult times of this work. Without their love and unstandarding, it is impossible to accomplish this work!

Publications

Xiaojun Zhang, Jiangtao Xi, Yanguang Yu, Joe Chichero, "The Fourier Spectrum Analysis of Optical Feedback Self-Mixing Signal under Weak and Moderate Feedback," delta, pp. 491-495, 4th IEEE International Symposium on Electronic Design, Test and Applications (delta 2008), 2008

Contents

\mathbf{A}	Abstract			\mathbf{v}
A	cknov	wledge	ements	vi
Pι	ıblica	ations		vii
1	Intr	oduct	ion	15
	1.1	The B	Background of Research	15
	1.2	The P	Principles of OFSMI Effect	19
		1.2.1	The OFSMI effect and its history	19
		1.2.2	The theoretical model of OFSMI effect	21
		1.2.3	The hardware implementation of OFSMI system	25
		1.2.4	The applications of OFSMI system	27
			1.2.4.1 Measurement of external target	27
			1.2.4.2 Measurement of semiconductor lasers	29
		1.2.5	Major issues	31
	1.3	Motiv	ation of this work	31
	1.4	Summ	nary of Contribution	32
	1.5	Struct	ture of the thesis	32
2	The	s Spect	trum Analysis of Optical Feedback Self-Mixing Signals	34
	2.1	Introd	luction	35
		2.1.1	An Overview of OFSMI Signals Waveform	35
		2.1.2	The Basic Principles of Discrete Fourier Transform (DFTs)	39
		2.1.3	Experiment Procedures	40
	2.2	Spect	ral Analysis of OFSMI Signals Under Weak Feedback Regime	41
		2.2.1	Analysis of Simulated Signals	41
		2.2.2	Analysis of Actual Signals	44

		2.2.3	Comparison between Simulated and Actual Signals \ldots .	46
	2.3	Spectr	al Analysis of OFSMI Signals Under Moderate Feedback Regime	46
		2.3.1	Analysis of Simulated Signals	46
		2.3.2	Analysis of Actual Signals	47
		2.3.3	Comparison between Simulated and Actual Signals \ldots .	51
	2.4	Conclu	ision	51
3	Sig	nal Pre	e-processing using Linear Filtering Methods	53
	3.1	Backg	round of Linear Filtering Techniques	54
		3.1.1	Mathematical Model of Noise	54
		3.1.2	Principles of Linear Filters Design	54
		3.1.3	FIR Filters with Window Methods	55
		3.1.4	FIR Filter Design procedure	58
	3.2	Linear	Band-Pass Filters under Weak Feedback Regime	59
		3.2.1	Performance of Linear Band-Pass Filters on Simulated OFSMI	
			signals under Weak Feedback regime	59
		3.2.2	Performance on the Actual Noisy OFSMI signals under Weak	
			Feedback regime	67
	3.3	Linear	Band-Pass Filters under Moderate Feedback Regime	70
		3.3.1	Performance of Linear Band-Pass Filters on Simulated OFSMI	
			signals under Moderate Feedback Regime	70
		3.3.2	Performance of Band-Pass Filters on Actual OFSMI Signals un-	
			der Moderate Feedback Regime	76
	3.4	Conclu	1sion	78
4	Loc	alized	Spectral Analysis of OFSMI Signals	79
	4.1	Develo	opment history of S-Transform	80
	4.2	Theor	y of STFT and S-Transform	81
		4.2.1	Short Time Fourier Transform (STFT)	81
		4.2.2	Principles of S-Transform	82
			4.2.2.1 S-Transform and Continuous Wavelet Transform \ldots	82
			4.2.2.2 S-Transform and Short Time Fourier Transform	83
			4.2.2.3 S-Transform and Fourier Transform	83
			4.2.2.4 Discrete 1-D S-Transform	84
	4.3	Local	Spectrum Analysis of OFSMI signals under Weak Feedback Regime	85
		4.3.1	Local Spectrum Analysis to the Simulated OFSMI Signals $\ .$.	85

