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. The miniaturized dielectric rod antenna is a good reflector feed-array element

because of its compact size. Feed elements can be placed closely together, as a
result of which, less aperture blockage and better beam resolution are achieved.
(See Chapter 4 in this thesis)

. Despite the strong mutual coupling between two dielectric rod antennas located

closely together leading to pattern degradation, the inter-port coupling remained
very small. (See Chapter 5 in this thesis)

. In the design of feed arrays for reflector antennas, the blockage caused by the

struts and the feed housing is very crucial. It is possible to design supporting
structures which are both mechanically stable and at the same time electrically
“nvisible” in some angular regions. (See Chapter 6 in this thesis)

. Designing a good experiment is as difficult as solving a theoretical problem. Both

require careful preparation, logical thinking and patience.

. Minds are like parachutes. They only function when they are open. (Sir James

Dewar)

. The important thing is never to stop questioning. (Albert Einstein)

. It is surprising that antenna designs originating from commercially available soft-

ware nearly always require experimental tuning.

. For an ordinary person to buy a house in future, the abolition of the taz-deductible

mortgage must be accompanied by a significant decrease of income tax.

. The recent visit of a member of the Dutch royal family to Morocco is a second

step in the process of reviving the relations between both countries. The discovery
of a significant amount of oil in the southern part of Morocco seems to be a first

step.

As far as the laws of physics refer to reality, they are uncertain. As far as they
are certain, they do not refer to reality. (Albert Einstein)




10.

. Vanwege hun kleine doorsnede zijn diélectrisch gevulde staafantennes een goede

keus als element in belichter-arrays voor reflectorantennes. De elementen kun-
nen op korte afstand van elkaar geplaatst worden, waardoor er weinig blokkering
optreedt en een betere kwaliteit van de bundel gerealiseerd kan worden. (Zie hoofd-
stuk 4 van dit proefschrift)

. Ondanks de sterke mutuele koppeling tussen twee dicht bij elkaar geplaatste diélec-

trisch gevulde staafantennes met als gevolg een degradatie van het antennepatroon
blijft de koppeling tussen de twee ingangspoorten zeer laag. (Zie hoofdstuk 5 van
dit proefschrift)

. De blokkeringeffecten veroorzaakt door “uithouders” en “belichterhuis” spelen een

belangrigke rol bij het ontwerpen van belichters voor reflectorantennes. Het is mo-
gelijk het ontwerp van de uithouders zo te maken dat ze tegelijkertijd mechanisch
sterk en, in bepaalde richtingen, elektrisch onzichtbaar zijn. (Zie hoofdstuk 6 van
dit proefschrift)

. Het ontwerpen van een goed experiment is even moeilijk als het oplossen van een

theoretisch probleem. Beiden vereisen een gedegen voorbereiding, logisch denken
en geduld.

. Het verstand is als een parachute. Zij functioneren alleen als zij open staan. (Sir

James Dewar)

. Het belangrijkste is altijd te blijven vragen. (Albert Einstein)

. Het is verbazingwekkend dat een antenneontwerp gebaseerd op commercieel ver-

krijgbare software haast altijd experimenteel bijgesteld moet worden.

. Om te zorgen dat de gemiddelde persoon in de toekomst nog steeds een huis kan

kopen, moet de afschaffing van de hypotheekrenteaftrek samenvallen met een sig-
nifikante reduktie van de inkomstenbelasting.

. Het recente bezoek van een lid van het koninkligk huis aan Marokko is een tweede

stap in het opleven van de betrekkingen tussen Nederland en Marokko. Het ont-
dekken van een substantiéle hoeveelheid olie in het zuidelijke deel van Marokko
lijkt een eerste stap te zijn.

In zoverre de wetten der natuurkunde betrekking hebben op de realiteit zijn zij
onzeker. Die wetten die zeker zijn verwijzen niet naar de realiteit. (Albert Ein-
stein)
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Summary

