Analysis and prediction of acoustic speech features

from mel-frequency cepstral coefficients in distributed

speech recognition architectures

Jonathan Darch and Ben Milner®
School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Saeed Vaseghi
Department of Electronic and Computer Engineering, Brunel University, Uxbridge UB8 3PH,
United Kingdom

(Received 19 December 2007; revised 5 September 2008; accepted 10 September 2008)

The aim of this work is to develop methods that enable acoustic speech features to be predicted from
mel-frequency cepstral coefficient (MFCC) vectors as may be encountered in distributed speech
recognition architectures. The work begins with a detailed analysis of the multiple correlation
between acoustic speech features and MFCC vectors. This confirms the existence of correlation,
which is found to be higher when measured within specific phonemes rather than globally across all
speech sounds. The correlation analysis leads to the development of a statistical method of
predicting acoustic speech features from MFCC vectors that utilizes a network of hidden Markov
models (HMMs) to localize prediction to specific phonemes. Within each HMM, the joint density of
acoustic features and MFCC vectors is modeled and used to make a maximum a posteriori
prediction. Experimental results are presented across a range of conditions, such as with
speaker-dependent, gender-dependent, and gender-independent constraints, and these show that
acoustic speech features can be predicted from MFCC vectors with good accuracy. A comparison is
also made against an alternative scheme that substitutes the higher-order MFCCs with acoustic
features for transmission. This delivers accurate acoustic features but at the expense of a significant

reduction in speech recognition accuracy. © 2008 Acoustical Society of America.

[DOLI: 10.1121/1.2997436]
PACS number(s): 43.72.Ar [DOS]

I. INTRODUCTION

Acoustic speech features, namely, formants, fundamen-
tal frequency, and voicing, are traditionally estimated from
time-domain waveforms of speech or some other representa-
tion that is derived from the time domain. For example, ef-
fective methods of fundamental frequency estimation apply
autocorrelation analysis, frequency-domain analysis, or cep-
stral analysis to extract candidates that can be tracked and
smoothed using dynamic programing.' Similarly, formant
frequencies can be estimated from pole positions obtained
from linear predictive analysis or from spectral peaks, fol-
lowed by tracking, using, for example, Kalman ﬁltering.2

In recent years, distributed speech recognition (DSR) ar-
chitectures have been developed as a robust method for
achieving accurate speech recognition over mobile and IP
networks.’ However, within a DSR architecture, no time-
domain waveform is sent to the remote back-end. Instead,
only a stream of mel-frequency cepstral coefficient (MFCC)
vectors is received, which prohibits the use of conventional
methods of acoustic feature estimation. In many situations, it
is desirable to have acoustic features available at the remote
back-end. An example is to enable a speech signal to be
reconstructed at the back-end from the received MFCC vec-
tors, as may be required in cases of legal dispute of potential
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speech recognition errors. The MFCC vectors themselves
can be inverted to provide spectral envelope information, but
to facilitate speech reconstruction, source information such
as voicing and fundamental frequency are also required. One
solution has been to explicitly estimate and transmit voicing
and fundamental frequency from the terminal device to the
remote back-end.” While this provides the necessary infor-
mation, it creates considerable overheads both in terminal-
side processing and in additional bit-rate requirements. For
example, the ETSI Aurora standard uses 800 bits/s to repre-
sent voicing and fundamental frequency. An alternative ap-
proach is to predict voicing and fundamental frequency from
the received MFCC vectors themselves.* This has been
achieved by modeling the joint density of MFCC vectors and
the fundamental frequency to enable a maximum a posteriori
(MAP) prediction of fundamental frequency from a MFCC
vector. This has been applied first to a constrained connected
digit vocabulary4 and then to unconstrained free speech.5 Us-
ing a similar probabilistic framework, formant frequencies
have also been successfully predicted from MFCC vectors.’

The work presented in this paper extends the previous
work in four ways. First, instead of predicting fundamental
frequency/voicing and formant frequencies separately, an
acoustic feature vector is defined, which comprises funda-
mental frequency and formant frequencies together with
voicing and speech/nonspeech information.” This allows a
simultaneous prediction of the set of acoustic features from a
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MFCC vector and is achieved by defining three speech
classes (voiced, unvoiced, and nonspeech). Second, a com-
prehensive analysis of the correlation between acoustic fea-
tures and MFCC vectors is made. This examines the effect
on the acoustic feature to MFCC vector correlation when
applying constraints such as measuring correlation within in-
dividual speakers (speaker dependent), within gender types
(gender dependent), and across all speakers (gender indepen-
dent). Restrictions into the speech class are also made, which
consider correlation either globally across all speech sounds
or within individual phoneme classes. Third, a detailed
analysis into the accuracy of acoustic feature prediction is
made. This examines prediction accuracy under speaker-
dependent, gender-dependent, and gender-independent con-
straints and allows conclusions to be drawn into the effect
that a high acoustic feature to MFCC vector correlation has
on prediction accuracy. Finally, a comparison of the pro-
posed method is made against a scheme that replaces higher-
order MFCCs in the transmitted feature vector by acoustic
features (estimated on the terminal device). The acoustic fea-
tures are compressed using the same method as the MFCCs,
and the effect of this on acoustic feature estimation is mea-
sured, together with the effect on recognition accuracy of
losing higher-order MFCCs.

The remainder of this paper is organized as follows.
Section II presents a detailed study into the correlation be-
tween acoustic features and MFCC vectors. Section III de-
fines the acoustic feature vector and describes two methods
of predicting acoustic features from MFCC vectors using
either phoneme-specific or global MAP methods. Experi-
mental results are presented in Sec. IV, which examines the
accuracy of acoustic feature prediction from MFCC vectors
under constraints of speaker independence, gender depen-
dence, and gender independence. Finally, Sec. V examines
the effect of replacing higher-order MFCCs by acoustic fea-
tures on both acoustic feature estimation and speech recog-
nition performance.

