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Abstract. Simulation results of global aerosol models have

been assembled in the framework of the AeroCom intercom-

parison exercise. In this paper, we analyze the life cycles of

dust, sea salt, sulfate, black carbon and particulate organic

matter as simulated by sixteen global aerosol models. The

differences among the results (model diversities) for sources

and sinks, burdens, particle sizes, water uptakes, and spa-

tial dispersals have been established. These diversities have

large consequences for the calculated radiative forcing and

the aerosol concentrations at the surface. Processes and pa-

rameters are identified which deserve further research.

The AeroCom all-models-average emissions are domi-

nated by the mass of sea salt (SS), followed by dust (DU),

sulfate (SO4), particulate organic matter (POM), and finally

black carbon (BC). Interactive parameterizations of the emis-

sions and contrasting particles sizes of SS and DU lead gen-
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erally to higher diversities of these species, and for total

aerosol. The lower diversity of the emissions of the fine

aerosols, BC, POM, and SO4, is due to the use of similar

emission inventories, and does therefore not necessarily indi-

cate a better understanding of their sources. The diversity of

SO4-sources is mainly caused by the disagreement on depo-

sitional loss of precursor gases and on chemical production.

The diversities of the emissions are passed on to the burdens,

but the latter are also strongly affected by the model-specific

treatments of transport and aerosol processes. The burdens of

dry masses decrease from largest to smallest: DU, SS, SO4,

POM, and BC.

The all-models-average residence time is shortest for SS

with about half a day, followed by SO4 and DU with four

days, and POM and BC with six and seven days, respec-

tively. The wet deposition rate is controlled by the solubility

and increases from DU, BC, POM to SO4 and SS. It is the

dominant sink for SO4, BC, and POM, and contributes about

one third to the total removal of SS and DU species. For SS
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and DU we find high diversities for the removal rate coef-

ficients and deposition pathways. Models do neither agree

on the split between wet and dry deposition, nor on that be-

tween sedimentation and other dry deposition processes. We

diagnose an extremely high diversity for the uptake of ambi-

ent water vapor that influences the particle size and thus the

sink rate coefficients. Furthermore, we find little agreement

among the model results for the partitioning of wet removal

into scavenging by convective and stratiform rain.

Large differences exist for aerosol dispersal both in the

vertical and in the horizontal direction. In some models, a

minimum of total aerosol concentration is simulated at the

surface. Aerosol dispersal is most pronounced for SO4 and

BC and lowest for SS. Diversities are higher for meridional

than for vertical dispersal, they are similar for the individ-

ual species and highest for SS and DU. For these two com-

ponents we do not find a correlation between vertical and

meridional aerosol dispersal. In addition the degree of dis-

persals of SS and DU is not related to their residence times.

SO4, BC, and POM, however, show increased meridional

dispersal in models with larger vertical dispersal, and dis-

persal is larger for longer simulated residence times.

1 Introduction

Atmospheric aerosols play a key role in many important en-

vironmental issues including climate change, stratospheric

ozone depletion and tropospheric air pollution. Aerosols

are significant components within the global climate sys-

tem as they absorb and scatter solar and terrestrial radiation.

However, the aerosol radiative forcing is not well quantified.

Global-scale models that simulate the processes of emission,

dispersion, chemical and physical transformations, removal,

and radiative properties in the troposphere play a central role

in assessing the climate impact of aerosols and their gaseous

precursors. The AeroCom initiative was created in 2003 to

provide a platform for detailed evaluations of aerosol sim-

ulation in global models. Various complex aerosol mod-

els have been developed in recent years, but they have not

been compared to each other in a consistent way. Even a

detailed literature survey can hardly reveal and quantify all

differences among existent models. The analysis of current

global aerosol simulations based on harmonized diagnostics

is the aim of the aerosol model intercomparison initiative Ae-

roCom (http://nansen.ipsl.jussieu.fr/AEROCOM). The ap-

proach of AeroCom is twofold: The performance of global

aerosol models is evaluated by intercomparisons with each

other and by comparisons to observations of aerosol proper-

ties and processes. Such an analysis leads to understanding

of differences so that uncertain components can be identified

and the simulated aerosols properties can be improved. This

work is a major extension of what was already achieved in

Penner et al. (2001, 2002); Kinne et al. (2003). The models

cited in these studies have evolved considerably and deserve

reevaluation. Within AeroCom the diagnostics have been

greatly extended and allow now for the analysis of aerosol

life cycles in the different models, because information about

sources and sinks, particle sizes, aerosol water, and others are

included.

All global aerosol models taking part in this study have

been carefully validated when the model authors compared

them to various high-quality observational data sets. These

included in-situ measurements of aerosol concentration, size

distribution, and chemical composition, lidar measurements

of the vertical distribution of aerosol extinction coefficient,

sun photometer measurements of aerosol optical depth and

column size distribution, and satellite measurements of the

spatial distribution of aerosol optical depth. Please refer to

the literature about the models cited in Table 2. However, ob-

servations are not free of uncertainties, and the results from

the models differ considerably despite careful validation. We

cannot identify a “best model” with respect to all data. Model

performances change from parameter to parameter, and from

region to region. In addition, the quantities, which are com-

pared to observations, result from many interdependent prop-

erties and processes that are internally simulated by the mod-

els.

In this paper, the aerosol life cycles as simulated by six-

teen global aerosol models are analyzed in order to explain

the differences in the simulated aerosol fields. The quantifi-

cation of model diversities facilitates identifying weak com-

ponents where research is needed in order to improve our un-

derstanding of global atmospheric aerosol. It is not the objec-

tive of this work to judge the different ways of modeling the

aerosol life cycle. This would necessitate investigating indi-

vidual processes (e.g., water uptake) or concepts (e.g., rep-

resentation of the size distributions). As these are strongly

interrelated, several full sets of sensitivity simulations with

strong constraints on all components except for the one un-

der investigation should be performed. However, such stud-

ies are not feasible in the context of a volunteer based model

intercomparison such as AeroCom, and because of the large

differences of the participating models.

The coarse resolution of global models in space and time

requires the parameterizations of many aerosol processes.

These cannot always be well constrained, because observa-

tions on the micro-scale are lacking. Therefore some param-

eterizations might only be valid in the context of a specific

model environment and under certain conditions, and not

necessarily reflect the process for which they are intended.

Models might produce erroneous results especially under

changed conditions such as climate change scenarios. Dis-

agreement among models about individual aerosol processes

as quantified in this study helps to identify parameterizations

of individual aerosol processes that require improvement.

AeroCom focuses on the five most important aerosol

components (dust, sea salt, sulfate, black carbon and

particulate organic matter), even if some models include
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other species. In the remainder of this paper we use the fol-

lowing component abbreviations: DU=mineral dust, SS=sea

salt, SO4=sulfate, BC=black carbon, and POM=particle or-

ganic matter, AER=total dry aerosol, H2O=water, Am-

bAER=ambient aerosol. The simulations have been per-

formed with the models in their usual configuration (Aero-

Com experiment A). The results of comparisons of models

with observational data and those from the second AeroCom

experiment B with identical aerosol emission fluxes and par-

ticle size distributions (Dentener et al., 2006) are discussed

in follow-up papers (Guibert et al., 20061; Kinne et al., 2006;

Schulz et al., 20062; Textor et al., 20063).

In the next section we give an overview of the models par-

ticipating in AeroCom and the aerosol modules embedded

therein. Then we describe our concept of quantifying the

diversity (disagreement) of the model components. We com-

pare the simulated aerosol sources and burdens, and the tro-

pospheric residence times in Sects. 4, 5 and 6, respectively.

In the following Sect. 7, the comparison focuses on the anal-

ysis of the individual removal processes based on the global

rate coefficients for sedimentation, other dry and wet depo-

sition. The microphysical properties involved, particle size,

composition and uptake of ambient water, are discussed in

Sect. 8. Section 9 deals with the spatial distributions and

discusses the relationship with the removal rate coefficients.

The paper closes with a summary and conclusions.

1Guibert, S., Schulz, M., Kinne, S., Textor, C., Balkanski, Y.,

Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Den-

tener, F., Diehl, T., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P.,

Gong, S., Grini, A., Hendricks, J., Horowitz, L., Isaksen, I., Iversen,

T., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M.,

Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Pen-

ner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and

Tie, X.: Global aerosol models tested against surface observations

within AeroCom, in preparation, 2006.
2Schulz, M., Kinne, S., Guibert, S., Textor, C., Balkanski, Y.,

Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Den-

tener, F., Diehl, T., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P.,

Gong, S., Grini, A., Hendricks, J., Horowitz, L., Isaksen, I., Iversen,

T., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M.,

Lauer, A. Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Pen-

ner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and

Tie, X.: Radiative forcing by aerosols as derived from the AeroCom

present-day and pre-industrial simulations, in preparation, 2006.
3Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y.,

Bauer, S. E., Berntsen, T., Berglen, T., Boucher, O., Fillmore, D.,

Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang,

P., Isaksen, I., Iversen, T., Koch, D., Kirkevåg, A., Kristjansson, J.

E., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G.,

Penner, J., Pitari, G., Reddy, S., Seland, Ø., Takemura, T., and Tie,

X.: The effect of harmonized emissions in AeroCom experiment B

on aerosol properties in global models, in preparation, 2006.

Table 1. Abbreviations used in the tables.

Abbreviation Signification

accm accumulation mode

act activated

aitm aitken mode

anthrop anthropogenic

bioburn biomass burning

cf cloud free

coag coagulation

coam coarse mode

coeff coefficient

cond condensation

conv convective

dyn dynamics

emi emission

ext external

fix prescribed

fraction value in cloud free fraction of grid box

hetero heterogeneous

homo homogeneous

insol insoluble

int internal

interstit interstitial

mean mean grid box value

mix mixture

modal M modal scheme, mass mixing

ratio as prognostic variable

modal MN modal scheme, mass mixing ratio and

number conc. as prognostic variables

nucl nucleation

nuclm nucleation

NVOC non-volatile organic carbons

prod production

prog prognostic

scav scavenging

sigma-p hybrid-sigma p

sol soluble

strat stratiform

supcoam super coarse mode

thermodyn thermodynamics

2 Description of the models

Sixteen global aerosol models are currently taking part in

the AeroCom model intercomparison, see Table 2. The

aerosol modules are implemented in global “driver-models”,

which provide information on the meteorology, the surface

conditions, etc. The simulated aerosol fields are the re-

sult of the combined and interdependent effects of the inter-

nal aerosol processes and of the aerosol transport provided

by the driver models, which depend on the simulated me-

teorology. For example, the emissions of DU and SS de-

pend on the wind fields, and the surface properties deter-

mine dry deposition rate coefficients. The parameterization
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Table 2. Description of the driver-models and general classification of aerosol modules.

 
Model Global 

 model 
Horizont. 
Resolution  
(#lon #lat)  
(lon lat) 

Vertical  
Resolution  
(# levels) 
(type) 

References for  
global model 

Type of 
scheme 

Number of 
bins or modes 

Aerosol 
mixing 

Aerosol  
dynamics* 

References for  
aerosol module 

ARQM GCM 
Canadian GCMIII 

128x64 
2.81°x2.81° 

32 
sigma-p 

Zhang and 
McFarlane (1995b) 

bin 12 
all internally mixed 

int nucl, coag, cond, 
thermodyn, 
cloud processing 

Zhang et al. ( 2001); 
Gong et al. ( 2003) 

DLR GCM 
ECHAM4 

96x48 
3.75°x3.75° 

19 
sigma 

Roeckner et al. 
(1996) 
 

modal 
MN 

2 
nuclm+accm  

int nucl, cond, coag, 
thermodyn,  
aging BC POM 

Ackermann et al. (1998) 

GISS GCM 
modelE 

46x72 
5°x4° 

20 
sigma 

Schmidt et al. 
(2006) 

bin 13 
2 SS, 4 DU, 1 BC,  
1 POM,  
1 SO4, 
4 DU/SO4 

ext aging BC POM, 
hetero DU-SO4 

Koch et al. (1999, 2006); 
Koch (2001); Bauer and 
Koch (2006)5; Cakmur et 
al. (2006); Koch and 
Hansen (2005);  Miller et 
al. (2006)  

GOCART CTM 
GOCART 3.15b 

144x91 
2.5°x2.0° 

30 
sigma 

Atlas and Lucchesi 
(2000) 

modal M 17 
8 DU, 4 SS, 2 BC, 
2 POM, 1 SO4 

ext aging BC POM Chin et al. (2000, 2002); 
Ginoux et al. (2001) 

KYU 
(SPRINT) 

GCM 
CCSR/NIES/FRCGC 
GCM / SPRINTARS 
5.7b 

320x160 
1.1°x1.1° 

20  
sigma 

Numaguti et al. 
(1995); Hasumi and 
Emori (2004) 

bin, 
modal M 
for 
aerosol 
dyn** 

17 bins 
10 DU, 4 SS, 1 BC, 
1 BCPOM, 1 SO4 
(5 modes for aerosol 
dyn) 

ext 
partly int for 
BC/ POM 

none Takemura et al. (2000, 
2002, 2005) 

LSCE GCM  
LMDzT 3.3 

96x72 
3.75°x2.5° 

19 
sigma 

Sadourny and Laval 
(1984); Hourdin and 
Armengaud (1999) 

modal 
MN 

5 
accm: sol+insol, 
coam: sol+insol, 
supcoam: sol 

ext mix 
of int 
modes3 

aging BC POM Claquin et al. (1998, 
1999); Guelle et al. (1998a, 
b, 2000); Smith and 
Harrison (1998);  
Balkanski et al. (2003); 
Bauer et al. (2004); Schulz 
et al. (2006) 4 

LOA GCM 
LMDzT 3.3 

96x72 
3.75°x2.5° 

19 
sigma 

Sadourny and Laval 
(1984); Hourdin and 
Armengaud (1999) 

bin 16 
2 DU, 11 SS, 
1 BC (sol+insol), 
1 POM (sol+insol), 
1 SO4 

ext aging BC POM Boucher and Anderson 
(1995); Boucher et al. 
(2002); Reddy and 
Boucher (2004); Guibert et 
al. (2005) 

MATCH CTM  
MATCH  v 4.2 

192x94 
 1.9°x1.9° 

28 
sigma-p 

Zhang and 
McFarlane (1995a); 
Rasch et al. (1997); 
Rasch and 
Kristjansson (1998) 

bin 8 
4 DU, 1 SS,1 BC, 
1 POM, 1 SO4 

ext aging BC POM Barth et al. (2000); Rasch 
et al. (2000, 2001) 

MPI_HAM GCM 
ECHAM5 

192x96 
1.8°x1.8° 

31 
 sigma-p 

Roeckner et al. 
(2003, 2004); Stier 
et al. (2005) 

modal 
MN 

7 ext mix of 
int modes 

nucl, cond, coag, 
thermodyn 

Stier et al. (2005) 

MOZGN CTM 
MOZART v2.5 

192x96 
1.9°x1.9° 

28  
 sigma-p 

Brasseur et al. 
(1998); Tie et al. 
(2001, 2005); 
Horowitz et al. 
(2003) 

bin 12 
1 SO4, 1 POM, 
1 BC, 5 DU, 4 SS 

ext aging BC POM  Tie et al. (2001, 2005) 