In this dissertation, a complete and accurate design and analysis procedure is provided
for multiple-beam reflector antennas using finite arrays of miniaturized dielectric rod
antennas. It is demonstrated that the miniaturized dielectric rod antenna is a good
reflector feed-array element because despite its compact size, it can produce a rela-
tively high gain. Due to its compact size, feed elements can be placed closely together,
as a result of which the feed-array is compact (less blockage) and the scanned beam
is improved (better resolution). Aspects related to the miniaturization process, the
radiation mechanism and the electromagnetic model of a single dielectric rod antenna
and the analysis of the mutual coupling for arrays with small inter-element spacing
are all addressed in this work. A miniaturized dielectric rod antenna design with
exceptionally good low input loss, high gain and low mutual coupling levels has been
realized. The feed-array synthesis method adapted in this research takes into account
the mutual coupling between the dielectric rods, the losses in the beam-forming net-
work and the blockage due to the metallic feed housing and the struts that are required
for mechanical stability and mounting purposes. The electromagnetic models and the
array synthesis method presented in this dissertation were applied with success; not
only was the novel feed system of the transportable atmospheric radar (TARA) de-
signed and analyzed, a full-scale version has also been realized at the Delft University

of Technology, which is now fully operational.
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Chapter 1

Introduction

1.1 Background of research

In recent years, issues related to the monitoring of global climate changes, water man-
agement, air safety around airports and effects of the atmosphere on communication
links have become the driving forces behind the development of advanced electro-
magnetic observation techniques. Radar plays an important role in all the applica-
tions mentioned above. The International Research Centre for Telecommunications-
transmission and Radar (IRCTR) at the Delft University of Technology (DUT) has
gained a lot of experience in the fields of radar technology and remote sensing of the
atmosphere. This has led to the development of a number of different radar systems
working at different frequency bands.

One of the largest radar systems located at the DUT campus is the S-band Delft
Atmospheric Research Radar (DARR). DARR is a mechanically steerable FM-CW
radar operating at S-band and possessing polarimetric capabilities. The immobility of
this system has limited the investigations for which it could be used to investigations
of the see-coast-urban environment. The necessity to study atmospheric phenomena

at different locations has led to the design and realization of a new transportable

1



2 1. Introduction

(mobile) atmospheric radar system called TARA.

The TARA radar is an international measurement facility financed by the Nether-
lands Technology Foundation (STW). It incorporates the latest developments in an-
tenna and FM-CW technology.

The TARA antenna system consists of two separate reflector antennas with a
parabolic shape, one used for transmitting and the other for receiving. Each antenna
system has multiple beams pointing at different directions (i.e. 0°, 15° in both the
horizontal and the vertical plane). The beams are switched electronically so that
three-dimensional wind fields can be measured. This dissertation is devoted to the
development of tools and techniques for the analysis and design of such high-gain

reflector antennas with beam-switching capabilities.

Incident plane wave .
Primary beam

/\ : ‘ ‘memfeed

(&=

\/ < Feed ‘ Secondary beam

from refelctor

Reflector

Figure 1.1: Reflector antenna with feed at focus. Left: reflector antenna in receive

mode. Right: Reflector antenna in transmit mode.

1.2 Reflector antennas

Reflector antennas are widely used in radio astronomy, microwave communications,
satellite communications and remote sensing because of their low cost, low weight, and
high reliability compared to lens or phased-array systems. Reflector antennas may take

many configurations (plane, corner, curved,..,etc.). They can be classified according to
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reflector shape, pattern type (pencil/shaped, fixed/scanned, single/multiple) and feed
type. Most reflectors are parabolic, with a single focal point, the focus. A plane wave
received from the bore sight direction is reflected by the parabolic surface and focused
at the focal point, see Fig. 1.1. By reciprocity, a transmitted wave emanating from
a feed located at the focus will be collimated by the reflector into a highly directive
beam.

Reflector Scanned beam

Beam Forming

Array of feeds Network

Figure 1.2: Concept of a reflector antenna with beam-switching capabilities.

In a reflector antenna system, beam-switching can be achieved by using a feed
positioned at a distance out of the focus (off-axis). However, the beam generated by
a reflector antenna whose source is located off-focus is relatively broad (lower gain)
and has stronger side lobes. Thus, the beam obtained is not of practical use. Many
applications demand reflector antennas with good off-axis beam characteristics. This
may be achieved if more feed elements are employed, see Fig. 2.1. In this antenna
concept an important consideration is the complexity of the feed system in terms
of the number of elements used, the geometry of the feed array and inter-element
spacing. The proximity of feed elements necessitates a good understanding of the
mutual coupling and overcoming the difficulties in dimensioning an acceptable beam-
forming network. Another important aspect is the minimization of unwanted blockage

caused by the struts and feed housing that are required for mechanical stability and
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mounting purposes. It are these factors that really determine the overall performance

of the antenna system.

1.3 Dielectric rod antennas

Antenna feeds play an important role in the efficient operation of any reflector system.
Ideally they must have a symmetrical pattern, unique phase centre and low cross
polarization. Furthermore, they must provide a uniform illumination of the reflector

surface.

