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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

One of the most important issues to be considered in vehicle design is meeting the 

safety legislations. Head injury is the most common reason of fatalities in vehicle-

pedestrian crashes. The engine hood plays the most important role in this regards. There 

are two main ways to improve the performance of a hood panel with respect to the 

pedestrian safety, namely, changing the structure and the parameters. Any change in the 

outer hood panel such as the curvature must be consistent with the entire physique of the 

vehicle. Therefore, the most effective variable for the optimization of the crash 

performance of a vehicle is the panel thickness. On the other hand, the increasing demand 

for lower fuel consumption while maintaining a good acceleration performance, leads to 

reducing the weight of a vehicle by reducing the thickness of panels as well as utilization 

of non-traditional materials in the structure. Due to the larger volume of the engine hood 

compared with other components, it is one of the targets for weight reduction. However, 

by addressing all of the above-mentioned issues, the engine hood panel will be more 

susceptible to vibrations [1-3].  

Hood vibrations are mainly caused by fluid-structure interactions due to the 

aeroelasticity also known as the flutter phenomenon, and base excitations, resulting from 

the road surface irregularities. Hood flutter was extensively investigated in the past [1, 

2].However, to the author’s best knowledge, not enough attention has been given to the 

vibrations stemming from surface roughness. With the aim of discussing the effect of 

surface roughness on vehicle vibrations, this work proposes a method to analyze the hood 
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vibrations problem and suppress the resultant response amplitude.  

1.2 Objectives 

 Experimental Modal Analysis (EMA) and Computer Aided Engineering, CAE are 

the most useful tools for precise investigation of the engine hood vibrations. The very first 

objective of this work is to develop a reliable model for hood panel using the Finite 

Element Method, FEM. This model will be validated with the Experimental Model 

Analysis. Secondly, random vibrations analysis will be performed to find the response of 

the structure to the excitations from road unevenness. MSC NASTRAN will be utilized 

for processing of random vibrations analysis. Subsequently, after finding the response of 

the engine hood under random excitations, third objective will be to suppress the vibration 

levels at a designated point on the structure.  

1.3 Organization 

This thesis is organized into six chapters, as described below: 

Chapter 1 introduces the background and motivation of this research as well as the overall 

objectives and organization of the thesis. Chapter 2 includes a literature review on the 

main areas of interest. This chapter begins with introducing the experimental, analytical, 

and CAE approaches on random road excitations. Focus is then allocated to the validation 

of CAE models in studying the dynamic characteristics of car components; and finally the 

common methods to reduce noise and vibration levels in automotive industry are 

presented. 

In Chapter 3, the dynamic characteristics of hood structure are extracted via CAE and 

EMA. In this Chapter, the obtained results are compared to evaluate the accuracy of the 
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CAE model. The methods and results are compared with the findings reported in the 

literature published in SAE aiming at dynamics characterization of the car hood flutter.  

Chapter 4 starts with background and concepts of random vibrations analysis in CAE, 

followed by presentation of the input data gained from actual road conditions and finally 

the results obtained from the response of hood structure to random road excitation are 

described in detail. In Chapter 5, a technique is presented to suppress the amplitude of 

hood response under road base excitations. Consequently, in Chapter 6 the conclusions 

drawn from this work are presented along with suggestions towards future research in this 

area.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter is divided into three sections. In the first section the road unevenness 

profile will be discussed. Due to their random distribution pattern, the road surface 

irregularities are categorized as a random process. The analytical models that describe this 

process as well as the common methods for measurement of the road surface profiles are 

discussed in this section. The second section encompasses the application of CAE and 

Experiment in extracting dynamic characteristics of car components. For this purpose, 

vehicle door panel, fuel tank engine hood structure, and weather-strips will be reviewed. 

Finally the methods commonly used in the automotive industry to reduce vibration levels 

will be summarized.  

2.1 Random base excitation due to road surface irregularities 

Powertrain and wheels are significant sources of moving vehicle vibrations. Due to 

the development of less noisy powertrains, the main source of noise and vibrations in cars 

is excitation coming from the road surface unevenness [4-7]. The interactions between the 

road irregularities and tire treads create vibrations that propagate through the tire and 

generate air-borne noise[8]. Rolling noise
1
 of cars and trains are generally due to the road 

roughness by irregularities of the running surfaces of the tread and the surface on which 

the wheel rolls. The surface roughness results in vertical vibrations in the vehicle structure 

[9]. In heavy articulated vehicles, both low and high frequency modes are excited which 

result in vibrations in all directions [10]. 

                                                           
1
 In railway traffic, Rolling noise results from travelling speed of 40-250 km/h. 

(http://www.plassertheurer.com) 
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Figure 1: Radial and Tangential tire vibrations are the cause of tire/road noise [8] 

 

The Exact description of road surface profile is an important step in vehicle 

development. It is influential in various aspects of vehicle engineering such as ride, 

comfort, chassis design, fatigue, and durability [4, 6, 7, 11-13]. 

Despite nonlinear and random characteristics of road excitations, cosine and sine 

waves are occasionally used to represent road excitations [14, 15]. Kropac and Mucka 

[14] simulated the effects of obstacles such as bumps and potholes on the vehicle response 

using cosine waves. The road unevenness is a random variable and its properties vary with 

the type of road surface [5]. A random process is often described with probability statistics 

method [4]. The power spectral density
2
 (PSD) is widely used to describe the road 

characteristics. The road surface irregularities have two main components; steady-state and 

                                                           
2
If the probability distributions remain unchanged in time the process is called stationary. In a stationary 

process, the power spectral density is the Fourier transform of autocorrelation. function  𝑆(𝜔) =12𝜋 ∫ 𝑅(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏+∞−∞  [16] 



6 

 

 

  

transient. A combination of transient (fluctuations in root‐mean square (RMS)
3
 level [16]) 

and steady state components shows the non-stationary behavior of surface profiles [17]. In 

order to simulate random vibrations of vehicle in laboratory, the average PSD of the 

measured vibrations data is used. Garcia et al. [16] observed that there is no change in the 

shape of the PSD within the duration of each transport event. However, under the 

assumption that the velocity is constant, the surface irregularity can be assumed as a 

stationary random process [4, 9, 18, 19]. Road irregularities have been described as a 

Gaussian random process
4
 by many researchers [6, 16, 17, 20-23]. Furthermore, the road 

unevenness can be approximated by a white noise
5
 excitation process on the velocity level 

[9, 18, 22, 23].  

Schiehlen [9] studied the influence of random road profiles based on the white noise 

excitation on the vertical dynamics of vehicles. The effect of random road excitations on 

harvesting power in dual mass energy harvesters
6
 (e.g., regenerative vehicle suspensions) 

were investigated by Tang and Zuo [24]. They found that under the white noise random 

velocity excitation of road irregularities, the harvesting power gained from vehicle 

suspensions is proportional to the tire stiffness and the road vertical excitation spectrum. 

That is to say, sprung and unsprung mass, suspension damping coefficient and stiffness do 
                                                           
3
 The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic 

mean (average) of the squares of the original values (or the square of the function that defines the 

continuous waveform)  

4
 The graph of a Gaussian probability density function is a bell-shaped curve and symmetric about the mean 

value. The probability density function of a Gaussian process x(t) is given by 𝑝(𝑥) = 1√2𝜋𝜎𝑥 𝑒−12 (𝑥−�̃�𝜎𝑥 )2
[16]  

5
 White noise is the process that power spectral density is unchanged over a frequency range [16]  

6
 A Vibration energy harvester is a spring-mass system with an electromagnetic or piezoelectric transducer 

connected in parallel with a spring [25].  

http://en.wikipedia.org/wiki/Continuous-time
http://en.wikipedia.org/wiki/Waveform
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Square_(algebra)
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not influence the harvesting power. Xu et al. [20] derived a sensitivity analysis
7
 formula to 

optimize the vehicle suspension systems based on Gaussian assumption. 

Pseudo Excitation Method (PEM) is extensively applied in simulating road 

conditions. In this method a random multi-excitation process is turned into a series of 

deterministic harmonic excitation [20, 21, 25-27]. Qin et al. [26] found that constructing 

six-wheel road PEM and obtaining PSD of responses are convenient for heavy-duty 

trucks. Xu et al. [21] used a Gaussian random process and PEM with a linear dynamic 

model to get the dynamic response of car.  

Cyclostationary is a type of non-stationary random excitation in which the statistical 

properties change periodically with time. Jha et al. [28] found that the road concrete slabs 

with constant length are cyclostationary. This could give a more accurate estimation of the 

RMS of the response compared with the traditional stationary models. Lu et al. [19] 

suggested a computational model for random vibration analysis of the vehicle track 

system based on PEM and symplectic
8
 methods. Cryer et al. [29] developed a road 

simulator for heavy duty vehicles to provide vertical inputs to the tire with respect to the 

conditions pertaining to this category of vehicles. The introduced system needed PSD 

matrix and particular measured road.  

