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Abstract Abstract 
In many engineering applications such as assembly of mechanical components, robot manipulation, 
gripping, fixturing and part feeding, there are situations in which a rigid body is subject to multiple 
frictional contacts with other bodies. It is proposed to develop a systematic method for the analysis and 
simulation of such systems. A detailed study is presented on rigid body impact laws, and the assumption 
of contact compliance is investigated. 
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Figure 3.3: Cases of collision 

The final velocities can be obtained as following: 

reverse sliding 

I 0 slip stopped 
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where m, and m are the effective masses before slip-stop, and m i  and 

Y 

- 
m are the effective masses after slip-stop. 

Y 

The energy dissipation of the system is defined as 

D = - ~ v * ~ P  

A component of dissipation for any period of slip is equal t o  the area 

between the line S or C and the abscissa, as shown in Figure 3.3: 

The normal dissipation D, and tangential impulse Dt are found for each 

case as: 

(a) Slip reversed on compression: 

(b) Slip reversed on restitution: 

Dt = (same as equation (3.7b)) 

(c) Sliding and sticking on compression: 

D, = (same as equation (3.7a) with substituted by 4 ) 

(d) Sliding and sticking on restitution: 



D, = (same as equation (3.8a) with substituted by ) (3.10a) 

Dt = (same as equation (3.9b)) (3. lob) 

(e) Forward sliding: 

where PYT is the total impulse of impact whose value depends on the impact 

model, and 

36 Impact laws 

There are three types of impact hypothesis that have been applied to 

collision systems. These are Newton's kinematic hypothesis, Poisson's 

impulse hypothesis [I21 and Stronge's internal dissipation hypothesis [27]. 

Kinematic hypothesis: Newton's law of impact says the ratio of normal 

velocity after impact to the normal velocity before impact is equal to e .  We 

can find the final impulse for each case as following: 
c f 

" = - G I  

Thus for cases (a)-(e), expressions for Pfl can be derived: 

(a) and (b) sliding and reversed sliding: 

(c) and (d) sliding and sticking: 



(e) forward sliding: 
+ 

PyT= (1 + e)  Corn, 

Impulse hypothesis: Kilmister and Reeve [12] propose the principle of 

constraints: 

Constraints shall be maintained by forces, so long as this is possible; 

otherwise, and only otherwise, by impulses. 

They also advocate, Poisson's hypothesis that can be stated as: 

The impulse in  restitution period is e times that i n  compression period. 

The final impulse is determined as: 

In cases (a), (b), (c), (d) and (e): 

P, = (1 + e )  Pyc 

Internal dissipation hypothesis: The square of coefficient of restitution e2 is 

the ratio of  elastic strain energy released at contact point during restitution 

to the energy absorbed by deformation during compression. 

The final impulse Pg is given by: 

(a) and (c) sliding and reversed sliding: 



(b) and (d) sliding and sticking: 
P 2 Pys - (PyT - Pys) 

(- CO ++)(pys - Pyc) + (2 c0 - + )(pyT - Pys) 
m 
Y 

m 
Y 

e2 = 
co Pyc 

(3.18a) 

where 

(e) forward sliding: 

For a simple collinear impact of two smooth bodies dissipation 

hypothesis, Poisson's hypothesis and Newton's law of impact give the same 

results; and this is about the whole extent of their agreement. 

My preliminary investigation has shown that: 



(1) Newton's kinematic hypothesis and Poisson's impulse hypothesis yield 

results that do not satisfy energy conservation principles. 

(2) None of the three hypothesis offer an expression of cases in which there 

is no feasible solution to  an initial value problem. 



4 Compliant model of coWon 

4.1 Introduction 

There are several approaches t o  modeling the contact compliance 

depending on the material properties and the geometry of the contacting 

surface. We assume that linear elasticity provides a sdliciently accurate 

model. Secondly, since the objective is to  incorporate a contact model into a 

computer simulation, we do not pursue analytical solutions. While the 

elastic half space theory, Boussinesq's influence functions and Hertz' 

contact model do lead to  analytical solutions [9,16,23], they do so only in the 

simplest of geometries. 