Il. ANALYSIS OF CORRELATIONS BETWEEN
ACOUSTIC SPEECH FEATURES AND MFCC VECTORS

This section examines the correlation between acoustic
speech features and MFCC vectors. This is motivated by the
need to establish the existence and level of correlation before
developing a system to predict acoustic speech features from
MEFCC vectors. The first part of this section explains how the
acoustic feature to MFCC vector correlation is measured,
while the latter parts analyze the correlation. Various con-
straints are made in the analysis, such as measuring correla-
tion globally or phoneme-specifically and applying speaker
and gender constraints.

A. Measuring the acoustic speech feature to MFCC
vector correlation

A correlation analysis is performed by first defining an
acoustic speech feature vector, f;, which comprises the fun-
damental frequency, f0, and the frequencies of the first four
formants, F1, F2, F3, and F4, at time frame i,
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f;=[f0,F1,F2,F3,F4]. (1)

For voiced speech, multiple correlations are measured be-
tween each element of the acoustic feature vector and the
MFCC vector. For unvoiced speech, multiple correlations are
only calculated between formant frequencies and MFCC
vectors.

The multiple correlation between each acoustic speech
feature and the MFCC vector is measured using multiple
linear regression.8 A linear model is computed to describe the
relationship between MFCC vectors (independent variables)
and acoustic speech feature vectors (dependent variables).
Each acoustic feature at frame i, fi(j), is represented in terms
of the ith MFCC vector, x;=[x,(1),x;(2),...,x;(M)], using a
set of M+1 regression coefficients, [S;, ... ,7[3m,j, s Bl
which are specific to the jth acoustic feature,

SiG) = Boj+ Bijxi(1) + By jxi(2) + -+ + By (M) + &,

O0<is<I-1, 1=<j=<4 for unvoiced speech,

osisJI-1,

0<j<4 for voiced speech, (2)

where ¢ is an error term, / is the number of MFCC vectors,
and M is the dimensionality of the MFCC vector. In matrix
notation, Eq. (2) can be written as

F=X,B+¢. (3)

F is a matrix of acoustic vectors, F=[fy.fi.....fi]". Xy
=[1,,X], where matrix X=[x,,x;,...,x,_;]” and 1, is a vec-
tor of ones of length /. B is a matrix of regression coeffi-
cients and € is a matrix of acoustic feature errors.

From a set of training data, least squares estimation can

~

provide an estimate of the regression coefficients, 8,
B=(X{X)'X{F. )

This enables a prediction of an acoustic feature vector, jA”,-,
from a MFCC vector, x;,

fi=xiB. (5)
The multiple correlation, R, between the jth acoustic feature,

£(j), and the MFCC vector is determined from the R* term,
which is defined as

SO -FOY S0 - FOF
SO -FOF 240 - FO)Y

where £(j) is the mean of the jth acoustic feature.

R(j)>=1 (6)

B. Correlation analysis

The correlations between acoustic features and MFCC
vectors are measured on the test set of the VTRFormants
database’—see Sec. IV for specific details. MFCC vectors
are computed as specified in the ETSI DSR front-end,” re-
sulting in a stream of 14-dimensional MFCC vectors at a rate
of 100 vectors/s.

Two methods of calculating multiple correlations are
considered: global, RY(j), and phoneme specific, R”(j). The
global multiple correlation between each acoustic speech
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TABLE 1. Multiple correlations between acoustic features and MFCC vectors for male and female speaker-
dependent speech, calculated globally and by phoneme for unvoiced and voiced speech.

Gender Method Voicing F1 F2 F3 F4 10
Male Global Unvoiced 0.5095 0.6688 0.5730 0.4655
Voiced 0.7520 0.8685 0.8128 0.5781 0.4874
Phoneme Unvoiced 0.7349 0.7994 0.7615 0.7375
specific Voiced 0.9017 0.9335 0.9238 0.8895 0.8728
Female Global Unvoiced 0.5172 0.5752 0.4869 0.3772 e
Voiced 0.7741 0.8369 0.7844 0.5366 0.7469
Phoneme Unvoiced 0.7495 0.7720 0.7545 0.7287 e
specific Voiced 0.9010 0.9140 0.8946 0.8615 0.9184

feature and MFCC vector is measured by pooling features
together from all speech sounds and applying Eq. (6).
Phoneme-specific correlations are measured by first seg-
menting the data into phoneme classes using reference anno-
tations. Within each phoneme class, Eq. (6) is used to mea-
sure the multiple correlation between each acoustic feature
and MFCC vector. A weighted averaged is then computed to
give the mean phoneme-specific multiple correlation,

R T
R"(j) = N—E N,R"(j). (7)

Gw=1
where N,, is the number of vectors corresponding to pho-
neme w and R"(j) is the multiple correlation between the jth
acoustic feature and the MFCC vector for the wth phoneme.
W represents the total number of phonemes, and N is the
total number of vectors.

Further in the two methods of measuring correlation,
three scenarios are considered, which allows the effect of
speaker and gender on correlations to be examined. The three
scenarios are described in order of decreasing dependence on
gender and speaker,

(1) Speaker dependent: Multiple correlations are calculated
for each speaker separately. This scenario is also inher-
ently gender dependent.

(2) Gender dependent: Multiple correlations are calculated
first from all male speech and then from all female
speech.

(3) Gender independent: All speech is used to compute the
regression coefficients in Eq. (4). Multiple correlations
are then measured separately for male and female speech
to enable gender comparison.

Note that both the gender-dependent and gender-
independent scenarios are also speaker independent as more
than one speaker is used. Besides being listed by gender and
method of calculating correlation (global or phoneme spe-
cific), correlation results are also calculated separately for
voiced and unvoiced speech.