2.1.1 Analytical models for road profile  

The road PSD is correlated with the vehicle speed. The road unevenness spectrum can 

                                                           
7
 Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system 

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs.(Wikipedia.com) 
8
  This is a method to solve wave propagation problems for a periodic structure [[19] Lu, F., Kennedy, D., 

Williams, F. W., and Lin, J. H., 2008, "Symplectic analysis of vertical random vibration for coupled vehicle-

track systems," Journal of Sound and Vibration 317(1-2), pp. 236-249.  

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Uncertainty
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be simply described with one-sided power spectral density (PSD)
9
 [6, 9, 13]. 

(1.2) 𝜑𝑧(Ω) = 𝜑0(Ω0Ω )𝑤 , 0 < Ω1 ≤ Ω ≤ Ω2 < ∞ 

In the above-mentioned equation, Ω0 is a standardized (reference) spatial circular 

frequency or angular spatial frequency [6] in rad/m and is usually estimated at 0.1 m−1 

[13]. 0  is the unevenness index [6] which characterizes the roughness as a function of the 

spatial frequency Ω0 .  Ω1 and Ω2 are the upper and lower bounds of the effective 

frequency band, respectively. For example for a B-level road,  𝜑0 = 64𝐸 − 6m2 . m Ω1 = 0.01m−1 and  Ω2 = 10m−1. 

The roughness level can be considered as an unevenness index and the waviness 

parameter or the waviness of road profile is represented by w such that the greater the w, 

the longer the wavelength. The waviness is found to be in the range of 1.75 < w < 2.25 

with an average value of 2. Wavelength is described as  𝜆 = 2𝜋Ω , whereΩ is the 

wavenumber [9]. This equation is usually plotted on a 𝜑 − Ω diagram (Figure 2) with 

double logarithmic scale which results in decline lines with slopes of (−2w). 

                                                           
9
 Two and one sided spectra illustration [16]
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Figure 2: power spectral desnity of roads with a waviness factor [9]. 

 

The road irregularities can be expressed in a more complicated form as [9]:  

(1.1) 𝜑𝑧(Ω) = { 𝜑0(Ω0Ω )𝑤1 , 𝑓𝑜𝑟 0 < Ω𝐼 ≤ Ω ≤ Ω0𝜑0(Ω0Ω )𝑤2 , 𝑓𝑜𝑟  Ω0 ≤ Ω ≤ Ω𝐼𝐼 <∞ 

Where, the different values of waviness 𝑤1, 𝑤2,  𝑤1< 𝑤2 occur in two frequency 

ranges. Excitation ζ(t) in terms of displacement coming from road unevenness in time 

domain can be derived by the following equation: 

(1.2) 𝜉 = 𝑣𝜏  
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Where, τ is the correlation time corresponding to the correlation width ξ and ω in 

rad/s is the temporal circular frequency [9]. PSD of the vehicle excitation can be described 

by: 

(1.2) 𝜑𝜉(𝜔) = 1𝑣 𝜑𝑧 

PSD of vertical road velocity and acceleration are [9, 18]:  

(1.2) 𝜑�̇�(𝜔)=𝜔2𝜑𝜉(𝜔) = 4𝜋2𝐺𝑞(𝑛0)𝑛02𝑉 

(1.2) 𝜑�̈�(𝜔)=𝜔4𝜑𝜉(𝜔) =1 6𝜋4𝐺𝑞(𝑛0)𝑛02𝑉𝑓2 

As can be seen, constant velocity leads to constant PSD of the road profile. Mucka [6] 

studied the influence of random road profile waviness on the dynamic road loads. He used 

a quarter car model and displacement PSD with waviness of 1.5 to 2.5. Thus the constant 

waviness parameter assumption is capable of affecting the predicted random response.  
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Figure 3: Longitudinal Road Profile with different waviness [6] 

Through a subjective assessment survey, Hassan and Mc Manus [30] found that 

wavelengths in the range of 4.88 to 19.5 m, which lead to low frequency body vibration, 

are the most problematic in drivers’ comfort issue. Kropac and Mucka [10] combined two 

fundamental properties of road PSD profile (unevenness index and waviness) into a single 

number. This method gives a more accurate vibration response and can be an extension to 

the road classification according to the ISO 8608
10

. Kropac and Mucka [14] used 

straightedge measurement to estimate PSD parameters, waviness and unevenness and 

Kuijpers studied the effect of roughness to rolling noise [8]. 

                                                           
10

 ISO 8608 describes a uniform method of reporting measured vertical surface profile data from streets, 

roads, highways and off-road terrain. Measurement methods and measurement equipment are not 

included.(www.iso.org) 
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The road PSD can also found by writing motion equations for a Two-Degree-Of-

Freedom system. The road profile is used as the system input, the transfer function is 

defined as PSD of acceleration of unsprung mass over road acceleration, the discrete 

acceleration signals in time domain are found and finally the PSD of unsprang mass is 

calculated to estimate the road PSD [18]. 

 

Figure 4: PSD Comparison between calculated and estimated road [18]. 
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Figure 5: PSD comparison in different velocities [18]. 

Hassan and Mc Manus [30] used the roughness contents to develop a new index 

called “profile index for truck” (PIt). Accordingly, PIt of more than 2.75 m/km is 

perceived as a poor driveability. It was claimed that PIt works better in predictions of ride 

in heavy vehicles the IRI. Hesami and Mc Manus [31] found that wavelet based road 

profile analysis works better than PSD in terms of pavement roughness. It gives 

information about road roughness along with ability to check high frequency location such 

like potholes and cracks. They verified this approach with two experiments in 100 meter 

length of smooth and rough highway. Delanne and Pereira [32] compared three road 

profile signal processing methods to indicate road unevenness. Three criteria of 

international roughness index (IRI), PSD, and constant percent bandwidth spectrum 

analysis were studied. They found that IRI works well in terms of road conditions 
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assessment, road maintenance and repair service and road service level. When it comes to 

rehabilitation work and detecting impending problems on road sections, IRI is not the best 

choice and PSD is more appropriate in unevenness level evaluation. The conditions for 

validity of PSD are stationary stochastic process with a single regression line fitted. The 

road defects can be also found with PSD. Constant percent bandwidth spectrum analysis is 

useful in road service evaluation and detecting upcoming troubles with road sections.  

2.1.2 Analytical modeling of vehicle  

In theory of vehicle dynamics, vehicles are modelled as mechanical systems with 

mass, damping and stiffness which results in ordinary differential equations [9, 21]. The 

linear vehicle dynamic models under random road profiles are widely used to find 

dynamic response of the cars [13, 18, 21-23, 33, 34]. Among them a quarter vehicle model 

is the most reliable scale for road roughness condition [34], which is basically a 2 degree-

of-freedom suspension system [6]. 

 

Figure 6: Quarter vehicle is modeled as a 2 degree-of-freedom suspension system [18] 
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In linear analytical study, the system is a mass-damping-stiffness model, the input is base 

excitation of road surface and the output can be acceleration at the point of interest. Transfer function 

from source to receiver and also dynamic loads can be achieved [22, 33].  Road PSD can be used 

as an input for the vehicle model [35]. Zhang and Jiang [22] found the optimal spring 

stiffness and viscous damping coefficient for obtaining the maximum reliability of SDOF 

and TDOF under random base excitations. If the acceleration is greater than the prescribed 

value, the failure will occur. Barbosa [36] on 2011, found FRF of a half-car-model under 

pavement roughness excitations. He found that the vehicle suspension mode is magnified 

at low speeds and at 120 km/h what makes passenger discomfort is the first vehicle mode 

in an undulated asphalted road. The optimization of a linear SDOF model system under 

stationary-zero mean Gaussian random excitation was studied by Dahlberg [23]. Gillespie 

and Karamihas [34] investigated important factors in developing a simplified dynamic 

model for truck response to road roughness inputs.  

The human subjective perception is a function of acceleration response. Sujitamo [35] 

used a Four-degree-of freedom dynamic model and input of road roughness profile to find 

an output of human perception variable according to ISO 2631
11

. Most bodywork of 

vehicles can be modeled analytically by curved plates. Based on the theory of curved 

plates, a median surface is defined and two surfaces at equal distances from the median 

surface define the geometry of the plate. Car hood can be modeled accordingly [37]. 