Dielectric rod antennas are among the earliest radiating structures used in radar
applications. They were first used as primary sources illuminating reflectors and as
elements in phased arrays in World War II. Recently, dielectric rod antennas have
been receiving greater attention with the advance of millimeter-wave technology. Low
production costs, high reliability, small size and the availability of high-performance
low-loss dielectric materials make dielectric antennas good candidates for a wide range
of applications, especially at higher frequencies where metallic antennas are costly and

inefficient due to the significant increase of resistive losses.

It is well known that when waveguide antennas are filled with a dielectric material
they can be miniaturized while retaining the same, scaled, modal field distribution.
The higher the dielectric constant, the more the size can be reduced. By extending the
dielectric medium over a distance outside the waveguide, we obtain very compact feeds
with a relatively high gain. These feed elements are very attractive for reflector feed-
array applications and due to their small size, they can be located closely together,
which makes the feed-array compact (less blockage) and improves the scanned beam

(better resolution).




1.4. Problems addressed in this dissertation

1.4 Problems addressed in this dissertation

In this dissertation the following problems are analyzed.
1. Miniaturized dielectric filled open-ended waveguide antennas:

¢ Electromagnetic model
e Different means for increasing the radiation efficiency

e Miniaturization process
2. Open-ended waveguide antennas with arbitrary 3-D metallic body:

e Electromagnetic formulation and numerical solution
e Radiation improvement by an external corrugation profile

e Design and realization of an optimized waveguide launcher
3. Dielectric rod antennas with arbitrary 3-D shape:

¢ FElectromagnetic formulation and numerical solution
e Antenna performance improvement by shaping the dielectric rod

¢ Design and realization of an optimized dielectric rod antenna
4. Array of two miniaturized dielectric rod antennas:

e Approximate model for the mutual coupling
e Analysis of the mutual coupling for different inter-element spacing

e Analysis of the mutual coupling for different array excitations

5. Multiple-beam reflector antennas using arrays of miniaturized dielectric rods:
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e Focal plane analysis and array synthesis procedure
e Mutual coupling compensation
e Analysis of struts and feed-housing blockage

e Design of the TARA feed system

1.5 Organization of the thesis

In this thesis, an accurate design and analysis tool is provided for multiple-beam
reflector antennas that use arrays of miniaturized dielectric rods. Aspects related to
the miniaturization process, the radiation mechanism and the electromagnetic model
of a single dielectric rod antenna and the analysis of the mutual coupling for finite
arrays are all addressed in this research. In this section, an outline of this dissertation
is given.

In Chapter 2, we analyze dielectric-filled open-ended waveguide antennas. For
carrying out this analysis we use the generalized scattering matrix technique in con-
junction with a variational technique. A novel expression for the aperture admittance
is derived and new results are presented. The discontinuities inside the guiding struc-
ture are analyzed using a modal expansion of the field in the waveguide that includes
both propagating and evanescent modes. Sequential scattering features are taken into
account by means of a direct cascading process. The field in free space is expressed
in terms of plane-wave spectra. Both fields are related to each other by using the
reaction theorem and applying boundary and interface conditions. The problem is
then numerically solved by using complete modal expansions and plane-wave spectra
and their interactions at the aperture interface.

Chapter 3 is devoted to the development of a diagnostic and design tool, based
on a modified EFIE and MoM, for analyzing and improving the radiation from an

aperture that incorporates dielectric material and is mounted on a metallic body.
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The metallic body may consist of a combination of perfectly conducting structures
with different sizes and shapes. The code obtained is used to study the effect of
the incorporation of an external corrugation profile on the metallic body. Different
examples are investigated and new results are presented. An optimum rectangular-
waveguide feed design is presented.

In Chapter 4, a rigorous numerical technique based on a hybrid-iterative MoM is
proposed for the accurate analysis and design of dielectric rod antennas with arbitrary
3-D shape. The proposed model contains a complete model of the rod launcher. A
design procedure for the dielectric rod antenna is described and new theoretical and
experimental results are presented.

In Chapter 5, the Minimum Scattering Antenna (MSA) theory is used for predict-
ing the effect of the mutual coupling between two adjacent dielectric rod antennas on
the performance of those rod antennas.