1. Speaker-dependent correlations

The global and phoneme-specific multiple correlations
of formant frequencies (F1-F4) and fundamental frequency
to MFCC vectors are shown in Table I. The correlation mea-
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sures are broken down into male and female speech and un-
voiced and voiced speech.

The results show that multiple correlations between
acoustic features and MFCC vectors are consistently higher
when calculated within individual phonemes rather than glo-
bally over all speech. This is to be expected since restricting
multiple regression to model correlations from a small clus-
ter of related sounds with similar formant structures and fun-
damental frequencies is more likely to produce higher corre-
lation than generalizing across all speech sounds.

The high correlations between formant frequencies and
MFCC vectors, especially for lower formants, in comparison
to the lower correlation between fundamental frequency and
MFCC vectors are attributed to the shape and spacing of the
mel filter bank used in the MFCC extraction process. The
filter bank processing retains sufficient spectral envelope in-
formation to indicate formant positions but lacks much of the
finer spectral structure that conveys fundamental frequency
information.’ The nonuniform distribution of the mel filter
banks means that while the lowest frequency channels pro-
vide a relatively high spectral resolution (the two lowest fil-
ter bank channels are 62 Hz apart), higher frequency chan-
nels have lower resolutions so F4 is less accurately
represented (the two highest channels are 312 Hz apart). In
addition, the frequency of F4 is often above the 4 kHz band-
width of the speech, although the presence of such formants
will still affect the spectrum below 4 kHz.

The level of the fundamental frequency to MFCC vector
correlation was larger than expected as MFCC vectors have
traditionally been considered to remove source information.
However, the close spacing of lower frequency filter bank
channels does allow some of the low frequency harmonic
source information to be retained. In addition, the correlation
between the fundamental frequency and F1, observed by
Syrdal and Steele,m also contributes to the fundamental fre-
quency to MFCC vector correlation. A significant increase in
the fundamental frequency to MFCC vector correlation is
observed when comparing the global to phoneme-specific
measurements. This indicates that fundamental frequency is
influenced by phoneme, an observation that has also been
reported by Hirahara.""

The correlation between formant frequencies and MFCC
vectors is always greater during voiced, rather than un-
voiced, speech. This result is consistent with traditional for-
mant estimation methods, which are more accurate for
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FIG. 1. Phoneme-specific correlations between acoustic features and MFCC
vectors for nine example phonemes.

voiced speech. The spectral structure is better defined during
voiced speech due to the high energy present at the harmon-
ics of the fundamental frequency. For the noiselike structure
of unvoiced speech, formants are less well defined; formant
bandwidths are broader and amplitudes are usually lower.

Correlations between formant frequencies and MFCC
vectors are generally higher for male speakers compared
with female speakers. This is consistent with traditional sig-
nal processing methods of formant estimation, which also
perform less well on female speech due to the wider spacing
of fundamental frequency harmonics, which makes the pre-
cise localization of formant frequencies more difficult. For
fundamental frequency, higher correlations are observed for
female speech. This may be due to the higher frequencies
associated with female speech, the harmonics of which span
a wider range of mel filter bank channels than for male
speech, making the identification of female fundamental fre-
quency more accurate.

The acoustic feature to MFCC vector correlation was
found to vary considerably across different phonemes. For
example, Fig. 1 shows phoneme-specific correlations for
nine voiced and unvoiced phonemes. For voiced phonemes,
both fundamental frequency and mean formant frequency
correlations (averaged across all four formants) are shown,
while for unvoiced phonemes only the mean formant fre-
quency correlation is shown. Also shown are the weighted

mean phoneme-specific correlations, calculated over all pho-
nemes, using Eq. (7), for fundamental frequency and voiced
and unvoiced formant frequencies.

The bar chart shows that unvoiced phonemes have sig-
nificantly lower formant frequency to MFCC vector correla-
tion than voiced phonemes. This is confirmed by the lines
showing mean formant frequency correlations, which for un-
voiced phonemes is 0.76 in comparison to 0.91 for voiced
phonemes. The higher correlation for voiced phonemes is
attributed to a better spectral representation of formants that
voiced excitation can provide through its harmonic structure
and greater energy. Within the voiced phonemes, vowels ex-
hibit higher levels of correlation than the semivowel /I/ and
nasal /n/. For voiced phonemes, the level of the fundamental
frequency to MFCC correlation follows closely that of the
formant frequency correlation.

2. Gender-dependent correlations

The gender-dependent correlation of acoustic features to
MFCC vectors is shown in Table II. These measurements
were made by pooling data from all male speakers and all
female speakers before applying multiple linear regression,
thereby making the correlation analysis speaker independent
as well. Comparing Tables I and IT shows, without exception,
that acoustic feature to MFCC vector correlations fall when
moving from a speaker-dependent to a gender-dependent
analysis.

The largest decreases in correlation are for phoneme-
specific formant frequencies and fundamental frequency. For
the gender-dependent and speaker-independent correlations
shown in Table II, there is less difference in correlation when
calculated globally or across individual phonemes. This is
due to the increased variability as correlations are considered
across all male speakers and across all female speakers,
rather than for each speaker separately. There are instances
where correlations are lower when calculated by phoneme
rather than globally. The correlations between F1 and MFCC
vectors for male speech provide such an example.

In Table II the largest increases in correlation when com-
paring global and phoneme-specific correlations occur for
the fundamental frequency and F4. Compared with the cor-

TABLE II. Multiple correlations between acoustic features and MFCC vectors for male and female gender-
dependent but speaker-independent speech, calculated globally and by phoneme for unvoiced and voiced

speech.
Gender Method Voicing Fl1 F2 F3 F4 10
Male Global Unvoiced 0.4578 0.6148 0.4954 0.3621 e
Voiced 0.7185 0.8137 0.7389 0.4515 0.3984
Phoneme Unvoiced 0.4543 0.6231 0.5472 0.4328 e
specific Voiced 0.7012 0.7959 0.7631 0.6001 0.5754
Female Global Unvoiced 0.4812 0.5326 0.4266 0.2332
Voiced 0.7554 0.8057 0.7384 0.3853 0.7267
Phoneme Unvoiced 0.5127 0.5792 0.4966 0.4134
specific Voiced 0.7645 0.7959 0.7455 0.5889 0.8122
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TABLE III. Multiple correlations between acoustic features and MFCCs for male and female gender-dependent
and speaker-independent speech, calculated globally and by phoneme for unvoiced and voiced speech.