Finite Element Method (FEM) is a powerful tool in random road vibrations analysis 

                                                           
11

 ISO 2631 The primary purpose of this part of ISO 2631 is to define methods of quantifying whole-body 

vibration in relation to human health and comfort, the probability of vibration perception and the incidence 

of motion sickness. 
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and is widely used by researchers [4, 5, 13, 38, 39]. Wu and Fan [38] established a 

mathematical and finite element model of 10 DOF to describe the vibrations of a truck. 

Rustighi et al. [5] used a three-dimensional elemental approach to predict the stochastic 

tire vibration. The non-linearities in contact model were not considered and experimental 

validations were also required. Through development of a precise FEM of tire, Low 

frequency road noise in a steady state conditions was modeled by Kido [39]. Quinman and 

Yonghani [4] used ANSYS for modal analysis and random vibration simulation of a truck 

transmission frame.  

2.1.3 Measuring road roughness 

Roughness is measured directly by getting PSD of road profile or indirectly by 

determining the sound pressure or the vibrations response level [8, 40]. The amplitude and 

frequency of perceived vibrations or sound are directly related to the roughness amplitude 

and wavelength. 

2.1.3.1 Direct method 

ISO 13473 describes the measurement instrumentation and data processing of direct 

road roughness measurements. Measurement of road profile systems can be static or 

dynamic. In a static format, a transducer is installed on a subframe and moves along a 

rigid beam. In the dynamic method, a laser source is mounted on a driving vehicle which 

collects the profile [7, 8, 12, 18]. Multiple laser profile sensors can improve test accuracy 

[12, 17]. Munari et al. [41] proposed that it is possible to use PSDs to generate new 

profiles without new measurements. However, the reliability of reconstructing terrain 

from PSDs should be assessed. 
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Figure 7: M+P static (3D) road surface roughness measurement system [8] 

Acoustical transducers can be used to assess road roughness profile with fast 

roughness detection procedure. Xu et al. [42] found that in low frequency band which 

linear PSD may not be true, this method works well. Visual observations and profile based 

indexes are used in Australia to assess road pavement condition. PSD gives roughness 

information for specific longitudinal wavelength. Mann et al. [43] analyzed and compared 

rough and smooth sections of road from a laser profiler with IRI and PSD. They found 

that smooth pavements after construction have wavelengths greater than 35 m while 

wavelength of 2 m and less indicate pavement surface failure.  

2.1.3.2 Indirect method 

Previously, highway engineers measured suspension stroke to see the road roughness intensity. 

A modern approach is to simulate the response of vehicle to the road profile [17, 33, 34]. The 
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characteristics of vibration patterns produced by various road surface profiles can be 

found by determining vertical accelerations of the sprung and unsprung sides in a constant 

velocity [44]. Lakusic et al. [7] reported that the amplitude of car vibrations in 

cobblestone pavement is four times of asphalt pavement track. They recorded vibrations 

of between 40-80 km/h with accelerometers.  

 

Figure 8: Locations of installing accelerometers [18]. 

The more corrugations on the road profile, the stronger the response of the vehicle. 

This is the reason why the response of the vehicle subjected to the sett
12

 type of road 

profile is stronger. The car suspension works as a low–pass filter decreasing amplitudes 

more at higher frequencies. The signal generated by a rough road surface after passing 

through the suspension is noisier. Higher frequency excitations from the road profile are 

more important at higher velocities [44].  

 

 

                                                           
12

 A sett, usually referred to in the plural and known in some places as a Belgian block, is a broadly 

rectangular quarried stone used for paving roads. 

http://en.wikipedia.org/wiki/Quarry
http://en.wikipedia.org/wiki/Rock_(geology)
http://en.wikipedia.org/wiki/Road_surface
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2.2 Dynamic characterization of car components  

Dynamic characterization of vehicle structures is an essential part in NVH analysis 

and helps a lot in refining noise and vibration in new vehicles. The main objective in this 

field is to find the correlation between the analytical, numerical and experimental results.  

Different CAE
13

 computer packages such as ANSYS, ADAMS, DADS, MSC 

Patran/MSC Nastran, Abaqus and IDEAS are used to develop the virtual model of 

vehicles [45]. It is common to evaluate the accuracy of numerical results obtained from 

CAE by comparing with experimental results. In case of anisotropic materials like fiber 

reinforced polymers or complex design as in vehicle components, verification of CAE 

simulations are more important [46]. Many researchers focused on CAE validation by methods 

like EMA and Image correlation of car components like hood, door panels and fuel tank in their 

works [46, 47]. Due to the inaccuracy of the boundary conditions simulation and also differences in 

scattering of the real properties of the structure, natural frequencies from EMA are always lower than 

those of CAE [47].   

In modal analysis, mass density and material stiffness are the most dominating 

factors. So even a small change in these parameters results in a huge shift in natural 

frequencies. The modulus of elasticity of plastic materials is not directly measurable. 

Saravanan and Injeti [48] validated a FEM of car fuel tank with experiments. They 

determined the elasticity modulus of the plastic material through three point bending 

                                                           
13

 Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering analysis 

tasks. It includes Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody 

dynamics (MBD), and optimization. (Wikipedia.com) 

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Finite_Element_Analysis
http://en.wikipedia.org/wiki/Computational_Fluid_Dynamics
http://en.wikipedia.org/wiki/Multibody_dynamics
http://en.wikipedia.org/wiki/Multibody_dynamics
http://en.wikipedia.org/wiki/Optimization
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tests
14

 (ISO 178
15

). The CAE model of empty tank shows better correlation with test data. 

Liquid fuel is modeled as Non Structural Mass
16

 (NSM) distributed over the tank shell 

structure. It was observed from CAE analysis that the vibration characteristics of gas tank 

are sensitive to the mass distribution of the liquid fuel inside the tank and also thickness of 

the tank.  

 

Figure 9: Modal analysis of fuel tank [48] 

                                                           
14

 The three points bending flexural test provides values for the modulus of elasticity in bending , flexural 

stress , flexural strain and the flexural stress-strain response of the material. The main advantage of a three 

point flexural test is the ease of the specimen preparation and testing. However, this method has also some 

disadvantages: the results of the testing method are sensitive to specimen and loading geometry and strain 

rate. 
15

 ISO 178:2010 specifies a method for determining the flexural properties of rigid and semi-rigid plastics 

under defined conditions. A standard test specimen is defined, but parameters are included for alternative 

specimen sizes for use where appropriate. A range of test speeds is included. The method is used to 

investigate the flexural behavior of the test specimens and to determine the flexural strength, flexural 

modulus and other aspects of the flexural stress/strain relationship under the conditions defined. It applies to 

a freely supported beam, loaded at mid-span (three-point loading test).(www.iso.org) 
16

 NSM are used to define masses that affect the behavior of specific element types but are not directly part 

of the structure of the model. (mscsoftware.com) 

http://en.wikipedia.org/wiki/Flexure
http://en.wikipedia.org/wiki/Flexural_modulus
http://en.wikipedia.org/wiki/Flexural_stress
http://en.wikipedia.org/wiki/Flexural_stress
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Hanouf et al. [45] extensively investigated the dynamic properties of door and hood 

panels of a car using CAE and EMA. Similarities were observed in frequencies and mode 

shapes. They used VPG 3.2 and LS DYNA for the CAE part and ME'scope VES for 

signal processing of EMA. An impact hammer, two FFT analyzers with 7 channels and 

six accelerometers were the equipment for experiment.  

In order to improve the hood performance in crashes, car companies need to design 

more flexible panels. This flexibility in design results in undesirable vibrations of the 

hood at highway speeds. Furthermore, demands for reducing mass of body panels and 

decrease in component thickness, increases problems due to the increased sensitivity to 

aerodynamic loads. Transient CFD techniques coupled with CAE are capable of 

predicting how wind profiles influence the hood vibration. Expectedly, as the frequency of 

the oncoming flow approaches the natural frequencies of the hood, the response amplitude 

of the hood structure is the greatest in value. It was found that the turbulence grid (120 

mph) produces the largest vibration. Hood flutter
17

 with respect to aeroelasticity and fluid 

structure interaction (FSI) was extensively studied by Gaylard et al. [1] and Gupta et al. 

[2]. Aerodynamic loads are found with CFD solvers and potential conditions to generate 

vibrations were simulated using Lattice-Boltzmann Method (LBM). There are conditions 

which are found on road but are not easy to simulate in wind tunnel. Disturbed wind 

profiles such as those caused by high speed wakes, high speed travel at substantial yaw 

angles, and wind gusts are some of these conditions.  

