

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © ACM 2015 This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ACM, In
Proceedings of the 52nd Annual Design Automation Conference (p. 40).
http://dx.doi.org/10.1145/2744769.2744798.

http://dl.acm.org/citation.cfm?doid=2744769.2744798

http://hdl.handle.net/10251/65584

ACM

Espinosa Garcia, J.; Hernández Luz, C.; Andrés Martínez, DD.; Ruiz García, JC. (2015).
Analysis and RTL Correlation of Instruction Set Simulators for Automotive Microcontroller
Robustness Verification. 52nd Design Automation Conference (DAC 2015). ACM.
doi:10.1145/2744769.2744798.

Analysis and RTL Correlation of Instruction Set Simulators
for Automotive Microcontroller Robustness Verification

Jaime Espinosa†, Carles Hernandez‡, Jaume Abella‡, David de Andres†, Juan Carlos Ruiz†

†Universitat Politècnica de València
Valencia, Spain

{jaiesgar, ddandres, jcruizg}@disca.upv.es

‡Barcelona Supercomputing Center
Barcelona, Spain

{carles.hernandez, jaume.abella}@bsc.es

ABSTRACT

Increasingly complex microcontroller designs for safety-rele–
vant automotive systems require the adoption of new meth-
ods and tools to enable a cost-effective verification of their
robustness. In particular, costs associated to the certifica-
tion against the ISO26262 safety standard must be kept low
for economical reasons. In this context, simulation-based
verification using instruction set simulators (ISS) arises as
a promising approach to partially cope with the increasing
cost of the verification process as it allows taking design
decisions in early design stages when modifications can be
performed quickly and with low cost. However, it remains to
be proven that verification in those stages provides accurate
enough information to be used in the context of automo-
tive microcontrollers. In this paper we analyze the existing
correlation between fault injection experiments in an RTL
microcontroller description and the information available at
the ISS to enable accurate ISS-based fault injection.

1. INTRODUCTION
An increasing number of complex functionalities in auto-

mobiles rely on electronic components such as airbag mod-
ules, electronic parking brakes, etc [11, 19]. Thus, modern
cars may include up to 100 million lines of code that need
to be integrated into the least number of Electronic Control
Units (ECUs) for cost contention [5]. Moreover, the amount
of software in cars is expected to further increase in the fu-
ture. Hence, more powerful and complex microcontrollers
implemented with more integrated and less reliable technol-
ogy are needed to respond to this increasing performance
demand. However, hardware complexity challenges V&V
processes to adhere to safety standards.

Complex and error-prone microcontrollers require the adop-
tion of new methods and tools to enable a cost-effective ro-
bustness verification of safety-relevant systems. With the
adoption of safety-related certification standards like ISO-
26262 [9] in the automotive domain robustness verification
has become one of the fundamental stages in the certification
process for any new design. Robustness verification is car-
ried out at different stage levels by performing intensive fault
injection experiments [3]. Complex microcontroller verifica-

tion challenges product design cycles, what can lead to fi-
nancial loss and severe delays especially if left for the final
production stages (i. e. hardware prototypes). Hence, de-
signers have been striding to move this procedure towards
the early stages of design, in order to detect design flaws or
safety threats in a timely (and low-cost) manner.

Simulation-based verification has been shown to reduce
costs associated with the robustness verification process as
any misbehavior or defect can be corrected early. Unfor-
tunately, simulation-based verification is often carried out
at the gate level, and so the testing process is extremely
time-consuming. With a higher level of abstraction such
as RTL, the burden is reduced but it is still overwhelming
for repeated use. This fact renders impractical fault injec-
tion after each design modification. Thus, a sheer increase
in simulation speed is needed while still obtaining accept-
ably accurate results. Simulation-based verification using
Instruction-Set Simulators (ISS) arises as one of the most
promising approaches to partially cope with the increasing
complexity of the verification and test process of complex
systems. The main benefits of this low-cost verification step
are (1) the reduction of the verification time and (2) the
ability to start the verification process long before having
the RTL description of the processor, thus saving costs.