Gender Method Voicing F1 F2 F3 F4 10
Male Global Unvoiced 0.4554 0.6037 0.4804 0.3240
Voiced 0.7055 0.7862 0.6999 0.3500 0.1815
Phoneme Unvoiced 0.4314 0.5887 0.4997 0.3839
specific Voiced 0.6661 0.7442 0.6966 0.48438 0.3532
Female Global Unvoiced 0.4724 0.4798 0.3894 0.0363
Voiced 0.7293 0.7663 0.6537 0.2031 0.6154
Phoneme Unvoiced 0.4195 0.4636 0.3417 0.1792
specific Voiced 0.7025 0.7235 0.6160 0.3707 0.6265

relations in Table I, gender has less effect on formant fre-
quency correlations for the gender-dependent correlations in
Table II.

3. Gender-independent correlations

Table III shows multiple correlations between acoustic
speech features and MFCCs calculated using data that are
gender independent and speaker independent. Data from all
speakers were pooled to create a single set of gender-
independent/speaker-independent regression coefficients.
Phoneme-specific and global correlations for voiced and un-
voiced speech were then calculated. The correlations are
given for male and female speakers separately despite the
regression coefficients used to estimate the acoustic speech
features calculated from male and female speech pooled to-
gether. This enables comparisons with speaker-dependent
and gender-dependent correlations shown in Tables I and II.

Comparing the gender-independent correlations in Table
IIT to the gender-dependent correlations in Table II shows
that correlations between acoustic speech features and
MFCCs are always lower when calculated using gender-
independent data because of the increased variation. The re-
sults also show higher formant correlation with voiced
speech rather than unvoiced speech, and this is attributed to
the better spectral representation of voiced speech.

The gender-independent correlations in Table III are, in
general, slightly lower when calculated within phonemes
rather than globally, expect for fundamental frequency and
F4. For the speaker-dependent and gender-dependent corre-
lations shown in Tables I and II, respectively, phoneme-
specific correlations are usually greater than those calculated
globally across all speech, as expected.

4. Summary

In this section multiple correlations between acoustic
speech features and MFCC vectors have been measured in
three scenarios to allow speaker-dependent, gender-
dependent, and gender-independent analyses. The scenarios
use the same data, but correlations are calculated over sub-
sets of the data to vary constraints on speaker and gender.
Figure 2 summarizes the observations by showing the mul-
tiple correlations between the fundamental frequency and
MFCC vectors in Fig. 2(a) and the mean multiple correla-
tions between formant frequencies and MFCC vectors in Fig.
2(b). The correlations are shown for the three scenarios in-
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troduced in Sec. II B but are averaged over male and female
speech, and formant frequency correlations are averaged
over all four formants.

For all conditions in Fig. 2, a higher acoustic feature to
MFCC vector correlation is observed when measured within
specific phonemes rather than globally across all speech. For
formant frequencies, a higher multiple correlation with
MEFCC vectors occurs for voiced speech rather than unvoiced
speech. The acoustic feature to MFCC vector multiple cor-
relation peaks with speaker-dependent constraints and re-
duces with gender-dependent analysis, reaching its lowest
values with gender-independent analysis due to the increased
variability.

lll. PREDICTING ACOUSTIC SPEECH FEATURES
FROM MFCC VECTORS

The correlation analysis in Sec. II suggests that suffi-
cient information is retained during feature extraction to en-
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FIG. 2. Global and phoneme-specific correlations between MFCC vectors
and (a) fundamental frequency and (b) formant frequencies for male and
female speakers using speaker-dependent, gender-dependent, and gender-
independent data.
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able fundamental and formant frequencies to be predicted
from MFCC vectors. This section describes a MAP tech-
nique to utilize these correlations to predict acoustic features
from MFCC vectors by employing statistical models of the
joint density of acoustic features and MFCC vectors. Note
that the term “prediction” is used to distinguish this statisti-
cal technique from signal processing methods of estimating
acoustic speech features.

The analysis in the previous section showed that a
higher acoustic feature to MFCC vector correlation is ob-
tained when measured within specific phonemes rather than
measured globally across all speech sounds. It is therefore
expected that prediction will be more accurate using models
of the joint density of acoustic features and MFCC vectors
specific to individual phonemes rather than models that gen-
eralize all speech sounds together. To localize the modeling
of the joint density of acoustic features and MFCC vectors to
individual phonemes, a network of hidden Markov models
(HMMs) is employed. Within each state of each HMM, the
joint density of acoustic features and MFCC vectors is mod-
eled by three Gaussian mixture models (GMMs), which rep-
resent voiced, unvoiced, and nonspeech audio. This “HMM-
GMM” prediction of acoustic features from MFCC vectors
comprises two parts: training of the HMM-GMMs and then
prediction of acoustic features from a stream of MFCC vec-
tors using the models.

A. Phoneme-specific modeling of acoustic speech
features and MFCC vectors

Phoneme-specific modeling of the joint density of
acoustic features and MFCC vectors involves three stages of
training. First, a set of phoneme HMMs is trained. Second,
vector pools are created for each state of each phoneme
model for voiced, unvoiced, and nonspeech vectors. Finally,
from the vector pools, voiced, unvoiced, and nonspeech
GMMs are trained to model the phoneme and state-specific
joint density of acoustic features and MFCC vectors.