PNNL GCM 
MIRAGE 2 / derived 
from NCAR 
CAM2.0 

144x91 
2.5°x2.0° 

24 
 sigma-p 

Kiehl and Gent 
(2004) 

modal 
MN 

8 
aitm accm  
coam DU+SO4 coam 
SS+SO4,  
interstit+act each 

ext mix of 
int modes*** 

nucl, cond, coag, 
thermodyn,  
cloud processing 

Easter et al. (2004) 
 

TM5 CTM 
TM5 

global 60x45 
6°x4° 
Europe+North 
America: 
1°x1° 

25 
 sigma-p 

Krol et al. (2005) modal 
MN 

8 
3 SS, 2 DU,  
1 SOA-POM, 1BC,  
1 SO4-NO3 

ext aging BC  Metzger et al. (2002a, b) 

UIO_CTM CTM 
OsloCTM2 

128x64 
2.81°x2.81° 

40 
sigma 

Berglen et al. (2004) bin 25 
8 DU, 8 SS,  
4 BC, 4 POM, 1 SO4 

ext 
except 
bioburn 

aging BC POM  Grini et al. (2002b, 2005); 
Myhre et al. (2003); 
Berglen et al. (2004); 
Berntsen et al. (2006) 

UIO_GCM GCM 
CCM3.2 

128x64 
2.81°x2.81° 

18 
 sigma-p 

Hack (1994); Kiehl 
et al. (1998) 

modal, 
M/MN 
 
bin for 
aerosol 
dyn** 

12 modes 
  
aerosol dyn:  
 43 bins from  
8 int modes 
DU + SS fix** 

4 ext 
 
8 int: mixed 
from 4 prog 
+ 8 fix**** 

nucl, cond, coag, 
thermodyn, 
cloud processing  

Iversen and Seland (2002); 
Kirkevåg and Iversen 
(2002); Kirkevåg et al. 
(2005) 

ULAQ CTM 
ULAQ 

16x19 
22.5°x10° 

26 
log-p 

Pitari et al. (2002)  bin 41 
7 DU, 9 SS, 5 BC, 
5 POM, 15 SO4 

ext aging BC POM 
(Koch, 2001), 
SO4microphysics 

Pitari et al. (1993, 2002) 

UMI CTM 
IMPACT 

144x91 
2.5°x2° 

30 
sigma-p 

Schubert et al. 
(1993); Rotman et 
al. (2004) 

bin 13 
3 SO4, 1 POM,  
1 BC, 4 DU, 4 SS 

ext none Liu and Penner (2002) 

∗) Aerosol dynamics refers to microphysical processes apart from those concerning the sulfur cycle, which is referenced in Table 5.
∗∗) KYU describes the size distributions differently for transport and aerosol dynamics. 16 bins (10 DU, 4 SS, 1 BCPOM, 1 SO4 ) are considered for transport. For the aerosol
dynamics, a modal approach is employed (one mode per species, sigma fix).
∗∗∗) ext mix of int modes: Several internally mixed modes, which do not have the same composition and are therefore externally mixed.
∗∗∗∗) UIO GCM describes the size distributions differently for transport and aerosol dynamics. 12 modes are considered for transport, 4 of them have prescribed size distributions,
are transported and not mixed with the other modes (external). The next 4 modes are also transported and only the shape of the distribution is constant (sigma fix). For the aerosol
dynamics, these latter 4 modes are internally mixed with 8 prescribed modes, and fitted to 43 bins.
4) Schulz, M., Balkanski, Y., Textor, C., Guibert, S., Generoso, S., Boucher, O., Breon, F.-M., Hauglustaine, D., and Hourdin, F.: The LMDzT-INCA global aerosol model and its
evaluation with surface, lidar and satellite aerosol observations, in preparation, 2006.
5) Bauer, S. E. and Koch, D.: Impact of Heterogeneous Sulfate Formation at Mineral Dust Aerosol Surfaces on Aerosol Loads and Radiative Forcing in the GISS GCM, J. Geophys.
Res. A., submitted, 2006.
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of the hydrological cycle has a large influence; see Table 8

for references on the cloud microphysical parameterizations

employed by the participating models. The local relative hu-

midity governs hygroscopic particle growth, and the abun-

dance of hydrometeors controls aerosol wash-out processes,

although some aerosol modules use prescribed liquid water

(or ice) content. In addition, the model results are influenced

by rather technical aspects like the models’ architectures and

resolutions. The AeroCom intercomparison does not intend

to investigate the global driver-models. However, as they

strongly affect the aerosol life cycles, we briefly introduce

their basic properties.

2.1 Global models

The references for the global driver-models can be found in

Table 2. They are either chemical transport models (CTMs),

or general circulation models (GCMs). CTMs calculate the

aerosol distribution off-line based on prescribed meteorolog-

ical data, which stem either from climate model simulations,

or from analyzed weather observation systems. In GCMs,

the aerosol transport is predicted on-line depending on the

models’ internal meteorology. The application of nudging

techniques to GCMs allows them to closely represent ob-

served weather patterns. Nudging signifies a Newtonian re-

laxation technique when an additional term is added to the

model equations at each time-step to force them to a spe-

cific weather period (Jeuken et al. 1996). About half of the

models participating in AeroCom are GCMs (ARQM, DLR,

GISS, KYU, LSCE, LOA, MPI HAM, PNNL, UIO GCM)

and the others are CTMs (GOCART, MATCH, MOZGN,

TM5, UIO CTM, ULAQ, UMI). Twelve of the models use

analyzed meteorological observations and simulate specifi-

cally the year 2000, while four models use climatological

mean data (ARQM, ULAQ, UIO GCM, DLR). The individ-

ual techniques employed to describe advection, convective

transport, and turbulent mixing can be found in the literature

cited in Table 2. The spatial resolutions of the participating

models are highly varying, ranging from 1.1◦×1.1◦(51 200

grid points) to 22.5◦×10◦(304 grid points) in the horizontal,

and from 18 to 40 layers in the vertical, see Table 2.

2.2 Aerosol modules

The aerosol masses, compositions and size distributions, and

the internal aerosol processes are described within specific

aerosol modules that are implemented in the global models,

see also Table 2. Atmospheric aerosol consists of a number

of size modes that result from different production and loss

processes. Several approaches are employed to describe the

particle size distributions in numerical models (e.g., Seinfeld

and Pandis, 1997). The simplest cases are the so-called bulk

schemes, where the sizes of the aerosol particles are constant,

and only the aerosol mass is predicted. In modal schemes,

the particle size distribution is represented by mathematical

functions, e.g., log-normal functions. The comprehensive-

ness of this type increases with the number of moments of

the mathematical functions (number, mass, and width of the

distribution) that are treated as prognostic variables, and with

the number of modes. Most modern modal schemes consider

two moments, aerosol mass and number concentrations, as

prognostic variables, but use a fixed distribution width. In

the third type, called bin (or spectral) schemes, the aerosol

size distribution is represented by several size intervals. The

accuracy, but also the computational costs, increase with the

number of bins for which the aerosol mass is predicted.

Aerosol particles contain different components depending

on their specific sources and their fate within the atmosphere.

Field studies indicate both internal (all particles in a size class

or mode have the same mixed composition) and external (i.e.,

each particle class or mode is composed of a single species)

mixing. In general, primary particles are externally mixed

close to their sources, but become internally mixed through

coagulating with other particles or by condensation of gases

on their surfaces. In the AeroCom models, the composi-

tion is described as external in eight models. In most oth-

ers, aerosols are considered to be internally mixed within a

mode, but externally mixed with other modes. For example,

the fine mode is often described as an external mixture of a

soluble and an insoluble mode, but each of these modes is

an internal mixture of different chemical species. Further-

more, the aerosol modules describe the sources of aerosols

and their removal processes. Most models distinguish be-

tween three removal pathways: wet deposition, dry deposi-

tion, and sedimentation. Note that hereafter dry deposition

refers to surface removal due to turbulent transport, Brown-

ian diffusion and impaction, excluding the contribution by

sedimentation which is generally considered separately in

the model analysis. Sources are discussed in Sect. 4, in-

cluding the specific methods for the treatment of chemical

SO4-production. The concepts for the sources and removal

mechanisms as employed by the AeroCom models are exam-

ined in Sects. 4 and 7, respectively. Aerosol microphysical

processes (also called aerosol dynamics) are only considered

in some models (see Table 2). ARQM, DLR, MPI HAM,

PNNL, and UIO GCM simulate nucleation, condensation,

and coagulation of aerosols. Some models consider the for-

mation of SO4 particles, but most include no microphysics

except for aging (increase of solubility through oxidation)

of BC and POM by transferring them from a hydrophobic

to hydrophilic class using a fixed rate constant. Water up-

take is represented in all models applying various parame-

terizations of different complexity, ranging from very sim-

ple approaches to more complex ones considering hysteresis

effects or the activity of multicomponent aerosols, see Ta-

ble 9. For a discussion of the simulated aerosol water con-

tent see Sect. 8.2. Models with interactive sulfur cycle simu-

late the aqueous phase oxidation of SO2 that leads to particle

growth (see Table 5). Some include additional processing of

aerosol particles by clouds (ARQM, MPI HAM, PNNL, and
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UIO GCM). Several others consider the effect of aerosols on

clouds (indirect effect) (ARQM, PNNL, and UIO GCM).

Table 2 provides an overview of the aerosol modules. Ta-

bles 2 to 9 give the references for the most important parame-

terizations and data sources employed in the aerosol modules

taking part in AeroCom. Within the context of this study, we

can neither distinguish the effects of the different approaches

to describe the size distribution and mixing of aerosols, nor

those of the complexity of individual parameterizations of

aerosol processes. We rather focus on the analysis of aerosol

fields, removal processes and selected microphysical proper-

ties that influence the aerosol life cycles.

3 Methodology

This paper synthesizes the information from sixteen global

aerosol models compiled within the AeroCom exercise. We

focus on the processes and properties that affect the simu-

lated aerosol life cycles, and quantify the diversities among

the models. Global, annual average properties are exam-

ined in this paper. These result from the parameterizations

describing the aerosol processes under many different con-

ditions and can therefore serve as indicators for the over-

all effects of the models’ internal structure on the simulated

aerosol fields. The model outputs were provided on their

original grids. Global averages have been obtained with an

area weighting. For simplicity we omit in the following nota-

tions like “global”, “annual”, and “annually averaged”. Inter-

polation procedures were applied to obtain averages for sub-

grid volumes, e.g. height intervals or horizontal regions. As

mentioned above, our results refer to the year 2000, except

for the four climatological models. A conversion factor of

1.3 has been used to convert POM from the mass of organic

carbon to dry organic mass if not otherwise indicated by the

modelers, and POM is always given as dry organic mass.

SO4 is considered as mass of SO4, except otherwise indi-

cated. AER denotes total dry aerosol mass, i.e., the sum of

the five aerosol species included in this study. Total aerosol is

examined here because many observations refer to bulk prop-

erties, such as mass and volume measurements, or aerosol

optical depth.

In the remainder of this paper, we use for simplification

the term “anthropogenic” as an abbreviation to summarize

SO4, BC, and POM, although these species also have non-

anthropogenic sources. SS and DU are denoted with the

expression “natural”, according to their main sources. The

terms “ambient” or “wet” aerosol describe AER+H2O.

3.1 The AeroCom data base

Model results were assembled following an output specifica-

tion protocol, and graphic visualizations of the data are pub-

lished on the AeroCom web site. Modelers were asked to

submit daily and monthly fields from their original model

version. Resubmissions were permitted to correct for ob-

vious model or data-analysis errors. Post-processing in-

cluding simple calculations to complete the data sets was

performed at the Laboratoire des Sciences du Climat et de

l’Environnement in France. Detailed information was pro-

vided to the modelers on the AeroCom data web interface

to communicate errors. Further tables and two-dimensional

fields of all the properties discussed in this paper are available

on the AeroCom web interface (http://nansen.ipsl.jussieu.fr/

AEROCOM/data.html) as supplementary material. Readers

are referred to this material to obtain further information on

the spatial distributions and their role in explaining the dif-

ferences in the aerosol life cycles.

3.2 Concept of model diversity

A major objective of this paper is to quantify the diversity of

the results for the ensemble of global aerosol models taking

part in AeroCom. Please note that we employ the term “di-

versity” to describe the scatter of model results rather than

using the term “uncertainty”, which indicates a degree of

knowledge. The assessment of the uncertainty would, how-

ever, necessitate a comprehensive comparison with all kinds

of observational data and is out of the scope of this paper.

An additional problem is that the participating models are

not fully independent from each other, as shown in the ta-

bles with the model descriptions, and discussed later in the

analysis of the results.

The quantities investigated include aerosol fields and

fluxes, atmospheric residence times, water uptake and par-

ticle sizes. These are associated with different units and

with variations over several orders of magnitude. In order

to enable comparability, the data are normalized with the all-

models-average. We express the diversity δ of the model re-

sults in terms of the standard deviation σ normalized by the

all-models-average in %:

δ = σ (results/ all-models-average) × 100 [%] . (1)

The diversities established in this study are valid for the

specific AeroCom models considered for their calculations.

Data were not always available for all parameters and all

models. Please note that the established model diversities

can change slightly if new data are added, because the num-

ber of models is still quite small for statistical computations.

We have also tested other expressions for the model diversity

(e.g., median instead of average, percentiles, or the ratio of

minimum and maximum results instead of the standard de-

viation). The absolute values change of course, but the rela-

tions among the diversities for different quantities are similar.

Diversities can be compared among different aerosol

species for a given quantity, in order to identify weak com-

ponents that need further attention. However, the diversi-

ties of the individual species cannot be simply added to ob-

tain that of total aerosol. For the ideal case of a normally

distributed sample of independent quantities, the diversity
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(a) (b)

Fig. 1. (a) Global, annual average emissions [Tg/a] in all models for DU, SS, SO4, BC, POM, and AER. For SO4, we show the sum of

direct emission and chemical production. (b) Diversity plot for emissions, for further explanations on this plot type see Sect. 3. The diversity

ranges (±δ) are indicated by gray boxes, the numbers for the diversities (δ) are given in gray in the lower part of the plot for each species.

The individual models’ deviations from the all-models-averages (see Eq. 3) are plotted as pink lines (data), or as pink numbers if they are

outside the scale of the plot. The all-models-averages are indicated by a black star and the medians by a black line. The numbers of models

included in the calculation of this statistics are shown in blue below the x-axis. The numbers for the statistics are given in Table 10.

of total aerosol would be obtained from the square root of

the sum of squared standard deviations σ of the components,

normalized by the all-models-average of AER.

δAER =

√

(σDU)2 + (σSS)2 + (σBC)2 + (σPOM)2 +
(

σSO4

)2

all-models-average (AER)
. (2)

The diversity of AER is thus always smaller than the sum of

the components’ diversities. It would be interesting to ex-

amine, if the aerosol components are independent, or if there

is some tendency among models to simulate more coherent

values for AER, so that a compensating effect for the single

components can be expected. The comparison of simulated

and observed optical depth by Kinne et al. (2006) shows that

models perform fairly well for AER in comparison to data,

and that the AER results from the different models are quite

coherent. However, the model agreement on the contribu-

tions from the individual aerosol components, which cannot

be constrained by observations, is much less. In this case,

the diversity of AER should be smaller than the theoretical

value given in Eq. (2). The results from the relatively small

ensemble of the AeroCom models are, however, not ideally

normally distributed, because similar parameterizations are

used, and the number of contributing models is quite small.