                                                           
17

 A formal definition of aeroelastic flutter is a dynamic instability of a flight vehicle associated with the 

interaction of aerodynamic, elastic, and inertial forces [49] Hodges, D. H., and Pierce, G. A., 2011, 

Introduction to structural dynamics and aeroelasticity, Cambridge University Press, New York, NY.. 
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Optical full field measurement
18

 techniques are widely used for analysis of vibrations and 

mode shapes. Techniques such as Digital Speckle Pattern
19

, Interferometry
20

, Moiré
21

, 

thermography or Photoelasticity
22

 and the Digital Image Correlation (DIC)
23

 have been 

successful in accurate measurement of the displacement [46, 47]. Two cameras capture the 

measurement field from different directions to find the three-dimensional contour of the designated 

area so whole displacement field is visualized. This technique possesses high resolution in space 

and time and as it determines the absolute position and displacement of the component, large 

amplitudes and rigid body movements can be found. By Digital Image Correlation (DIC) 

method and high speed cameras non-linear dynamic events can be analyzed and three-

dimensional displacement field can be found.  

Lampas et al. [46] combined optical measurements and computational techniques to 

simulate a non-linear transient dynamic event. Siebert et al. [47] investigated the deformation 

of a hood panel with Optical full field measurement techniques. The bonnet structure was loaded by 

a shaker with noise excitation for a classic experimental modal analysis. After dividing the structure 

into several points, each object point must be seen by both cameras at the same time. However, due 

                                                           
18

 In full-field optical methods light beams are used to illuminate and create images of the objects of interest. 

http://nam.epfl.ch/ 

19
A speckle pattern is an intensity pattern produced by the mutual interference of a set of wave fronts 

distribution   
20

 Interferometry is a family of techniques in which waves, usually electromagnetic, are superimposed in 

order to extract information about the waves.  
21

 a secondary and visually evident superimposed pattern created when two identical patterns on a flat or 

curved surface are overlaid while displaced or rotated a small amount from one another 
22

 Photoelasticity is an experimental method to determine the stress distribution in a material. The method is 

mostly used in cases where mathematical methods become quite cumbersome. Unlike the analytical 

methods of stress determination, Photoelasticity gives a fairly accurate picture of stress distribution, even 

around abrupt discontinuities in a material 
23

 Digital Image Correlation, DIC, Digital image correlation and tracking is an optical method that employs 

tracking and image registration techniques for accurate 2D and 3D measurements of changes in images. This 

is often used to measure deformation, displacement, strain, and optical flow. 

http://en.wikipedia.org/wiki/Intensity_(physics)
http://en.wikipedia.org/wiki/Interference_(wave_propagation)
http://en.wikipedia.org/wiki/Wavefront
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Superimposed
http://en.wikipedia.org/wiki/Stress_analysis
http://en.wikipedia.org/wiki/Deformation_(engineering)
http://en.wikipedia.org/wiki/Displacement_field_(mechanics)
http://en.wikipedia.org/wiki/Strain_(materials_science)
http://en.wikipedia.org/wiki/Optical_flow
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to the physique of the hood, not all points can be captured by cameras.  

 
Figure 10: Setup of High speed DIC system [47]  

 
Figure 11: Bonnet structure with shaker [47] 
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Duonian et al. [3] approximated the hood thickness to meet three targets HIC
24

, mass 

and modality (Meeting the requirements of lightweight and reducing vibration and noise). 

To verify the reliability of their work, collision of pedestrian heads and hood was re-

simulated. Noting that hood thickness is the most tractable part when it comes to hood 

optimization as the other parameters in geometry such as curvature must be consistent 

with the shape of the vehicle.  

Hartley [50] proposed a method to predict the hyper-elastic
25

 and dynamic behavior 

of an Ethylene Propylene Diene Monomer (EPDM) foam rubber. This material is widely 

used as a weather-strip component in car closures. It was observed that either static or 

dynamic response of the weather-strip material and component depends on factors such as 

excitation frequency, large-strain preload, vibration amplitude, geometry and also friction. 

A good correlation was observed between the experimental results and the proposed 

formulation for dynamic stiffness and loss factor below 100 Hz. Closure resonances 

predictions can significantly change based on the values assumed for weather-strip 

dynamic rate properties.  

                                                           

24 The Head Injury Criterion (HIC) is a measure of the likelihood of head injury arising from an impact. 

The HIC can be used to assess safety related to vehicles, personal protective gear, and sport equipment. 

Normally the variable is derived from the acceleration/time history of an accelerometer mounted at 

the center of gravity of a dummy’s head, when the dummy is exposed to crash forces. 
25 For many materials, linear elastic models do not accurately describe the observed material behavior. The 

most common example of this kind of material is rubber, whose stress-strain relationship can be defined as 

non-linearly elastic, isotropic, incompressible and generally independent of strain rate. Hyper elasticity 

provides a means of modeling the stress-strain behavior of such materials. The behavior of 

unfilled, vulcanized elastomers often conforms closely to the hyper elastic ideal. Filled elastomers 

and biological tissues are also often modeled via the hyper elastic idealization 

http://en.wikipedia.org/wiki/Head_injury
http://en.wikipedia.org/wiki/Centre_of_gravity
http://en.wikipedia.org/wiki/Crash_test_dummy
http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Strain_(physics)
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Incompressible
http://en.wikipedia.org/wiki/Strain_rate
http://en.wikipedia.org/wiki/Vulcanized
http://en.wikipedia.org/wiki/Elastomers
http://en.wikipedia.org/wiki/Biological_tissues
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Figure 12: Effect of different dynamic rate assumptions on a door resonance [50] 

 

2.3 Methods to improve vibrations and noise performance in Auto industry  

The dynamic behavior of a component is a function of mass and its distribution, 

stiffness and damping. It can be modified in different ways such as adding layered 

damping materials, mass or changing geometry parameters, e.g., thickness [51].In car 

body panels, the following methods are used for damping vibrations energy [52].  

The first method is made by attaching a viscoelastic layer with adhesive, spray or 

bond to the panel. This layer moves with the panel and dissipates vibrations energy to 

heat. Damping performance of this layer is a function of thickness, stiffness and the loss 



26 

 

 

  

factor. (extensional dampers).  In addition, by adding a stiff layer like rubber, steel or foil 

to layers of viscoelastic material a new type of dampers which are called constrained layer 

dampers are created. When exposed to vibrations, the top constrained layer causes shear 

strain which forces the viscoelastic layers to remain fixed while the panel is deformed.  

The thickness and stiffness of the top layer and loss factor of viscoelastic layer are 

effective in the damping behavior (constrained layer dampers). The friction of damping 

materials and also the friction between the layer and the panel in every cycle dissipate 

energy. Increasing the mass of the damper increases the friction dissipation. The contact 

between the viscoelastic material and the panel creates inelastic collision in each cycle, 

which can dissipate energy. 

Qian et al. [52] studied different damping treatment behaviors for flat and 

geometrically stiffened panels. The damping treatments were characterized by reduction 

of average vibration amplitudes and FRFs. In practice, the stiffness of in-vehicle floor 

panels like tunnel, cross members and doorsills are not as high as clamped boundary 

conditions model but not as low as a panel with simply supported boundary conditions. 

Also they found that below 150 Hz, extensional dampers and constrained layer damper 

show similar effects on heavily ribbed panels. Constrained dampers have high damping 

performance above 150 Hz. Increasing the mass in sandwich type damper does not change 

the damping behavior significantly in frequencies between 150-250 Hz. Surface density 

increase in extensional dampers does not contribute to the damping performance in the 

low frequency range [52].  

Tarnoczy [53] reported that smearing a damping layer on a steel panel can reduce the 
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radiated sound intensity by 10 dB and also a more effective noise reduction could be 

expected from a sandwich damper. The stiffness of front and rear bushings in vertical 

direction is the most effective parameters on the transmitted vibrations to the cabin [15]. 

Car panels in body structure are made of thin sheets of metal with very low bending 

stiffness. So increasing their stiffness is a common practice in industry [54]. By introducing 

curvature to the structure, low frequency modes are shifted to higher levels according to the equation 

below [54]: 

(1.2) 𝑓𝑐𝑢𝑟𝑣𝑒𝑑 = 𝑓𝑓𝑙𝑎𝑡 + 12𝜋𝑅 √𝐸𝜌 

Where, R is the radius of curvature and it works more effective than stiffening beads. Bending 

stiffness is proportional to the cross-section moment of area [55].  

(1.2) 𝐵 = 𝐼𝐸1−ν2 

Where, B is the bending stiffness, I is the moment of area of the cross section and ν is 

the Poisson's ratio. Low frequency noise improvement requires modification of vehicle 

structure [39]. First natural frequency of structure is the most important item to consider in 

system response [56]. The Effects of damping layers and stiffening ribs should be taken 

into account simultaneously [57]. 
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Figure 13: Effects of curvature on radiated sound power [54] 

 

Introducing beads and ribs are common examples of geometric stiffening of a panel. 