1. HMM training

Training begins by creating of a set of W+1 MFCC-
based HMMs, which model the W phonemes in the database
and also nonspeech. Left-right HMMSs are used and comprise
§=3 states with H=8 modes per state with diagonal covari-
ance matrices. Phonemes are chosen as the speech class as
they allow unconstrained speech to be processed when ar-
ranged in an unconstrained phoneme grammar.

2. Phoneme-specific vector pools

Sets of vector pools for voiced speech, (Y

s> unvoiced
speech, ()¢ , and nonspeech, ()7, within each state s of
each phoneme model w can now be created. This is achieved
by first force aligning each training data utterance to the
correct sequence of phoneme HMMs (using reference anno-
tation labels) using VITERBI decoding.]2 This provides, for
each training utterance, X=[x,x,,...,Xy] comprising N
MFCC  vectors, phoneme model allocations, m
=[m,,m,,...,my], and state allocations, ¢=[q;,q2,-..,qy],
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where ¢; and m; are the state and model associated with the
ith MFCC vector, x;.

The MFCC vectors, x;, can be joined with their corre-
sponding acoustic feature vectors, f;, to create joint feature
vectors, y;, defined as

yi=lx.f1" (8)

Voicing class information is contained within the joint fea-
ture vector through f;. In nonspeech the elements of f; are all
zero. For unvoiced speech F1-F4 contain nonzero values,
but the fundamental frequency is zero. For voiced speech all
elements of f; are nonzero. Reference voicing classifications
are provided by the ETSI extended front-end (XFE).’
Voiced augmented feature vectors, y;, associated with
each state s and phoneme model w are pooled to form state
and model dependent subsets of voiced feature vectors, {1 ,
from the complete set of training data feature vectors, Z,

OF ,=1{y; € Z: voicing(y,) = voiced, g;=s, m;=w},
lsw=sWw, 9)

l=ss=8§,

where voicing(y;) is voiced, unvoiced, or nonspeech. Similar
to Eq. (9), unvoiced, ){ , and nonspeech, Q?it,, vector pools
are also created.

3. Phoneme-specific GMMs

Expectation-maximization clustering13 can be applied to
each vector pool to create voiced, ®{ , unvoiced, @, and
nonspeech, @}, GMM s associated with each state s of each
phoneme model w. The set of state and model dependent
GMMs that model the joint density of acoustic vectors and

MFCC vectors for voiced speech is given by

plo,s,w) = DY (y)
K
= alli,s,w(ﬁz,x,w(y)
k=1
K
= ol Nyl 30, (10)
k=1

where ¢ (v) represents the kth Gaussian distribution in the
voiced GMM for state s and model w, which has associated
with it the prior probability af .

The set of voiced GMMs, @,

vectors, [.LZ“SV » and covariance matrices,
cluster of state s and model w such that

. S . JS,W JS,W
MZ?w =1 ur and EZ?}W = s sudf o f” (11

k,s,w k,s,w k,s,w

is represented by mean
VY | for the kth

k,s,w?

Similar to Eq. (10), sets of unvoiced and nonspeech GMMs,
@ and @), are also created. These are represented by

mean vectors, p;)  and g’ , covariance matrices, 2
ns

and X%, and prior probabilities, &, ,, and &} ,,.

The voiced, unvoiced, and nonspeech vector pools also
allow prior probabilities of the speech being voiced,
P(v|s,w), unvoiced, P(u|s,w), and nonspeech, P(ns|s,w),
to be computed for each state of each phoneme HMM. These

are calculated from the number of voiced, unvoiced, and
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nonspeech vectors allocated to each state during training. For
example, the prior probability of voiced speech in state s of
phoneme w, P(v

Nqpv
P(v = , Iss<S§, 1IswsW,
Ngv +Nqu + Ngns
EAY SW s,w
(12)
where NQU is the number of voiced vectors, NQu is the

number of unvoiced vectors, and NQns is the number of non-
speech vectors in state s of phoneme model w. Similar to Eq.
(12), prior probabilities for unvoiced, P(u

B. Phoneme-specific prediction of acoustic speech
features from MFCCs

The prediction of acoustic features from a stream of
MEFCC vectors requires first an estimate of the phoneme and
state sequences, which can be provided by VITERBI decoding
using the network of HMMs discussed in Sec. IIT A 1. Next,
the voicing class of each MFCC vector is predicted using the
voiced, unvoiced, and nonspeech GMMs associated with the
state that the MFCC vector is aligned to. For MFCC vectors
predicted as voiced, formant and fundamental frequencies
are predicted, while for unvoiced MFCC vectors only for-
mant frequencies are predicted.

1. Voicing prediction

VITERBI decoding of the input MFCC vector stream pro-
vides the state and phoneme sequences, g; and m;, for each
MFCC vector, x;. The prior voicing probabilities give an
initial prediction of the voicing class of the MFCC vector
based only on its phoneme and state allocation. However,
VITERBI decoding errors can lead to an erroneous voicing
class prediction, which in turn leads to incorrect decisions to
predict or not to predict acoustic features. This is avoided by
introducing posterior voicing probabilities, which utilize in-
formation contained within the voiced, unvoiced, and non-
speech GMMs.

The probability of the MFCC vector, x;, allocated to
state ¢; and phoneme HMM m;, belonging to the voiced
GMM is given as

> 'mi)

P(U|Cli»mi)l?(xi
p(xi|Qi’mi)

P(lei,qi,m,-) = s (13)
where P(v|q;,m;) is the prior probability of the MFCC vec-
tor being voiced based on its state and phoneme allocation,
p(x;|g;,m;) is the probability of vector x;, and p(x;|v,q;,m;)
is the probability of the MFCC vector being voiced accord-

ing to the marginalized voiced GMM, ®Y* Py where
m) =Dy (x;)
K
—2 “kq ml’(x |¢kq m;
k=1
K
= g az,qi,mi/\/'(xigukq m Z;:m,. . (14)
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The probabilities of the MFCC vector x; belonging to the
unvoiced GMM, (DZ’xm, and nonspeech GMM, QDES’fn,
similarly defined,

P(u i1 X;\U,q;,m;
Plulx, qm) = (u|gism)p( )’ (15)
pxilq;m;)
P(ns|g;,m;)p(x;|ns,q;,m;)
P(ns|xi,qi,mi) = (16)

p(xi|5Ii’mi)

The voicing of the MFCC vector is chosen by selecting the
voicing class with the highest posterior voicing probability.
Note that p(x;|g;,m;) cancels from Egs. (13), (15), and (16)
and need not be calculated.