			4.3.1.1 Analysis Results using Short Time Fourier Transform .	. 85
			4.3.1.2 Analysis Results using S-Transform	. 87
		4.3.2	Local Spectrum Analysis to the Actual OFSMI Signals \ldots .	. 88
			4.3.2.1 Analysis Results using Short Time Fourier Transform .	. 88
			4.3.2.2 Analysis Results using S-Transform	. 92
	4.4	Local	Spectrum Analysis of OFSMI signals under Moderate $/$ Strong	
		Feedb	ack Regime	. 94
		4.4.1	Local Spectrum Analysis to the Simulated OFSMI Signals \ldots	. 94
			4.4.1.1 Analysis Results using Short Time Fourier Transform .	. 94
			4.4.1.2 Analysis Results using S-Transform	. 95
		4.4.2	Local Spectrum Analysis to the Actual OFSMI Signals	. 98
	4.5	Conclu	usion \ldots	. 100
5	Don	oising	g of Noisy OFSMI Signals based on Wavelet Transform und	0 r
J		0	e Feedback Regime	102
	5.1		Basic Principles of Wavelet Transform	
	0.1	5.1.1	Continuous Wavelet Transform (CWT)	
		5.1.2	Discrete Wavelet Transform (DWT)	
		5.1.3	Multiresolution Analysis (MRA) and Signal Denoising	
		5.1.4	Procedures of Wavelet Based Denoising	
		5.1.5	Thresholding Method	
	5.2		mentation of Wavelet Transform based Denoising Method to OF-	
		-	ignals under Moderate Feedback Regime	
		5.2.1	Denoising Results of Simulated OFSMI signals	. 110
		5.2.2	Denoising Results of Actual OFSMI Signals	. 118
	5.3	Conclu	usion	. 120
6	Con	alucio	ons and Future Research	121
U	6.1		nary of Contributions	
	6.2		stion of Future Researches	
	0.2	5 488°		
Α	App	pendix	: Programming List	124
	A.1	Simula	ation Code for Generating OFSMI Signals	. 124
	A.2	Spectr	rum Analysis of OFMSI Signal	. 128
	A.3	FIR F	Γ ilter	. 131
	A.4	FIR B	Band-pass Filter with Kaiser Windnow	. 133

A.5	S-Trar	nsform and its Inverse code	134
	A.5.1	S-Transform	134
	A.5.2	Inverse of S-Transform	142
A.6	Short	Time Fourier Transform Analysis	143
	A.6.1	Short Time Fourier Transform	143
	A.6.2	Short Time Fourier Transform Window Function	146
A.7	Wavel	et Transform and its Denoising Processing	149
	A.7.1	Multiresolution Decomposition Analysis	149
	A.7.2	Discrete Wavelet Transform	152
	A.7.3	Inverse of Disecete Wavelet Transform	155

Bibliography

List of Figures

1.1	Illustration of displacement measurement of OFSMI system	16
1.2	Displacement measurement with Fourier Transform demodulation method.	17
1.3	Laser Doppler Velocity measurement based on OFSMI effect	17
1.4	Three mirror structure for self-mixing effect inside a single mode laser	22
1.5	compound cavity model for self-mixing effect in a single mode laser $\ . \ .$	22
1.6	The waveform of self-mixing signal with different value of C . The upper	
	figure shows the case for $C = 0.6$ with a sinusoidal shape of waveform,	
	the bottom figure shows the case for $C = 3.6$ with a saw-tooth-like	
	waveform. Theses waveforms are obtained by simulation program. $\ $.	26
1.7	The block diagram of experimental system setup	26
1.8	The phase shift of self-mixing signal with $C = 0.7$ (Top phase shift of	
	external target without feedback;middle: phase shift of back reflected	
	light; bottom: waveform of OFSMI signal)	28
1.9	The phase shift and waveform of self-mixing signal with $C = 2.6$ (Top	
	phase shift of external target without feedback;middle: phase shift of	
	back reflected light; bottom: waveform of OFSMI signal) $\ldots \ldots \ldots$	28
1.10	The phase shift and waveform of self-mixing signal with $C = 3.6$ (Top	
	phase shift of external target without feedback;middle: phase shift of	
	back reflected light; bottom: waveform of OFSMI signal)	29
2.1	Phase shift $\phi_f(t)$ with feedback versus phase shift $\phi_0(t)$	35
2.2	The change in excess phase shift $\phi_0(t) - \phi_f(t)$ with optical feedback	
	versus external target phase shift $\phi_0(t)$ with different values of C	36
2.3	The phase shift of self-mixing signal with $C = 0.7$ (Top phase shift	
	of external target without feedback; middle: phase shift of back reflected $\hfill \hfill \h$	
	light; bottom: waveform of OFSMI signal). Each fringe in OFSMI signal $$	
	corresponding to a 2π phase shift	37

