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Abstract
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gripping, fixturing and part feeding, there are situations in which a rigid body is subject to multiple
frictional contacts with other bodies. It is proposed to develop a systematic method for the analysis and
simulation of such systems. A detailed study is presented on rigid body impact laws, and the assumption
of contact compliance is investigated.
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1 Introduction
1.1 General

In many engineering applications such as assembly of
mechanical components, gripping, fixturing and part feeding, there
are situations in which a rigid body is subject to multiple frictional
contacts with other bodies. It is proposed to develop a systematic
method for the analysis and simulation of such systems.

1.2 Literature

In most of the previous work on dynamic analysis and simulation
of mechanical systems, the emphasis is on the dynamics of linkages
which, for the most part, are characterized by bilateral, holonomic
constraints [24,7]. But there is much less literature about systems in
which there are multiple contacts between rigid bodies.

There are at least two key factors that make this a challenging
research problem. Firstly, since the mechanical system is
characterized by unilateral, frictional constraints, the topology of the
system varies with time. That is, each time when a contact is formed
or broken, or when a rolling contact changes to a sliding contact, the
mobility of the mechanical system and the structure of the
differential equations that characterize the system change. Secondly,
empirical frictional laws, such as Coulomb’s law, engender
inconsistencies and ambiguities when they are used in conjunction
with the equations of rigid body mechanics. This is shown in a later
section.

It is convenient to use rigid body model instead of a more
elaborate and perhaps more accurate elastic or elastic-plastic model.

This is because the governing equations for rigid body models are
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simpler -- they are described by a system of ordinary differential
equations.

When solving the ordinary differential equations for mechanical
systems with constraints, there are methods in analytical mechanics
to reduce the dimension of the system of ordinary differential
equations to the degree of freedom of the mechanical system [24]. For
problems involving unilateral contacts, it is necessary to reformulate
the system of equations each time a new contact is established or an
old contact disappears. This is quite cumbersome if the number of
contacts is large. For such mechanical systems, the Lagrange
multipliers approach is much more flexible and efficient.
Furthermore, the multipliers are directly proportional to the contact
and friction forces. Lotstedt [18] presented a method to find the
normal forces and the friction forces by reducing the problem to a
quadratic programming problem.

Lotstedt [17,18] developed a computer algorithm for simulation of
systems with unilateral constraints. However, impacts were modeled
using Newton's law for direct central impacts which states the
velocity of separation after impact is a fraction of the velocity of
approach before the impact. Wang and Mason [28] and Gilmore [6]
presented an approach derived from Routh's graphical technique
and Possion's impulse hypothesis which raise one solution from
zero. However, the bases for the impulse hypothesis and Newton's
law are unclear and the solution can be shown to violate the energy
conservation law for some special cases [27].

Inconsistencies and ambiguities in rigid bodies analysis in

problems with friction are well known [3,17,20]. There are situations
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in which no feasible solution for contact forces exist, and others in
which multiple solutions for system accelerations exist.

The use of non-rigid or compliant contact models provide an
alternative method for solving the problem with inconsistencies.
Furthermore, such models also resolve the static indeterminacy that
is inherent in such systems. Goldsmith [5] models the contact force
by a parallel linear spring-damper element called the Kelvin-Voigt
model. The coefficients of stiffness and damping have been assumed
to be known parameters. Khulief and Shabana [11] applied the
Kelvin-Voigt model to multibody systems. They compensated for the
existence of and changes in the joint forces and determined the
material compliance and the damping coefficient from energy
relations. Hunt and Grossley [8] showed that the linear spring-
damper model does not represent the physical nature of energy
transfer process. In their study, an estimate of the dissipated energy
during impact was obtained by a damping force which was function
of the elastic penetration between the colliding surfaces. The analysis
was confined to two free bodies impacting at fairly low velocities.
Lankarani and Nikravesh [15] presented a continuous analysis
method for two spheres having a direct-central impact based on the
Hertz contact model. A hysteresis damping function is used for this
model. The parameters in this model and the effective coefficient of
restitution are determined based on the geometric and material
properties. This model is restricted to one dimensional impact of two
bodies and no tangential impulses are analyzed. Sinha and Abel [26]
analyzed robotic grasping by modeling each contact with a finite

element grid. This allows them to implement nonlinear models for
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friction and deformations. But they restrict the analysis to quasi-

static problems. The mechanics of contact and the relevant principles

of continuum mechanics are discussed in [9]. Applications to the
mechanics of rail-wheel interaction are investigated by Paul and

coworkers [16,23].