Therefore, Eq. (2) cannot be strictly applied and we are reluc-

tant to perform such a statistical analysis. Furthermore, the

diversities do not provide any information on the relevance of

a quantity for the overall aerosol life cycle. This is due to our

definition of the diversity as the relative standard deviation

using the all-models-average of each parameter for normal-

ization. For example, a high diversity of the simulated dry

deposition rates is only significant for the residence time if

this process represents an important pathway for the removal.

As a consequence, the investigation of diversity propagation

is neither straight-forward going from the individual species

to total aerosol, nor among different properties of a given

species, and diversities have to be handled with care.

In the remainder of the paper, we display the diversities

in a homogeneous plot type, where we show a specific diag-

nostic quantity for all aerosol species studied here, see, e.g.,

Fig. 1b. In this figure type, the individual models are distin-

guished, but are plotted as relative deviations of the individ-

ual model results from the all-models-average in %:

data =
result − all-models-average

all-models-average
× 100 [%] . (3)

The all-models-averages appear at an ordinate value of zero,

and the diversity is visualized as the vertical distance (±δ)

around them. This presentation facilitates the comparison

of the diversities for the different species and processes. The

numbers for the statistics of the examined quantities are sum-

marized in Table 10. In addition, we illustrate the results

in the form of x-y plots, see, e.g., Fig. 1a, where individ-

ual models can be identified. For some models, we are not

able to show all diagnostics and missing data appear as gaps

in the plots. In DLR, the coarse fraction of SS and DU is

neglected. SS fluxes are missing for MATCH, UIO GCM

does not provide fluxes for SS and DU, and the removal

fluxes are missing for MOZGN. KYU provided some quan-

tities only for the sum of BC and POM. Size resolved data

for the burden, and aerosol water mass is not available for

several models. For models where one of the species was not

available, we exclude AER from the plots and calculations of
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the diversities. The numbers of the quantities related to the

budget are provided on the AeroCom web site. This enables

the analysis of specific models and provides a basis for future

studies.

4 Sources

The aerosol source strength is believed to be one of the major

factors causing the differences in the simulated aerosol fields.

The sources of the five aerosol species under consideration

for all models are shown in Fig. 1a, and the corresponding

diversities in Fig. 1b. The total all-models-average aerosol

source amounts to 18 800 Tg/a (δ=176%) with the diversity

given in parentheses. Sources are dominated by SS with

16 600 Tg/a (δ=199%), followed by DU (1840 Tg/a, δ=49%),

SO4 (179 Tg/a, δ=22%), POM (96.6 Tg/a, δ=26.1%), and fi-

nally BC (11.9 Tg/a, δ=23%).

The highest diversity is found for the DU and SS. Their

source fluxes are prescribed in some of the models and in-

teractively calculated by most others as a function of wind

speed, and of soil properties in the case of DU. The parame-

terizations of the sources are referenced in Table 3. We find a

fairly good agreement on the spatial distribution of SS source

fluxes, because emission occurs only over the sea. A model

with strong SS emissions in one region tends to have high

emissions in all regions. This can be explained by similar

distributions of the wind speeds or their gradients in the mod-

els. The larger disagreement of the spatial distributions of the

DU sources can thus be mainly attributed to the differences in

the soil-properties among the models. DU source fluxes have

recently been found to be highly sensitive to the high tail of

the wind speed distributions (Timmreck and Schulz, 2004).

This explains why the source strengths differ also in mod-

els that use the same parameterization (e.g., PNNL, ULAQ,

and UMI for dust, and LSCE and MPI HAM for the sea-air

transfer for SS). The high sensitivity to the conditions in the

environment also becomes evident when comparing the DU

source fluxes of LSCE and LOA. These models are based on

the same global model, nudged to the same ECMWF reanal-

ysis data for the meteorology, and use the same parameter-

ization. In both models, the DU source fluxes are based on

ECMWF winds in the higher spatial resolution of these data

and then interpolated to the model grid, where they are mod-

ified according to the models’ soil moisture. The difference

in the DU fluxes of LSCE and LOA is caused by the specific

interpolations to the model grid, and by slightly different soil

moistures resulting from small discrepancies in the nudging

constants for the meteorological data leading to different pre-

cipitation fields. Furthermore, models disagree on represen-

tation of the particle sizes of SS and DU, especially on the

choice of the largest particles simulated, see also Table 4.

This can cause large differences in the emitted mass. How-

ever, high emissions associated with large particles are pre-

dominantly of local importance, because these particles have

fairly short residence times in the atmosphere. We attribute

the very high diversity of SS emissions mainly to differences

in the simulated particle size. This is especially the case in

ARQM, where the emitted SS mass is more than one order

of magnitude larger than in the other models.

The emissions of the “anthropogenic” species (BC, POM,

and SO4, or their precursors) are prescribed using global in-

ventories providing fluxes from different source types, which

are referenced in Table 3. We find lower diversities than for

the “natural” components (Fig. 1b). This fairly good agree-

ment does not necessarily imply a good knowledge of this

process, but could just mean that the emission inventories

used are quite coherent. The production of secondary or-

ganic aerosol (SOA) from precursor gases is only simulated

in MOZGN, where oxidation of alpha-pinene is computed

online within the chemical module. Most models include

SOA produced from various gaseous precursor substances in

the primary POM emissions, but in some models it is com-

pletely neglected. A recent overview on organic aerosol is

provided by Kanakidou et al. (2005)

The diversity of the simulated SO4 sources is the small-

est among the aerosol species considered here (Fig. 1b), al-

though gas and aqueous phase chemistry is involved in ad-

dition to the diversity of gaseous precursor emissions. The

methods for the sources of sulfur species are referenced in

Table 5. We neglect smaller contributions from H2S and

other sulfur species in the AeroCom diagnostics, even if the

models take them into account. The chemical production

of SO4 is treated with different complexity: in some mod-

els it is online-coupled to atmospheric chemistry, others pre-

scribe the distribution of oxidizing species (OH, O3, H2O2),

or some of it (see Table 5). Figure 2 shows the diversity

of the sulfur sources. Please note that we only consider the

eleven models that provided both chemical production and

precursor gas emissions. Data were missing for ARQM,

GISS, UMI, MOZGN, KYU. Furthermore, the diversities of

the individual processes have to be weighted by their rele-

vance for the total SO4 source in order to be compared, see

also Sect. 3.2. Chemical production is the dominant sulfate

source; it contributes on average 97%. Direct SO4 emissions

are afflicted with a high diversity, and in four models they

are completely neglected (DLR, KYU, UMI, and ULAQ).

The emitted sulfur precursor gases consist on average of 79%

SO2 and 21% DMS. SO2 emissions are prescribed based on

anthropogenic emission inventories (see Table 3) whereas

DMS emissions are calculated online from global oceanic

DMS concentrations fields and sea-air transfer coefficients

as a function of wind speed using different parameterizations

describing the sea-air transfer. This explains the higher diver-

sity of the DMS emissions. The diversity of the sum of the

precursor gases is smaller than that of the individual emis-

sions, indicating that stronger emissions of one of the gases

are compensated by weaker emissions of the other gas. See

Sect. 3.2 for a discussion on compensating effects. 38% of

the precursor gases are deposited to the ground. The diversity
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Table 3. References for the sources employed for the simulations analyzed in this study.

 
Model BC POM SOA DUST Sea Salt direct SO4 SO2 DMS Other S species 

ARQM Cooke et al. 
(1999); Lavoue 
et al. (2000); 
Liousse et al. 
(1996) 

Cooke et al. 
(1999); Lavoue 
et al. (2000); 
Liousse et al. 
(1996) 

included in 
POM, 
terpene from 
Liousse et al. 
(1996) 

interactively 
(Marticorena and 
Bergametti, 
1995) 

interactively 
(Gong, 2003) 

monthly anthrop 
SO4 GIEA level2 

monthly anthrop 
SO2 GEIA level2 

ocean data: 
Kettle et al. 
(1999),  
sea-air transfer: 
Wanninkhof 
(1992) 

land H2S: 
Benkovitz and 
Schwartz (1997) 

DLR fossil fuel 
combustion + 
bioburn: Cooke 
and Wilson 
(1996) 

fossil fuel 
combustion + 
bioburn: Liousse 
et al. (1996) 

included in 
POM, terpene 
from Liousse et 
al. (1996) + 
natural terpene 
from plants 
(Guenther et al., 
1995) 

precalculated 
monthly means, 
(Ginoux et al., 
2001) 

interactively 
(Monahan et al., 
1986) 

none annual  
fossil fuel 
combustion: 
(Benkovitz et al., 
1994), bioburn 
(Hao et al., 
1990),  non-
eruptive 
volcanoes: (Spiro 
et al., 1992), up-
scaled to 
6.7TgS/a 

ocean data: 
Kettle et al. 
(1996),  air-sea 
transfer: Liss and 
Merlivat (1986) 

none 

GISS industrial: Bond 
et al. (2004), 
bioburn:  Cooke 
and Wilson 
(1996) 

industrial: Bond 
et al. (2004), 
bioburn: Cooke 
and Wilson 
(1996) 

included in 
POM, terpene 
from Guenther et 
al. (1995) 10% 
emi rate 

interactively 
 (Cakmur et al., 
2006; Miller et 
al., 2006) 

interactively 
(Monahan et al., 
1986) 

2.5% of SO2 Dentener et al. 
(2006) except for 
biomass & 
aircraft: Koch et 
al. (1999) 

ocean data: 
Kettle et al. 
(1999)  
air-sea transfer: 
Nightingale et al. 
(2000) 

none 

GOCART Cooke et al. 
(1999); Duncan 
et al. (2003); Van 
der Werf et al. 
(2003)  

Cooke et al. 
(1999); Duncan 
et al. (2003); Van 
der Werf et al. 
(2003) 

Guenther et al. 
(1995) 

interactively 
(Ginoux et al., 
2001; Chin et al., 
2004)  

interactively 
(Monahan et al., 
1986; Gong et 
al., 1997, 2003) 

3% of anthrop 
SO2 

anthrop: 
seasonal, 
bioburn: 
monthly, 
(Nakicenovic et 
al., 2000; Streets 
et al., 2003), 
non-eruptive 
volcanoes  
(Andres and 
Kasgnoc, 1998)  

ocean data: 
Kettle and 
Andreae (2000), 
sea-air transfer:  
Liss and Merlivat 
(1986) 

MSA from DMS 

KYU 
(SPRINT) 

Nozawa and 
Kurokawa (2006) 
based on FAO, 
GEIA, HYDE 

Nozawa and 
Kurokawa (2006) 
based on FAO, 
GEIA, HYDE 

included in 
POM,  
terpene + NVOC 
based on GEIA 
adjusted to SOA 
emi according to 
Griffin et al. 
(1999) 

interactively  
(Gillette, 1978; 
Takemura et al., 
2000) 

interactively 
 (Erickson et al., 
1986; Takemura 
et al., 2000) 

none anthrop: annual  
(Nozawa and 
Kurokawa, 2006) 
based on A.S.L. 
Associates, 
HYDE, non-
eruptive 
volcanoes 
(Andres and 
Kasgnoc, 1998), 
monthly bioburn 
(Spiro et al., 
1992) 

interactively 
(Bates et al., 
1987; Takemura 
et al., 2000)  

none 

LSCE Generoso et al. 
(2003) 

Generoso et al. 
(2003) 

Liousse et al. 
(1996) 

interactively 
(Claquin et al., 
1999; Balkanski 
et al., 2003),  

interactively 
 fitted to 
Monahan et al. 
(1986); Smith 
and Harrison 
(1998); Schulz et 
al. (2004)  

5% of anthrop 
SO2 

monthly 
EDGARv3.2 
(Olivier, 2002) 
except for 
shipping: Corbett 
et al. (1999); 
Mueller (1992); 
Hao and Liu 
(1994) 

ocean data: 
Kettle and 
Andreae (2000),  
sea-air transfer: 
Nightingale et al. 
(2000) 

H2S: 3% of 
anthrop fossil 
fuel SO2,  
MSA from DMS 

LOA Reddy et al. 
(2005) 

Reddy and 
Boucher (2004) 

included in 
POM,  terpene 
from Reddy and 
Boucher (2004) 

interactively 
(Claquin et al., 
1999; Balkanski 
et al., 2003) 

interactively 
 (Monahan et al., 
1986; Reddy et 
al., 2005) 

5% of anthrop 
SO2 

monthly 
EDGARv3.2 
(Olivier, 2002) 
except for 
shipping: Corbett 
et al. (1999) and 
bioburn: Pham et 
al. (1995) 

ocean data: 
Kettle and 
Andreae (2000), 
sea-air transfer 
(Nightingale et 
al., 2000) 

H2S: 3% of 
anthrop fossil 
fuel SO2,  no 
direct emi 
DMSO, MSA 

MATCH Liousse et al. 
(1996) 

Liousse et al. 
(1996) 

Liousse et al. 
(1996) 

Ginoux et al. 
(2001); Zender et 
al. (2003) 

NA Benkovitz et al. 
(1996) 

Benkovitz et al. 
(1996) 

Benkovitz et al. 
(1996) 

Benkovitz et al. 
(1996) 

MPI_HAM Dentener et al. 
(2006) 

Dentener et al. 
(2006) 

included in POM 
(Dentener et al., 
2006) 

interactively 
(Tegen et al., 
2002) 

interactively 
 fitted to 
Monahan et al. 
(1986); Smith 
and Harrison 
(1998); Schulz et 
al. (2004) 

Dentener et al. 
(2006) 

anthrop 
EDGARv3.2 
(Olivier, 2002) as 
Dentener et al. 
(2006) 

ocean data : 
Kettle and 
Andreae (2000), 
sea-air transfer: 
Nightingale et al. 
(2000) 

none 
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Table 3. Continued.