However, performing meaningful fault injection experi-
ments using an ISS simulator is challenging as the modeled
processor lacks most of the information required for accu-
rately injecting faults. In fact, the majority of the potential
injection nodes that are present at more detailed abstrac-
tion levels like RTL or gate-level are missing. For exam-
ple, typical ISS-based fault injection experiments that rely
on injecting faults in the register file [7][20] cannot be used
to estimate failure rate metrics as required by certification
standards if it is not possible to determine the probability
that a given fault present at any possible microcontroller net
or gate propagates to the register file.

In this paper we increase the confidence in the fault injec-
tion experiments performed with an ISS by carrying out a
thorough correlation of the fault injection experiments in an
RTL microcontroller description with the information avail-
able at the ISS. In particular, we propose instruction’s di-
versity as a metric to enable a coarse-grain correlation of
the probability that faults injected in the RTL propagate
to the system outputs (i.e. the probability that a fault be-
comes a failure). Instruction’s diversity is computed as the
number of unique instruction types (opcodes) used by the
application and represents the area the application exercises
by assuming all instructions make a uniform use of microcon-
troller resources. Furthermore, for permanent fault models
– the scope of this work – it is independent of the particular
order in which instructions within this application are exe-
cuted. This information is crucial to perform efficient fault

Integer Unit
Oper.
REGS

State
REGS

Mem Glue
Logic

ALU

Result
REG

Processor Description

Cache Memory

Functional Emulator

Timing Simulator

Mem REGS
ISA

Pipeline Caches

Queues BUS

Instruction Set Simulator

(a) (b)

Figure 1: (a) RTL processor description (b) Mi-
croarchitectural processor description

injection campaigns that simulate programs exercising only
the hardware components that have been modified1 so that
impact of faults can be understood with a limited number
of short simulations. While data reported does not include
latent errors not manifested at off-core boundaries, mecha-
nisms such as LiVe [7] can be used in the context of lockstep
processors for safety-critical systems to enforce latent errors
to manifest at off-core boundaries, where errors are detected
by lockstep execution (and reported as failures in our work).

2. TOWARDS SIMULATION-BASED

ROBUSTNESS VERIFICATION
In the safety-related hardware development process, fault

injection is a valuable method for the verification of hard-
ware design in the automotive domain as indicated in ISO26262
Part 5 clause 7.4.4.1 [9] for ASIL B, C and D2. During the de-
velopment phase, simulation-based fault injection methods
are typically employed instead of physical-based methods
–such as injecting disturbance in power lines, electromag-
netic interference (EMI), etc.– due to their repeatability,
controllability and cost. Fault injection using simulation
can be performed using different levels of abstraction like
functional, RTL, or gate-level. The current state of prac-
tice uses RTL and gate-level experiments to test hardware
robustness as these methodologies have been shown to pro-
vide good accuracy [15]. A commonality of every simulation
methodology is that it has to be related with the techniques
used at silicon level for validation. For proper use of ISS to
that end, these must be qualified in the same way.

2.1 Fault injection at the RTL
A circuit described at the functional level does not pro-

vide information on the internal components, but only an
method to obtain outputs from inputs. Conversely, RTL
description of a circuit comprises contents of registers and
combinational logic, expressed in terms of logic functions
and connections as shown in Figure 1(a). Specifically, the
detail on the intermediate steps in terms of internal signals
and operands, which allows for later synthesis of the de-
sign, renders it an ideal candidate for fault injection. Two
are the main benefits. First, it is the lowest level –most
detailed– and closest to the level where faults happen in the

1Input data triggering injected faults depends on the pro-
grams used. Devising software-based tests [17] with specific
coverage for the particular processor evaluated is beyond the
scope of this work, so we use performance benchmarks.
2ASIL stands for Automotive Safety Integrity Level. There
are four levels, from A to D, being D the highest one.

real system –the physical level– which, without loss of gen-
erality, achieves a good degree of representativity. Second,
since the next level in detail –the gate level– does include
the implementation technology in the description of the sys-
tem, results of injection in RTL stay valid across different
implementations, platforms, etc.