Recent work on the mechanics of dry friction is also important in
this research. Oden [22] propose a new friction contact model by
considering the nonlinear and nonlocal frictional model instead of
Coulomb's empirical model.

1.3 Objectives
It is proposed to analyze and simulate mechanical systems with

multiple frictional contacts. In this work, three important

subproblems will be studied:

(1) A method for the simulation of mechanical systems with
changing topologies will be developed.

(2) Impact hypotheses for rigid body models will be analyzed. The
problems with inconsistencies and ambiguities will be studied
carefully. The objective is to develop a model for impacts with
friction which is free from inconsistencies. That is, energy
conservation should not be violated and unique solution should
exist for all feasible states and inputs.

(3) Compliant contact models will be analyzed and compared with
approximate rigid body models.

(4) Visualization via computer animation on a three-dimensional
graphical display will be investigated. And applications in
robotics will be demonstrated.

1.4 Organization



This paper will be organized in the following manner. The
problem, a brief introduction and the scope of the paper are presented
in chapter 1. Chapter 2 is an overview of the problem formulation for
the dynamic system and modeling of collisions. Several impact
hypotheses are discussed in chapter 3, while an approach to
modeling contact compliance is described in chapter 4. Finally the
impact of the proposed work and possible avenues for future research

are described in chapter 5.



2 Problem formulation

2.1 Mathematical modeling

The equations of motion for a mechanical system with rigid bodies in a
d-dimensional space are a set of nonlinear coupled differential equations:

Mag+c(q,q)=f+ GAL 2.1)
where q is the vector of n generalized coordinates for the system, M(q) is a
symmetric, positive definite nxn inertia matrix with masses and moments
of inertia of the different bodies, ¢ is a nxI vector including inertial forces
that are nonlinear function of velocities, f is a nxI vector of external forces,
A is the kxI vector of multipliers or constraint forces, and G is a nxk
Jacobian matrix whose columns represent the directions of the %
constraints.

Since simulation of bilaterally and holonomically constrained dynamic
systems has been extensively studied [24], this is not discussed any further
here. However, we do allow for m unilateral constraints, ®(q) = 0, and [
non-integrable, nonholonomic constraints, ¥(q) q > 0. Finally, we restrict
the treatment here to planar systems.

Consider a system with m unilateral constraints ®(q) > 0 and let & of the
the m constraints be active. The Jacobian matrix is determined by the %

active constraints:
G=[g; g2... Bl
90; 30 %}T

h i =
where g; {aql 2w

In equation (2.1), the state of the system and external forces are given.

The objective is to find q and if possible, A. It is convenient to lump the



known vectors, ¢ and f, into a single vector b. Thus equation (2.1) can be
rewritten in the form:

Mg=b+GA, 20 (2.2)
If a constraint remains active for a certain time interval, it can be treated

as a holonomic, bilateral constraint in that interval. That is, if ¢; = 0, by

differentiating it twice with respect to time, we obtain:

T . T.. .T.
(i=gq=0andn;=g; q+ g;q=0 (2.3)

Thus, if all the & constraints remain active through a finite time interval,
we get

n=[niny nm]T= G g+ G q=0 or G (MIb+GA)+G a=0 @4)
If the constraints are linearly independent, the constraint force vector, A,
can be obtain from equation (2.4) and g can be obtained by substituting for A
in (2.2). If they are linearly dependent, GA can still be obtained by solving
the £ dependent equations in (2.4) [17], but A can not be determined
uniquely. In the latter case, the system is statically indeterminate.
Nevertheless, it is possible to substitute for GA in (2.2) and solve for q.
2.1.1 System with changing topologies