Model BC POM SOA DUST Sea Salt direct SO4 SO2 DMS Other S species 

MOZGN fossil fuel: 
Cooke et al. 
(1999), bioburn: 
Mueller (1992); 
Hao and Liu 
(1994) emi ratios 
from Andreae 
and Merlet 
(2001), biofuel: 
EDGARv2.0,  
Olivier et al. 
(1996) 

fossil fuel: 
Cooke et al. 
(1999), bioburn: 
Mueller (1992); 
Hao and Liu 
(1994) emi ratios 
(Andreae and 
Merlet, 2001), 
biofuel: 
EDGARv2.0,  
Olivier et al. 
(1996) 

from oxidation of 
alpha-pinene 
with OH, O3, 
NO3, toluene 
with OH, and 
higher alkanes 
with OH: online 
coupled to 
chemistry: Tie et 
al. (2005) 

interactively 
(Ginoux et al., 
2001), threshold 
velocity for wind 
erosion: Ginoux 
et al. (2004) 

interactively (Tie 
et al., 2005) 

2% of anthrop 
SO2 

monthly mean 
bioburn: Mueller 
(1992); Hao and 
Liu (1994); Emi 
ratios from 
Andreae and 
Merlet (2001), 
biofuel: 
EDGARv2.0,  
Olivier et al. 
(1996) 

monthly mean 
GEIA (Benkovitz 
et al., 1996) 

none 

PNNL fossil fuel from 
Cooke et al. 
(1999), bioburn 
from Cooke and 
Wilson (1996), 
boreal/temperate 
wildfires from 
Lavoue et al. 
(2000); Olivier 
(2002) 

fossil fuel + 
bioburn (Chuang 
et al., 2002), 
boreal/temperate 
wildfires 
(Lavoue et al., 
2000) 

included in 
POM, 
monoterpene 
from Guenther et 
al. (1995) 10% 
emi rate 

precalculated 
monthly mean 
IPCC 1999, 
Ginoux et al. 
(2001) 

interactively 
(Gong et,al. 
2002) adjusted at 
small sizes 

3% of anthrop 
SO2  

anthrop:  
monthly 
EDGARv3.2 
Olivier (2002) 
with hi/lo 
vertical factors 
from seasonal 
GEIA 1985 
Sulfur v1B 
inventory, 
Benkovitz et al. 
(1996)., volcanic: 
Barrie et al. 
(2001) 

ocean data: 
Kettle et al. 
(1999) 
sea-air transfer: 
Nightingale et al. 
(2000),  online 
winds 

MSA from DMS 

TM5 Dentener et al. 
(2006) 

Dentener et al. 
(2006) 

included in POM 
(Dentener et al., 
2006) 

Dentener et al. 
(2006) 

precalculated 
(Dentener et al., 
2006), with 
ECMWF sea ice 
correction 

2.5% of anthrop 
SO2 

EDGARv3.2 
(Olivier, 2002) as 
Dentener et al. 
(2006) 

ocean data: 
Kettle et al. 
(1999), sea-air 
transfer: Liss and 
Merlivat (1986) 

MSA from DMS  
added to SO4 

UIO_CTM fossil fuel: 
Cooke et al. 
(1999), bioburn: 
Cooke and 
Wilson (1996) 

Liousse et al. 
(1996) 

included in 
POM, terpene 
from Liousse et 
al. (1996) 

interactively 
(Grini et al., 
2005) 

interactively 
(Grini et al., 
2002a) 

3% of anthrop 
SO2 

1996 anthrop 
(Berglen et al., 
2004), GEIA 
1985 scaled to 
fossil fuel use, 
Europe: EMEP, 
 ships: Endresen 
(2003), 
non-eruptive 
volcanoes: Spiro 
et al. (1992), up-
scaled to 8 TgS/a 

ocean data: 
Kettle and 
Andreae (2000), 
sea-air transfer: 
Nightingale et al. 
(2000) 

H2S: Spiro et al. 
(1992) 

UIO_GCM IPCC-TAR 2000 IPCC-TAR 2000 none prescribed  
(Kirkevåg et al., 
2005) 

prescribed 
(parameterized 
from wind speed)   
(Kirkevåg et al., 
2005)  

2% of SO2 annual anthrop 
emis + non-
eruptive 
volcanoes   
IPCC-TAR 2000 

66% of 
IPCC-TAR 2000 
 (DMS->MSA is 
not considered)   

none 

ULAQ IPCC-TAR 2000 IPCC-TAR 2000 included in POM 
from terpenes  
(Liousse et al., 
1996) 

precalculated 
monthly means,  
IPCC-TAR 2000 

precalculated 
monthly means,  
IPCC-TAR 2000 

2.5 % of SO2  annual anthrop 
non-eruptive 
volcanoes   
IPCC-TAR 2000 

monthly means, 
IPCC-TAR 2000 

OCS (500 pptv) 
MSA from  DMS 

UMI fossil fuel + 
biomass BC: 
Penner et al. 
(1993); Liousse 
et al. (1996) 

natural: 9% of 
terpene emi from 
Guenther et al. 
(1995), fossil 
fuel + biomass: 
(Penner et al., 
1993; Liousse et 
al., 1996) 

9% of natural 
POM  

precalculated  
6 h  
(Ginoux et al., 
2001) 

precalculated 
monthly  
(Gong et al., 
1997) 

none monthly fossil 
fuel + non-
eruptive 
volcanoes IPCC-
TAR  2000  

Pre-calculated, 
monthly, ocean 
data (Kettle et 
al., 1999), sea-air 
transfer: 
Nightingale et al. 
(2000) 

None 

 

of this loss process is higher than that of the emissions them-

selves and of similar size as the diversity of chemical SO4

production. Depositional loss of precursor gases is there-

fore a major reason for the diversity of the simulated SO4

sources. Chemical production takes place in the gas and in

the aqueous phase, where the average contribution of the lat-

ter is 73%. The diversity of gas phase chemical production is

larger than that in the aqueous phase, but the diversity of total

chemical production is smaller than those of the two individ-

ual pathways. Hence, strong gas phase production could be

compensated by weaker aqueous production and vice versa

(see also Sect. 3.2).

5 Aerosol burdens

In this section we compare the simulated burdens of the

aerosol species in the models. The aerosol burdens and the
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Table 4. Sizes of the emitted particles in µm (mass median diameter of log normal distributions, or diameter of size bin for dry particles).

Model BC POM DUST SS SO4

ARQM 0.1 0.1 0.01–40.96 0.01–40.96 0.25

DLR fossil fuel combustion:

0.08 (75% wt%), 0.75 (25% wt%),

bioburn:

0.02 (0.01 wt%), 0.37 (99.99 wt%)

fossil fuel combustion:

0.02 (2% wt%), 0.38 (98% wt%),

bioburn:

0.02 (0.01 wt%), 0.37 (99.99 wt%)

0.53 0.27 (0.2 wt%),

1.88 (99.8 wt%)

none

GISS 0.2 0.6 0.92, 2.94, 5.88, 11.76 0.8,10.0 0.6, and internally mixed

with dust

GOCART 0.078 0.174 0.28, 0.48, 0.90, 0.16, 2.8, 4.8, 9.0, 16.0,

0.28-1.6 treated as one size (1.46) for trans-

port

0.52, 2.38, 4.86,

15.0

0.312

KYU

(SPRINT)

0.236 0.20 0.26, 0.40, 0.66, 1.04, 11.64, 2.54, 4.04,

6.40, 10.12, 16.04

0.36, 1.12, 33.56,

11.24

0.139

LSCE 0.14 0.34 2.5 0.568–0.542,

4.5–4.3

(Schulz et al.,

20064)

0.3 for direct emi and chem-

ical prod

LOA 0.1 0.3 0.02, 2, 100 (interval limits) 0.06, 0.012, 0.26,

0.5, 1, 2, 4, 10,

20, 30, 40 (interval

limits at 80% RH)

0.3

MATCH 0.1 0.14 tri-modal 0.832, 4.82, 19.38 NA 0.28

MPI HAM fossil fuel/ biofuel: 0.069

wildfire: 0.172

fossil fuel/ biofuel: 0.069

wildfire: 0.172

biogenic: 0.069

coam 3.5, accm 0.74 (Tegen et al., 2002) 0.568–0.542,

4.5–4.3

(Schulz et al.,

20064)

ship, industrial, powerplant:

50 % accm 0.175,

50 % coam 1.64

other primary:

50 % aitm 0.069,

50 % accm 0.1725

MOZGN 0.1 0.27 0.78, 2.8, 4.8, 9, 16 0.6, 2, 6.5, 15 0.42

PNNL 0.19, 0.025 0.19, 0.025 2.81, 0.31 8.45, 0.56 0.19, 0.025

TM5 0.287 0.287 1.8, 5 0.21, 1.3, 7.2 0.287

UIO CTM fossil fuel: 0.10

bioburn: 0.195, 0.852

(except for optics)

fossil fuel: 0.423

bioburn: 0.195, 0.852

(except for optics)

4.82 0.03<d<25 0.423

UIO GCM 0.1 0.1 0.3, 3.78, 5.07 0.27, 1.88, 15.75 0.1 direct emi, homo nucl,

chemical prod added to DU,

SS, SO4 in accm

ULAQ 0.08, 0.02–0.32 (5 bins) normalized size

distribution (Pusechel et al., 1992)

0.28, 0.04–0.64 (5 bins) normalized

size distribution as for SO4

2.56, 0.64–10.2

(5 bins)

2.56, 0.64–20.5 (6

bins)

0.28, 0.0008–20.5

(15 bins)

UMI fossil fuel: 0.1452 (Radke et al., 1988),

bioburn: 0.137 (Anderson et al., 1996)

fossil fuel: 0.1452 (Radke et al.,

1988),

bioburn: 0.137 (Anderson et al.,

1996)

0.402, 1.8, 3.488, 8.274 0.362, 1.602,

3.136, 5.916

0.0569, 0.222, 1.529

gas phase prod.: all bins

aqueous prod.: 2nd bin

diversities of the model results are depicted in Figs. 3a and b,

the relevant numbers are given in Table 10.

The AER burden is on average 30.6 Tg (δ=29%) vary-

ing from 13.2 Tg to 47 Tg. The burdens of DU and SS

are 19.2 Tg (δ=40%) and 7.5 Tg (δ=54%), respectively. The

AER-burden is dominated by DU followed by SS in all mod-

els except for ARQM and MPI HAM. This is in contrast to

the emissions, which are dominated by about one order of

magnitude by SS. The diversity of the simulated SS-burdens

is much smaller than that of the emissions, mainly because

high SS emissions are associated with large SS particles with

short residence times, as discussed above. Also for DU, the

burden diversity is somewhat smaller than that of the emis-

sions. The burdens of SO4 and POM are similar with 2 Tg

(δ=25%) and 1.7 Tg (δ=25%), respectively, and in 11 of the

16 models the first is more abundant. The burden of BC

amounts to 0.24 Tg (δ=42%), and is about one order of mag-

nitude lower than those of SO4 and POM. The ratio of POM

to BC is similar in burdens and emissions.
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Table 5. Sulfur chemistry.

Model Reference for sulfur

cycle

Online-coupled to chemistry Source of prescribed oxidants Sulfate nucleation

ARQM von Salzen and

Schlunzen (1999);

Gong et al. (2003)

/ OH, O3, and H2O2 from MOZART (Brasseur et

al., 1998; Hauglustaine et al., 1998)

Kulmala et al. (1998)

DLR Feichter et al. (1996) / OH, O3, NO2 (Roelofs and Lelieveld, 1995)

H2O2, from Dentener and Crutzen (1993)

homo: Vehkamäki et al. (2002)

hetero: added to accm

GISS Bauer and Koch

(2006); Koch et

al. (2006)

/ Bell et al. (2005) homo: none

hetero: Fuchs and Sutugin (1970)

GOCART Chin et al. (2000) / OH, NO3, and H2O2 from IMAGES (Mueller

and Brasseur, 1995)

homo: none

hetero: added to accm

KYU

(SPRINT)

Takemura et al.

(2000)

/ OH, O3, and H2O2 from CHASER (Sudo et al.,

2002)

none

LSCE Boucher et al. (2002) INCA

(Hauglustaine et al., 2004)

/ homo: none

hetero: added to accm

LOA Boucher et al. (2002) H2O2 prog Pham et al. (1995) with diurnal and monthly vari-

ations

home: none:

hetero: added to accm SO4

MATCH Barth et al. (2000) / OH, H2O2, and O3

from MOZART (Horowitz et al., 2003)

home:none

hetero:added to accm

MPI HAM Feichter et al. (1996) / OH, H2O2, NO2, and O3

from MOZART (Horowitz et al., 2003)

homo: Vehkamäki et al. (2002)

hetero: Fuchs (1959)

MOZGN Tie et al. (2005) MOZART

(Horowitz et al., 2003)

/ homo: none

hetero: added to accm

PNNL Easter et al. (2004)

except MSA treated

as SO4.

MIRAGE (Easter et al., 2004) / hetero: Fuchs and Sutugin (1970)

homo: Harrington and Kreidenweis (1998)

TM5 Metzger et al.

(2002b)

TM3 (Houweling et al., 1998; Jeuken

et al., 2001)

/ homo: none

hetero: added to accm

UIO CTM Berglen et al. (2004) Berntsen and Isaksen (1997); Berglen

et al. (2004)

/ homo: none

hetero: added to accm bin

UIO GCM Iversen and Seland

(2002)

/ Berntsen and Isaksen (1997) homo: 5% of gas production

hetero: added internally mixed modes (Iversen

and Seland, 2002; Kirkevåg and Iversen, 2002)

ULAQ Feichter et al. (1996) OH, H2O2, O3, NO3 from ULAQ-

CTM (Pitari et al., 2002)

/ homo and hetero

(Pitari et al., 2002)

UMI Penner et al. (2002) H2O2 predicted from HOx chemistry

and H2O2 photolysis

OH, HOx and O3 from GRANTOUR

(Penner et al., 1994)

homo: none

hetero: added to the 2nd bin

If the burdens were completely controlled by the emissions

we would expect them to have the same diversities. The di-

versities of the burdens are, however, smaller and can thus

only be partly explained by that of the emissions. This in-

dicates that aerosol processes in the atmosphere reduce the

effect of diverging sources. This is reflected in the differ-

ences of the residence times that are discussed in the next

section.

6 Residence times

The (tropospheric) residence times reflect the integral of all

simulated aerosol properties and processes that affect the bur-

dens, but they are independent of the emissions strengths.

Therefore a comparison of the residence times helps to ex-

plain the differences in the aerosol fields, which are caused

by aerosol processes rather than by contrasting emission

strengths. The residence time τ for an aerosol species is de-

fined as:
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Fig. 2. Diversity plot of the sources of sulfur species. From left to

right: SO2-emissions, DMS emissions, sum of precursor (SO2 and

DMS) emissions, sum of precursor loss by deposition, direct SO4

emissions, chemical production of SO4 in the gas and in the aque-

ous phase, respectively, total chemical production, and the sum of

all sources. For explanations of the plot, please refer to the caption

of Fig. 1b.

τ =
burden

sinks
. (4)

The simulated residence times and their diversities are shown

in Figs. 4a and b, respectively. The corresponding numbers

are given in Table 10.

Sea salt has the shortest τ of about half a day, followed by

SO4 and DU with about four days, and POM and BC with

about six and seven days, respectively (see Table 10). The

residence times reflect the aerosol properties as they depend

on particle size and solubility, but also the model-specific

parameterizations of aerosol processes. In addition they re-

flect the spatial distributions of aerosols in conjunction with

those of relative humidity, precipitation, and surface proper-

ties. After being emitted, aerosol particles are dispersed by

the atmospheric flows of the respective driver models. Trans-

port takes place both through resolved large-scale advection

and by parameterized sub-grid scale convective and bound-

ary layer turbulent mixing. Aerosol particles are removed

from the atmosphere through wet scavenging, sedimentation

and other dry deposition processes. The parameterizations

employed to describe the removals in the AeroCom models

are briefly discussed in the following section. References can

be found in the literature cited in Tables 6 to 8.

7 Removal process analysis

In this section we investigate the individual removal pro-

cesses and try to understand the differences in residence

times both between aerosols of different types and between

the various models for a given aerosol type. Specific pro-

Table 6. Sedimentation.

Model Components Reference

ARQM all Gong et al. (2003)

DLR all Binkowski and Shankar (1995)

GISS all Koch et al. (2006)

GOCART all Fuchs (1964)

KYU all Takemura et al. (2000)

LSCE all Schulz et al. (1998)

LOA DU, SS Reddy et al. (2005)

MATCH DU Zender et al. (2003)

MPI HAM all Stier et al. (2005)

MOZGN DU, SS Seinfeld and Pandis (1997)

PNNL none /

TM5 DU, SS similar to Schulz et al. (1998)

UIO CTM DU, SS Grini et al. (2002a, 2005)

UIO GCM none /

ULAQ all Pitari et al. (2002)

UMI all Seinfeld and Pandis (1997)

cesses and parameterizations are identified that cause the

simulated aerosol residence times and burdens described

above.