2.2 Fault injection at the ISS Level
Typically, an ISS consists of two differentiated parts: the

functional emulator and the timing simulator (see Figure 1(b)).
The functional emulator contains the full description of the
instruction set architecture (ISA) and keeps the architec-
tural state of the processor (i.e. architectural registers and
memory data). A functional emulator is able to run appli-
cation code that has been compiled for a particular archi-
tecture and to perform its execution in such a way that the
memory data and architectural registers contain an exact
representation of the real processor state. In other words,
the functional emulator is the interpreter. The timing sim-
ulator interacts with the functional emulator and mimics
with some degree of accuracy the timing behavior of the
different instructions during their execution. To do so, the
timing simulator models the cache memories, the processor
pipeline, the register file structure, and several other queues
and structures depending on the target degree of accuracy.
Thus, it allows computing information like the number of ex-
ecution cycles, cache hits/misses and the like. Some imple-
mentations of an ISS may have functional and timing sim-
ulation integrated, although this typically challenges their
flexibility.

In this paper we focus on the functional part of the ISS
given that it is the highest (and so the cheapest) abstrac-
tion level. This is a necessary step to validate the suitability
of an ISS for the robustness verification of safety-relevant
processors. We consider little timing information (basically
instructions latency). Moreover, by working mostly with the
functional part of the ISS results mainly depend on the ac-
tual ISA used and remain valid for any implementation of
such ISA (or the method can be ported easily). Of course,
this comes at the expense of trading off some accuracy. Still,
as we show later, the functional part of an ISS already pro-
vides highly-valuable information to characterize the behav-
ior of microcontrollers in presence of faults.

2.3 ISS-based Verification
Safety-relevant systems need to go through a certification

process. In automotive systems the ISO26262 functional
safety standard [9] specifies the safety requirements that the
different system components need to fulfill in relation with
the overall system’s safety. Simulation-based fault injection
is one of certification-friendly methodologies for the safety
requirements verification when analytical methods are not
considered to be sufficient as specified in ISO26262 Part
5 Table 3. Note that this is the case for complex hard-
ware components verification like a microcontroller. Cur-
rent practice on simulation-based verification is performed
at the RTL and gate-level descriptions of the circuit as these
methodologies have been shown to provide good accuracy in
automotive microcontrollers [1].

The use of an ISS for verification in the context of ISO26262
is challenging as the correlation of the experiments at this
abstraction level with the physical level tests is not a straight-
forward task [12]. In this sense, a first step in that direction
is to correlate with a closer level such as RTL.

Robustness verification using ISS brings several benefits

that can significantly contribute to the cost and complexity
reduction of the verification process. We target the achieve-
ment of the following three main benefits of using ISS-based
robustness verification: (B1) Fast simulation time, (B2) De-
tection of safety misbehavior at very early design stages of
product development and (B3) Improvement of the hard-
ware/software integration.

B1 speaks about the need for reducing simulation time to
be able to perform the verification of increasingly complex
circuits. Furthermore, increasing the simulation speed also
allows the validation of more significant workloads where
not only functional deviations related to safety can be de-
tected, but also timing-related deviations [7]. Speeding up
this process helps microcontroller designers evaluate the im-
pact on safety of modifications quickly (e.g., adding new in-
structions). Differently, B2 refers to the economical gain as-
sociated to the early detection of design malfunctions which
is specially significant in the case of ISS-based simulation,
as it does not require the actual microcontroller to be fully
described. Instead, a complete definition of the ISA (or
the subset of the ISA to be analyzed) suffices to perform
this step. Finally, B3 talks about the benefits of enabling
ISS-based simulations in the safety-related software devel-
opment. On one hand, ISS-based fault injection will help
improving the modeling of the hardware/software interac-
tions with respect to the system’s safety as defined in [9].
On the other hand, as system software development relies
mainly on the information available at the ISS (e.g., architec-
tural and system registers), being able to perform meaning-
ful fault injection experiments at the ISS level also opens the
door to meaningful reliability analysis of the software com-
ponents and layers long before the actual microcontroller has
been deployed. Thus, software and hardware development
and verification can occur in parallel to some degree, hence
reducing the time-to-market, which is a key metric in the
automotive domain.