Active unilateral constraint becomes inactive

Consider a previously active constraint ¢; which becomes inactive at
time t, so that the corresponding constraint force A; vanishes. Assume
that the constraint is active at tn.1. Since ¢; > 0 at t,,, there must be small
intervals At and At' ( 0 < At < At') such that

Gi=0fortna<t<ty-At, {;>0fort,-At<t <t,

Mj=0forth.1<t<t,-At, ny>0fort,-At' <t <t,



For all the active constraints, the normal displacements, velocities and
accelerations together with the constraint forces satisfy the

complementarity relations:

A{0;=0,2;20,¢;20,for0<t<eo (2.5a)
A G=0,2420,8)20, for tn1 St <ty - At (2.5b)
Ain;=0,420m;20,forth1 <t <ty - At (2.5¢)

In a finite time interval ( t, 1<t < t;), if no passive constraints become

active, but we allow for the possibility of active constraints becoming passive
at t,, equation (2.5¢) can be written for each & active constraints, so that:

Aln=0,420, 120, for tyq <t <ty - AL

Now, equations (2.2) and (2.4) will be:

a=M1b +GA

GT(Mb +G)+GT g=n20

where XTn =0, A20
This is a linear complementarity problem in A and 1. It is equivalent to
the following quadratic programming problem (QP) [21]:

e AT6™M Lo + 2T (™M b + GTg) (2.6)
The algorithms used to solve the QP problem will be discussed in next
section.

Inactive unilateral constraint becomes active

If a constraint is inactive at tp.1, thatis, ¢; > 0, but at t = t), ¢; = 0. In this

case, there is an impact and therefore a discontinuity in the velocities. Let t-

<t, <ttand let q(t+) = g+ and q(t") = q-. Let i be the constraint that is added,

and let g; be the constraint direction and A; be the contact force. The other

(k-1) constraints are described by the Jacobian G* and multipliers A* so that
G=[G" gl A=[" X;]



Integration of equation (2.2) proceeds as follows:
- . *_ %
d=q +M lj ghdt+M 1J’ G A dt
.- -1 1%L *
=q +M gA+ MG A

where A denotes impulses. At this point it is not possible to proceed without
a suitable impact model. For example, if we apply Poisson's hypothesis of
impact with Coulomb’s frictional law and assume the coefficient of
restriction is e, then A is the optimal solution to the QP problem:

1
min EATGTM'lGA + ATGTM-1A* 2.7

For all the unilateral constraints, the condition A; 20 applied. Further
discussion on impact hypotheses is presented in chapter 3.
Frictional constraints

To illustrate the formulation with frictional constraints, it is assumed
that Coulomb's model is valid. The frictional constraints are:

- HANi < AFi < BAN;

CrilkAN; — i AFi |)=0

AFi Cpi <0

T . . . .
where Cp; = gp; 4. The variables Ap; and Ayj; are the tangential constraint

force and the normal constraint force, respectively, and p is the coefficient
of friction.

Let us renumber the constraints such that first f constraints are the
frictional constraints, the next r constraints are rolling constraints

followed by the k-f-r smooth frictionless constraints. We introduce
F = [gFr+1 --- 8F r+1), for all the frictional constraints,



Gy =[ gN1 .- Nk EF1 - EFr ), for the normal constraint forces and the r

rolling constraints and construct a fx(k+r) matrix y such that, equation

(2.2) can be expressed as:

M = b +[Gy + F X1 )y (2.8)
where Ay = [ AN - ANK; AF1 - AFe]T. In addition, we have the

complementarity relations:

if{N; =0,
T . .T . .
ANIMN; =0, MNi = gn; 9+ 8N; 42 0,i=12,..,% (2.9a)
}.L?»Ni - I 7"Fi I >0,1=1,2,.,r+f (2.9b)

. T .
lfCFi= gFl-q;tO,

AFi = -Ji K ANi»
else

T .. T, .
nEi = gFi q+ gFi q =2 0, nFi(ulNi - | 7‘Fi | )= 0, 1= 1,2,...,r+f (2.9¢)

where jjis the sign of sliding velocity.
If the constraints are known and they remain unchanged through a

finite interval, substituting for q we obtain:

N1 =G; M [b+(Gy+FO LD + Gy =0 (2.10)

This can be solved for A1, or at least for (G; + FX)A;, and substituting back to
yield a solution for ¢ However, because the Coulomb frictional law is an
empirical law, a few problems arise when we consider the uniqueness and
existence of such solution.
2.1.2 Static indeterminacy

In equation (2.2), if the constraints are linearly dependent (the column

vector in the Jacobian matrix, G are linearly dependent), it is not possible
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to find a unique solution for A. However, it is possible to show that there
always exists a unique solution for © = GA [17], and therefore, a unique
solution for @ When there is friction at the contacts, and the Coulomb
model is used, the uniqueness and existence are not guaranteed.