They increase both the static and dynamic stiffness of the panel and shift the resonant 

frequency upwards. The interesting point is that the peak amplitude of the resonant 

frequency for a heavily ribbed panel is increased compared with the flat panel [52, 57]. for 

designing stiffening ribs, there are six design variables, namely, X and Y coordinates of 

the center of the ribs, location angle of the two ribs, length and width of the ribs [51].  

Beads are features like channel which are added in metal forming process as an 
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inexpensive way to add stiffness to the panel to reduce noise and vibrations below 100 Hz. 

However, it must be noted that stiffening of a panel either by ribs or beads increases the 

radiation efficiency thus high frequency 1-5 KHz noise will increase [52, 54].  When it 

comes to thin plate structures, stiffening rib are an effective approach to reduce radiated 

noise. Cross ribs are adopted broadly to strengthen a plate [51]. Limited damping effects 

of extensional dampers on heavily ribbed panel were observed. While constrained layer 

dampers exhibited significant improvement in damping of these panels. As illustrated 

below, ribs can shift the frequencies but increase the amplitudes [53]. 

 

 
Figure 14: Influence of geometric stiffening [52] 
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Figure 15: Performance comparisons of different dampers [52] 
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Figure 16: Performance comparison of different dampers applied on a heavily ribbed 

panel [52] 

While stiffening beads can improve vibrations of first modes, they might increase the 

vibration levels on other frequencies. They can also increase radiation efficiency for a 

given frequency [55]. Pagnotta [56] utilized the Genetic Algorithm to find the optimum 

position and lay-out of stiffening ribs to shift the natural frequency of a car dashboard 

support. Similar to Pagnota’s work, Carfagni et al. [57] proposed an approach based on 

CAE and Genetic Algorithm to achieve an optimal distribution of stiffening ribs and 

damping material. Their method reduced the damping material in the same vibrational 

performance. 
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Figure 17: Effect of rib on stiffening of the panel [56] 

Wind deflector is a feature installed on truck roof cabins to mitigate the drag force 

effect. Maladahiyar et al. [58] used Altair-Optistruct software to find the best 

configuration of the stiffening ribs. They validated the design with testing a prototype-

built under dynamic loading conditions. Deng et al. [51] in 2005 found the best geometry 

and location of two cross stamped ribs in a plate to reduce resultant noise under wideband 

excitations. 
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Figure 18: Optimized Rib Layout design on wind reflector [58] 

 

 
Figure 19: Optimal Cross ribs in the plate [51] 
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Figure 20: Variation of radiated sound power withe excitation frequency under three 

conditions; no rib, optimal single rib and Optimal double ribs [51] 

 

Aydemir and Ebrinc [59] found an appropriate combination of increasing sheet 

thickness and rib to reduce noise emission of an intake manifold. A battery electric van, 

equipped with a developing permanent magnetic synchronous motor, exhibited annoying 

noises around. Through NVH data collecting and signal processing Lu and Jen [27] 

identified the cause of noise in a permanent magnetic synchronous motor. It was around 

1.1 kHz and in 16th and 40th orders. When they sealed the cabin’s leakage, a reduction of 

4 dB interior noises and encapsulation of the motor led to a 6.5 dB noise reduction. 
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Figure 21: Basic Bead Configurations [54] 

 
Figure 22: Bead-stiffened panels [54] 

The interface components between front chassis and vehicle body like sub frames are 

important in reducing cabin road-induced vibrations and noise. Using ADAMS/CAR 

software, engine subframe parameters based on sensitivity analysis through Design-Of-

Experiment
26

 were optimized by Safaei et al. [15]. 

                                                           
26

 In general usage, design of experiments (DOE) or experimental design is the design of any information-

gathering exercises where variation is present, whether under the full control of the experimenter or not. 
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CHAPTER 3 DYNAMIC CHARACTERIZATION OF VEHICLE HOOD PANEL 

USING EMA AND CAE 

As stated before, modal parameters which are gained by CAE are in need of 

validation. As not all the nonlinearities of elastic bumpers, bushing, hinges and latches can 

be modeled thoroughly in FEM. CAE output are normally validated with EMA or Optical 

field measurement. In this chapter, natural frequencies and mode shapes which are 

extracted by MSC Nastran software are correlated with EMA to validate the CAE model.  

3.1 CAE Modal Analysis 

FEM proves to be an essential tool to find mode shapes and natural frequencies of car 

component in earlier stages before manufacturing. Most in-vehicle and out-vehicle 

components are extensively analyzed under static and dynamic loads by FEM in 

development from conceptual design up to the final step. Natural frequencies, Frequency 

response functions, mode shapes and operational mode shapes of each component itself or 

in connection with others can be achieved by FEM under various conditions. A wide 

variety of commercial FEM codes have been developed and introduced to automotive 

industry so far. The whole process of an FEM analysis can be divided into pre-processing, 

processing and post-processing. Preprocessing, also called Meshing, is the first step in 

solving a problem in finite element analysis.  In this step entire physique is divided into 

meaningful divisions often called "Elements". These elements form the building block on 

which the Boundary conditions and external effects are specified.  Geometry used for 

meshing, can be imported from CAD 
27

or be created in the FEM software. As most car 

                                                           
27

 Computer-Aided Design 

http://en.wikipedia.org/wiki/Finite_element_method
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components are very elaborate in physique, mostly a CAD model created in computer 

softwares like CATIA, UGNX, Solidworks, etc. the geometry is often imported into the 

FEM software. The after defining the appropriate analysis, one-dimensional, two or three, 

based on Element type, such as shell, solid, beam, etc.  Meshing is started. Lastly 

boundary conditions, loadings and constraints are defined in this step. Altair Hypermesh is 

a common computer codes used in preprocessing.  

Processing stage is like calculating and solving the equations to find the desired 

output. Based on the analysis type, linear static, modal, FRF, Fatigue, etc. commercial 

codes like Altair Radioss, MSc Nastran and Abaqus are widely used for this purpose.    

The obtained results can be seen and analyzed through post-processing softwares like 

Altair Hypergraph, Altair Hyperview and etc. In this study, Altair Hypermesh, MSc 

Nastran, Altair Hyperview and Altair Hypergraph are employed to extract modes shapes 

and natural frequencies of the panel. 
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Figure 23: FEM procedures for solving a problem [60] 

 

3.1.1 Background of Eigenvalue Analysis in FEM 

In finding natural frequencies and mode shapes of the component, damping effects 

are disregarded. This step is essential in product development as it gives clear 

understanding of the response of the component to loadings. To avoid massive vibrations, 

design must be in the way that the frequency of a dynamic loading does not match with 

the natural frequencies of the structure. Normal modes are also required to find the best 



39 

 

 

  

location of installing pick-ups. At every frequency the structure is deformed in a particular 

pattern which is called a mode shape. Mode shapes and natural frequencies depend on the 

components properties like elasticity modulus, dimensions and cross sections and also 

boundary conditions[45]. 

Mode shapes and natural frequencies are obtained by solving an eigenvalue problem. 

Eigen values are natural frequencies and eigenvectors are the associated mode shapes.   

Without damping and loadings, matrix format of the equation of motion is [61]: 

(2.2) [𝑀]{�̈�} + [𝐾][𝑢] = 0 

where, M denotes inertia matrix, �̈� is acceleration, K is stiffness and 𝑢 is displacement.  

Like classic methods of solving vibrations problems, a harmonic solution is assumed for 

the above mentioned formula.  

(2.1) {𝑢} = {𝜑}𝑠𝑖𝑛𝜔𝑡 {𝜑} is the eigenvector and 𝜔 is the natural frequency.  

Harmonic solution assumption leads to the fact that all particles of the components 

move simultaneously so the basic shape remains unchanged and only the amplitudes 

fluctuate. 

Substituting the second equation into the first one result in the Eigen equation as: 

(2.2) ([𝐾] − 𝜔2[𝑀]){𝜑} = 0 

Based on linear matrix algebra; eigenvalue problem is in the form of; 

(2.2) [𝐴 − 𝜆𝐼]𝑥 = 0 

A is a square matrix, 𝜆 is eigenvalues, I is the identity matrix and x is eigenvector.  

Comparing the third and the second equations, 𝜆 = 𝜔2 
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So equaling determinant of ([𝐾] − 𝜔2[𝑀]){𝜑} to zero, gives the eigenvalues which 

determine a mode shape. 

And eigenvectors are: 

(2.2) ([𝐾] − 𝜔2[𝑀]){𝜑𝑖} = 0, 

i=1,2,3,4,.. 