3. CORRELATING RTL WITH ISS FAULT

INJECTION
In this paper we consider the probability of failure Pf as

the probability that a fault is propagated to off-core bound-
aries. We have selected off-core boundaries as the point
of failure manifestation as this is the exact point at which
light-lockstep cores outputs are compared for error detec-
tion purposes. Microcontrollers implementing light-lockstep
compare any off-core activity (i.e., memory read/write, I/O
read/write), but cannot detect faults that do not propagate
outside cores (e.g., latent faults in registers or cache memo-
ries). Microcontrollers implementing light-lockstep like the
Infineon AURIX [8] and the STMicroelectronics SPC56XL60/54
family [21] are widely used for safety-relevant applications
in the automotive domain.

To correlate RTL fault injection experiments with the ISS
we analyze the information from the applications that are
executed in the microcontroller that can be used to ap-
proximate failure manifestation probability. As the ISS de-
codes all instructions of the executed applications, informa-
tion is available at the granularity of instructions. In this
regard, we make the following hypothesis: the probability
that a fault present in the microcontroller becomes a failure
when executing a given set of instructions Is is a function
of the actual executed instructions Is, their input data, and
the temporal behavior of the executed instructions. Thus,
Pf = f(Is, inputs, time). Is temporal behavior includes the

instruction dependences and their latency, as well as the
exact point in time at which faults are present in the mi-
crocontroller. Note that our initial hypothesis about the
fact that the failure probability depends on the microcon-
troller’s spatial and temporal vulnerability, is in line with the
traditional analysis of processor vulnerability factors [14] in
the high-performance domain, where processors are indeed
more complex than microcontrollers used in the automotive
domain. In the previous Pf expression, Is and input data
determine the processor’s spatial vulnerability, whereas the
Is temporal behavior defines the microcontroller’s temporal
vulnerability.

However, expressing Pf as a function of Is, its input data,
and Is temporal behavior is still an overly complex func-
tion due to the value space for input data (e.g. 232 different
values for a 32-bit input). To reduce the problem space we
consider that the data’s universe can be restricted and/or
upper bounded if, either we are able to introduce enough
data variability, or we use corner cases for the applications’
input data. Instructions temporal behavior can be captured
using ISS by annotating the exact cycle at which the differ-
ent instructions in a given Is enter and leave a given micro-
controller unit. However, in this paper we remove the de-
pendence on the temporal utilization of the failure probabil-
ity by focusing on permanent fault models, e.g. stuck-at-1,
stuck-at-0 and open-line. We focus on permanent faults not
only to remove the temporal variable but also because the
number of injections to perform in every node in order to ob-
tain significant results for transient faults is extremely high.
For example, the determination of single-point fault and la-
tent fault metrics as required by ISO26262 [9] hardware cer-
tification typically relies on the use of software-based tests
(SBT) [17] and stuck-at fault models. Note that the huge
execution time SBT require to achieve high coverage pre-
cludes the use of fault-models requiring very large number
of fault injections.

With the assumptions above Pf can be reformulated as
Pf = f(Is). This simple definition of Pf implies that the
probability of an injected fault to become a failure depends
on the set of instructions exercised regardless of the order in
which they are executed and the particular existing depen-
dences across instructions. In other words, our hypothesis is
that the probability that a failure is triggered by a given set
of instructions Is is proportional to the processor utilization
(in terms of area). This hypothesis translates the problem
of determining the failure manifestation probability in the
problem of determining what is the processor utilization that
a given set of instructions makes.