2. Acoustic speech feature prediction

For MFCC vectors predicted as voiced, a MAP predic-

tion of the ith acoustic speech feature vector, fj‘, from the kth
cluster of the voiced GMM, ¢{” ,m can be made,

Jfi=arg maX{p(f,lanﬁkq m; (17)

where ¢; and m; are the state and model that the MFCC
vector x; is allocated to. This evaluates to

.fk ﬂk 2 pm; Zi)(;xm (EZ Z.:ml - (xi - ﬂzz;i’mi) . (18)

Predictions from all of the K clusters can be combined by
weighting using the voiced posterior probability, iy g, (x;),
of the ith MFCC vector x;, belonging to the kth cluster

fFEhkq m(x){”’kqm Z‘me(zzzxm) (x_”’kq m)}
k=1

(19)
The voiced posterior probability, A g,m; (x;), is given by
kq mp(x |¢kq m;

K
Ek 1akq mp(x |¢kq m;

B g ) = , (20)

where p(x;| $* . m) is the marginal distribution of the MFCC
vector for the kth cluster of the voiced GMM in state q; and
model m;.

For MFCC vectors predicted as unvoiced, acoustic fea-
tures comprising only formant frequencies are predicted.
Equations (19) and (20) are used, but voiced GMMs and
voiced probabilities are replaced by unvoiced GMMs and
probabilities.

C. Global prediction of acoustic speech features

The phoneme-specific prediction can be reduced to a
global prediction by replacing the network of HMMs with a
single one-state HMM—i.e., setting W=1 and S=1. This re-
moves the need to decode the MFCC vector stream into a
state sequence. For each MFCC vector, a voicing classifica-
tion is made from the voiced, unvoiced, and nonspeech
GMMs in the single state, followed by a prediction of the
appropriate acoustic features. This is a more simple method
of prediction and provides a useful comparison to the more
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sophisticated phoneme-specific method. As such, the experi-
mental evaluation of the acoustic feature prediction com-
pares the performance of the phoneme-specific acoustic fea-
ture prediction with the global prediction.

IV. RESULTS

The aim of the experiments in this section is to investi-
gate the accuracy of the acoustic feature prediction methods
under various constraints of speaker and gender dependence.

For gender-dependent and gender-independent testing,
the VTRFormants database has been used.” This is a subset
of the TIMIT database and comprises 324 utterances for
training, spoken by 173 speakers, and 192 utterances for test-
ing, spoken by a different set of 24 speakers. The database is
supplied with the first four formant frequencies, the first
three of which are hand corrected. Originally the database
was sampled at 16 kHz, although for this work it has subse-
quently been downsampled to 8 kHz. Reference voicing
classifications have been created using the ETSI XFE tool,3
and reference fundamental frequency has been extracted us-
ing the YIN algorithm.14

For speaker-dependent testing preliminary experiments
revealed that insufficient speaker-dependent data were avail-
able within the VTRFormants database to reliably train the
joint densities needed for an acoustic feature prediction. In-
stead, two further databases (UEAChris and UEACath) were
used to provide male and female speaker-dependent speech.
These databases, in addition to the audio, also contain laryn-
gograph recordings, which (after a minor hand correction)
provide reference voicing and fundamental frequency. Refer-
ence formant frequency data were obtained using a combi-
nation of linear predictive coding (LPC) analysis and Kal-
man ﬁltering.]2 Each utterance comprises phonetically rich
sentences that have been downsampled to 8 kHz for this
work. The male speaker, UEAChris, provides 601 training
utterances and 246 testing utterances, while the female
speaker, UEACath, provides 579 training utterances and 246
testing utterances.

A. Voicing classification

This section examines voicing classification accuracy
for systems trained on speaker-dependent, gender-dependent,
and gender-independent speech. Figures 3 and 4 show
graphical voicing class confusion matrices for both global
and phoneme-specific predictions. The global GMMs com-
prised 32 clusters, while the state and phoneme specific
GMMs comprised 16 clusters. A detailed analysis of the ef-
fect of the number of clusters in the GMMs is given in Sec.
IVB and IV C.

Within the two confusion matrices, bar graphs show the
percentage of MFCC vectors correctly and incorrectly clas-
sified for each class of speech (voiced, unvoiced, and non-
speech). Results are shown for speaker-dependent, gender-
dependent, and gender-independent systems and separately
for male and female speech.

Examining the leading diagonals of the two figures re-
veals the phoneme-specific prediction to be more accurate
than the global prediction of speech class. Considering the
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FIG. 3. Graphical confusion matrix for global (GMM) voicing classification
for speaker and gender constrained speech.

off diagonal entries, which show speech class confusions, in
general, the phoneme-specific prediction is more accurate
with the exception of misclassifying slightly more nonspeech
and unvoiced frames as voiced. The lowest errors occur for
classifying voiced speech as nonspeech, which is important
as such errors would erroneously cause no prediction of
acoustic features to be made in some regions of voiced
speech. Very low error rates are also observed in the
phoneme-specific system for classifying unvoiced speech as
nonspeech. Examining the effect of gender reveals female
speech to be more accurately classified than male speech in
most of the conditions tested.