In analogy to the differential rate laws of chemical reac-

tions we define the aerosol removal rate as:

−
dm

dt
= τ−1m = k m , (5)

where m is the aerosol mass, and t the time. The removal

rate coefficient k is the inverse of the residence time τ . It is

the sum of the individual removal rate coefficients. In the re-

mainder of this paper we distinguish between sedimentation,

dry (excluding sedimentation) and wet deposition as shown

in Eq. (6):

k = kwet + ktur + ksed . (6)

The removal rate coefficients ki for the individual processes

can be obtained by multiplication of k with the contributions

fi of the individual sink mass fluxes to the total sinks:

ki = fi × k with fi =
massflux sinki

∑

i

(massflux sinki)
. (7)

The use of these removal rate coefficients isolates differ-

ences in the simulated individual removal pathways. In ad-

dition, removal rate coefficients are independent from the

diversity of the emissions, in contrast to the mass fluxes,

which are usually discussed in the context of aerosol life cy-

cles. The single processes compete at each grid point and

each time step for available aerosols and are independent

from each other (neglecting the additional dependencies in-

troduced from operator splitting here, see Sect. 9.1). How-

ever, the removal rate coefficients examined in this paper are

obtained from globally and annually averaged mass fluxes
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(a) (b)

Fig. 3. (a) The global, annual average aerosol burden [Tg] of the five aerosol species is given for all models. (b) Diversity plot for burdens,

for explanations of the plot please refer to the caption of Fig. 1b.

(a) (b)

Fig. 4. (a) Tropospheric residence times in [days] in the AeroCom models for the species under consideration. (b) Diversity plot for residence

times, for explanations of the plot please refer to the caption of Fig. 1b.

and burdens that are in turn influenced by all other sink pro-

cesses. Thus, the removal rate coefficients shown in Fig. 5

are not completely independent from each other. However,

they average over many applications of the individual pa-

rameterizations under all kinds of atmospheric conditions,

and thus reflect the overall characteristics of the simulated

removal processes.

The wet removal rate coefficients generally increase with

the solubility from DU, BC, POM to SO4 and SS. This is re-

flected in the models by the interstitial fractions of aerosols

that are represented with a variety of methods as briefly de-

scribed in Table 8. Uptake by rain droplets and transfer to

cloud droplets depend also on aerosol size, though this ef-

fect is simulated in few global models. In addition, the wet

removal rate coefficients depend on the degree of concur-

rence of the distributions of precipitation and aerosols. Scav-

enging by ice is considered only in some models. The liq-

uid water or ice concentration used for scavenging is taken

from the global model in several cases, sometimes scaled

to the cloud-covered fraction of the grid box, or prescribed

in others, see Table 8. The dry deposition (excluding sed-

imentation) rate is a nonlinear function of particle density

and size with a minimum in the accumulation mode. All

dry deposition pathways increase with the particle sizes for

particles larger than a few tens of microns, but sedimenta-

tion becomes increasingly faster than other dry deposition

processes for larger particles (diameter larger than a few mi-

crons) (Ganzeveld, personal communication, 2005). The rate

of other dry deposition processes (i.e., the surface removal

due to turbulent transport, Brownian diffusion and impaction,

Atmos. Chem. Phys., 6, 1777–1813, 2006 www.atmos-chem-phys.net/6/1777/2006/



C. Textor et al.: Diversities of aerosol life cycles within AeroCom 1791

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Effective sink rate coefficients (annually and globally averaged) for the AeroCom models and for the aerosol species under con-

sideration. The color code is given in the legend: Kwet refers to the wet deposition rate. If possible we show the individual dry sink rate

coefficients (Kdry: dry deposition, and Ksed: sedimentation), otherwise the sum of the two processes (KSeddry) is plotted. Please note that

the ordinates have different scales.

excluding sedimentation) increases with the aerosol concen-

tration close to the surface and is therefore also a result of

the dynamics in the global model. It depends on the intensity

of turbulence in the boundary layer, and on the surface prop-

erties. In some models, dry deposition is connected to the

boundary layer turbulence scheme (e.g., MPI HAM), oth-

ers solve it simultaneously with sedimentation (e.g., TM5).

Some models use regionally constant dry deposition veloci-

ties for all species (e.g., LSCE). In contrast to other dry depo-

sition processes, sedimentation is controlled by the particles

properties, as it depends mainly on particle size, density (and

shape). It becomes the dominant dry removal process for

coarse particles and is therefore ignored in some models for

SO4, BC, and POM. It is neglected for all species in PNNL

and UIO GCM. The particle sizes, and thus the dry depo-

sition rates, are influenced by water uptake in humid ambi-

ent air leading to particles growth, for a discussion of this

process see Sect. 8.2. The dependence on particle size ex-

plains why the all-models-average dry deposition rate of SS

is more than ten times larger than that of DU, which is in turn

about ten times larger than that of the three “anthropogenic”

aerosol types, see Fig. 5. For the removal of “natural” species
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Table 7. Dry deposition (excluding sedimentation).

Model Approach Reference

ARQM resistance Zhang et al. (2001)

DLR resistance Binkowski and Shankar (1995); Ganzeveld and Lelieveld (1995)

GISS resistance Chin et al. (1996); Koch et al. (2006); Schmidt et al. (2005)

GOCART resistance Wesely (1989),

KYU resistance Takemura et al. (2000)

LSCE constant velocities

LOA constant velocities Boucher et al. (2002); Reddy et al. (2005)

MATCH constant velocities Rasch et al. (2000)

MPI HAM resistance Ganzeveld et al. (1998); Stier et al. (2005)

MOZGN constant velocities Horowitz et al. (2003); Tie et al. (2005)

PNNL resistance Zhang et al. (2001)

TM5 resistance Ganzeveld et al. (1998)

UIO CTM resistance for DU, SS;constant for BC, POM, SO4 Seinfeld and Pandis (1997)

UIO GCM resistance Barth et al. (2000)

ULAQ constant velocities Lohmann et al. (1999)

UMI resistance Zhang et al. (2001)

which are mostly contained in larger particles all three sink

processes are important. SS has the highest rate coefficients

both for wet and dry deposition, because of its high solubil-

ity and large particle size. For the smaller “anthropogenic”

particles wet deposition is the dominant sink.

The diversities of the removal rate coefficients simulated

for the individual species are shown in Fig. 6. Models agree

least for “natural” species, both on the wet and especially on

the dry deposition rate coefficients, which can probably be

attributed to the contrasting particle sizes. High diversities

both for dry and wet deposition are found for the removal

rate of AER, transmitted from its components. The results

are more coherent for the “anthropogenic” species. As these

are predominantly removed by wet deposition, the diversities

of the dry deposition rate coefficients are not relevant, and the

diversities of their residence times shown in Fig. 4 are mainly

due to the scatter in the wet deposition rate.

For the “natural” species, there is no overall agreement

among the AeroCom models on whether wet or dry depo-

sition is the dominant removal pathway. Wet deposition

contributes on average about one third to the total sinks

with fairly high diversities of δ=54% for DU and δ=65%

for SS (see Table 10). This diversity of the dominant de-

position pathway reflects the disagreement on both wet and

dry removal rate coefficients. The diversity of wet depo-

sition rate coefficients (0.08 days−1, δ=42% for DU and

0.79 days−1, δ=77% for SS) can be attributed to differences

in the parameterizations of wet deposition. In some models,

DU is internally mixed with other aerosols, thus increasing

its solubility. We did not however find systematically en-

hanced wet deposition of DU in these models. Additional

diversity is caused by differences among the models in the

simulated distributions of aerosols and precipitation.

The diversities of the total dry deposition rate coeffi-

cients are much higher (0.23 days−1, δ=84% for DU and

4.28 days−1, δ=219% for SS) than for wet deposition. This

is probably mainly caused by the large discrepancies of the

simulated particle sizes, which then lead to different dry re-

moval rate coefficients (see also the discussion in Sect. 8.1).

Furthermore, the models do not agree on the contribution of

turbulent deposition and sedimentation for the total dry depo-

sition rate coefficients. Sedimentation contributes on average

46% (δ=66%) for DU and 59% (δ=65%) for SS. This find-

ing indicates significant differences in the particle sizes and

the parameterizations of these processes. Contrasting con-

tributions of sedimentation are also found for models with

large total dry deposition rate coefficients (e.g., DU in KYU

and TM5). This might be caused by the parameterizations

of the dry deposition processes themselves. Another reason

is connected to the aerosol mass at the surface, and thus to

the transport provided by global model, and other source and

sink processes. The separation of these factors is not within

the scope of this survey, and we only consider the sum of the

two dry deposition processes in the following.

The high diversity in the contribution of the individual

processes to the total removal rate could also be associated

with the method of numerically integrating the advection-

diffusion-processes equation. This complex equation is

solved numerically in order to obtain the aerosol concentra-

tion changes with time. In most current numerical models it

is assumed that some or all source and removal (and other)

processes are independent from each other. This simplifica-

tion allows for the separate integration of the single processes

in time using a so-called operator splitting method (Marchuk,

1975). Operator splitting is widely used in global numerical

models in order to save computational costs. However, the
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Table 8. Wet scavenging.

Model Stratiform clouds Convective clouds In-cloud scavenging Below-cloud scavenging Scavenging by ice Interstitial fraction∗ of compo-

nents

ARQM Lohmann et al. (1999) Zhang and McFarlane (1995b) Giorgi and Chameides (1986) strat: Slinn (1984)

conv: von Salzen and

Schlunzen (1999)

depending on T all: 0

internally mixed

DLR Lohmann et al. (1999);

Lohmann (2002);

Lohmann and Kärcher

(2002)

Tiedtke (1989) modified after

Brinkop and Sausen

(1997)

strat&conv:

nucl: impact scav by Brownian mo-

tion,

accm: activation (Henning et al.,

2002),

dust in accm: fix

strat: Berge (1993)

conv: none

strat:

nuclm: none,

accm: 5 wt%

conv: none

prog scav coeff

except for DU in accm: 0.9

GISS Del Genio et al. (1996);

Schmidt et al. (2006)

Del Genio and Yao (1993); Del

Genio et al. (2005); Schmidt et

al. (2006)

Koch et al. (1999, 2006) Koch et al. (1999) strat: 5% liquid

conv: as liquid

strat:

fresh industrial:

BC:1, POM:1 1,

biomass:

POM: 0.2, BC 0.4.

SS: 0, SO4: 0.

conv: 1/2 way between solubil-

ity and 1.

GOCART offline

GEOS-DAS

version 3

offline

GEOS-DAS

version 3

Balkanski et al. (1993); Giorgi and

Chameides (1986)

Balkanski et al. (1993);

Giorgi and Chameides

(1986)

as liquid BC=0.6,POM: 0.6, SO4: 0.6,

SS: 0.6

DU: 0.8

KYU

(SPRINT)

Le Treut and Li (1991) Arakawa and Schubert (1974) Takemura et al. (2000) Takemura et al. (2000) as liquid BC: 1, OC: 0.6, carbonaceous:

0.6, SO4: 0.5, SS: 0.7, DU:

0.95

LSCE Le Treut and Li (1991) Tiedtke (1989), contributes to

total condensed water

Balkanski et al. (1993) Liu et al. (2001) as liquid BC: 0.4,POM: 0.4

SO4: 0.3, SS: 0,

DU: 0.5

LOA Le Treut and Li (1991) Tiedtke (1989), contributes to

total condensed water but not to

cloud fraction

Boucher et al. (2002); Reddy et al.

(2005)

Boucher et al. (2002);

Reddy et al. (2005)

as liquid

(in cloud-scav only)

all: 0.3

MATCH Rasch and Kristjansson (1998) Zhang and McFarlane (1995b) Rasch et al. (2000) Rasch et al. (2000) as liquid BC: 0.8, POM: 0.8, SO4: 0.8;

DU: Zender et al. (2003)

MPI HAM Lohmann and

Roeckner (1996);

Tompkins (2002)

Tiedtke (1989) with modifica-

tion for penetrative

convection according to

Nordeng (1994)

Stier et al. (2005) Stier et al. (2005) Stier et al. (2005) Stier et al. (2005)

MOZGN Rasch and Kristjansson (1998) Hack (1994); Zhang and Mc-

Farlane (1995b)

Giorgi and Chameides (1985) Brasseur et al. (1998) as liquid BC: 0.8, POM: 0.8, SO4: 0.8,

SS: 0.8 HNO3: 1; DU: Zender

et al. (2003)

PNNL Rasch and Kristjansson (1998);

Zhang (2003)

Hack (1994); Zhang and Mc-

Farlane (1995b)

strat:

activation scav based on mass and

number fraction activated (Abdul-

Razzak, 1998) with Gaussian spec-

trum of updrafts (Ghan et al., 1997),

conv: convective updraft velocity

used

impaction and intercep-

tion (Slinn, 1984)

as liquid interstitial + activated number

+ mass for each mode pre-

dicted (and transported sepa-

rately)

TM5 offline from ECMWF offline from ECMWF

(Tiedtke, 1989)

strat: Jeuken et al. (2001)

conv: coupled to updraft mass flux

and conv. precip.

strat: Dana and Hales

(1976)

conv: coupled to updraft

mass flux and conv. pre-

cip.

as liquid*0.2 strat: all: 0.3

conv: all: 0.0

UIO CTM offline from Inte-

grated Forecast

System (IFS)

ECMWF

mass entrainment/

detrainment in “elevator”

(Tiedtke, 1989;

Berglen et al., 2004)

soluble: proportional to fraction of

clouds which rains out,

partly soluble: also scaled according

to Henry’s law

DU, SS: None

BC, POM, SO4: Berge

(1993)

as liquid

except for SO4

all: 0

UIO GCM Rasch and Kristjansson (1998) Zhang and McFarlane (1995b) Iversen and Seland (2002) Iversen and Seland

(2002)

none BC, POM: 0.5

SO4:

1 fine particles

0.4 gaseous prod

0.2 aqueous prod strat

0 aqueous prod conv

(Iversen and Seland, 2002)

(DU, SS: prescribed)

ULAQ offline from clima-

tology (Rossow et

al., 1987)

convective mass

fluxes from ECHAM4.L39

(Grewe et al., 2001)

first order loss as in

Mueller and Brasseur

(1995); BC-OC scav

coeff=2.1 cm-1 (Liousse et al.,

1996); scav coeffs for SO4, DU, SS

scaled with factors 2, 0.3, 1, respec-

tively.

first order loss as in

Mueller and Brasseur

(1995); BC-OC scav

coeff=2.1 cm-1 (Liousse

et al., 1996); scav coeffs

for SO4, DU, SS scaled

with factors 2, 0.3, 1,

respectively.

as liquid all: 0

UMI Hack (1998) fraction: from Xu

and Krueger (1991), contributes

to total condensed water

Giorgi and Chameides (1986) conv:

convective updrafts as in Rasch et al.

(1997)

Balkanski et al. (1993) as liquid BC: 0.6, POM: 0.6, SO4: 0,

SS: 0, DU: 0

*) The interstitial fraction indicates the mass fraction of aerosol which is not scavenged. Insoluble BC and POM (before aging) have

interstitial fractions of 1, except for ULAQ, where they are 0.8.
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(a) (b)

Fig. 6. Diversities plots of the globally and annually averaged effective sink rates coefficients for wet deposition (a) and dry deposition (b).

For explanations please refer to the caption of Fig. 1b.

(a) (b)

Fig. 7. (a) Mass fractions of global annual convective in relation to total wet deposition (convective + stratiform). (b) Diversity plot for mass

fractions of global annual convective in relation to total wet deposition. For explanations please refer to the caption of Fig. 1b.

results can be influenced by the sequence of calculating the

removal processes thus artificially increasing the contribu-

tion of those which are calculated first.