In Chapter 6, an analysis and synthesis tool is provided for reflector antennas that
are fed by finite arrays of dielectric rod antennas. The method proposed makes use
of the electromagnetic models developed in the previous chapters and takes into ac-
count mutual coupling between the dielectric rods. A hybrid Physical Optics-Moment
Method is presented for analyzing the blockage caused by the feed housing and struts,
which are required for mechanical stability and mounting purposes.

In Chapter 7, the main results of this research are summarized and conclusions
are drawn. Furthermore, suggestions are given for future research related to the work

presented here.






Chapter 2

Dielectric filled open-ended

waveguides

2.1 Introduction

This chapter concentrates on the analysis of dielectric filled and open-ended wave-
guide antennas with miniaturized apertures. The waveguides are assumed to have
a rectangular cross section (see Fig. 2.1); when used as an antenna they are termi-
nated by an infinite metallic flange (see Fig. 2.6). These antennas are comparable
to microstrip antennas. They may have a low weight, a relatively large bandwidth
as compared to microstrip antennas, good polarization purity and can easily be in-
tegrated with a printed-circuit board (PCB) or flush-mounted conformal to curved
surfaces. Therefore, they are good candidates for many practical applications.

It is well known that when waveguide antennas are filled with a dielectric material
of relative permittivity €., they can be miniaturized. Each dimension (width a, height
b, see Fig. 2.1) of the antennas’ aperture can be reduced by a factor /€. while retaining
the same, scaled, modal field distribution. The higher the dielectric constant, the more

the size can be reduced. For rectangular waveguides with a TE, o excitation, further

9



10 2. Dielectric filled open-ended waveguides

size reduction can be achieved by reducing the height b. The result is a miniaturized
antenna. It turns out that the miniaturization is at the cost of a high aperture
reflection and a poor radiation efficiency. In the transition from waveguide into free
space, which causes the high aperture reflection, we recognize the following three

aspects:

¢ The ending of the metallic guiding structure.
o The dielectric-air transition at the aperture plane.

e The small cross section of the miniaturized antenna.

Antennas with such a high aperture reflection are inefficient radiators and not of
practical interest. Fortunately it is possible to add a matching device that is designed
such that it eliminates the aperture reflection. Matching techniques are based either
on the insertion of an air gap in the dielectric medium or on steps in the waveguide
dimensions (see Fig. 2.2).

As stated above in this chapter, we will analyze the dielectric-filled open-ended
waveguide antennas. For carrying out this analysis we use the generalized scattering
matrix in conjunction with a variational technique. A novel expression for the aperture
admittance is derived and new results are presented. The discontinuities inside the
guiding structure are analyzed using a modal expansion of the field in the waveguide
that includes both propagating and evanescent modes. Sequential scattering features
are taken into account by a direct cascading process. The field in free space is expressed
in terms of plane-wave spectra. Both fields are related to each other by using the
reaction theorem and applying boundary and interface conditions. The problem is
then numerically solved by using complete modal expansions and plane-wave spectra
and their interactions at the aperture interface. Knowing the aperture field, we can

find the radiated field using standard techniques.
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This chapter is further organized as follows. First, for completeness, in section 2,
the scattering matrix approach and its applicability to a general discontinuity prob-
lem in rectangular waveguides is described bricfly. For multiple discontinuities in
rectangular waveguides we discuss the cascading scheme. Subsequently, in section 3,
the radiating aperturc and the spectral field representation are characterized. The
matching condition is then derived and the present formulation is validated against
measurements and results available in published literature in scction 4. Finally, we
discuss some specific aspects of the design of miniaturized diclectric filled waveguide

antennas and limitations of the present formulation.

VA

W Waveguide cross-section

oW Boundary of W

Figure 2.1: Waveguide dimensions and Cartesian coordinate system.
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2.2 Modal analysis of discontinuities in rectangu-

lar waveguides

This section discusses the mathematical tool to be used for analyzing discontinuities
in rectangular waveguides. Only two types of waveguide discontinuities will be con-
sidered, viz., a step in the waveguide dimensions and an air gap, which is a step in the
material properties. The geometrical step discontinuity finds its application in waveg-
uide transformers, iris couplers, and filters. The air gap is a very effective resonant
matching device used mainly to improve the radiation efficiency of dielectric-filled
waveguide antennas. Note that in a sence both types of waveguide discontinuities
are of the same relatively simple type; they both allow the domain of computation
to be subdivided into a number of sub-domains that are uniform waveguide sections
in which we can use complete modal expansions. Because of this we can construct
an algorithm with which multiple discontinuities in' rectangular waveguides can be
analyzed.