Deflected shapes of a linear elastic structure at any time can be found with 

superposition of product of mode shapes and modal displacement; 

(2.2) {𝑢} = ∑ (𝜑𝑖)𝜉𝑖𝑖 

In order to check that each normal mode is distinct from the other, orthogonally of 

normal modes is introduced; 

(2.2) 𝜔𝑗2 = {𝜑𝑗}𝑇[𝐾]{𝜑𝑗}{𝜑𝑗}𝑇[𝑀]{𝜑𝑗} 

(2.2) {𝜑𝑖}𝑇[𝑀]{𝜑𝑗} = { 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗1  𝑓𝑜𝑟 𝑖 = 𝑗 

Different methods are solving numerical equations leads to various computational 

methods to extract real eigenvalue extraction are applied in CAE dynamic analysis 

solvers. All the methods work for all the problems but none of them is best for all 

problems. These methods are derived from either transformation or tracking method. In 

the first method, the eigenvalue equation is transformed to a special form to get 

eigenvalues in a straightforward way. In second approach, Eigenvalues are derived on an 

iterative procedure to derive one at each step. MSC Nastran [61] recommends Lanczos 

method for real eigenvalue extraction which is a convenient fusion of both transformation 

and tracking methods. Givens method, Modified Givens method, Householder method and 
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Modified Householder method are available methods based on transformation methods. 

Real eigenvalue extraction methods based on the tracking are Inverse power method and 

Sturm modified inverse power method. Bulk data of EIGRL and EIGR define Lanczos 

method all of the other methods respectively and SOL 103 is the unique denotes normal 

modes extraction in MSC Nastran. 

3.1.2 Hood panel construction 

A typical hood is shown in Figure 23. The geometry of a typical hood consists of the 

top panel, inner panel, hinges, latches and elastic bumpers. Two latches on the two corners 

of the top part retain the structure and attach it to the body. One or two hinges on the front 

most of the components lock the structure in front. Normally hinges and latches are made 

of steel while the sheet panels are aluminum alloys [1, 2].  

 



42 

 

 

  

 

Figure 24: Geometry of a typical hood (Honda Accord, 2014) 

3.1.3 Boundary conditions of the FEA 

Primarily there are three constraint locations. They are hinges, latches and elastic 

bumpers. Bumpers are small flexible objects which are widely used in order to facilitate 

matching the body and hood and also to provide compliance against mechanical stresses. 

Bumpers are usually modeled as a spring with defined stiffness in three directions. The 

ends of these springs on the body are constrained in all directions [1, 2].  

Based on the previous works on CAE of hood panel, all degrees of freedom in 

translational X,Y,Z and rotational X,Y and Z are constraint for hinges [1, 2]. Panels are 

meshed with four-node quadrilateral shell elements.  

Hinge 

Latches 

Over slam 

bumper 

Over slam 

bumper 

Primary 

bumpers 
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Figure 25: Hood panel model used by Gupta [2] 

According to Gupta [2], the first mode at 20.5 Hz they found is a 

torsional mode. The second one was oil canning
28

 at 22.2 Hz and 

bending because of Y rotation allowance in their model. The third mode 

at 26.4 Hz was similar to the second toward negative Y direction.  

                                                           
28

 Oil canning is defined as a visible waviness in  a flat areas of metal surface  (Metal construction 

association, Technical bulletin ) 
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Figure 26: Hood panel model used by Gaylard [1]. 

Gaylard [1] found that in their model, the oil canning happens at 23.9Hz and in the 

first mode, the first torsional mode is at 26.3 Hz and third mode at 31.3 Hz is also 

torsional. There are some similarities between first and forth mode at 33.8 Hz with 

difference of inward Y direction oil canning.  

In any case the first few modes are most important regarding dynamic deformation.  

So any periodical force in this range will result in course vibrations. Hanouf et al. [45] 

found that the first mode of his CAE model of a hood panel occurs at 53.05 Hz in a simple 
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bending mode. The second one which is torsional is at 58.83 Hz. Second bending mode 

happened at 76.08 Hz with low oscillation amplitude.  The second torsional mode was at 

84.15 Hz with higher amplitude compared with the third mode.   

3.1.4 Evaluation of the structural resonance frequencies 

Based on two criteria for constraining latches, the CAE model is run to extract natural 

frequencies of the hood panel. The resultant first ten natural frequencies of the hood panel 

are listed in table 2.1. The first mode exhibits oil-canning at around 24 Hz. The bending 

happens around z axis. The first torsional mode happens at 45.6 Hz. third mode is very 

similar to the first mode at 66.9 Hz but with less oscillation amplitude.  Forth mode is a 

torsional one affecting the lower part of the panel rather the top part. Expectedly, the fifth 

mode at 90.03 Hz is bending focusing at upper area. The sixth mode is again bending 

which only concentrates at lower parts. 

Table 3.1: CAE mode extraction 

 Latches constraint in 

translational Y and Z 

Latches constraint 

in rotational Y and Z 

First Mode 24.3 Hz 24.17 Hz 

Second Mode 45.6 Hz 45.51 Hz 

Third Mode 66.91 Hz 69.38 Hz 

Forth Mode 81.66 Hz 76.4 Hz 

Fifth Mode 90.03 Hz 90.9 Hz 

Sixth mode 103 Hz 101.3 Hz 
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3.2 Experimental Modal Analysis 

Experimental Modal Analysis is a method to obtain dynamic characteristics of a 

structure in terms of its modal parameters; Natural frequencies, Damping and modes 

shapes. Practically, EMA consists of three steps [62] : 

1- Measurement of FRFs 

2- Estimation of Modal Parameter  

3- Validation of the mode shapes 

Generally Frequency Response Function of any dynamic system can be obtained in 3 

steps: 

1- Writing equation of motions in time domain 

(2.3) [𝑀]{�̈�} + [𝐶]{�̇�}+[𝐾]{𝑋} = 𝑓(𝑡) 

Where, [𝑀], [𝐶] and [𝐾] indicate mass, damping and stiffness matrix and f denotes 

the external force in time domain.  

2- Fourier transform to have the equation in frequency domain 

(2.23) (−𝑀𝜔2 + 𝑗𝜔𝐶 + 𝐾)𝑋(𝜔) = 𝐹(𝜔) 

3- Finding FRF as a fraction of output to input  of the system 

(2.22) 𝑋(𝜔) = 𝐻(𝜔)𝐹(𝜔) 

(2.21) 𝐻(𝜔)=[−𝜔2𝑀 + 𝑗𝜔𝐶 + 𝐾]−1 

Where, 𝐻(𝜔) is the transfer function between input and the output of the system.  

This equitation can be also expressed in the following format: 

(2.22) 𝐻(𝜔) = ∑ (𝜑𝑖𝜑𝑘)𝑟[𝜔𝑟2−𝜔2+2𝑗𝜉𝑟𝜔𝑟𝜔]𝑛𝑟=1 

Modal parameters can be obtained with one complete row or column of FRF matrix 
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(2.22) 𝐻 =  [𝐻11𝐻21 𝐻12𝐻22 𝐻13𝐻23 𝐻14𝐻24𝐻31𝐻41 𝐻32𝐻42 𝐻33𝐻43 𝐻34𝐻44] 

In the matrix above, Columns indicate inputs and rows are for responses. Because of 

the reciprocity  𝐻𝑚𝑛 = 𝐻𝑛𝑚 and also  𝐻𝑚𝑛 is the response at m due to excitation at n. 

3.2.1 Equipment for measurement of FRF 

Excitation or input of the system can be Shakers, mostly in laboratories and impact 

hammers which are extensively used in industry. Impact hammers have a force sensor in 

the head.  It measures the amplitude and frequency content of the energy transferred to the 

structure. They are used in modal analysis, resonance testing and also structural health 

monitoring.  

 

Figure 27: Impact hammer[63] 

Measuring devices are mostly vibrations pick-ups like piezoelectric accelerometers 

made by PCB. Two types of them are widely used in industry. The one with built-in signal 

conditioning electronics which are called ICP and the second types are without this 

option. Because of the convenience in use, easier set up and appropriate cost ICP types are 

more preferable unless in high temperature which may harm the electronics components 

in ICPs [63].  

In another class, accelerometers are triaxial or uniaxial. Triaxial accelerometers 
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measure vibrations in all three directions. So each axis has an independent channel for 

data acquisition system. Expectedly, this type of accelerometers is very popular because 

of the convenience they offer in exhaustive measurement of structure dynamic behavior 

[63].  

 

Figure 28: Triaxial accelorometer [63] 

Measurement System consists of FFT analyzer, Data acquisition, Front end and PC. 

Modern and more sophisticated systems offer a package including software and hardware 

to obtain signal, processing and giving the desired output in a desirable format.  

3.2.2 Experimental Modal Analysis of the Hood Panel 

The hood geometry created in LMS software package is illustrated in Figure 30. As 

can be seen, Entire surface of the structure is divided into 9 points. Only five 

accelerometers are used so different iterations are applied.  Driving points are at 5, 6, 9 

and two points at each iteration are impacted by the hammer.  The first iteration is run 

with points 5,6,7,8 and 9.  