B. Fundamental frequency prediction

For evaluation purposes, the reference voicing is used to
determine from which MFCC vectors fundamental frequency
is predicted. This removes the effect of voicing classification
errors from fundamental frequency evaluation by ensuring
that in all tests the same vectors are selected. However, in
practical situations the predicted voicing would be used. The
percentage fundamental frequency error E”° is used to mea-
sure fundamental frequency prediction errors and is com-
puted as
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FIG. 4. Graphical confusion matrix for phoneme-specific (HMM-GMM)
voicing classification for speaker and gender constrained speech.
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FIG. 5. Fundamental frequency prediction error with increasing number of
clusters for (a) global (GMM) and (b) phoneme-specific (HMM-GMM) pre-
dictions using speaker-dependent, gender-dependent, and gender-
independent speech.

[£(0) = £0)| fl(0)|
NU% fl(o)

where N, is the number of voiced MFCC vectors. Figure 5
shows percentage fundamental frequency prediction errors
for global prediction and phoneme-specific prediction as the
number of clusters in the GMMs is increased from 1 to 32.
For both methods, speaker-dependent, gender-dependent,
and gender-independent systems are evaluated separately for
male and female speakers.

Considering first the effect of increasing the number of
clusters in the GMMs, the results show that for a global
prediction of fundamental frequency from a single GMM,
errors reduce substantially as the number of clusters is in-
creased. In contrast, for a phoneme-specific prediction from
the network of HMM-GMMs, the effect of increasing the
number of clusters gives much less reduction in error. This is
attributed to the fact that the network of HMM-GMMs itself
provides a relatively detailed model of the feature space,
while the single GMM, which in itself has to model the
entire feature space, requires substantially more clusters to
achieve this. In addition, for each GMM in the HMM-GMM
system, substantially less training data are available, which
makes training of the state-specific GMMs more difficult.
The results also reveal lower fundamental frequency errors
with female speech than with male speech. This is consistent
with the correlation analysis made in Sec. II B, which found
a higher fundamental frequency to MFCC vector correlation
for female speech than for male speech.

The results show that for speaker-dependent speech, the
localization of prediction to specific phonemes through the
HMM-GMM system gives lower errors than a global predic-
tion from the single GMM system. However, for both
gender-dependent and gender-independent speech, prediction
errors are higher with the phoneme-specific system in com-
parison to the global system. This can be attributed to a lack
of training data in both the gender-dependent and gender-

X 100 % , 21)
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independent systems. Examining the prediction errors for the
HMM-GMM system in Fig. 5(b) reveals both the male and
female speaker-dependent systems to decrease in error as the
number of clusters increases. However, for both the gender-
dependent and gender-independent systems, errors increase
as more clusters are used, which suggests a lack of training
data. The gender-dependent and gender-independent systems
both use the VTR-Formants database, which comprises ap-
proximately 60 000 male speech frames and 42 000 female
speech frames. In contrast, the speaker-dependent tests use
the UEAChris and UEACath databases, which contain, re-
spectively, about 233 000 and 261 000 speech frames. Fur-
ther tests are presented in Sec. IV D, which use a larger
gender-dependent database to explore the effect of insuffi-
cient training data.

C. Formant frequency prediction

For the purposes of evaluation, formant frequencies are
predicted from MFCC vectors labeled as speech according to
the reference voicing. Separate GMMs are trained and tested
for voiced and unvoiced speech as these were found to be
more accurate than a single GMM due to the different struc-
tures of voiced and unvoiced speech. The formant frequency
prediction error is averaged across all four formants and is
measured using the mean formant frequency prediction error,
EF, which is defined as

[fi) = £G)|
EF 100 % , 22
4NU§ ,21 O (22

where N, is the number of speech MFCC vectors. Figure 6
shows global and phoneme-specific mean formant frequency
prediction errors separately for voiced and unvoiced speech
and for male and female speaker-dependent, gender-
dependent, and gender-independent scenarios.

The results show that the formant frequency prediction
from voiced speech is considerably more accurate than that
from unvoiced speech. This observation is consistent with
the findings of the correlation analysis in Sec. II B, which
showed a higher formant frequency to MFCC vector corre-
lation for voiced speech than for unvoiced speech; this is
attributed to the better definition of formants in voiced
speech than unvoiced speech. The trend of formant fre-
quency prediction errors, when considering the number of
clusters, follows a similar pattern to those found in the fun-
damental frequency prediction. Global prediction errors de-
crease as more clusters are used, but for the phoneme-
specific HMM-GMM system, errors generally increase due
to the lack of training data, with the exception of the larger
speaker-dependent systems. This is again attributed to the
larger amount of training data available for HMM-GMM
training with the speaker-dependent database over that avail-
able for the gender-dependent and gender-independent sys-
tems.
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FIG. 6. Mean formant frequency prediction error with increasing number of
clusters for (a) global (GMM) and (b) phoneme-specific (HMM-GMM) pre-
dictions using speaker-dependent, gender-dependent, and gender-
independent speech. Top row: unvoiced; bottom row: voiced.

D. Effect of using a larger gender-dependent speech
database

The aim of this section is to investigate further the rela-
tively poor performance of the phoneme-specific gender-
dependent and gender-independent systems over the global
prediction system. As stated in Secs. IV B and IV C, these
tests use the relatively small VTRFormants database. In this
section gender-dependent male speaker experiments are car-
ried out using a subset of the larger WSICAMO database."
This contains approximately 777 000 training data frames in
comparison to 60 000 male speech training data frames for
the VTRFormants database. For the WSJICAMO male subset,
a reference fundamental frequency is provided by the YIN
algorithm,14 and formant frequencies are provided by a com-
bined LPC/Kalman filtering method.?