2.1.3 Inconsistencies with approximate contact models

Inconsistencies in rigid body analysis in problems with friction have
been well known to Delassus, Klein, von Mises and Bouligand [17, 20].
There are situations in which no solution for A exist, and others in which
multiple solutions for ( exist. More recently, Mason and Wang [20] and
Featherstone [3] have studied the inconsistencies in a rod sliding along a
rough surface. Although the inconsistencies have been attributed to the
approximate nature of Coulomb's law [20] and the inadequacy of rigid body
models, no clear explanation have been found.

In order to eliminate inconsistencies, Kilmister and Reeve [12] propose
an impulse model which postulates that impulses shall act in order to
maintain the constraints, whenever and only when inconsistencies are
encountered. Although this principle can be used to resolve ambiguities
and inconsistencies, there is no basis for this hypothesis.

Methods involving the use of penalty functions instead of Lagrange
Multipliers offer an alternative. This only requires that the constraints be
satisfied approximately (for example, penetration of rigid bodies is allowed).
Goldsmith [5] and Haug [7] have used linear springs (and if necessary,
linear dampers in order to dissipate the impact energy) at each contact.
Although such methods do yield solutions, the validity of the solutions is not
clear. Further, the problems of uniqueness and existence in the presence of

Coulomb frictional constraints still remain unresolved.

2.2 Simulation

11



The basic steps for the simulation are summarized below (see Figure
2.1):

1. Initialize the state (q,q).

2. Solve the QP problem to find A based on the state from the previous

time step.

3. Integrate through time interval At, and solve for the positions and
velocities for next step.

4. Check for possible changes in the topology of the system by using
collision detector (by velocity and/or position criterions). If no change,
go to step 2. If there is a change, find the time of event, dt (<4t ).
(There are different recursive routines applied to find the time of
event and an integration function embedded in each routine to
integrate through dt.)

6. Update the status of the constraints in the system and go to step 2.

The subroutines in dash window are new techniques to handle cases
includeing separations, impacts, rolling and sliding, and compliant
impacts. Therefore, the simulation routine is a integration of traditional
techniques and new techniques.

When solving for g and by integration, the use of a linear multistep
method [4] is more efficient and accurate than the conventional Runge-
Kutta integration method.

The Quadratic programming problem [29]

Consider the problem of finding the minimum of a multivariable

quadratic objective function of the form:

min %xTATAx + xTATd (2.11a)

subject to linear constraints:

12



Hjixi < Kj, j=1ltom (2.11b)

x;20,i=1ton (2.11c)

Solve QP problem to
find A

1

Integration thru. At

NO

Check for
Changes in topology

Find time of event dt
1

FZO——1>:U>'omcn

Integration through dt

- O0O>UVE—

Update status of constraints
Rearrange dynamic equations

Figure 2.1: Flow chart of simulation
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This is the quadratic programming problem. The Lagrangian for equation
(2.11) is as following:

®(x,u) = ; XTATAx + XTATd + uT(Hx - K) 2.12)
where u is a set of Lagrange multipliers. By the Kuhn-Tucker Condition

[13], the Lagrangan satisfies the complementarity condition,

L) od
20, x;20, Xi(—) =0,

a_Xi axi

P oD

a—ujz 0, u; 2 0, Uj[gu—j]= 0.