2.4	The phase shift of self-mixing signal with $C = 2.6$ (Top phase shift
	of external target without feedback;middle: phase shift of back reflected
	light; bottom: waveform of OFSMI signal). Each fringe in OFSMI signal
	corresponding to a 2π phase shift
2.5	The phase shift of self-mixing signal with $C = 3.6$ (Top phase shift
	of external target without feedback;middle: phase shift of back reflected
	light; bottom: waveform of OFSMI signal). Each fringe in OFSMI signal
	corresponding to a 2π phase shift
2.6	Actual OFSMI signal under weak feedback regime with $C = 0.7$. (Top:
	The overview of signal waveform, Bottom: The zoom-in view of signal
	waveform) $\ldots \ldots 33$
2.7	Actual OFSMI signal under moderate feedback regime with $C = 3.6$.
	(Top: The overview of signal waveform, Bottom: The zoom-in view of
	signal waveform)
2.8	The follow chart of experiment procedures 44
2.9	The simulated OFSMI signal with $C = 0.7$ and $\alpha = 3 4$
2.10	Fourier spectrum of the signal
2.11	The raw signal $g(n)$ with solid line and filtered signal $\tilde{g}(n)$ with cycle
	dot line
2.12	Fourier of actual OFSMI signal for $C = 0.7$. Many non-harmonic com-
	ponents results from noise disturbance can be observed
2.13	The zoom-in view of Fourier spectrum of actual OFSMI signal with
	C = 0.7. The non-harmonic components result from noise interference
	$can be observed. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
2.14	The actual OFSMI signal $g(n)$ with black solid line and filtered signal
	$\tilde{g}(n)$ with red cycle dotted line
2.15	First 256 samples of simulated OFSMI signal with $C=2.6$ and $\alpha=3$. -4°
2.16	Fourier spectrum of OFSMI signal
2.17	The raw signal $g(n)$ with solid line and filtered signal $\tilde{g}(n)$ with cycle
	dotted line
2.18	The error residual of filtered signal $\tilde{g}(n)$
2.19	The waveform of actual OFSMI signal with $C = 3.6$
2.20	The Fourier spectrum of actual OFSMI signal with $C = 3.6$
2.21	The zoom-in view of Fourier spectrum of actual OFSMI signal with
	$C = 3.6 \dots \dots \dots \dots \dots \dots \dots \dots \dots $