2.2.1 Modes in rectangular waveguides

Consider an infinite length metallic rectangular waveguide filled with a dielectric
medium and of lateral dimensions ¢ and b. The medium is assumed to be isotropic,
linear and homogeneous. Fig. 2.1 shows the coordinate system that will be used
throughout this section together with the waveguide dimensions. The fields in the
waveguide can be decomposed into TE and TM modes. They are derivable from the
axial z-components of the magnetic and electric Hertzian vector potentials IT®and IT"
(1, p. 349]
E=—jupV xII"+V x V x IT¢,

(2.1)
H=jweV xII*+V x V x IT?,
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where an exp(jwt) time dependance of the fields is assumed, with angular frequency
w. € denotes the permittivity of the medium and g denotes the permeability of the
medium. The Hertzian potentials can be written as a sum of the products of the
eigenfunctions ¥"°(x,y) and the propagation factor exp(£7,,,2) for each mode in
the waveguide

I = £ S A o) + AW B ).
I = Yoo Zoo AL Vi n €XP(—Vmn2) + A5 U5 eXp(+7m n2).
The prime in Eq. (2.2) indicates that the term m = n = 0 is omitted from the
summation. A}%" represents the amplitude of a wave traveling in the +z direction
while A; %" designates the amplitude of a wave traveling in the —z direction. The TM
and TE modes can be deduced from the solutions to the scalar Helmholtz equation
on the waveguide cross section W with Dirichlet and Neumann boundary conditions,
respectively, on the boundary OW (see Fig. 2.1). We find
\Il},‘,l,n(x, y) = sin(®Zz)sin(%y), m,n=1,2,...

(2.3)
e, (2, y) = cos(ZEx) cos(Bry), m,n=0,1,2,...

where v, ,, =j\/ k% — (%)2 - ("T")z is the propagation constant and k = w,/u€ de-
notes the wave number in the medium filling the waveguide. If the medium in the
waveguide is lossless then the cutoff frequency f. of the TE,, ,, or the TM,,,» mode is
given by

1 m\2 n\2
= — =) 2.

f= 5 (5) +(5) 24
The propagation constants of the TE,,,, and the TM,, ,, modes can be written as
. 2 .
1= (&) if f>f

P)

k(B -1 if f<fe

where the frequency f is given by 3. The modal characteristic admittances are found

(2.5)

me,n =

to be Y1 = —j7== and Y1) =j52 for the TE and TM mode, respectively. Those
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quantities are real and positive for frequencies above cutoff, and are purely imaginary,

with a positive imaginary part, for frequencies below cutoff.

a,
b
b b
a a,

(a) Dielectric step (b) H-plane step
. al'
(c) E-plane step (d) Double plane step

Figure 2.2: Examples of step discontinuities in rectangular waveguides.

The TEl’o mode

Since the TE; ¢ mode is the mode that is dominant and most commonly used in a
rectangular waveguide, some expressions concerning its field distribution are repeated
here. From the results given earlier, the nonzero field components of the TE; ¢ mode

are described by the following (propagation in the +2 direction is assumed)

E, = Egcos (wx) exp (—J,Bl Oz)

T .
H, = —-E¢Yigcos (7) exp (—Jﬂwz) , (2.6)
7I'E0 mwr
H, = Tona sin ( 2 ) exp (~3ﬂ1 oz)

2
where Yo = %‘f is the wave admittance and 7, 5 =jB, o =ji/k? — (%) the propaga-

tion constant of the TE; o mode.
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2.2.2 Scattering matrix of step discontinuities

When the fundamental mode in a waveguide is excited, this is usually achieved by
means of a coaxial line with its inner conductor extending a distance d into the wave-
guide [1, p. 471], it will propagate unperturbed inside the waveguide until some dis-
continuity is encountered. A discontinuity may be a change in the dielectric constant
(i.e. dielectric step), the dimensions of the waveguide (i.e. E-plane, H-plane or double
step), as pictured in Fig. 2.2, or simply the termination of the waveguide in a flange
(i.e. aperture radiation). The presence of a discontinuity in a waveguide will cause
a reflection of the fundamental mode and a storage of reactive energy in the vicinity
of the discontinuity plane because of the excitation of higher-order waveguide modes
which are evanescent, i.e. decay exponentially with distance from the discontinuity (2,
p. 311]. Exact solution of Maxwell’s equation for the field distribution existing near
a discontinuity is a very difficult task [1, p. 547]. However, since we are interested
only in the effect on the fundamental mode, the detailed nature of the diffraction field
around the discontinuity is not required.