49 

 

 

  

 
Figure 29: Geometry created in LMS 

In the second run points 1,2,3,4 and 5 are included.  Intentionally, Point 5 is kept 

unchanged in this practice to be considered as a reference point. Washers of same weight 

as the accelerometers are used in each iteration for not shifting frequencies due to change 

in mass. After obtaining FRFs of all points, Curve fitting on stabilization diagram will 

give the mode shapes.  

Based on Least Square Complex Exponential Method (LSCE) 

(2.22) 𝐻(𝜔) = ∑ 𝐴𝑘𝑗𝜔−𝜆𝑘𝑛𝑘=1 + 𝐴𝑘∗𝑗𝜔−𝜆𝑘∗ 

(2.22) 𝐴𝑘=𝑄𝐾{𝜑𝐾}⟨𝜑𝐾𝑇⟩ 

(2.22) λk , λk*=ξkωk±jωk√1-ξ2k 

𝑄𝐾 is the modal scaling factors and{𝜑𝐾} is mode shapes. 
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Figure 30: Modal analysis 

 
Figure 31: FRF demonstration 

Sum of FRFs 

Modal indicator function 
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Figure 32: Determination of mode shape and curve fitting 

Table 3.2: Modal parameters from EMA 

Mode index Resonance Frequency Damping  

Mode 1 25.7 Hz 3.35 % 

Mode 2 42.15 Hz 1.93 % 

Mode 3 62.51 Hz 2.97% 

Mode 4 80.313 Hz 2.15 % 

Mode 5 87.79 Hz 3.74 % 

Mode 6 101.25 Hz 3.35 % 

 

The mode shapes are correlated closely with the ones obtained by CAE. FEM is 

expected to give higher frequency rather than experiment; apart from the first resonance 
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this work confirms their study [47]. Furthermore, No significant difference were observed 

in most frequencies between constraining Y and Z rotational or translational motion. 

Comparing mode shapes of EMA and CAE is necessary to find the related frequencies, as 

the solver sometimes gives fake modes. Due to not considering non-linearities as it is in 

reality. Finally, the results from CAE are found clean and clear. These results contained 

natural frequencies and their corresponding modes shapes. Correlation of these values 

with experiment is one of the objectives of this work.  

Table 3.3: CAE and EMA correlation 

 EMA Latches constraint 

in translational 

Y and Z 

Deviation from 

EMA 

In percent 

Latches constraint 

in Rotational 

Y and Z 

Deviation from 

EMA 

In percent 

First Mode 25.73 Hz 24.3 Hz 5.6 24.17 Hz 6.1 

Second Mode 42.15 Hz 45.6 Hz -8.2 45.51 Hz -8.0 

Third Mode 62.52 Hz 66.91 Hz -7.0 69.38 Hz -11.0 

Forth Mode 80.31 Hz 81.66 Hz -1.7 76.4 Hz 4.9 

Fifth Mode 87.8 Hz 90.03 Hz -2.5 90.9 Hz -3.5 

Sixth mode 101.25 Hz 103 Hz -1.7 101.3 Hz 0.0 
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CHAPTER 4 RANDOM VIBRATIONS ANALYSIS VIA CAE  

Random oscillations are complicated to analyze due to inherent nonlinearities and 

unpredictability nature. Therefore, extensive uses of CAE methods are inevitable to have 

the most accurate estimation of a system response under random inputs. Earthquake, 

airplane wings flutter under aeroelasticity excitations and road base excitation due to its 

unevenness are common examples of using random vibrations analysis.  In chapter one, 

random nature of road irregularities and related equations were reviewed. In this chapter, 

the method which is used by MSC Nastran to find response of a system under random 

excitations will be addressed.  Then the method to find inputs of the system and finally the 

response of the system will be stated [61].  

4.1 Random vibrations analysis in MSC Nastran  

Random response analysis in MSC Nastran is based on data reduction
29

 to frequency 

response analysis.  Entire Procedure can be classified in three steps[61]: 

1- Executing frequency response analysis for a sinusoidal loading conditions, {𝑃𝑎} in 

each loading condition (a) and a sequence of frequencies 𝜔𝑖 
2- Applying data reduction to the findings of step 1 to find 𝑢𝑗𝑎(𝜔𝑖) as the output 

3- Calculation of PSD and autocorrelation functions for the outputs from 2 

Thus if autocorrelation of loading a, is denoted by 𝑆𝑎 and cross spectral density of 

loading a and b are𝑆𝑎𝑏, frequency response 𝐻𝑗𝑎(𝜔𝑖) then response quantity is 𝑆𝑗. In the 

                                                           
29

 Data reduction is the transformation of numerical or alphabetical digital information derived empirically 

or experimentally into a corrected, ordered, and simplified form. The basic concept is the reduction of 

multitudinous amounts of data down to the meaningful parts. 
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last step PSD of the response in displacement, velocity or acceleration is calculated 

according to the flow diagram illustrated in Figure 33. 

 

Figure 33: Flow diagram for Random Analysis module[61] 

Random process analysis based on frequency response techniques requires that [61] 

1- Linear system 
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2- Time stationary excitations 

Autocorrelation function of a variable 𝑢𝑗  is  

(2.2) Rj(τ)= limT→∞ 1T ∫ uj(t)T0 uj(t-τ)dt 

One sided power spectral density is  

(2.1) Sj(ω)= limT→∞ 2T |∫ e-iωtT0 uj(t)dt|2
 

Autocorrelation function from frequency response function is : 

(2.2) 𝑅𝑗(𝜏) = 12𝜋 ∫ 𝑆𝑗(𝜔)cos (𝜔𝜏)∞0 𝑑𝜔 

Root Mean Squared magnitude 

(2.2) 𝑢�̅�2 = 𝑅𝑗(0) = 12𝜋 ∫ 𝑆𝑗(𝜔)∞0 𝑑𝜔 

If the excitation source is 𝑄𝑎, frequency response of a variable 𝑢𝑗  is 𝐻𝑗𝑎 then  

(2.2) 𝑢𝑗(𝜔) = 𝐻𝑗𝑎(𝜔) 𝑄𝑎(𝜔)  

PSD of response, 𝑆𝑗(𝜔) is found based on PSD of source, 𝑆𝑎(𝜔) 

(2.2) 𝑆𝑗(𝜔) = |𝐻𝑗𝑎(𝜔)|2𝑆𝑎(𝜔) 

The last equation is important in evaluation of random response of a system by frequency 

response method. If sources are correlated; 

(2.2) 𝑆𝑗 = ∑ ∑ 𝐻𝑗𝑎𝐻𝑗𝑏∗𝑏𝑎 𝑆𝑎𝑏 

Cross-correlation function of two quantities is defined: 

(2.2) 𝑅𝑎𝑏(𝜏) = lim𝑇→∞ 1𝑇 ∫ 𝑢𝑎𝑇0 (𝑡) 𝑢𝑏(𝑡 − 𝜏)dt 𝑢𝑎 And 𝑢𝑏 can be displacement, velocity or single point constraint force response at a 

point.  
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Cross power spectral density, cross-PSD, of 𝑢𝑎 and 𝑢𝑏 are: 

(2.3) 𝑆𝑎𝑏(𝜔) = 2 ∫ 𝑅𝑎𝑏(𝜏)+∞−∞ 𝑒−𝑖𝜔𝑡𝑑𝜏 

4.2 Finding random excitations coming from road irregularities 

In order to describe random characteristics of the base excitations it was assumed that 

the inputs to the system come from the spots attaching the hood to the body.  

 
Figure 34: Four body points to receive random base excitations 

Rough road as a typical road conditions is considered. According to the literature 

review, in order to be able to consider the process as stationary a constant velocity must be 

followed. Either 30 -40 MPH sound reasonable for this approach. PSD vs frequency 

trends are obtained for the for body points.  
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Figure 35: PSD vs Frequency trend for 4 body points 

In order to see how each excitation points influence the others cross PSDs must be 

considered also. These values are extracted in real and imaginary vs frequency trend.  

The findings are as follow: 
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Figure 36: Cross PSD about point one 
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Figure 37: Cross PSD about point Two 
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Figure 38: Cross PSD about point three 
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4.3 Results for response location under random road excitations 

Physically this point is the middle point at top most of the engine hood panel 

structure. This location is important from driver’s view as it shows the most obvious 

flutter response. Furthermore, compared with the other points at top of the panel, the 

highest amplitudes of vibration response under low speed road excitation occur at this 

point.  