2.22	The actual signal $g(n)$ with black solid line and filtered signal $\tilde{g}(n)$ with red cycle dotted line. The MSE error residual $\sigma = 0.2$	51
3.1	Frequency magnitude response of band-pass filter.	56
3.2	The simulated noisy OFSMI signal $\acute{g}(n)$ (red dotted line) and raw signal	
	$g(n)$ (blue solid line) with $C = 0.7$ and $\alpha = 3$. $SNR = 10dB.$	59
3.3	The Fourier spectrum of simulated noisy OFSMI signal $\acute{g}(n)$ with $C =$	
	0.7 and $\alpha = 3$	60
3.4	The zoom-in of Fourier spectrum of noisy OFSMI signal $\dot{g}(n)$ with $C =$	
	0.7 and $\alpha = 3$	61
3.5	Power spectrum distribution of noisy OFSMI signal $\dot{g}(n)$ with $C = 0.7$	
	and $\alpha = 3$	61
3.6	Impulse response $h(n)$ for band-pass FIR filter	63
3.7	Frequency response $H_w(e^{j\omega T})$ of band-pass FIR filter	63
3.8	The filtered signal $\hat{g}(n)$ with red solid line and noisy signal $\hat{g}(n)$ with	
	black cycle dotted line. $(C = 0.7, \alpha = 3)$	64
3.9	The filtered signal $\hat{g}(n)$ with red solid line and pure signal $g(n)$ with	
	black cycle dotted line, $\sigma = 0.00563$. $(C = 0.7, \alpha = 3)$	64
3.10	Impulse response $h(n)$ (left) and frequency response $H_w(e^{j\omega T})$ (right)	
	for $C = 0.1$	66
3.11	Impulse response $h(n)$ (left) and frequency response $H_w(e^{j\omega T})$ (right)	
	for $C = 0.9$	66
3.12	The filtered signal $\hat{g}(n)$ with red solid line and pure signal $g(n)$ with	
	cycle dotted line for $C = 0.1$	67
3.13	The filtered signal $\hat{g}(n)$ with red solid line and pure signal $g(n)$ with	
	cycle dotted line for $C = 0.9$	67
3.14	The actual OFSMI signals $g_c(n)$ with $C = 0.7$, $\alpha = 3$. The power	
	spectrum remains same in each period	68
3.15	The Fourier spectrum of actual OFSMI signal $g_c(n)$ ($C = 0.7, \alpha = 3$).	
	Top: over view of Fourier spectrum. Bottom: zoom-in of Fourier spectrum.	68
3.16	The zoom-in view of waveform comparison in time domain, between	
	actual filtered OFSMI signal $\hat{g}_c(n)$ (red solid line) and actual OFSMI	
	signal $g_c(n)$ (cycle dotted line), $\sigma = 0.0083$	69
3.17	The zoom-in of Fourier spectrum of actual filtered OFSMI signal $\hat{g}_c(n)$	
	, those noise components in actual signal $g_c(n)$ now have been removed	
	by band-pass FIR filter.	69

3.18	First 256 samples of simulated noisy OFSMI signal $\dot{g}(n)$ with red solid	
	line and pure signal $g(n)$ with black cycle dotted line with $C = 2.6$ and	
	$\alpha = 3 \dots \dots$	70
3.19	Fourier spectrum of noisy OFSMI signal with $C=2.6$ and $lpha=3$	71
3.20	The power spectrum distribution of noisy OFSMI signal $\dot{g}(n)$ for $C = 2.6$	
	and $\alpha = 3$	71
3.21	Impulse response $h(n)$ for the case of $C = 2.6$ and $\alpha = 3$	73
3.22	Frequency response $H_w(e^{j\omega T})$ for the case of $C = 2.6$ and $\alpha = 3$	73
3.23	The simulation of filtered signal $\hat{g}(n)$ with red solid line and noisy signal	
	$\hat{g}(n)$ with cycle dotted line. $(C = 2.6, \alpha = 3) \dots \dots \dots \dots \dots \dots$	73
3.24	The simulation of filtered signal $\hat{g}(n)$ with red solid line and pure signal	
	$g(n)$ with cycle dotted line. $(C = 2.6, \alpha = 3) \dots \dots \dots \dots \dots \dots$	74
3.25	The simulation of filtered signal $\hat{g}(n)$ with red solid line and noisy signal	
	$\dot{g}(n)(\text{top})$, and pure signal $g(n)$ (bottom) with cycle dotted line. (C =	
	1.6, $\alpha = 3$)	75
3.26	The simulation of filtered signal $\hat{g}(n)$ with red solid line and noisy signal	
	$\dot{g}(n)(\text{top})$, and pure signal $g(n)$ (bottom) with cycle dotted line. (C =	
	3.6, $\alpha = 3$)	75
3.27	The simulation of filtered signal $\hat{g}(n)$ with red solid line and noisy signal	
	$\dot{g}(n)$ (top) and, pure signal $g(n)$ (bottom) with cycle dotted line. ($C =$	
	4.6, $\alpha = 3$)	76
3.28	The waveform of actual noisy OFSMI signal $g_c(n)(C = 2.6, \alpha = 3)$. The	
	abrupt edges caused by noise can be observed	76
3.29	The Fourier spectrum of actual noisy OFSMI signal $g_c(n)$ ($C = 2.6$,	
	α = 3). Non-harmonic components with small spectral energy caused	
	by noise can be noticed. However, it can not provides the information	
	of spectral-energy distribution of a non-stationary signal. (Top: the	
	overview of spectral energy distribution. Bottom: zoom-in view of its	
	Fourier spectrum)	77
3.30	Comparison between filtered signal $\hat{g}_c(n)$ (red solid line) and actual noisy	
	signal $g_c(n)$ (cycle dotted line) with $C = 2.6$. Significant difference can be	
	found since the band-pass FIR filter can not meet the filter requirements, $\hfill \hfill \h$	
	the MSE of error residual has been increased to $\sigma = 0.64$	77