4.2 Finite dimensional model 

The basic approach is the one adapted by Sinha and Abel [26], we 

discretize the contact area into ne small elements o r  contact patches with 

lumped stiffness, as shown in Figure 4.1. The contact area and the 

deformations are small compared to  the gross dimensions of the contacting 

object. At the jYh contact patch for the ith contact, the normal and tangential 

forces are Nu and TG respectively. That is, 

ne 
)rNi = E N i j  

j=1 
(4. la)  

Let 6 denote the relative rigid body displacement in the normal direction 

at  the ith contact. Since the i f h  constraint is $i, clearly 6 = -$i. Let the profiles 
1 2 

of the two contacting bodies be given by fi(x) and fi(x). If uin(x) and uin(x) 



are the deformations in normal direction for the two bodies, and s is the 

separation between two bodies at  contact point i, 
1 2 

Si = fl + fi + Uin+ Uin- 6 

Figure 4.1: Two-body contact with compliance 

where Si = 0, Nik # 0 is inside the contact area; Si > 0, Nik = 0, Tik = 0 is 

outside the contact area. 
1 2  

The displacement uin (uin) is related to  the pressure on body 1 (body 2) by 

the expression 

ne 



n 
where the influence functions 6 is the normal displacement at contact 

j k 

t 
patch j, due t o  a unit normal force a t  contact patch k, and cjk is the 

tangential displacement due to  a unit tangential force at  contact patch k. 

These influence function are Green's functions [23] which depend on the 

contact geometry and the material properties. 

Similar analysis can be done in tangential direction, 

ne 

If the contact is counterformal, that is the dimensions of the contact patch 

remain small compared t o  the radii of curvatures of the undeformed 

surfaces, it is appropriate to use elastic half space theory and influence 

functions by Boussinesq [19]. However, in conformal contact, the influence 

functions may not be found analytically; therefore, they must be generated 

numerically such as finite element method [23], or else be approximated by 

some convenient mathematical expressions. 

The normal and tangential forces are subject to frictional constraints. 

The simplest constraint is generated by a point-wise application of 

Coulomb's law of friction: 

gNij - I T~~ I 20 
s ~ ~ ( ~ N ~ ~ -  I T~~ I ) = o  

Where Sij is the separation at the J Y ~  contact patch of the ith contact. Assume 

that the rigid body relative motion (tii, and tiit) and the geometry are known. 

Equations (4.2) can be written for all the n, contact patches at  the ith contact: 



Ui 2 0  (4.6~) 

Ni 2 0 (4.6d) 

where Ui, Ni and Ti are nexl vectors containing separation sij, Nij and Tij 

respectively, Ai and Bi are nexn,  matrices containing the influence 

coefficients while Ci consists of known constants 6in , 6it, fi and fi. Clearly, 

if there is no friction and T = 0, this is a LCP as equation (2.6), and is solved 

by considering a QP problem of the type: 

The objective fbnction can be identified as the potential energy of the system 

and the minimization is the application of the minimum potential energy 

theorem. 



5 Concluding remarks 

5.1 Impact 

The proposed work deals with the analysis and simulation of 

mechanical systems with changing topologies and multiple unilateral 

frictional constraints. The computer simulation will be interfaced with a 

three dimensional graphical display on a high resolution workstation. The 

resulting CAD tool will be directly applicable t o  the design of 

manufacturing process such as assembly of mechanical components, 

gripping, fixturing and part feeding. It can be used t o  analyze complex 

systems such as multifingered hands or locomotion systems. The 

simulation can be used to evaluate robot control algorithms. The simulation 

routine provides several new techniques of handling impact and separation 

cases. Finally, the proposed study will improve the understanding of 

impact mechanics and the rigid interaction with multiple unilateral 

frictional contacts. 

5.2 Future Work 

(1) Impact and friction models developed by previous researchers will be 

investigated. In particular, energy conservation or dissipation during 

impact will be studied. This will lead t o  the development of a 

satisfactory model for the analysis of systems with unilateral 

constraints. 

(2) A computer simulation package for the analysis of dynamic system 

with variable topology will be developed. The package will also process a 

three dimensional graphical display. This will be done by the animation 

package, the Jack, and the IRIS machines available in the Graphics 

Laboratory. 



(3) A model of contact compliance will be developed using the approach 

described in the previous section. It will be compared and validated 

with analytical continuous contact force models such as the model 

described in reference [15], and finite element models using ABAQUS. 

(4) A variety of nonlocal and nonlinear friction models will be investigated. 
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