In this section we apply the modal analysis method to analyze the general step
discontinuity problem of Fig. 2.3. The transversal electromagnetic field {E¢, H¢}in
each waveguide region, 1 or 2 (see Fig. 2.3), is expanded in a complete set of waveguide

modes, Eq. (2.2). In the region z < 0 we can write the following

E. = 5 e0T5(z,y) {alDiT exp(~1,2) + BEATE exp(vDn2)} /JY“”"
+ 5 e (2, ) {alD™ exp(—1W,2) + BT exp(rB,2) } /YT
H, = l X eg)r;TE(w y) V "(1121 e {a'grlt)nTE exp(_vsrll?nz) - b%,)'r’zTE eXP(’stpn )}

. ,TIM
+ "; i x e (2, )y VAR (T exp(—1{0,2) — B exp(3,2)}
(2.8)
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oM @8
byo bu, >
I.E [
am.n am.n ,
1), ™M (1B
< by bus a®Ma®.®
Region 1
Region 2

N

Figure 2.3: Different waves scattered at a waveguide step discontinuity.

The transversal field in the region z > 0 can be written as

E. = 3 e®TE(z,y) {a@i exp(vDnz) + TE exp(—1Zn) } /1 YA

; (2.9)
o ™
+ 3 oM (z,y) {a@M exp(vPn2) + HOM exp(—1Zn2) } /Y™,

H =— :éiz x eDTE(z, )/ Y™ {a®TE exp(v,2) - BOTE exp(—12,2)}

= 5 i x 2P y)V I (a2 expl2z) — B exp(—12h2)}
(2.10)
where a{;T5™ and a{2;T®™ represent the amplitudes of the waves incident upon
the discontinuity plane, z = 0, from regions 1 and 2, respectively, while 5(;T%™ and
b2, TEIM gre amplitudes of the waves reflected by the discontinuity plane in region 1
and 2, respectively. The functions el (z,y) and el (z,y) are the orthonormalized
transverse field distributions of the (m,n)™ transverse electric and magnetic mode,

respectively, in each waveguide section. As in [3], the transverse field distributions are
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normalized. After a simple coordinate translation we obtain

ert =Nmn {k,ym cos (kz;m (1‘ + %)) sin (kym (y + %)) i,
—Kgm sin (k,m;m (1‘ + %)) cos (kym (y + %)) iy} ,
B = N e (hom (+ )b (+ D)1 210
+kyon sin (kl.;.m (;1' + %)) cos (kym (y + %)) iy
x

i) gin (kg (7 + 2)) sin (hyn (5 3)) 12}

1 if (p=0)
2 if (p#0)

At the interface z = 0, the transversal components of the electromagnetic field must

_  [imea 1 : - -
where Ny, , = /<25 T is the normalization factor, and €, =

be continuous. This leads to the following conditions

lim, o Hy(z, y, 2) = lim,o Hi(x, v, 2), if (z,y) € S,
liszO Et(zy Y, Z), 1f ("I:y y) S 51’ (212)
0, if (x,y) € 82\81,

lim, o Ei(x,y,2) =

where Sjand S represent the waveguide cross sections at the step discontinuity; we
have assumed S, > S;. Substitution of Eqs. (2.7), (2.8), (2.9) and (2.10) by Eq.
(2.12) gives rise to a linear system which cannot be solved since it must hold for an
infinite number of points (z, y). Hence, the problem as stated above results in a strong
form and an additional weighting technique is needed to make the above equations
numerically solvable. An appropriate weak form is obtained by testing Eq. (2.12) in
its strong form with a sequence of transversal modal functions. In order to obtain such
weak equivalents, we multiply the first part of Eq. (2.12) with the vectorial testing
sl),TE and eil,l),TM

functions e; , respectively, and integrate the result over the domain S;.
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‘We obtain

TE [TE
o VYA (BDTE — o272} [ e®TE(z,y) - o} (,y)dA
S1
+ /Y(2),TM {b(z),TM _ a(z),TM} / @™ (z, y) e(1) TE(4 y)dA =
o VYo" a0 — 003 TE} / Wi (z,y) - e} (z,y)dA

+/r ™ {au) ™ b(l)ThI}/e(l)TM(x y)- e(l) TE(1 )dA,

(2.13)

and

o YT (pe _ o@e) / e@TE(z,y) - efy " (z,y)dA
Y™ (e _ @) / e@) i (z,9) - e ™ (@, y)dA =
w YT {a®iTe ) TE} / eWTE(z, ) - )™ (z,y)dA
VI o _ prm) / ™ (2,0) - €7 (5, y)A.
S1