3.31	Fourier spectrum of filtered signal $\hat{g}_c(n)$ ($C = 2.6$). It shows those non-harmonic components have been attenuated. However, the energy spreading induced by non-stationary and nonlinearity still lead to a large MSE error	78
4.1 4.2	The simulated OFSMI signal with $C = 0.7$ and $\alpha = 3$ STFT with Hanning window (right) and corresponding Fourier spectrum (left) of OFSMI signal $g(n)$ with $C = 0.7$ and $\alpha = 3$. The spectral- energy distribution between $14f_v$ and $26f_v$ can be clearly distinguished in y-axis(frequency domain). But the time resolution is poor for these frequency components. And also there is no time information for higher	86
4.3	frequencies	86
4.4	poor	87
4.5	resolution is getting worse	88
4.6	clearly clarified, and the bandwidth is more easily to be determined S-Transform of OFSMI signal $g(n)$ with $C = 0.1$ and $\alpha = 3$. The energy-frequency distribution remains constant in all periods. Therefore	89
4.7	an band-pass filter is an efficient filter technique in OFSMI system S-spectrum of $g(n)$ with $C = 0.9$ and $\alpha = 3$. It shows the bandwidth is increased with increasing of C , and frequency resolution is increased	89
4.8	with increasing of frequencies. \ldots STFT (right) of actual OFSMI signal and its Fourier spectrum(left) and the actual signal ($C = 0.7$, $\alpha = 3$) in time (top). Although signal is keep oscillating in the whole period, only two strong peaks (between 1.2sec and 1.8 sec) can be observed from the STFT. The consequence is the misleading of spectral-energy distribution for a band-pass filter design.	90 90

4.9	STFT (right) of actual OFSMI signal and its Fourier spectrum(left) and	
	the actual signal ($C = 0.1, \alpha = 3$) in time (top). In such case, the	
	strong peaks can not be discriminated from time and frequency axis.	
	The frequency and time resolutions are both poor	91
4.10	STFT (right) of actual OFSMI signal and its Fourier spectrum(left) and	
	the actual signal ($C = 0.1, \alpha = 3$) in time (top). In comparison with the	
	case of $C = 0.1$ and 0.7, it can be noticed that the energy of harmonic	
	components is increased with increasing of C . However, it is still not	
	enough information about bandwidth and cut-off frequency which are	
	important for a band-pass filter design.	91
4.11	S-Transform of actual OFSMI signal (right) and its corresponding Fourier	
	spectrum (left) for $C = 0.7, \alpha = 3$. In comparison STFT and Fourier,	
	the S-spectrum provides a visualized energy-spectral distribution along	
	the time and frequency axes. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	92
4.12	S-Transform of actual OFSMI signal (right) and its corresponding Fourier $$	
	spectrum (left) for $C = 0.1$ and $\alpha = 3$. The energy is spreading from	
	lower frequencies to the normalized frequency of 0.1 , thus the bandwidth	
	and cut-off frequency can be visually determined. \ldots \ldots \ldots \ldots \ldots	93
4.13	S-Transform of actual OFSMI signal (right) and its corresponding Fourier $% \mathcal{A}$	
	spectrum (left) for $C = 0.9, \alpha = 3$. The energy spreading from lower fre-	
	quencies to normalized frequency of 0.15, it consequently defined the \hfill	
	bandwidth and cut-off frequency of the signal	93
4.14	First period of simulated OFSMI signal with $C=2.6$ and $\alpha=3$	94
4.15	Fourier spectrum of $g(n)$ of $C = 2.6$	94
4.16	STFT (right) and Fourier spectrum (left) of simulated OFSMI signal	
	$g(n)$ with $C = 2.6$ and $\alpha = 3$. The variation of energy spreading at	
	lower and higher frequencies can not be determined from both STFT	
	and Fourier spectrum.	95
4.17	STFT with Gaussian window (right) and its corresponding Fourier spec-	
	trum (left) of OFSMI signal $g(n)$ with $C = 2.6$. The frequency resolution	
	between $14f_v$ and $26f_v$ is poor.	96
4.18	S-spectrum of $g(n)$ with $C = 2.6$	96
4.19	The S-spectrum of $g(n)$ with $C = 3.6$	96
4.20	The S-spectrum of $g(n)$ with $C = 4.6$	97
4.21	The S-spectrum of $g(n)$ with $C = 5.6$	97