Determining Microcontroller’s Utilization. We in-
troduce the diversity metric to determine the processor uti-
lization for a given application. To relate instruction’s di-
versity with the area exercised we consider these items:
1) The probability that a given instruction triggers a fail-
ure depends on the number of functional units a given in-
struction exercises. For example, all instructions have the
same probability of triggering a failure at decode and fetch
stages as these stages are used by every instruction [18].
On the contrary, different type of instructions, like logical
and arithmetic instructions, do not necessarily use the same
functional units.
2) Different functional units have different area occupation.
From an RTL perspective this means that the number of
fault injection points in a given functional unit is not the
same for all of them and that the number of fault injec-
tion points is not necessarily proportional to the occupied

Leon3

Integer

 Unit

Data

Cache

Inst

cache

M
e
m

o
ry

Data

Address

Fault Injection Analysis

RTL verification tool

Figure 2: RTL robustness verification framework

area. The first concept speaks about the fact that in homo-
geneously detailed RTL representations of functional units
the number of fault injection nodes is closely related to the
area of a given component. The latter concept is related
to the fact that heterogeneously detailed HDL descriptions
of functional units lead to a decoupled relationship between
injectable nodes and area occupancy.

To be able to deal with the heterogeneous processor uti-
lization originated due to (1) and (2), diversity is computed
for the the different functional units. Instruction’s diver-
sity of the mth functional unit, Dm, can be computed using
the ISS by dumping instructions information and finding the
number of accesses to any of the available functional units for
each instruction. Finally, Dm has to be related with the fail-
ure probabilities for the different processor functional units.
The probability of failure of the mth processor unit Pm

f can
be computed using the following equation:

Pf =

Nmod∑

m=1

α
m ∗ Pm

f (1)

In this equation Nmod is the number of processor compo-
nents and αm is used to ponderate the effect of the hetero-
geneity in detail. αm is in the range [0, 1] and represents the
fraction of the total area occupied by the processor unit m.

It is important to remark that the diversity metric inher-
ently assumes that the utilization of resources within a given
functional unit that instructions make is uniform.

Note that the area exercised by different instructions can
be partially overlapped. Hence, executing different instruc-
tion types when few of them have been executed is likely
to increase Pf , whereas executing them when many of them
have been executed is less likely to increase Pf because the
units accessed have been probably accessed by previous in-
struction types.

4. EXPERIMENTAL VALIDATION

4.1 Experimental Setup
In this section we analyze how accurately RTL fault injec-

tion experiments can be reproduced using a microcontroller
ISS. To do so, we inject faults in the RTL microcontroller
model and measure the percentage of injected faults propa-
gating to failures. Any mismatch detected when writing to
memory is considered a system failure. Figure 2 illustrates
the fault injection methodology followed in this paper. For
the analysis and correlation we use the 32-bit Leon3 sparcv8
microcontroller as both the ISS and RTL description of this
circuit are available [22]. This microcontroller consists of
a 7-stage pipeline for integer operations (IU). In this mi-
crocontroller all instructions use all pipeline stages. The
RTL processor description follows the structural VHDL de-

Benchmarks

Automotive Synthetic

Instructions puwmod canrdr ttsprk rspeed membench intbench

Total 111866 96492 96053 75058 19908 2621

Integer Unit 111862 96488 96049 75054 19908 2621

Memory 40613 33766 34905 25155 4385 19

Diversity 47 48 47 47 18 20

Table 1: Benchmarks characterization

sign guidelines and it models the IU and the cache memory
(CMEM) as separate components.

In this study we inject faults using simulation commands
as described in [10]. The choice of injected faultload is single
hardware faults of permanent type, targeted to VHDL sig-
nals, ports and variables which appear at a fixed injection
instant and cause either stuck-at-1, stuck-at-0 or an open
line. It has been applied to all available points from the IU
and CMEM microcontroller units.

For the workload in this study we use the EEMBC Au-
tobench suite [16] which reflects current real-world demand
of some automotive CRTES and 2 synthetic benchmarks,
which have been designed to use intensively memory instruc-
tions or integer instructions, and provide additional diversity
values. Table 1 shows the benchmarks analyzed.