The second objective of this work is to find the response of the structure at the 

location of interest under the random road profile. The last two graphs show the trends of 

response in frequency domain.   
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Figure 39: Response location of the structure 

Response 

location point  
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Figure 40: Response graph at the point of interest  
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CHAPTER 5 SUPPRESSION OF ENGINE HOOD VIBRATION RESPONSE 

Finding response displacements at the point of interest in the previous chapter, this 

chapter is dedicated to lowering the response amplitudes at designated locations.   

Based on what have been reviewed in chapter two, in order to reduce the vibration levels, 

different methods are used. Damping materials, introducing curvature, stiffening ribs or 

beads are some of these techniques which are based on increasing stiffness of the 

structure.  The main concern is that these methods are only applicable in the earlier stage 

of development as modifications on sheet metal work are possible. However in the latest 

development process, they are not at all feasible as no changes in the geometry is allowed. 

One remedy is to adding stiffness to the structure through changing the stiffness of over-

slam and primary bumpers. This technique is studied in this chapter. For this purpose, fifth 

iterations are presented. The iterations Start from increase of 50% up to 150% in 

increment of 25% in stiffness of bumpers.  

 
Figure 41: Samples for over slam bumpers, Used in Hyundai and Jeep vehicles 
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5.1 Iterations to find the optimum values of the response 

As can be seen from Figure 41, it seems that only first and third resonances are 

excited by the road roughness. Increasing the stiffness of bumpers rom 50% up to 150% 

affect the response of the structure to the road excitations. These trends are illustrated in 

Figure 43. 

 

 

Figure 42: Response of the model with increase in stiffness of bumpers 

 

Obviously this technique has greater impacts on the third mode at 68 Hz rather than 

the first. The details are shown in the Tables 5.1 and 5.2. Table 5.1 tabulates the 

contribution of bumpers stiffening on the response amplitudes. 

 



66 

 

 

  

Table 5. 1: Contribution of stiffening of bumpers to response amplitude 

Increase in stiffness% 0 50 75 100 125 150 

First Peak amplitude in mm 0.041 0.040 0.040 0.040 0.039 0.039 

Difference with the base model  - -2.5% -2.5% -2.5% -5% -5% 

Second Peak amplitude in mm 0.009 0.008 0.007 0.007 0.006 0.006 

Difference with the base model% - -11% -22% -22% -33% -33% 

 

The influence of stiffening bumpers to peak frequencies of the structure is studied in 

table 5.12. 

Table 5. 2: Contribution of stiffening of bumpers to response amplitude 

Stiffness increase % First 

peak 

Difference 

with base 

model 

Third 

peak 

Difference 

with base 

model 

0 24.3Hz - 67.3 Hz - 

50 24.5 Hz 1.1% 68.1Hz 1.5% 

75 24.6Hz 1.2% 68.3 Hz 1.5% 

100 24.6 Hz 1.2% 68.5 Hz 1.8% 

125 24.7 Hz 1.6% 68.7 Hz 2.1% 

150 24.7 Hz 1.6% 68.9 Hz 2.4% 

 

Increasing stiffness slightly reduces the amplitudes of the first mode. However, it has 

a significant effect on the third mode. And also according to Figure 43, by increasing the 

stiffness the peak at third resonance splits to two peaks and a valley.  
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All in all, increasing the stiffness of the elastic bumpers decreases the amplitudes of 

vibration responses. This change is not very significant at the first mode but very 

noticeable on the third mode. Interesting point is that almost no considerable frequency 

shift is observed while stiffening the bumpers. Convenient cost of this modification and 

also its accessibility throughout all the development process along with exerting not a 

significant shift of natural frequencies of the system are the main advantages of this 

method. Needless to say, using damping layers or tuned mass absorbers are not tangible in 

latest stage of development of engine hood structure. Introducing curvature, bead or ribs 

are other methods to reduce the vibrations which are only applicable in the very earliest 

stage of development. 
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CHAPTER 6  CONCLUSIONS 

This work provides metrics of hood flutter under random road excitations. Validation 

of CAE results with those of EMA was first studied. Hinges and bumpers are constraint 

in all directions but latches are only constrained in the translational indirection of Y and 

Z axes. Another method is to remove all the constraints except for rotational Y and Z. 

Both methods led to similar results for mode shapes and natural frequencies. It was 

observed that the first resonance happens at 24 Hz and is bending (oil-canning) about the 

Z axis. The second mode which is torsional occurs at 45.6 Hz. In almost the same pattern 

but at different amplitudes, at 66.9 and 80 Hz a bending and a torsional mode occur, 

respectively.  

After validating the CAE model, random vibration analysis was applied to find the 

structure response under road surface unevenness. In order to present the severity of the 

road profile, four accelerometers were installed at four points to get the PSD coming 

from the road to the structure. The input of the analysis was the PSD (frequency varying 

accelerations) in four points along with their cross-correlation effects on each other. The 

velocity of the vehicle remained constant during the experiment for being a stationary 

process. The system was the CAE model validated through the previous step. The output 

was the response amplitude of one point of the structure. This point was located at the 

topmost of the structure in the middle experiencing the highest fluctuations from the 

driver’s view.  

A common method to reduce the amplitude of a vibratory system is to increase the 

stiffness of the structure. This can be achieved by introducing curvature, stiffening bead 
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or ribs to the panel which are available in the early stages of design and considered as an 

expensive solution. Moreover, they work efficiently in damping the first mode vibration 

level but may have adverse effects on the radiated noise and also vibrations at other 

modes. The technique adopted in this work was to focus on the effect of elastic bumpers 

on suppressing the hood oscillations. They are reasonably inexpensive and easy-to-use at 

every stage of design and development. The only thing that must be checked is to ensure 

that the hood structure is still easy to open and close. Furthermore, even an increase of 

stiffness to more than twice the initial values does not shift the frequency more than 

2.4%.  Different iterations starting from increase of 50% in stiffness of bumpers up to 

150% revealed that the amplitude of response was inversely proportional to the stiffness 

factors. While the first mode was dampened slightly the higher modes reacted more 

significantly. It is interesting to note that no increase in vibration levels was observed in 

the modes below 80 Hz unlike the utilization of beads or ribs.  

6.1 Future works 

The current research suggests developing an analytical model to represent the hood 

geometry based on an integrated aluminum panel and also considering the inner and outer 

panels as composite structures. Due to its curvature, a shell model is likely to match well 

with the actual physique. The results of CAE, mathematical and Experimental Modal 

Analyses can be used to compare and evaluate the different approaches.  

 Furthermore, the random excitations of road can be modelled mathematically by the 

methods described in Chapter 1 and the obtained response can be compared with the 
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experimental results. The road surface roughness can also be measured directly by laser 

and the results can be used as input data for running random analysis in CAE. 

Finally, the nonlinearities regarding latches, hinges and bumpers can be the subject 

of further studies. For instance, the effect of changing the stiffness of the bumpers can be 

studied experimentally on road and compared with the results obtained from this work.  
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Vehicle designs and developments must meet safety legislations along with market 

demands. Safety regulations are mainly concerned with how a vehicle body performs in 

crashes, during which pedestrian collision is the one of the most important issues. When a 

vehicle strikes a pedestrian, its engine hood will most likely hit the head of the 

pedestrian, causing serious injuries. To reduce the severity of the injuries, along with 

market demands to improve vehicle fuel economy and performance, engineers have 

considered the design solution of reduction of the vehicle hood thickness (and hence its 

weight) and the use of advanced light materials. As a result, the engine hood panel 

becomes much more susceptible to excessive vibrations. The sources of these vibrations 

are road irregularities which provide base excitations and aerodynamic fluid-structure 

interactions. 
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Engine hood vibrations due to aeroelasticity, called flutter, have been investigated 

extensively in the past using CAE, wind tunnel experiments, and modeling and 

simulations by computational fluids dynamics (CFD) techniques. This work studies 

engine hood vibrations due to excitations from road surface irregularities and explores a 

passive technique to suppress the levels of vibrations. Due to the unpredictable nature of 

surface irregularities, this problem is approached by random vibrations analysis. 

Validated CAE model, with experimental modal analysis, and random vibration analysis 

are employed to determine the system response under road excitations. The power 

spectral densities (PSD) of road irregularities are obtained by experiments and used as 

inputs to the vibratory system. Finally the effects of stiffening elastic bumpers on the 

engine hood are examined a possible passive technique to suppress vibrations. It is shown 

that stiffening of the elastic bumpers decreases the vibration levels for the first mode 

slightly but drastically in other modes. It is also observed that there is less than 2.5% shift 

in the frequency while increasing the stiffness of the elastic bumpers.  Finally, although a 

suppression of less than 5% in the response amplitude of the first mode of the engine 

hood system might not seem significant, the proposed approach represents a plausible 

design solution as it is relatively simple cost-effective, and without much changes to the 

resonant frequencies. 
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