4.22	Zoom-in view of S-spectrum for the OFSMI signal $g(n)$ with $C = 2.6$.	98
4.23	The zoom-in view of S-spectrum of $g(n)$ with $C = 3.6$	98
4.24	The zoom-in view of S-spectrum of $g(n)$ with $C = 4.6.$	99
4.25	The zoom-in view of S-spectrum of $g(n)$ with $C = 5.6$	99
4.26	S-Transform (right) and corresponding Fourier spectrum (left) of actual	
	OFSMI signal with $C = 2.6$. Although the signal is disturbed by the	
	noise, the spectral-energy distribution still can be clearly discriminated	
	from S-spectrum.	100
4.27	S-Transform (right) and corresponding Fourier spectrum (left) of actual	
	OFSMI signal with $C = 3.6$. The spectral-energy distribution is visually	
	displayed by S-spectrum, even though the fringe frequency components	
	become much weaker.	100
5.1	The Morlet Wavelet basic function	104
5.2	The baby wavelet with three different scale values. The middle on has	
	$\tau = 0$ and $a = 1$. The first wavelet has $\tau = -9$ and $a = 2$, and last one	
	has $\tau = 9$ and $a = 0.5$. It shows an increasing trend of τ with increasing	
	of scaled factor a	105
5.3	Multire solution wavelet decomposition, S is original signal, \downarrow indicates	
	the signal is down-sampled by 2	106
5.4	Implementation of MRA filter bank for signal denoising	108
5.5	The schematic of DWT based signal denoising	109
5.6	The simulated noisy OFSMI signal (cycle dotted line) $\dot{g}(n)$ and raw	
	signal $g(n)$ (solid line) with $C = 1.6$ and $\alpha = 3.$	110
5.7	The 4 level wavelet decomposition using ' db 8' as mother wavelet. $a1$ is	
	the 1^{st} level approximated signal and so on. The first row is the original	
	noisy OFSMI signal. The time resolution is decreased with increasing	
	of decomposition level, vice versa to the frequency resolution	111
5.8	The 4 levels detailed wavelet coefficients using 'db8'. 'd1' is the 1^{st} level,	
	'd2' is the 2^{nd} level and so on. The top one is original noisy OFSMI	
	signal. It shows the amplitude of each decomposition is changed with	
	time variation	112
5.9	The approximated and detailed coefficients after hard thresholding ap-	
	plied to each decomposition level.	113
5.10	Zoom in of raw OFSMI signal $g(b)$ (dotted line) and denoised signal	
	(solid line)($C = 1.6$). The error residual between two signals $\sigma = 0.045$.	114