4.2 Experimental Results
In this section we proceed incrementally to validate the

hypothesis made in the previous section. First, we show
that the impact of inputs data variability in the probabil-
ity of failure is captured for applications executing a large
number of instructions. Later, we analyze the effect of the
instructions temporal behavior. Finally, we show the exist-
ing correlation between the processor’s utilization and the
probability of failure.

Application’s data. We analyze the impact of input
data variation on the probability of failure making two differ-
ent experiments. For the first experiment we have injected
faults in short excerpts of 2 different subsets (consisting of
3 different applications each) of EEMBC benchmarks. The
selected excerpts represent the initialization phase of the
benchmarks where the data to be used in the experiment
are read and allocated in memory. All three applications
within a subset have identical code and the only difference
among them comes from the different input data they re-
quire. Each subset of applications consists of a different
Is. Figure 3 shows the effect of input data variability in
the probability of failure (as Is is fixed). Differences across
benchmarks are meaningful, up to 4 percentage points (pp),
so in principle the impact of data variability cannot be ne-
glected for short applications.

We have performed a second experiment to show that in-
put data effect can be removed when benchmarks execute
a significant number of instructions. To do so, we have
injected faults in the microcontroller’s IU and run bench-
marks with different number of iterations (2, 4 and 10 iter-
ations). Figure 4 shows results for the rspeed application.
As shown, Pf remains constant regardless of the executed
iterations meaning that the effects of new realistic data ex-
ercised in the subsequent iterations are already included in
the data space covered with 2 iterations. Further, Pf is ex-
actly the same for the other benchmarks that use the same
type of instructions. Therefore, we can conclude that for
sufficiently long benchmarks, inputs is no longer needed in
Pf = f(Is, inputs, time). Regarding fault detection latency,

0%

2%

4%

6%

8%

10%

12%

14%

16%

a2time ttsprk bitmap

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Benchmark excerpt

0%

5%

10%

15%

20%

25%

rspeed tblook basefp

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Benchmark excerpt

(a) 8 types of instructions (b) 11 types of instructions

Figure 3: Input data variation in 2 sets of bench-
mark excerpts with uniform instruction types and
numbers, using stuck-at-1 injections at integer unit

0%

5%

10%

15%

20%

25%

30%

35%

rspeed2 rspeed4 rspeed10

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Benchmark iterations

0

500

1000

1500

2000

2500

rspeed2 rspeed4 rspeed10

M
a

x
.

p
ro

p
a

g
a

ti
o

n
 l

a
te

n
cy

 (
μs

)

Benchmark iterations

(a) (b)

Figure 4: Input data variation impact analyzed with
2, 4, and 10 full iterations of benchmark rspeed using
stuck-at-1 injections at integer unit

maximum latency grows with the number of iterations (see
plot (b)) due to those faults affecting data that is not used
until the last part of the program, after the iterations, in line
with the observations in [7]. Thus, 2 iterations provide the
same information as 10, but allow reducing fault injection
and analysis time.

Temporal Behavior. The next independent variable to
clear from Pf = f(Is, inputs, time) is time. In the case of
permanent faults one expects a fault to become a failure
regardless of when it is triggered. In order to prove this, we
have evaluated ttsprk and puwmod benchmarks that have
exactly the same diversity, so they execute the same type
of instructions, but they execute them in different order.
As shown in Figure 5, the percentage of propagated faults
for both benchmarks is roughly identical for different types
of permanent faults. A different case would happen with
transient faults, as their impact can vary greatly depending
on the instructions being executed at the moment faults hit
the system. We let the analysis of the impact of transient
faults as future work.

Microcontroller Utilization. Finally, we check the hy-
pothesis that the probability of failure mainly depends on
the instruction set (Is) used in the benchmark. To do so,
we study the correlation between utilization of the different
instructions – which relates to the spatial utilization of the
microcontroller – and Pf . Furthermore, we also check that
the correlation holds when applied to the IU and CMEM
modules separately. We identify instruction diversity as
the appropriate metric to determine the processor’s spatial
utilization.