Figure 7 shows male gender-dependent fundamental fre-
quency errors for the global and phoneme-specific prediction
systems as the number of clusters is varied from 1 to 32. As
the number of clusters is increased, fundamental frequency
errors decrease for the global prediction system but increase
for the phoneme-specific system, although the level of
change is much smaller than that observed for the VTRFor-
mants database. However, in comparison to Fig. 5. The per-
formances of the global and phoneme-specific systems are
much closer. Using the VTRFormants database, the global
prediction outperformed the phoneme-specific prediction by
over 2%, while for the larger WSJCAMO database the differ-
ence is about 0.2%.
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FIG. 7. Global (GMM) and phoneme-specific (HMM-GMM) gender-
dependent fundamental frequency prediction errors.

Figure 8 shows male gender-dependent formant fre-
quency errors for unvoiced and voiced speech for the global
and phoneme-specific prediction systems. For both voiced
and unvoiced speech, the phoneme-specific prediction out-
performs the global prediction by about 1%. The results also
reveal that phoneme-specific prediction errors decrease as
more clusters are used, which was not observed with the
smaller VTRFormants database.

These results suggest that to exploit the benefits of the
more localized modeling that phoneme-specific prediction
offers over global prediction, it is necessary to have suffi-
cient training data to reliably create the state and phoneme
specific GMMs.

V. ENCAPSULATION OF ACOUSTIC SPEECH
FEATURES

This final section presents an alternative method for ob-
taining acoustic speech features at the back-end and is in-
cluded as a comparison to the proposed prediction method.
In this method, the fundamental frequency and formant fre-
quencies are computed at the front-end using conventional
estimation methods applied to the time-domain signal.z’3 The
four highest-order MFCCs in the feature vector are then re-
placed by the acoustic features. This leads to two issues: first,

Voiced
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FIG. 8. Global (GMM) and phoneme-specific (HMM-GMM) gender-
dependent (a) unvoiced and (b) voiced formant frequency prediction errors.

Darch et al.: Predicting acoustic speech feature



TABLE IV. Unconstrained monophone accuracy using 12 D and 8-D MFCC
vectors on speaker-dependent and speaker-independent speech.

MFCCs 1-12 MFCCs 1-8
Speaker dependent 73.7% 72.8%
Speaker independent 53.1% 48.4%

to what extent speech recognition accuracy is reduced by the
loss of higher-order MFCCs, and second, the error that esti-
mation and quantization introduces into the acoustic features.

A. Effect on recognition accuracy

The effect of reducing the feature vector from MFCCs
0-12 to MFCCs 0-8 is examined using the unconstrained
phoneme recognition task described in Sec. III A for deter-
mining the phoneme sequence. Both speaker-dependent and
speaker-independent tasks are examined, with results shown
in Table IV. For the easier speaker-dependent task, recogni-
tion accuracy reduces by 1% as a result of removing MFCCs
9-12. However, on the more difficult speaker-independent
task, accuracy falls by 5%.

B. Quantization of acoustic features

Quantization of acoustic features uses the same method
as the ETSI Aurora standard for MFCCs. This specifies that
pairs of MFCCs are vector quantized, with MFCCs 9 and 10
being allocated 6 bits (to give 64 centroids) while MFCCs 11
and 12 are allocated 5 bits (to give 32 centroids). For vector
quantization (VQ) of the acoustic features, the fundamental
frequency and F1 are paired and allocated 6 bits while F2
and F3 are paired and allocated 5 bits. To examine quantiza-
tion errors, VQ codebooks were trained on a set of 80 000
vectors and tested on a set of 40 000 vectors. Percentage
quantization errors, using Egs. (21) and (22), were 5.3%,
2.3%, 4.7%, and 2.8% for 10, F1, F2, and F3, respectively. In
addition to quantization errors, acoustic features are subject
to errors made by the front-end-based estimation methods.
An investigation into the accuracy of acoustic feature esti-
mation methods, using hand-corrected data, showed that the
lowest fundamental frequency errors of about 2% were ob-
tained using the YIN algorithm, and the lowest mean formant
frequency errors of about 8% were obtained from a LPC-
Kalman method.'®

Combining these estimation errors with the VQ errors,
for fundamental frequency, gives higher errors than predicted
on the speaker-dependent female task, but lower errors on
the gender-dependent and gender-independent tasks. For the
formant frequency estimation, the combination of errors
leads to higher errors than predicted across most of the
speaker and gender constraints. The effect of quantizing the
MECC vectors using the VQ scheme proposed by ETSI was
found to have an insignificant effect on acoustic feature pre-
diction accuracy—for example, the prediction of fundamen-
tal frequency reduced by 0.1%. This result is consistent with
speech recognition results that found little difference be-
tween using quantized or unquantized MFCC vectors.'”
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VI. CONCLUSIONS

This work has shown that correlation exists between
acoustic speech features and MFCC vectors and can be in-
creased by placing constraints on the speech. The analysis
also revealed that a higher correlation is obtained within in-
dividual phonemes rather than globally across all speech
sounds. This led to the development of a MAP prediction of
acoustic features from MFCC vectors using a combined
HMM-GMM framework. Evaluations found that, given suf-
ficient training data, phoneme-specific prediction of acoustic
features is more accurate than global prediction. A problem
with the HMM-GMM system is the need for substantially
more training data to train GMMSs within each state of each
HMM. In cases where sufficient training data were unavail-
able, global prediction was found to be better.

A comparison to prediction was also made where
higher-order MFCCs were replaced by acoustic features.
Fundamental frequency accuracy was comparable to
speaker-dependent prediction and was higher than gender-
dependent and gender-independent predictions. For formant
frequencies, the combination of estimation errors and VQ
errors led to the technique generally performing worse than
prediction. A significant downside of replacing higher-order
MFCCs was found to be the reduction in speech recognition
accuracy. Maximizing recognition accuracy is paramount in
designing front-ends, and this decline in performance was
judged unacceptable. If more accurate estimates are required,
a better alternative is to adopt the XFE proposed by ETSI,
which uses additional 800 bits/s to transmit fundamental fre-
quency and Voicing.3
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