The residence times discussed in Sect. 6 are a result of

the different intensities and interactions of the processes in-

volved. It is illustrative to associate these residence times

with the individual removal rate coefficients for the single

models examined in this section. In ARQM, dry deposition

is always faster than in the other models, and it is the dom-

inant sink for all species (except for SO4). The short resi-

dence times of DU in ARQM, KYU, and TM5 are caused

by highly efficient dry deposition while wet deposition is of

similar efficiency as in the other models. The models with

long DU residence times (GISS, LSCE, and MATCH) have

small dry deposition rate coefficients. In GISS, wet depo-

sition is also quite slow, so that this model has the longest

life time for DU. PNNL displays the fastest wet deposition

rate, but dry deposition is rather slow. (As mentioned above,

sedimentation is neglected in PNNL). Therefore, its overall

removal rate is in the range of the other models. Dry deposi-

tion is the dominant sink for DU in most models apart from

LSCE, MPI HAM, PNNL, and ULAQ. The fast SS-removals

in LSCE and in TM5 are caused by relatively large dry depo-

sition rate coefficients. In PNNL, wet deposition is the dom-

inant removal process, it is about three times faster than the

all-models-average, and the SS residence time is at the lower

end. Wet deposition is also dominant in KYU, MPI HAM,

and ULAQ. However, the wet deposition rate coefficients in

these models are well within the range of the other models.

Their dry deposition rate coefficients are even slower, and so

the SS residence times are rather long.
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The “anthropogenic” aerosols are predominantly removed

by wet deposition in all models with the exception of BC

and POM in ARQM. In this model wet deposition is slow-

est and dry deposition fastest, thus total removal rate of

BC and POM is similar to that in the other models. The

contributions of wet deposition to total removal are 79%

(δ=17%), 80% (δ=16%), and 89% (δ=8%) for BC, POM, and

SO4, respectively. The wet deposition rate coefficients are

0.12 day−1 (δ=31%) for BC, 0.14 day−1 (δ=32%) for POM,

and 0.22 day−1 (δ=22%) for SO4. It is difficult to differen-

tiate between the effects on the scavenging efficiency from

particular parameterizations on the one hand, and from the

coincidences of different spatial and temporal distributions

of aerosols and precipitation on the other hand. The relation-

ship between the spatial distributions and the removal rate is

discussed in Sect. 9.

We expect higher wet deposition rate coefficients for the

“anthropogenic” species, which are mainly removed by wet

deposition, with increased precipitation rates. This should

especially be true if the increase is due to a higher rain fre-

quency and not due to heavier single events. The globally and

annually averaged precipitation rate (liquid and ice) of the

AeroCom-models is between 2.5 and 3.5 mm per day. We do

not find clear correlations between the precipitation rates and

the contributions of wet deposition to the total removal, nor

between the precipitation rates and the wet deposition rate

coefficients (not shown). In some models, however, the scav-

enging rate is not based on the liquid water content provided

by the microphysical scheme of the global model. Instead, a

constant liquid water content is used as for example proposed

in Giorgi and Chameides (1986). Furthermore, the fractions

of the model grid cells that are covered by clouds are treated

in various ways. Scavenging in multi-phase clouds and by ice

particles is still not well known and thus poorly represented

in large-scale aerosol models (e.g., Lohmann and Feichter,

2004). For an overview of the references and parameteriza-

tions employed within the AeroCom models for clouds mi-

crophysics and aerosol scavenging see Table 8.

Most models distinguish between in-cloud and below-

cloud, and between stratiform (large scale) and convective

scavenging, due to the somewhat artificial distinction of

cloud types in numerical models. In order to determine the

relative importance of the latter two wet deposition pathways

we plot in Fig. 7a the contributions of convective wet deposi-

tion to total wet depositions for all models for which data are

available. The diversity of the results is shown in Fig. 7b.

We find similar convective wet deposition efficiencies for

aerosols of different type within a given model. However, the

AeroCom models do not agree on the rain type which is most

efficient in removing aerosols from the atmosphere. In addi-

tion, models do not agree on the order in species along which

the contribution of convective rain increases. For example

for SS we find in some models the highest and in others

the lowest contributions of convective wet deposition. The

fractions of wet deposition through convective rain range be-

tween 10% and 85%. The diversities of the models results are

around δ=50% for all species, in spite of their different prop-

erties. These findings indicate that more detailed research is

required on wet deposition pathways in global models. As

a first step, more information on the simulation of precipi-

tation, especially the types of rain, is needed to separate the

effects of the wet scavenging parameterizations from those

of the cloud microphysics provided by the global model.

In this section we explained the different residence times

for the single aerosol components by their properties and

the rate of their individual removal processes. The diversity

among the models for the simulated residence times of a

given species could be attributed to differences in the rep-

resentations of individual removal processes. However, we

cannot identify in which way the specific parameterizations

employed in the models caused the established diversities.

Sensitivity studies in a given model examining the effects of

different particle size distributions and of different dry de-

position parameterizations are needed. In the next section,

we examine the effect of the microphysical properties and

the spatial distributions of aerosols on the simulated removal

rate coefficients.

8 Particle microphysical properties

The removal rate coefficients depend on aerosol microphys-

ical properties. In the first part of this section we investigate

the simulated particle sizes, and in the second the uptake of

ambient water.

8.1 Sizes

The description of the particle size distributions depends on

the type of the scheme (bulk, modal, or spectral, see Sect. 2.2

and Table 2) and on the number of prognostic variables. The

attribution of aerosol mass to three size ranges (diameters of

d<1 µm, 1 µm<d<2.5 µm, and 2.5 µm<d) was compiled

within the AeroCom exercise. The modelers distributed the

mass in different ways on these size ranges, based on their

model-representation of aerosol sizes. For spectral schemes,

the bins within the intervals were simply summed up. In this

case the results can be somewhat misleading for schemes

with only a few size classes, if these are situated close to

the interval boundaries. For modal schemes some partici-

pants have used the mass median diameter for classification

of the size, and others have more accurately integrated over

the distribution within the interval boundaries. In addition,

the specific contributions of the accumulation, Aitken and

nucleation modes to the fine fraction are not resolved within

the AeroCom diagnostics. Furthermore, the results do not

document the differences regarding the largest simulated par-

ticle sizes, which is especially important for “natural” aerosol

as mentioned in Sect. 4. Despite these reservations the anal-

ysis of AeroCom data provides for the first time an overview
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(a) (b)

Fig. 8. (a) Mass fraction [%] in the fine mode (diameter µm) for DU, SS, SO4, BC, POM, and AER. (b) Diversity plot for size fractions, for

explanations please refer to the caption of Fig. 1b. (Please note, that there are less models than for most other parameters.)

of the actual size distributions of dry particles and allows for

a general view of the diversity of particle sizes in current

aerosol modules. For simplification, we focus here on the

split of “fine” (d<1 µm) and coarse (d>1 µm) mode parti-

cles. In Fig. 8a, we show the mass fractions of particles in

the fine mode, and Fig. 8b shows the corresponding model

diversities, the numbers are given in Table 10. We concen-

trate on mass fractions rather than on total burdens in order

to remove the effects of contrasting burdens.

The models agree quite well on the mass fractions of “an-

thropogenic” particles in the fine mode. BC and POM are

up to 97% contained in this size range with very low diver-

sities of δ=6% each. The all-models-average for SO4 in the

fine fraction is 95% (δ=6%). DLR simulates a mass frac-

tion of about 20% of SO4 larger than the fine mode since the

log-normally distributed accumulation mode in this model

contains a significant fraction of particles slightly larger than

1 µm. The fairly large particle size for SO4 found in ULAQ

is due to a model artifact. The all-models-average mass

fractions for SS, DU and AER in the fine mode are 15%

(δ=118%), 21% (δ=114%) and 29% (δ=55%), respectively.

In general, the “natural” components and total aerosol are

larger than 1 µm, but with very high diversities. Models

agree better on the fine mass fractions of total aerosol than

on those of the “natural” aerosols, by which AER is domi-

nated in mass. This is because in several models a larger fine

fraction of one of the “natural” species is compensated by a

smaller fine fraction of the other, leading to the smaller diver-

sity of total aerosol (see also Sect. 3.2). Another reason is the

additional mass contributing to AER from the more homo-

geneous size distributions of “anthropogenic” aerosols. The

diversity of the fine mass fractions of “natural” aerosols can

be associated with specific models: LOA simulates the high-

est mass fraction of AER in the fine mode (>70%), because

of its fine DU. In ARQM, PNNL, and GISS almost 40% of

AER is contained in the fine mode. In the first two this is

caused by the small size of DU and in the latter by SS. The

differences in the simulated aerosol sizes have important im-

plications for the calculated aerosol radiative forcing, which

we do not explore in this paper. The AeroCom data reveal

a considerable contribution of “natural” aerosols to the fine

fraction, ranging from mass fractions of 10% in MPI HAM

to 77% in GISS. Note that this finding indicates that the fine

aerosol mode is not purely composed of SO4, BC, and POM.

We would expect that the simulated SS particle sizes are

larger in those models where we find large SS burdens, be-

cause these larger particles contribute strongly to the burden

but are less relevant for radiative aerosol properties, which

are validated against observations. When we compare the

mass fractions of SS larger than 2.5 µm in diameter with the

SS burdens, we do not find a positive correlation. These data

do however not resolve the contributions of super-sized SS

particles. We conclude that the diversity in the SS burdens

is not associated with differences in the simulated particle

sizes.

The divergence of the size distributions of “natural”

species among the models is partly caused by the sizes of

the emitted particles, and partly by the simulated removal

processes. We cannot differentiate between these two rea-

sons based on the information available from the AeroCom

datasets, because a large fine mass fraction in the burden can

either be the reason for slow dry removal rate coefficients

for fine particles (calculated here from the burdens and the

fluxes), or – in contrast – be the result of a fast dry removal

rate for large particles. It would be more suitable to investi-

gate the sizes of emitted particles rather than those of the bur-

dens when examining the relationship between dry removal

rate and particle size. More detailed information about the
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(a) (b)

Fig. 9. (a) Global, annual average masses of dry aerosol (AER) and of aerosol water (H2O), and ambient aerosol (AmbAER=AER+H2O)

in [Tg] for all models. (b) Global, annual average composition of ambient aerosol in component mass fractions in relation to total ambient

mass [%].

emitted particle sizes are needed than those summarized in

Table 4. In addition, the AeroCom experiment B with unified

emissions gives us the opportunity to examine the aerosol

processes with lesser effects from contrasting particle sizes.

When we compare the dry deposition rate coefficients with

the mass fractions in the fine mode we do not find a clear

correlation. (There is also no such correlation for the super-

coarse particles fractions with diameters d>2.5 µm.) This

can be due to the concerns about the particle size data avail-

able for analysis within AeroCom discussed above, but also

due to the fact that the investigated sizes refer to dry par-

ticles. The simulated removal rate coefficients are actually

controlled by ambient particles that grow in the presence of

water vapor. Aerosol water uptake is discussed in the next

section.

8.2 Water uptake

Aerosol particles absorb water depending on their hygro-

scopicity and the relative humidity in the local environment.

Various parameterizations of different complexity are used to

describe water uptake by aerosol particles in the ambient at-

mosphere, for an overview see Table 9. Differences between

models are for the first time diagnosed here. The burdens of

aerosol water, dry and ambient aerosol are plotted in Fig. 9a.

Figure 9b shows the composition of ambient aerosol. The

corresponding numbers and the diversities of the model re-

sults are given in Table 10.

The agreement on the burdens of ambient aerosol (Am-

bAER) is much less than for the dry aerosol (AER) shown

in Fig. 3. The all-models-average aerosol water mass (H2O)

(Fig. 9a) is 9480 Tg with a diversity of δ=330%, which is

mainly caused by the very large H2O uptake in ARQM. If we

exclude this model, all-models-average H2O mass is 35 Tg

with a diversity of δ=81%. Aerosol water contributes an av-

erage mass fraction (Fig. 9b) of 53% (δ=46%) to the ambient

aerosol composition ranging from 9% in MOZGN to more

than 99.9% in ARQM. Excluding ARQM we obtain a water

fraction of 48% (δ=42%). (The agreement on the water mass

fraction is greater than for the burden, because the high value

of ARQM is limited to 100%.)

Water uptake depends on the aerosol composition. Note,

that contrasting compositions of the dry aerosol particles are

simulated. Therefore, two aerosol models would not obtain

the same water uptake, even if they used the same relative hu-

midity and parameterization for hygroscopic growth. Water

uptake is most effective for SS containing particles, which is

the most hygroscopic aerosol component. Thus, we find an

increase of the aerosol water mass (fraction) with increasing

SS mass (fraction) in the model results (not shown). If H2O

was mainly associated with large, very short-lived SS parti-

cles, the high diversity would not be of relevance, e.g., for

aerosol radiative forcing. In Sect. 8.1 we show, however, that

an all-models-average of ∼15% of the SS burden contains

particles in the fine mode leading to significant hygroscopic

growth of these particles. More information on how the mod-

els attribute H2O to the individual aerosol components would

be of interest for a follow up study.

Water uptake should increase with increasing local relative

humidity for an aerosol of given composition. We compared

the simulated annually and globally averaged optical-depth-

weighted relative humidities and found a range of grid cell

averages between 55% and 77%. There was no relationship

between these relative humidities and aerosol water masses

for the ensemble of AeroCom models (not shown). However,

several models use a local, sub-grid scale relative humidity

instead of the grid cell average. The various methods to ob-

tain the local relative humidity represent additional sources

for the model diversity (see Table 9).
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Table 9. Hygroscopic growth.

Model Reference RH ∗ RH max∗∗[%]

ARQM Hänel (1976) mean 100

DLR aerosol liquid water content calculated by EQSAM

(SO4/NH4/NO3/H2O system, (Metzger et al.,

2002a, b), assuming thermodyn equilibrium

mean 99.8

GISS Schmidt et al. (2006) based on Tang et al. (1981,

1996); Tang and Munkelwitz (1991, 1994)

mean 99.9

(not used for radiation)

GOCART d’Almeida (1991) for BC, Koepke et al. (1997) for

the other components

mean none

KYU SO4: Tang and Munkelwitz (1994), carbonaceous:

Hobbs et al. (1997), SS: 30% water, DU: hydropho-

bic

mean none

LSCE parameterization adjusted to Gerber (1991) mean none

LOA SO4 Tang and Munkelwitz (1994), SS Tang et

al. (1997), soluble POM as SO4

fraction 95

MATCH POM, SO4 Hess et al. (1998), Tang and Munkelwitz

(1994)

mean 99.9

MPI HAM Vignati et al. (2004) complex, fraction complex

MOZGN SO4 Tang and Munkelwitz (1994), SS Tang et

al. (1997), POM Ming and Russell (2001)

mean 95

PNNL Koehler theory, Pruppacher and Klett (1997), Ghan

(2001) for internal mixture of soluble, insoluble

component. Volume mean hygroscopicity. Deliques-

cence depends on RH and aerosol water from previ-

ous timestep.

mean 100

TM5 SS: Gerber (1991), SO4/NO3 Metzger et al. (2002b) fraction complex

UIO CTM Fitzgerald (1975) mean 99.5

UIO GCM Kirkevåg and Iversen (2002) mean 98

ULAQ as in Kinne et al. (2003) daily averaged,

climatological RH

(usually <90%)

90

UMI Gerber (1991) for SO4, SS, and POM mean 95

∗) Relative humidity used for hygroscopic aerosol growth: grid box mean value (mean) or scaled to cloud-free fraction of grid box (fraction).
∗∗) Relative humidity threshold to distinguish between wet aerosols and cloud droplets.