We can reduce the QP problem to linearly programming problem [14] as
Hx =K (2.13a)
ATAx - v + HTu = -ATd (2.13b)
x>0, v 20 (2.13c)
xTv=0 (2.13d)

Totally, there are m+n equations with m+2n variables. This can be solved
using a modified simplex method which was developed by Wolfe [14]. This
algorithm is directly applicable to equation (2.6) with A = DTGy, x =\, d=
Dcn/hp, where M=DTD, and h,;, is the integration time step.

14



3 Rigid body impact models

3.1 Introduction
When two objects collide at contact point ¢, on object 1 and ¢y on object 2,
Figure 3.1, we can apply principle of impulse and momentum [1] to obtain

the final velocities of each object after collision.
Y

r

Px > X

P T2

Figure 3.1: Two-body collision

The principle of impulse and momentum provides the following

relations:
M1(Vix - Vo) =Py (3.1a)
Mi(Viy - Viy) = Py (3.1b)
I1(w - Q1) = rlny - rley (3.1¢)
Ma(Vey - Vax) =- Py (3.1d)
Mz (vay - sz) =-Py (3.1e)
In(en - Q) = T, P, - 1o P, (3.1f)
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where V and Vv are the initial and terminal velocities of mass center,
respectively. Similarly, W and w are initial and terminal angular velocities
of mass center, Py(t) and Px(t) are the normal and tangential impulse.
There are six equations and eight unknowns, including six velocity
unknowns and two impulse unknowns. Two more equations from the
constraints of the normal impulse and frictional impulse are required in
order to solve this problem. We can construct these two constraint equations
by considering the relative sliding velocity S(t) and the relative compression
velocity C(t) of the contact point:

S= Vix ~Vox = ﬁ1x+r1y(01) - (sz+r2y(02)

PP
_ X ¥
= SO + m, Mg (328.)
C= Viy " Voy = (?’ly'rlxml) } ﬁ’2y'r2xm2)
P, P
_~ Tx Ty
N . (3.2b)
where SO = S(to), CO = C(to)’
2 2
11 1 Ty Ty
m; T M; Mt T T
2 2
1 1 1 Tix T 1 TiTiy | Toxloy

me TM M YT T, g T L
where the effective mass m;, my and mg are independent of velocity. By

Coulomb’s law of friction, the tangential impulse is related to the normal

impulse [25] by
|dPy | _
dPy SH (3.2¢)

where p = iy when sticking occurs and p =y for sliding. The equations in
(3.2) provide two additional impulse constraints.
In general, an impact may be considered to occur in two phases, the

compression phase, and restitution phase. During the compression phase,
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the two bodies deform in a direction normal to the impact surface, and the
relative velocities of the contact points on the two bodies in normal direction
is reduced to zero. The end of compression phase is also refereed to as the
instant of maximum compression. The restitution phase starts at this point
and lasts until the two bodies separate.

Routh [25] presented a graphical technique (Figure 3.2) for solving the
impact problem. The final impulse can be determined by the following
procedure. At the end of compression phase, the relative compression

velocity C(t) vanishes and this is represented by a straight line in the P,-P,

plane. We call this the line of maximum compression.:

Py Py

Co+ m, “mg =0 (3.3a)

Similarly, when the relative sliding velocity vanishes, we have the line of

sticking:
P, P
X -y _
SO - mg + mg =0 (3.3b)
Py
A A
RF
F2
\d N

Pys
o Pyc os \ Pyc

T\ >

Fi

AN —>> Px AN < > Px

(a) (b)
Figure 3.2: Routh’s graphical method
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The two constraint lines C=0 and S=0 (equations (3.3a) and (3.3b)) are
shown on Figure 3.2. The slopes of the lines are

m lm I
tanes = I—In;T’ tanﬂc = —ﬁ

. 2 .
since m;my < mg, the angle 6, is greater than 6.

If the bodies slide over each other at the beginning of impact, the

impulse will develop along the line of limiting, F. This line satisfies the

extension of Coulomb’s law of impulse: Py = uPy. This line intersects C at
the ordinate Py, and S at Pys. In equation (3.3b), if the initial velocity Sg = 0,
the impact is said to be a direct impact. If Sy # 0, the impact is an oblique
impact. If r{, = 0 and rg, = 0, the impact is said to be a central impact.
Otherwise, the impact is said to be an eccentric impact. With different
ranges of Pyc, Pys and S, all five possible cases of impact [28] are
summarized in Table 3.1. They are (a) sliding and reversed sliding on
compression; (b) sliding and reversed sliding on restitution; (¢) sliding and
sticking on compression; (d) sliding and sticking on restitution; (e) forward
sliding.