Figures 5 and 6 present RTL injection results for the
IU and CMEM, respectively for stuck-at-0, stuck-at-1, and
open-line fault models. The first observation is that, for the

0%

5%

10%

15%

20%

25%

30%

35%

40%

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Automotive Benchmarks

Stuck-at-1

Stuck-at-0

Open line

Synthetic Benchmarks

Figure 5: Fault injection experiments for different
benchmarks and fault models at IU nodes.

0%

5%

10%

15%

20%

25%

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Automotive Benchmarks

Stuck-at-1

Stuck-at-0

Open line

Synthetic Benchmarks

Figure 6: Fault injection experiments for different
benchmarks and fault models at CMEM nodes.

automotive benchmarks, Pf is almost constant despite the
fact that the executed benchmarks present different num-
ber and distribution of the executed instructions (see Table
1). However, if we pay attention to the instruction diver-
sity we realize that these 4 benchmarks use almost the same
number of different instructions as given by the diversity
factor. To prove that Pf is coupled with the instruction
diversity we also used two different synthetic benchmarks.
As these benchmarks are designed to used different Is we
observe some variability in the Pf .

Finally, Figure 7 correlates Pf for the different bench-
marks used in this study with the instruction diversity. To
increase the number of points in the plot we also consider
the benchmarks excerpts shown before. In these benchmarks
the effect of input data variability is minimized by including
the Pf value of all 3 benchmarks of each subset.

Simulation time.In order to obtain the fault injection
data for the complete benchmark executions, up to 25,478
hours of computing time have been employed, distributed in
2 massively-parallel clusters and 2 powerful workstations.In
contrast, less than 300 computing hours on a single work-
station is enough for performing the same number of ex-
periments with an ISS. This illustrates the importance of
qualifying low-cost methods of achieving accurate results.

5. RELATED WORK
Fault injection methodologies are widely employed for the

microcontrollers robustness verification in the automotive
domain [15]. Fault injection experiments can be performed
at several abstraction levels to exploit the existing accuracy
cost trade-off [1]. RTL and gate-level fault injection ex-
periments are the most adopted approaches to perform the
certification of hardware products against certification stan-

y = 0.0838ln(x) - 0.0191

R² = 0.9246

0%

5%

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50

%
 P

ro
p

a
g

a
te

d
 f

a
u

lt
s

to
 f

a
il

u
re

s

Instruction diversity

Figure 7: Propagated faults in terms of instruction
diversity for the stuck-at-1 model in IU.

dards [9]. Practitioners have performed fault injection at the
logic and RTL levels using different techniques. A widely-
used method is the injection in the HDL through simulator
commands [10], which works well for most of the fault mod-
els described in the literature. Furthermore, some additional
fault models, such as those involving several injection points
– short-circuit, multi-bit injection – can be applied if the
more intrusive technique of saboteurs is used [2] where an
instrumentation of the model – and the consequent decrease
in simulation speed – is required.

Fault models representativeness was validated for logic/RTL
levels [6]. For higher abstraction levels like the ISS previous
work pointed out the difficulties of correlating the results
with experiments at the physical level [12]. The majority
of works at the ISS level focus on processor’s reliability esti-
mation, which is obtained by the determination of the archi-
tectural vulnerability factor (AVF) [14]. The AVF is deter-
mined by the fraction of the architectural bits contributing
to the processor’s reliability. A similar approach is the one
in [4] where the concept of instruction vulnerability factor
(IVF) is proposed to evaluate how faults in every instruction
affect the final application output. Likewise, in [18] the IVF
is used to define a compilation process taking into account
ISS reliability information. An attempt of correlating ISS
and logic/RTL was done in [13] focusing on the correspon-
dence between instruction and low-level fault models. In
this paper we focus on showing the correlation of results of
RTL fault injection and the data available at the ISS level.

6. CONCLUSIONS
Microcontroller verification based on fault-injection is a

key approach in the automotive domain, specially for the
most critical functionalities as detailed in ISO26262. How-
ever, early detection of design flaws is incompatible with
having a detailed description of the microcontroller such as
RTL or gate-level ones. Moreover, fault injection in RTL
or gate-level designs is painfully slow. Therefore, there is a
need for having low-cost models of hardware that can be had
at early stages of the design and provide accurate-enough in-
formation. The ISS is one of those as it is needed to allow
software providers to start their developments before the
hardware is ready.