(2.14)

Subsequently, we multiply the second part of Eq. (2.12) with the vectorial testing

(2) TE (2)7

functions e; and e

Sy. We obtam

, respectively, and integrate the result over the domain

2),TE
o W {ali= + o] / eDiE(z,y) - egd " (e, y)dA
5

2),TE
;Y(z)n{ { (2 TM +b(2) TM}/ef(ﬁ,)hTM(x y)-e ( ) (z,y)dA =
S2

2),TE
o (a0 + DT [ e)TE () - o} (2,y)dA
S1

{a(l) ,TM +b(1) TM}/e(l) TM(E y)-e (2) TE(z y)dA

(2.15)

;Y(l) ™
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and
2),T™M
o s {07 O} [ e e y) - )™ (2 )

o Sa

2),T™M
. (12) — {agizl)"'rm + b2 (2), TM} /e(z) TI\I(T y) - e( ) (z,y)dA =
o 5

x,n (11) T { 1$71L)1FE + b(l TE}/esvll)ner(‘ y) ' 6(2 TM(T )dA
JTE 4
O o) [ e, g) - o™, y)aA,
S1

(2.16)

;Y“) T {

Applying the orthogonality property of the waveguide modal functions we obtain the

following matrix equation

a1 ITE b(L.TE
I VT a(LT™ I A b(1TM
= . 2.17
v I a@TE -V I b@TE @17)
(@ T™ b, T™

In Eq. (2.17) the sub-matrix I denotes a unity matrix and V7 is the transpose of V.
The sub-matrix V involves reaction integrals between the modes of the two adjacent
sections to the discontinuity and is given by [4]

VIETE  yTM-TE

V= , (2.18)
VTE-TM VTM»TM

TE-TE BATE (TE( (2),TE
\ = Y(l) TE /e (z,y) - €, (x,y)dA,

where

TE-TM Y;J&)’TM (1), TE (2),T™
Vp,q = Y(l),TE /eq (‘T’ y) . ep ’ (CE, y)dA)
q S
VIMTE YT (1), T™ (2).TE dA
P = \ YOI €, (z,9) - e " (z,9)
q S
TM-TM Y;Iu)’TM a),T™ (2),T™
A% \m/eq ¥z, y) - e, (z,y)dA, (2.19)
q S
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g = (m,n) and p = (k,l) are mode indices. Finally, the scattering matrix S of the
step discontinuity can be found from Eq. (2.17) if the linear system has been solved

and is given by (see Appendix A)

S11 Sl2
S21 S22

Su = [VIV+1]” [1-vv],
S = VII+Su,

Sl2 = Sgla
S;p = VSp-—1L (2.20)

When all modes are included, S;; are sub-matrices of infinite rank. The matrices may

be truncated at a given finite number of modes N consistent with a required numerical

accuracy.
(2 @3 P
+—t—r—p»
Radiated field
€05 Mo
1
_r> Es Ky (&g Ho & Hy| —
—

S(l ) S(2 ) S(3 ) S(4 )
Figure 2.4: Example of a radiating aperture and its feeding section consisting of

different discontinuities.
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2.2.3 Scattering matrix of multiple step discontinuities

In this section a direct iterative algorithm is described for the analysis of multiple

discontinuities in rectangular waveguides. Let us consider a microwave network repre-

senting the feeding section of a radiating aperture as shown in Fig. 2.4. This network

is made by several elementary discontinuities and a number of uniform waveguide

sections. Each discontinuity is represented by a scattering matrix (sce Fig. 2.5). The
th

relationship between incoming and outgoing waves for the i discontinuity is given

by
bgi) X a(li)
| =[s® _ (2.21)
bgz) [ ] agz)

[ = , , ,
F‘_-l S(l) 1(12) S(Z) l(23) S(3) 1(34) S(4£SHP

Estot EAperture

Figure 2.5: Equivalent transmission line model of an aperture antenna represented
by a scattering matrix of each discontinuity and the overall scattering matrix of the

feeding section.

Sequential waveguide discontinuities are commonly treated by transmission matrix
parameters instead of scattering matrix parameters. However, this is not appropriate
when higher-order modes are included which are excited below their cut-off frequency.