In each case, the final velocities and impulses can be determined by
solving equation (3.1) and (3.2), assuming an appropriate impact law is
available.

Energy dissipation

The energy dissipation is the negative of the work done by the impulses.
In order to find the energy dissipation, we plot the relative velocities at the
contact point versus the normal impulse, as shown in Figure 3.3. Equation

(3.2) can be rewritten as:

18



S=8g - T (3.4a)
Py
C=Cy- m, (3.4b)
Table 3.1: Cases of collision
So i i . Direct impact:
Oblique impact: So#0 So=0
P
St ”® 0<Pys<Pyc 0<Pyc<Pys 0<(1+e)Pyc<Pys Pys=0
or Pyc«<0 < (1+e)Pyc or Pys<0 ¥&=
Sliding and Sliding and A
S =0 sticking on sticking on ancsl lggink%ng
compression restitution
Sliding
Sliding and Sliding and
jSi<0Q | reverse sliding | reverse sliding Stiding
on compression|  on restitution

where the effective masses my and my at the contact point for the normal

and tangential reactions are defined as:

k2 2 . __1 2 2 N _1 -].
1+ Ty WL Tixly kz “Toy +J K TxT2y
My = 2 + 2 ,
2 2 . 2 2 . -
K+ 1, +JuTixr1y ko4 To +j U ToxTgy
my =- +

KoM, KoMy

where k; and kg are the radius of gyration of object 1 and object 2,

respectively. We denote j as the direction of initial sliding velocity which is

equal to S0 . Note that the effective masses my and my depend on the
| So! y

direction of slip.

19



Co

(e)

Figure 3.3: Cases of collision

The final velocities can be obtained as following:

W(Pyr-Pyo)
SRS yroye) reverse sliding

Se= my (3.5a)

0 slip stopped

20



Pys (Pyr- Pys)
+

my my

Ce=Cp- (3.5b)

where m; and m; are the effective masses before slip-stop, and m;( and

m-y are the effective masses after slip-stop.

The energy dissipation of the system is defined as
D=-[vedP (3.6)
A component of dissipation for any period of slip is equal to the area
between the line S or C and the abscissa, as shown in Figure 3.3:
The normal dissipation D, and tangential impulse D¢ are found for each
case as:

(a) Slip reversed on compression:

1 P 1 P
Dh= - 2 (2Cy __%s) Pys "9 (Co - —%s)(Pyc - Pys)
m

y my
P P P
2(0 8. Cyr- Py ) (Pyt - Pyc) (3.7a)
my m,
1 .2 9
D¢ = SOJ HPys - 2.]_ (Pyr - Pys) (3.7b)

X

(b) Slip reversed on restitution:

1 1 P
Dy = -5CoPyc-5(Co-—)(Pys - Pyo)

my
1 2Pys (PyT - Pys)

-5(2Cg - 2. Y=Y ) (pp_ Py (3.8a)

my my
(same as equation (3.7b)) (3.8b)

(¢) Sliding and sticking on compression:
D, = (same as equation (8.7a) with my substituted by m; ) (3.92a)
1 .

Dy =5 SoJjuPys (3.9b)

(d) Sliding and sticking on restitution:
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Dn = (same as equation (3.8a) with my substituted by m; ) (3.10a)

D; = (same as equation (3.9b)) (3.10b)
(e) Forward sliding:

1 1 P
Dn= -5 CoPye-5(Co-—L)(Pyr - Pyo) (3.11a)

m

y
Dy =%(ZSO -Mjﬂ) JuPys (3.11b)
m

X

where Pyr is the total impulse of impact whose value depends on the impact

model, and

2 2 mj 2 2 ma -1
Ky + i 4 TIxlly Ko+ Tox 70 ToxTay
o
m =- +
2 2
3.2 Impact laws

There are three types of impact hypothesis that have been applied to
collision systems. These are Newton’s kinematic hypothesis, Poisson’s
impulse hypothesis [12] and Stronge’s internal dissipation hypothesis [27].
Kinematic hypothesis: Newton's law of impact says the ratio of normal
velocity after impact to the normal velocity before impact is equal to e. We
can find the final impulse for each case as following:

¢=-To (3.12)
Thus for cases (a)-(e), expressions for PyT can be derived:

(a) and (b) sliding and reversed sliding:
m;, Pys

Pyp=(1+e)Com, - + Pys (3.13)

+

my

(¢) and (d) sliding and sticking:
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(8
m, Pys

Pyr=(1+e) Com;’- —+Pys (3.14)
my
(e) forward sliding:
Pyr=(1+e) Comy (3.15)

Impulse hypothesis: Kilmister and Reeve [12] propose the principle of
constraints:
Constraints shall be maintained by forces, so long as this is possible;
otherwise, and only otherwise, by impulses.
They also advocate, Poisson's hypothesis that can be stated as:
The impulse in restitution period is e times that in compression period.
The final impulse is determined as:

Pyr - P
e =(—y%;&) (3.16a)

In cases (a), (b), (c), (d) and (e):

Pyr = (1 +e) Py (3.16b)
Internal dissipation hypothesis: The square of coefficient of restitution 2 is
the ratio of elastic strain energy released at contact point during restitution
to the energy absorbed by deformation during compression.

The final impulse Pyr is given by:

(a) and (c) sliding and reversed sliding:
(Pyr-Pyo? . Pys
(Pyc - Pys) Co -m"')

y
2 —
02 = P P (3.17a)
2Cy __y_+ )Pys + (Cg - +) (Pyec - Pys)
my my
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-1
Pys Pye, |5
(Pyc - Pys) (CO Pys + CO Pye - & + c) 2
m
y
Co-—,
_ my .
(b) and (d) sliding and sticking:
P 2Pys (Pyr- Pys)
(- Co +—3)(Pys - Pye) + (2 Co - ——22 - XYy r - P)
2 Ty Ty T (3.184)
e2= Co Pye .
) m_Pys %
Pyr = (Co + Pys - ) +A (3.18b)
My ot
y
where
- 2
myPys ) ) ) )
A= " -Comy-Pys -(ComyPyc-C0e2n1yPyc+COmyPys)-
m
y
..o+l
m, PycPye Tyl f2
+ + Pys B +
m, m,

(e) forward sliding:
(Co - PyT) (Py']_‘ - Pyc)
2
¢ = Co Pye (3.192)
1

1 2
Pyr =5 (Co m; + Pye) +[(Co m; Pyc)2-4 Co(1-e2) m; Pyc:l (3.19b)

For a simple collinear impact of two smooth bodies dissipation
hypothesis, Poisson's hypothesis and Newton's law of impact give the same
results; and this is about the whole extent of their agreement.

My preliminary investigation has shown that:
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(1) Newton’s kinematic hypothesis and Poisson’s impulse hypothesis yield
results that do not satisfy energy conservation principles.
(2) None of the three hypothesis offer an expression of cases in which there

is no feasible solution to an initial value problem.
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4 Compliant model of collision

4.1 Introduction

There are several approaches to modeling the contact compliance
depending on the material properties and the geometry of the contacting
surface. We assume that linear elasticity provides a sufficiently accurate
model. Secondly, since the objective is to incorporate a contact model into a
computer simulation, we do not pursue analytical solutions. While the
elastic half space theory, Boussinesq’s influence functions and Hertz’
contact model do lead to analytical solutions [9,16,23], they do so only in the
simplest of geometries.
4.2 Finite dimensional model

The basic approach is the one adapted by Sinha and Abel [26], we
discretize the contact area into n, small elements or contact patches with
lumped stiffness, as shown in Figure 4.1. The contact area and the
deformations are small compared to the gross dimensions of the contacting

object. At the jt% contact patch for the it® contact, the normal and tangential

forces are N;; and T; respectively. That is,

Ne

ANi = Y Ny (4.1a)
A
Ne

Api= ST (4.1b)
A

Let 8 denote the relative rigid body displacement in the normal direction
at the i*® contact. Since the i® constraint is ¢;, clearly & = -¢;. Let the profiles

of the two contacting bodies be given by f1(x) and fo(x). If uiln(x) and u?n(x)
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are the deformations in normal direction for the two bodies, and s is the

separation between two bodies at contact point i,
1 2
S; = fl + f2 + Uyn+ Uin- b (4.2)

>

f1

f2

Figure 4.1: Two-body contact with compliance

where s; = 0, N;x # 0 is inside the contact area; s; > 0, N;,x = 0, T;x = 0 is
outside the contact area.