The rate coefficients of aerosol removal are influenced by

hygroscopic growth, because the added water modifies the

particle sizes and densities. The diameter of ambient parti-

cles with the all-models-average water fraction of about 50%

is about 30% larger than that of the dry particles, assuming

for simplicity the same density for dry aerosol and water. The

simulated removal rate coefficients are controlled by these

expanded ambient particles. The AeroCom diagnostics do

not permit clear association of aerosol water with specific

parts of the particle size spectrum in order to investigate the
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Table 10. Statistics of the investigated parameters (The mass of SO4 is given in Tg(SO4)). The sign “#” indicates the number of models

considered for the calculation of the statistics.

Parameter Unit DUST SS SO4

# Mean Median Stdev # Mean Median Stdev # Mean Median Stdev

[%] [%] [%]

emission Tg/a 14 1840,00 1640,00 49 12 16 600,00 6280,00 199 12 179,00 186,00 22

burden Tg 15 19,20 20,50 40 15 7,52 6,37 54 16 1,99 1,98 25

fine mass fraction % 13 20,80 10,80 114 13 14,60 8,72 118 14 94,80 96,80 6

mass fraction >5 km % 15 14,10 14,10 51 15 8,65 6,94 92 16 32.23 32.0 36

mass fraction in pol, regions % 15 1,54 1,00 102 15 3,32 1,88 140 16 5,91 5,60 55

residence time days 14 4,14 4,04 43 12 0,48 0,41 58 15 4,12 4,13 18

total removal rate 1/day 14 0,31 0,25 62 12 5,07 2,50 188 15 0,25 0,24 18

wet removal rate 1/day 14 0,08 0,09 42 12 0,79 0,68 77 15 0,22 0,23 22

dry removal rate 1/day 14 0,23 0,16 84 12 4,28 1,40 219 15 0,03 0,03 55

(wet removal)/(total removal) % 14 33,00 31,70 54 12 30,50 30,30 65 15 88,50 88,50 8

sed/(dry dep) % 10 46,20 40,90 66 9 58,90 59,50 65 12 7,33 0,00 202

(conv,wet dep)/(wet dep) % 8 44,50 46,40 51 8 34,10 29,60 53 9 39,70 35,20 54

Parameter Unit BC POM AER

# Mean Median Stdev # Mean Median Stdev # Mean Median Stdev

[%] [%] [%]

emission Tg/a 16 11,90 11,30 23 16 96,60 96,00 26 12 18 800,00 9050,00 176

burden Tg 16 0,24 0,21 42 16 1,70 1,76 27 15 30,60 29,30 29

fine mass fraction % 14 97,30 99,70 6 14 97,00 99,20 6 13 28,80 21,10 55

mass fraction >5 km % 16 21.20 18.30 52 16 20.40 18.30 56 15 14,50 13,50 47

mass fraction in pol, regions % 16 4,18 4,16 71 16 3,27 3,57 76 15 2,45 1,98 90

residence time days 16 7,12 6,54 33 16 6,54 6,16 27 12 1,42 1,27 65

total removal rate 1/day 16 0,15 0,15 21 16 0,16 0,16 24 12 2,27 0,79 223

wet removal rate 1/day 14 0,12 0,13 31 14 0,14 0,14 32 12 0,30 0,24 64

dry removal rate 1/day 14 0,03 0,04 55 14 0,03 0,03 49 12 1,98 0,46 250

(wet removal)/(total removal) % 14 78,60 79,50 17 14 79,90 78,90 16 12 31,10 32,50 57

sed/(dry dep) % 11 0,47 0,00 251 11 0,61 0,00 198 9 55,90 62,50 61

(conv,wet dep)/(wet dep) % 9 46,30 44,60 52 8 51,60 54,50 48 6 34,10 34,80 49

aerosol water mass Tg 11 9480,00 25,80 330

aerosol water mass fraction % 11 52,50 47,20 46

relationship between the ambient particle sizes and the re-

moval rate coefficients.

Aerosol water uptake affects the radiative properties of

particles as the effective refractive index and the size, both

depending on water, determine optical properties of the

aerosol. The high diversity in water uptake demonstrated

here is thus highly critical for the comparability of the sim-

ulation of aerosols climate effects. In addition, the chemical

reactivity depends on the available water in the aerosol parti-

cle.

9 Spatial aerosol distributions

The differences in residence times and dry or wet removal

rate coefficients between the models can be better understood

by extending the analysis of the burdens to the spatial aerosol

distributions. The relatively short residence times of aerosol

particles result in large spatial gradients, both vertically and

horizontally, in the troposphere. In the remainder of the text

we use the term model “dispersivity” to qualitatively charac-

terize the degree of vertical and horizontal aerosol dispersal

in a given model, as compared to the other AeroCom models.

As discussed above for the life cycles, the model dispersiv-

ity is controlled by the interaction of various removal and

transport processes including sub-grid scale mixing. Identi-

cal model dispersivities could result from identically simu-

lated transport and internal aerosol processes among models.

However, they could also result from different, but mutually

compensating transport and aerosol processes. The separa-

tion of their effects requires independent information about

transport and is therefore beyond the scope of this paper. In

the following, we firstly present the zonally average vertical

aerosol concentration; next we focus on the vertical disper-

sivity. Finally we discuss the meridional dispersivity, i.e.,

long-range transport versus the poles.

9.1 Zonal mean vertical aerosol concentrations

In Fig. 10 we show the zonally averaged vertical concen-

trations of AER for all AeroCom models (except for DLR,

in which the coarse fractions of DU and SS are neglected).

The differences in the spatial model resolution (see Table 2),

ranging from to 304 to 51 200 grid points in the horizontal,

and from 18 to 40 grid points in the vertical, are evident.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 10. Zonally and annually averaged concentration of total aerosol in [µg/m3] (DLR is not shown because of its disregard of the coarse

fractions of SS and DU.) Please note, we use a non-linear color scale. The white shading of lowest layer above ground in some models

indicates that no data have been available in this layer.
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The AER concentrations show two maxima in all models:

the one in the northern hemisphere results mostly from DU,

while the one in the Southern Hemisphere is caused by SS

emissions in the “roaring forties” of the South Pacific. How-

ever, there are remarkable discrepancies: in some models the

aerosol is quite dispersed both in the vertical and in the hori-

zontal direction, in others it is confined to the source regions.

The model dispersivity is not linked to the model resolution;

compare for example MPI HAM and MOZGN, or UMI and

GOCART that have almost the same resolution. The latter

two models also use the same meteorological data, but they

still have very contrasting dispersivities, especially regarding

the transport towards the poles.

Several models show a minimum of the aerosol concentra-

tion in the lowest model layer. This minimum is not easily

visible in Fig. 10 for all models concerned, because the low-

est layers are sometimes very shallow. Such a minimum is

probably not real for the total aerosol concentration, and it is

not seen in observational data. Aerosols sometimes show a

layered vertical stratification. However, the minima are not

located directly at the surface but at higher altitudes (e.g.,

Bahreini et al., 2003; Kline et al., 2004; Guibert et al., 2005;

Meloni et al., 2005). We propose three hypotheses to explain

this feature. Firstly, the different parameterizations of dry

deposition and their temporal and vertical integrations might

play a role in causing this minimum. The dry aerosol removal

at the Earth surface also includes the turbulent transport from

a reference height in the surface layer (∼10% of planetary

boundary layer (PBL) depth) to the surface where deposition

occurs. Overestimation of surface removal together with un-

derestimation of downward turbulent transport in the PBL,

which would compensate for the efficient surface removal,

could cause a minimum close to the surface. In contrast,

there could also be potential too fast upward transport of the

emitted species explaining the possible underestimation of

surface layer concentrations. The third reason for the surface

minimum could be operator splitting, see Sect. 7. We pre-

sume that the surface minimum concentration can especially

be found in those models in which the diagnostic output is

obtained just after calculating the aerosol removal processes.

We cannot test our hypotheses with the information avail-

able, and the causes for the minimum in surface concentra-

tion seen in the AeroCom model results need further atten-

tion. This is particularly important, as the simulated aerosol

concentrations at the surface are compared to observational

data for model validation purposes. Further analysis of a

comparison of models to surface observations is provided in

Guibert et al. (20061).

The AER distributions shown in Fig. 10 are dominated by

the masses of DU and SS. In the following we investigate the

spatial distributions of the individual species, first focusing

on the vertical dispersivity.

9.2 Vertical dispersivity

Wet scavenging becomes increasingly less significant when

aerosols reach altitudes where the clouds show decreased

precipitation efficiency (see also Lohmann et al., 1999). Es-

pecially small particles, for which sedimentation is not sig-

nificant, can in that case have rather extended residence

times. We choose for diagnostic purposes a characteristic

height of 5 km and discuss the mass fractions above this

height as an indicator for the vertical dispersivity, see Fig. 11.

Additional layers of different depth (0–1, 1–2.5, 2.5–5 km)

are discussed in the text.

The ranges of vertical dispersivity, i.e., the differences for

each model between the species with the largest and the

smallest mass fractions above 5 km, respectively, are indi-

cated by the gray shadings in Fig. 11a. These ranges, which

indicate the degree of similarity of the vertical dispersiv-

ity among the species within a given model, differ among

the models. The all-models-average range is 25% (δ=37%),

varying from 10% in KYU to 45% in PNNL. In general,

KYU, MATCH, MPI HAM, and TM5 show characteristi-

cally lower vertical dispersivities for all species than LOA,

LSCE, MOZGN, and UIO GCM. LSCE and LOA are based

on the same global model, the French GCM (LMDzT) (see

Table 2). Assuming that the effects of differences in pre-

cipitation resulting from slightly different nudging constants

in these two models are small (see Sect. 4), we can mainly

attribute the deviations of their vertical dispersivities to dif-

ferences in the parameterizations of aerosol processes. The

highest diversities of vertical dispersivities among model re-

sults are found for SS, followed by POM, BC, DU, and SO4,

see Fig. 11b.

Vertical dispersivity is weaker for the “natural” species.

The all-models-average mass fractions of SS and DU above

5 km are 9% (δ=92%), and 14% (δ=51%), respectively. The

SS masses decrease most with height, with largest gradi-

ents in MATCH, MPI HAM, PNNL, and UMI, where more

than 90% of the SS mass are within the planetary bound-

ary layer (PBL) below an altitude of 2.5 km. SS reaches

greater heights in LOA, LSCE, UIO GCM, and especially in

MOZGN, where 25% of SS are above 5 km. 15% (δ=47%) of

AER occur above 5 km height. The AER composition close

to the surface below 1 km is dominated by SS in eight models

and by DU in seven models. In this layer, the SS contribution

to the AER composition varies from about 20% to 80%, and

DU contributes between 15% and 70%. All models have a

DU maximum in the upper PBL from 1 to 2.5 km, where DU

is the dominant species in all models (mass fractions from

50% to 80%), except for ARQM and MPI HAM, where SS

is still dominant. Although the aerosol particle ascent in the

atmosphere depends on its size, we do not find a correlation

between the sizes and the mass fractions of DU or SS above

5 km for the ensemble of AeroCom models (not shown). It

might nevertheless exist, but is probably not evident in infor-

mation on the size distribution as we have argued in Sect. 8.1.
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(a) (b)

Fig. 11. (a) Global, annual average mass fractions in [% ] of total mass above 5 km altitude for the AeroCom models. The ranges of vertical

dispersivity, i.e., the differences for each model between the species with the largest and the smallest mass fractions above 5 km, respectively,

are indicated by the gray shadings. (b) Diversity plot of the annual average aerosol mass fractions above 5 km altitude, for explanations

please refer to the caption of Fig. 1b.

The vertical distributions of BC and POM are similar in

most models; larger differences are found in TM5, GO-

CART, and LOA. The two species are well dispersed in the

vertical with the maximum situated in the upper PBL be-

tween 1 and 2.5 km in all models. The all-models-average

mass fractions above 5 km are 21% (δ=52%) and 20%

(δ=56%) for BC and POM, respectively. In eight models,

the vertical dispersivity is stronger for BC than for POM,

in six models the situation is reversed, and in two mod-

els similar. There are several reasons for the differences of

the simulated vertical distributions of BC and POM within

a given model. The formation of secondary POM from or-

ganic precursor gases within the atmosphere, if included in

the model, increases the amount of POM at greater heights.

At the same time, the greater solubility of this species leads

to an increased wet scavenging rate, thus reducing high-

altitude-POM. Finally, divergent spatial distributions of the

two species resulting from transport influence their deposi-

tion rate coefficients, which in turn affect the spatial distri-

butions. Weaker vertical dispersivity of BC than of POM

could explain the faster wet deposition rate coefficients of

this species in three models (LOA, LSCE, MATCH). How-

ever, not all models with weaker vertical dispersivity for BC

show faster wet removal rate coefficients for this species.

SO4 is present at the highest altitudes of all species (excep-

tions: TM5 and especially KYU). The all-models-average

SO4 mass fraction above 5 km is 32% (δ=36%). The main

SO4 burden is situated in the upper PBL between 1-2.5 km in

nine models, in the lower free troposphere between 2.5 and

5 km in three models, in the upper free troposphere between

5 and 10 km in one model, and above 10 km in the tropopause

region in three models. In KYU, SO4 is the aerosol species

which is most confined to lower levels, and only ∼5% can

be found above 5 km. In general, the SO4-contribution to

the AER composition becomes increasingly important with

height due to the removal of DU and SS, and due to chemical

SO4-production at greater altitudes within the atmosphere.

In several models, SO4 dominates the aerosol composition

above 10 km, and injection into the stratosphere is proba-

ble. Its vertical distribution depends on the distributions of

the emissions, on the chemical production, on the distribu-

tion of clouds and precipitation, on the parameterization of

the wet deposition process, and on transport provided by the

global model. An extensive analysis of sulfur cycle simula-

tions in large scale atmospheric models was performed in the

COSAM exercise (Barrie et al., 2001; Lohmann et al., 2001;

Roelofs et al., 2001). The authors concluded that the uncer-

tainty in predicting the global SO4 distribution is related to

vertical mixing of emitted sulfur species from the planetary

boundary layer into the free troposphere. In addition, they

suggested that cloud physics and cloud distributions play a

major role as they influence cloud-related processes, i.e., the

aqueous oxidation of SO2 and wet deposition. Our results

confirm the sensitivity of the sulfur cycle to the vertical dis-

tribution, which in turn acts on the efficiency of both the

aqueous phase production and the removal rate coefficients.

In addition, chemical production of SO4 at high altitudes ex-

plains why its mass fractions at higher altitudes are higher

than those of DU, although these components have similar

atmospheric residence times.

We would expect slower removal rate coefficients in mod-

els where vertical dispersivity is stronger. We do find such a

correlation for the “anthropogenic” aerosols, where wet de-

position is the dominant removal, but not for SS and DU,

which are by two thirds removed through dry deposition. Dry

deposition rate increases with increasing concentrations in
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(a) (b)

Fig. 12. (a) Global, annual average mass fractions in [%] of total mass in polar regions (south of 80◦ S and north of 80◦ N) for all AeroCom

models. The ranges of meridional dispersal, i.e., the differences for each model between the species with the largest and the smallest mass

fractions in polar regions, respectively, are indicated by the gray shadings. (b) Diversity plot of the annual average aerosol mass fractions in

polar regions. For explanations please refer to the caption of Fig. 1b.

the lower atmosphere, but we do not diagnose a relationship

between dry deposition rate coefficients and vertical disper-

sivity for the ensemble of AeroCom models, although such a

relationship might exist within individual models.