5.11	The zoom in of raw signal $g(n)$ (dotted line) and denoised signal $\hat{g}(n)$	
	(solid line) with $C = 2.6$ and $\alpha = 3$. The error residual between two	
× 10	0	114
5.12	The zoom in of raw signal $g(n)$ (dotted line) and denoised signal $\hat{g}(n)$	
	(solid line) with $C = 3.6$ and $\alpha = 3$. The error residual between two	
	signals $\sigma = 0.027$	115
5.13	The zoom in of raw signal $g(n)$ (dotted line) and denoised signal $\hat{g}(n)$	
	(solid line) with $C = 4.6$ and $\alpha = 3$. The error residual between two	
	signals $\sigma = 0.013.$	115
5.14	Denoised signal $\hat{g}(n)$ (solid line) and raw signal $g(n)$ (dotted line) with	
	$C = 1.6$ and $\alpha = 3$ by applying different mother wavelets, Daubechies-4	
	(db4), Daubechies-8(db8), Symlets-4(sym4) and Symlets-8(sym8)	116
5.15	Denoised signal $\hat{g}(n)$ (solid line) and raw signal $g(n)$ (dotted line) with	
	$C = 2.6$ and $\alpha = 3$ by applying different mother wavelets, Daubechies-4	
	(db4), Daubechies-8(db8), Symlets-4(sym4) and Symlets-8(sym8)	116
5.16	Denoised signal $\hat{g}(n)$ (solid line) and raw signal $g(n)$ (dotted line) with	
	$C=3.6$ and $\alpha=3$ by applying different mother wavelets, Daubechies-4	
	(db4), Daubechies-8(db8), Symlets-4(sym4) and Symlets-8(sym8)	117
5.17	Denoised signal $\hat{g}(n)$ (solid line) and raw signal $g(n)$ (dotted line) with	
	$C=4.6$ and $\alpha=3$ by applying different mother wavelets, Daubechies-4	
	(db4), Daubechies-8(db8), Symlets-4(sym4) and Symlets-8(sym8)	117
5.18	The denoised OFSMI signal $\hat{g}_c(n)$ (solid line) and actual signal $g_c(n)$	
	(dotted line) ($C = 1.6, \alpha = 3$). The noise disturbance is smoothed while	
	the sharp and detailed of fringes are well preserved. \ldots	119
5.19	The denoised OFSMI signal $\hat{g}_c(n)$ (solid line) and actual signal $g_c(n)$	
	(dotted line) (C = 2.6, $\alpha = 3$). The MSE of error residual $\sigma = 0.0073$.	119
5.20	The denoised OFSMI signal $\hat{g}_c(n)$ (solid line) and actual signal $g_c(n)$ (dotted	
	line) ($C = 3.6, \alpha = 3$). The MSE of error residual $\sigma = 0.0071 \dots$	119
5.21	The denoised OFSMI signal $\hat{g}_c(n)$ (solid line) and actual signal $g_c(n)$	
	(dotted line) ($C = 41.6$, $\alpha = 3$). The MSE of error residual $\sigma = 0.0073$.	120

List of Tables

2.1	The variation of upper cut-off frequencies for band-pass filter at weak	
	feedack regime with $\alpha = 3$ (Simulated OFSMI signals)	43
2.2	The variation of upper cut-off frequencies for band-pass filter at weak	
	feedback regime with $C = 0.7$ (Simulated OFSMI signals)	44
2.3	The variation of upper cut-off frequencies for band-pass filter at weak	
	feedback regime with $C = 0.7$ (Actual OFSMI signals)	46
2.4	Spectrum analysis of OFSMI signal at moderate feedback regime with	
	$\alpha = 3 \dots \dots$	47
2.5	Spectrum analysis of OFSMI signal at moderate feedback regime with	
	$C = 2.6 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	48
2.6	Spectrum analysis of actual OFSMI signal at moderate feedback regime	51
3.1	FIR filter specification analysis for the simulated noisy OFSMI signal	
	with $C = 0.7$ and $\alpha = 3$	65
3.2	Filter results and FIR filter specifications for simulated noisy OFSMI	
	signal under weak feedback level $(\alpha = 3)$	65
3.3	Filter results for actual noisy OFSMI signal under weak feedback level	
	$(\alpha = 3) \dots $	70
3.4	Filter specifications analysis for the simulated noisy OFSMI signal with	
	$C = 2.6$ and $\alpha = 3$	74
3.5	Filter specifications for simulated OFSMI signal under moderate feed-	
	back level.	74
5.1	Frequency band of DWT at each levels	111
5.2	The standard deviation σ and Sub-band Threshold λ_{sub} for each decom-	
	position level.	112
5.3	The MSE of error residual for different mother wavelets with respect to	
	the values of C	114

5.4 Frequency bands of DWT coefficients at different levels	5.4	NT	Frequency bands	' coefficients at	different le	evels					1
---	-----	----	-----------------	-------------------	--------------	-------	--	--	--	--	---