In this paper we apply correlation between fault injection
in the ISS and in the RTL showing that highly accurate re-
sults can be had for different permanent fault models. In
the study we prove that the order of instructions in the ex-
ecution and their input data are roughly irrelevant for per-
manent faults. Instead, the different types of instructions
exercised by the benchmarks run in the ISS are the key dif-
ference towards measuring fault propagation.

Acknowledgements

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking VeTeSS project un-
der grant agreement number 295311. This work has also
been funded by the Ministry of Science and Technology of
Spain under contract TIN2012-34557 and HiPEAC. Jaume
Abella is partially supported by the Ministry of Economy
and Competitiveness under Ramon y Cajal postdoctoral fel-
lowship number RYC-2013-14717.

7. REFERENCES
[1] ARTEMIS Joint Undertaking. VeTeSS project:

www.vetess.eu.
[2] J.-C. Baraza, et al. Enhancement of fault injection

techniques based on the modification of vhdl code. IEEE
Transactions on VLSI, 16(6):693–706, June 2008.

[3] Alfredo Benso et al. Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation. Kluwer
Academic Publishers, 2003.

[4] D. Borodin et al. Protective redundancy overhead reduction
using instruction vulnerability factor. In CF, 2010.

[5] R.N. Charette. This car runs on code. In IEEE Spectrum
online, 2009.

[6] Pedro Gil, et al. Fault representativeness. Technical report,
DBench project, IST 2000-25425 [Online]. Available:
http://www.laas.fr/DBench, 2002.

[7] C. Hernandez et al. Live: Timely error detection in
light-lockstep safety critical systems. In DAC, 2014.

[8] Infineon. AURIX - TriCore datasheet. highly integrated
and performance optimized 32-bit microcontrollers for
automotive and industrial applications, 2012.
http://www.infineon.com/.

[9] International Organization for Standardization. ISO/DIS
26262. Road Vehicles – Functional Safety, 2009.

[10] E. Jenn, et al. Fault injection into VHDL models: the
mefisto tool. In FTCS, 1994.

[11] G. Leen et al. Expanding automotive electronic systems.
IEEE Computer, 35(1), 2002.

[12] Man-Lap Li, et al. Accurate microarchitecture-level fault
modeling for studying hardware faults. In HPCA, 2009.

[13] Michail Maniatakos, et al. Instruction-level impact analysis
of low-level faults in a modern microprocessor controller.
IEEE Transactions on Computers, 60(9):1260–1273, 2011.

[14] S.S. Mukherjee, et al. A systematic methodology to
compute the architectural vulnerability factors for a
high-performance microprocessor. In MICRO, 2003.

[15] J.-H. Oetjens, et al. Safety evaluation of automotive
electronics using virtual prototypes: State of the art and
research challenges. In DAC, 2014.

[16] J. Poovey. Characterization of the EEMBC Benchmark
Suite. North Carolina State University, 2007.

[17] M. Psarakis, et al. Microprocessor software-based
self-testing. Design Test of Computers, IEEE, 27(3):4–19,
May 2010.

[18] S. Rehman, et al. Reliable software for unreliable hardware:
Embedded code generation aiming at reliability. In
CODES+ISSS, 2011.

[19] S. Rohr, et al. An integrated approach to automotive safety
systems. SAE Automotive Engineering International
magazine, September 2000.

[20] B. Sangchoolie, et al. A study of the impact of bit-flip
errors on programs compiled with different optimization
levels. In EDCC, 2014.

[21] STMicroelectronics. 32-bit Power Architecture
microcontroller for automotive SIL3/ASILD chassis and
safety applications, 2014.

[22] http://www.gaisler.com/cms/index.php?option=com_
content&task=view&id=13&Itemid=53. Leon3 Processor.
Areroflex Gaisler.