Note that the vertical aerosol dispersivity is also strongly

influenced by the intensity of the vertical mixing, which lifts

the aerosol to greater heights, at that location of the emission.

In addition, the vertical dispersivity depends on the height of

emission. This is an issue for volcanic, industrial and also

for wildfire emissions. These have sources that are often sit-

uated above the planetary boundary layer, leading to elevated

residence times. Another sensitive, but not well-constrained

process is the representation of aerosol scavenging by ice at

low temperatures in the higher atmosphere (e.g., Hendricks

et al., 2004; Henning et al., 2004) (see also Table 8).

9.3 Meridional long-range transport

A similar diagnostic as for the vertical dispersivity can be

performed for the horizontal distribution of aerosol. The

mass fractions in polar regions can serve as an indicator for

the horizontal dispersivity, i.e., for meridional long-range

transport, because polar regions are far from the aerosol

sources. We assume here that the differences in the simu-

lated spatial distributions of the sources have no influence on

the results. This assumption is justified as our analysis on

the AeroCom experiment with unified sources demonstrated

(Textor et al., 20063). Figure 12 shows the mass fractions

of aerosols south of 80◦ S and north of 80◦ N, and the corre-

sponding diversities of the model results.

The all-models-averages of the mass fractions at the poles

in relation to total aerosol are 2.5% (δ=90%) for AER, 6%

(δ=55%) for SO4, 4.2% (δ=71%) for BC, 3.3% (δ=140%)

for SS, 3.3% (δ=76%) for POM, and 1.5% (δ=102%) for DU,

respectively. We obtain very high diversities, especially for

the “natural” species. In twelve of the 16 models the high-

est mass fractions at the poles are found for SO4, in three

models long-range transport is most efficient for BC, and

in one for SS. In twelve models the lowest mass fractions

are found for DU, in two for POM, in two for SS. The all-

models-average composition of aerosol particles in polar re-

gions is dominated by SS with 32% of the total mass, fol-

lowed by 31% DU, 26% SO4, 9% POM, and finally 2.1%

BC. We also find little agreement on the ranges of merid-

ional dispersivity in the different models indicated by the

gray shadings in Fig. 12, ranging from 1.4% in MATCH to

14% in GISS. The models with characteristically low ver-

tical dispersivity (KYU, MATCH, MPI HAM, TM5) also

show fairly weak meridional long-range transport, apart from

TM5, where meridional transport is weak, but vertical dis-

persivity is not. Models with characteristically stronger ver-

tical dispersivity (LOA, LSCE, MOZGN, and UIO GCM)

are not systematically linked with stronger meridional long-

range transport. Instead, the latter is more effective in GISS

and GOCART than in the other models.

The transport of SS towards polar regions is not very sig-

nificant in most models, although its most important source

regions are in the southern Pacific. This can be attributed

to its short residence time. Somewhat higher fractions can

however be found in GOCART, MOZGN, and especially in

GISS. Long-range transport is most significant for small par-

ticles, which have longer residence times. Therefore, the

mass fractions in polar regions depend on the contribution of

the fine fraction to the total SS mass, and thus on the emitted

SS size distribution. This explains the large amount of SS in

polar regions found in the GISS model, where the fine mode
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contributes almost 70% of its total mass, see Fig. 8a. This

figure does not however explain the high SS mass fractions

in polar regions for the three other models mentioned above,

which do not have exceptional contributions of fine mode

particles. This can be caused by the quality of our infor-

mation on the particle sizes (see the discussions in Sect. 8.1)

and by the lack of information on the size of the expanded,

ambient particles, which are subject to the simulated trans-

port and deposition processes, see Sect. 8.2. Water uptake is

particularly weak in MOZGN, see Fig. 9, leading to smaller

particles with longer residence times. This could explain the

elevated long-range SS-transport towards the poles in this

model.

When we compare meridional long-range transport and

vertical dispersivity of DU we do not diagnose a correlation

(not shown). Hence, we suggest that long-range transport

takes place at different heights in the models. The travel dis-

tances between the simulated DU sources and polar regions

are similar in all models, and we would thus assume more im-

portant long-range transports for longer simulated DU resi-

dence times. We do not however find such a relationship (not

shown) and conclude that the velocities of meridional DU

transport differ among the AeroCom models. For “anthro-

pogenic” aerosols we find moderately increased efficiencies

of meridional long-range transport in models with slower re-

moval rate coefficients. The (wet) removal rate coefficients

of “anthropogenic” aerosols are correlated with the vertical

dispersivity, as shown above. Consequently, we also find a

positive correlation of vertical dispersivity with the efficiency

of meridional long-range transport for the “anthropogenic”

aerosols (not shown). We suppose that long-range transport

is efficient for fine particles once they have reached the upper

free troposphere, where they have extended residence times.

This effect stands out of the differences in simulated merid-

ional transport provided by the global models.

10 Summary and conclusions

In this paper, we investigated the parameters and processes

that govern the simulated aerosol life cycles in sixteen global

aerosol models. The diversities among the models’ results

have been quantified. Aerosol life cycles are influenced by

many processes that are highly related. The meteorology

of the global model governs horizontal and vertical aerosol

transport and provides the relative humidity that influences

hygroscopic particle growth. In addition, it controls together

with the parameterizations of cloud microphysics the spa-

tial distribution and the strength of precipitation, which in

turn affect the aerosol wet deposition efficiency. Boundary

layer turbulence and surface cover properties largely control

aerosol dry deposition. Furthermore, the aerosol distribution

is influenced by the processes and parameters described in

the aerosol modules themselves. Based on the present Aero-

Com data set it was not possible to differentiate whether the

transport provided by the global model controls the removal

rate coefficients, or if instead contrasting removal processes

result in the observed aerosol dispersal. The separation of

internal aerosol from transport processes would require the

investigation of an inert tracer (e.g., Denning, 1999). The

main conclusions from the AeroCom model intercomparison

are shortly listed below, see also Table 10.

The AeroCom-models-average results for the properties

involved in the life cycle are the following:

– emissions are dominated in mass by SS, followed by

DU, SO4, POM, and BC,

– burdens from greatest to least are: DU, SS, SO4, POM,

BC,

– residence times from longest to shortest are: BC, POM,

DU, SO4, SS,

– rate coefficients for wet deposition increase with the sol-

ubility from DU, BC, POM to SO4 and SS,

– rate coefficients for dry deposition generally correspond

to the particle size and are larger for the SS and DU,

– SO4, BC, and POM are predominantly removed by wet

deposition,

– DU and SS are removed by about two thirds by dry de-

position (high model diversity),

– BC, POM, and SO4 are mainly contained in particles

smaller than 1 µm in diameter,

– BC, POM, and especially SO4 reach greater heights

than the other components.

The established diversities are highest for:

– emissions, particle sizes, residence times, deposition

pathways and rate coefficients of SS, DU, AER,

– aerosol composition,

– water content due to hygroscopic growth and ambient

(wet) aerosol mass

– vertical dispersivity, mass in the free troposphere,

– long-range transport towards the poles,

– the split between convective and stratiform wet deposi-

tion.

The high diversity of the emissions of SS and DU is due to

the differences in the parameterizations of their source fluxes

and the particle sizes. In addition, the meteorology, the meth-

ods employed for nudging and data interpolation, and the

model resolutions also play important roles. The high diver-

sity of the deposition pathways and removal rate coefficients

of SS and DU are probably related to the disagreement on
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the particle sizes, and possibly also to the application of op-

erator splitting techniques, i.e., the sequential solution of the

process equations in numerical models.

The established emission diversities are generally lower

for SO4, BC, and POM because similar data sets are em-

ployed to prescribe their emissions in time and space, and the

diversities reflect therefore mainly the differences of these

data sets. The diversity of the SO4 sources is mainly caused

by different amounts of losses of sulfur-containing precur-

sor gases and by different chemical production rates in the

models.

The wet deposition rate coefficients depend on the effects

of the scavenging efficiency from the particular parameteri-

zations. These include the calculation of the available water,

and the treatment of scavenging by ice, which differ greatly

among the models. In addition, the wet deposition rate de-

pends on the temporal and spatial coincidences of aerosols

and precipitation.

Aerosol dispersal of a given aerosol component should be

more favorable in those models where it has a longer resi-

dence time. For SO4, BC, and POM, we find slightly en-

hanced dispersals in models with the longer residence times,

and a positive correlation between the vertical dispersivity

and meridional long-range transport. Once fine aerosols have

reached the upper free troposphere, wet scavenging shows a

reduced efficiency, and thus meridional long-range transport

is more pronounced. However, we do not find such a rela-

tionship for SS and DU, nor do we find a systemic correla-

tion between their dispersivities and dry particle sizes within

the ensemble of AeroCom models. We suggest that the sim-

ulated meridional long-range transport of these species takes

place at different heights and at different velocities. The de-

gree of aerosol dispersal is not linked to the model resolu-

tion, although it covers a wide range from 304 to 51 200 grid

points in the horizontal and 18 to 40 layers in the vertical

direction, respectively. The diversity of vertical dispersal is

smaller than that of meridional dispersal, but they are of simi-

lar size for a given species. We therefore conclude that model

diversity is propagated from vertical dispersivity to merid-

ional long-range transport.

In some models, a minimum of the aerosol concentration

is simulated in the lowest model layer. As potential reasons

for this minimum we propose the parameterizations of sur-

face exchange processes by turbulent transport, dry deposi-

tion, as well as the use of operator splitting methods to solve

the advection-diffusion-processes equation. Further research

is needed to clarify the reasons for the simulated surface min-

imum, especially, because surface concentrations are com-

pared to observational data for model validation.

Sixteen global aerosol models took part in the compari-

son. The global models are of different architecture, res-

olution, and include various parameterizations for the sub-

grid scale processes, some are climatological models. Imple-

mented into these models are aerosol modules of very differ-

ent complexity. In this study we did not examine the effects

of the different model architectures and types. Instead we fo-

cused on the investigation of globally and annually averaged

quantities to identify disagreements in the simulated aerosol

life cycles. The averaging procedure might smooth out di-

vergences resulting from different model formulations. We

did not investigate any time dependent quantities, like the

amplitude or variability of the simulated annual cycles. We

believe, however, that such studies make more sense in the

context of a model comparison to observations, which will

be discussed in follow-up papers. The data collected in the

framework of AeroCom offer many possibilities to examine

specific processes, and several surveys are under way. These

include comparisons of simulated optical properties and con-

centrations with ground based and satellite data (Guibert et

al., 20061, Kinne et al., 2006; Schulz et al., 20062),with verti-

cal profiles from LIDAR, aerosol light absorption, and more.

Model intercomparisons have often been criticized for cre-

ating peer pressure among the participating groups to con-

vert to all-models-average quantities, but not to improve the

scientific knowledge of the investigated system. The estab-

lishment of the AeroCom initiative has enhanced interactions

within the aerosol scientific community. The publication of

the simulation results on the internet has led to the identifica-

tion of weak components and has provoked the improvement

of specific process parameterizations. In addition, model er-

rors could be identified and removed. The diversities estab-

lished here indicate that aerosol processes in the atmosphere

are still not completely understood. Models might give er-

roneous results under different ambient conditions in climate

change scenarios. A process analysis as carried out in this

study helps to understand the effects of model-specific pa-

rameterizations on macroscopic aerosol features, which can

be validated with observations and within climate simula-

tions. Several processes and parameters, which are particu-

larly relevant for aerosol radiative forcing calculations, with

high diversities are:

– masses of aerosol in the radiatively active fine mode

– dry aerosol composition

– aerosol water content

– vertical aerosol dispersal.

Consequently the improved representation of these processes

and parameters in large-scale aerosol models deserves a high

priority in order to reduce the uncertainty of the climatic im-

pact attributed to aerosol.
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Lohmann, U. and Kärcher, B.: First interactive simulations

of cirrus clouds formed by homogeneous freezing in the

ECHAM general circulation model, J. Geophys. Res., 107(D10),

doi:10.1029/2001JD000767, 2002.

Lohmann, U., Leaitch, W. R., Barrie, L., Law, K., Yi, Y., Bergmann,

D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter,

J., Jeuken, A., Kjellstrom, E., Koch, D., Rasch, P., and Roelofs,

G. J.: Vertical distributions of sulfur species simulated by large

scale atmospheric models in COSAM: Comparison with obser-

vations, Tellus B, 53(5), 646–672, 2001.

Lohmann, U. and Roeckner, E.: Design and performance of a new

cloud microphysics scheme developed for the ECHAM general

circulation model, Climate Dynamics, 12, 557–572, 1996.

Marchuk, G. I.: Methods of Numerical Mathematics, Springer Ver-

lag, New York, 316 , 1975.

Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust

cycle: 1. Design of a soil-derived dust emission scheme, J. Geo-

phys. Res., 100, 16 415–16 430, 1995.

Meloni, D., Alcide di Sarra, Tatiana Di Iorio, and Fiocco, G.: Influ-

ence of the vertical profile of Saharan dust on the visible direct

radiative forcing, J. Quant. Spectr. Radiat. Trans., 93, 397–413,

2005.

Metzger, S., Dentener, F., Krol, M., Jeuken, A., and Lelieveld, J.:

Gas/aerosol partitioning II: global modeling results, J. Geophys.

Res. A., 107(D16), 4313, doi:10.1029/2001JD001103, 2002a.

Metzger, S. M., Dentener, F. J., Lelieveld, J., and Pandis, S. N.:

Gas/aerosol partitioning I: a computationally efficient model,

J. Geophys. Res., 107(D16), 4312, doi:10.1029/2001JD001102,

2002b.

Miller, R. L., Cakmur, R. V., Perlwitz, J., Koch, D., Schmidt, G. A.,

Geogdzhayev, I. V., Ginoux, P., Prigent, C., and Tegen, I.: Min-

eral dust aerosols in the NASA Goddard Institute for Space Sci-

ences ModelE atmospheric general circulation model., J. Geo-

phys. Res., in press, 2006.

Ming, Y., and Russell, L. M.: Predicted hygroscopic growth of sea

salt aerosol, J. Geophys. Res., 106, 28 259–28 274, 2001.

Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of

marine aerosol generation via whitecaps and wave disruption, in:

Oceanic Whitecaps and Their Role in Air-Sea Exchange, edited

by: Monahan, E. C., Spiel, D. E., and Davidson, K. L., D. Reidel,

167–174, 1986.

Mueller, J.-F.: Geographical distribution and seasonal variation of

surface emissions and deposition velocities of atmospheric trace

gases, J. Geophys. Res., 97, 3787–3804, 1992.

Mueller, J.-F. and Brasseur, G.: IMAGES: A three-dimensional

chemical transport model of the global troposphere, J. Geophys.

Res., 100, 16 445–16 490, 1995.

Myhre, G., Berntsen, T. K., Haywood, J. M., Sundet, J. K., Holben,

B. N., Johnsrud, M., and Stordal, F.: Modelling the solar radia-

tive impact of aerosols from biomass burning during the Southern

African Regional Science Initiative (SAFARI-2000) experiment,

J. Geophys. Res., 108, 8501, doi:10.1029/2002JD002313, 2003.

Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. d., Fenhann,

J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T.,
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