The displacement uiln (u?n) is related to the pressure on body 1 (body 2) by

the expression
Ne

1
u, = Z[iﬁ; Nik + i;k Tik] (4.3)

k
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where the influence functions §jnk is the normal displacement at contact

. . t .
patch j, due to a unit normal force at contact patch k, and § ik 1s the

tangential displacement due to a unit tangential force at contact patch k.
These influence function are Green's functions [23] which depend on the
contact geometry and the material properties.

Similar analysis can be done in tangential direction,
ne

1 t
Yjt = E [Yﬁ( Nik + ¥jk Tik] (4.4)
k

If the contact is counterformal, that is the dimensions of the contact patch
remain small compared to the radii of curvatures of the undeformed
surfaces, it is appropriate to use elastic half space theory and influence
functions by Boussinesq [19]. However, in conformal contact, the influence
functions may not be found analytically; therefore, they must be generated
numerically such as finite element method [23], or else be approximated by
some convenient mathematical expressions.

The normal and tangential forces are subject to frictional constraints.
The simplest constraint is generated by a point-wise application of

Coulomb's law of friction:

uN; - | T3] 20 (4.52)
Sij(uNij - l Ty I ) =0 (4.5b)
Tijs;;<0 (4.5¢)

Where s;j; is the separation at the Jjth contact patch of the it? contact. Assume
that the rigid body relative motion (3;, and 3;;) and the geometry are known.

Equations (4.2) can be written for all the n, contact patches at the i** contact:
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U; =AN; + B; T; + C; (4.6a)

T
U, N;=0 (4.6b)
Ui >0 (460)
N;20 (4.6d)

where Uj, Nj and T; are n,xI vectors containing separation s;j, Nj; and Tj;
respectively, A; and B, are n,xn, matrices containing the influence
coefficients while C; consists of known constants d;, , 8;;, f; and f5. Clearly,
if there is no friction and T = 0, this is a LCP as equation (2.6), and is solved

by considering a QP problem of the type:
in 1..T T T
Npo2 N AN +N G 4.7)

The objective function can be identified as the potential energy of the system
and the minimization is the application of the minimum potential energy

theorem.
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5 Concluding remarks

5.1 Impact
The proposed work deals with the analysis and simulation of

mechanical systems with changing topologies and multiple unilateral
frictional constraints. The computer simulation will be interfaced with a
three dimensional graphical display on a high resolution workstation. The
resulting CAD tool will be directly applicable to the design of
manufacturing process such as assembly of mechanical components,
gripping, fixturing and part feeding. It can be used to analyze complex
systems such as multifingered hands or locomotion systems. The
simulation can be used to evaluate robot control algorithms. The simulation
routine provides several new techniques of handling impact and separation
cases. Finally, the proposed study will improve the understanding of
impact mechanics and the rigid interaction with multiple unilateral
frictional contacts.

5.2 Future Work

(1) Impact and friction models developed by previous researchers will be
investigated. In particular, energy conservation or dissipation during
impact will be studied. This will lead to the development of a
satisfactory model for the analysis of systems with unilateral
constraints.

(2) A computer simulation package for the analysis of dynamic system
with variable topology will be developed. The package will also process a
three dimensional graphical display. This will be done by the animation
package, the Jack, and the IRIS machines available in the Graphics
Laboratory.
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(3) A model of contact compliance will be developed using the approach
described in the previous section. It will be compared and validated
with analytical continuous contact force models such as the model
described in reference [15], and finite element models using ABAQUS.

(4) A variety of nonlocal and nonlinear friction models will be investigated.
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