For certain frequencies, the transmission matrix parameters will contain exponential
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functions with a positive argument. This may lead to numerical instabilities. A direct
combination of the involved scattering matrices is preferable. Although this procedure
is quite complex, it guarantees numerical stability, since it involves only exponential
functions with negative arguments [5]. Let S®) denote the scattering matrix of the
i*" discontinuity and S¢+") the scattering matrix of the (i + 1)'* discontinuity. Both
discontinuities are adjacent and separated by a uniform waveguide section of length
16:+1) | The combined scattering matrix S@**1) representing the two discontinuities
with index ¢ and i + 1 and including the uniform waveguide section in between, can

be obtained if the following scheme is used[3]

o | _ s o

bg’+1) 0 Sg2+1)
s%D o ESS'D E s o a{?
0 s§D F FSPD || o s&Y|)| o+ |’

(2.22)

where B= [1 - S{™"DSED] ", F= [1- SYDS{E™D] ™, and 1 is the unit matrix. D
is a diagonal matrix with entries Dix = exp(—7{&H1.104+1) due to the waveguide
mode in the uniform waveguide section between the two discontinuities with index
k = (m,n) and propagation constant v{:*+"). A series of more than two steps can be

treated analogous to Eq. (2.22).

The scattering matrix representing the feeding section S***, when used together
with the scattering matrix of the radiating aperture S*?, will completely characterize
the radiating aperture and its feeding part. The description of the aperture radiation

model is the topic of the next section.
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2.3 Characterization of the radiating aperture

This section discusses the radiation from miniaturized dielectric filled waveguide an-
tennas terminated by a metallic flange of infinite size. The problem of radiating
waveguide apertures may be formulated in terms of an integral equation having the
tangential electric, and/or magnetic field in the aperture planc as the unknown func-
tion. One must first introduce suitable representations for the tangential fields in the
regions both inside and outside the waveguide. The application of boundary condi-
tions across the common aperture plane then leads to the solution of the problem. In
this section we choose the variational approach introduced by Swift 6] and used in
[7, p. 11] with a more gencral formulation that takes into account the higher-order
modes and their mutual interactions. A novel expression for the aperture admittance

is derived and new results are presented.

Region 2
€00

z

a
Ground plane

Figure 2.6: Waveguide antenna geometry.

2.3.1 Aperture admittance

The waveguide geometry and the coordinate system used throughout this section are
shown in Fig. 2.6. The rectangular waveguide opens into a perfectly conducting flat
flange of infinite size. The waveguide is filled with an isotropic, linearly reacting, ho-

mogeneous and lossless dielectric material. The face of the dielectric is flush-mounted
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with the infinite ground plane. The dimensions of the dielectric material are assumed
to be equal to the inner dimensions of the waveguide. The guide dimensions are such
that only propagation of the dominant mode is allowed, namely propagation of the
TE;o mode. Over a cross section inside the guide sufficiently far from the aperture, any
component of the fields is the vector sum of the components associated with incident
and reflected waves of the dominant mode. In the vicinity of the aperture, however,
additional higher-mode fields exist locally, excited by the aperture discontinuity. For
an exact determination of the radiated fields it is necessary to know the exact field at
the waveguide aperture, both in amplitude and phase. Hence, an accurate solution to
the boundary problem has to include the contributions from the reflected dominant
mode as well as contributions from the higher-order modes. We limit ourselves to the
most practical case where the TE;y mode is incident upon the aperture. We write the

tangential field components as
o0
lim, 1o E{ = Bo(1+T)cos () + Y EoDm(1+T)cos (mz=)
m=3,5,...

limago HY) = ~Eo¥i0(1 — [)cos () + 3 Eo¥moDm(1 +T) cos (2),

a

m=35,..
(2.23)
Eq.(2.23) is obtained from Egs. (2.7) and (2.8) by letting
o™ =0, BT =0, V(m,n),
b, =0, ifmisevenorn#0, al5, =0, f m# 1 or n #0,
aff =1, bjg =T, Bo =~ /38, Yoo = Y5, (2.24)

bIE = \/32Dp(14T), m =3,5,..,

1,0

em,0(17 y) = _\/—;COS (mrz) iy7

where I is the reflection coefficient of the fundamental mode, D,, is the excitation

coefficient of the m*™® mode and Y0 is the mode admittance. The remaining sym-
bols were introduced in the previous sections. In Eq. (2.23) we assumed that only
those modes which are symmetrical about the origin are excited and that the aperture
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discontinuity induces a negligible E, component. The first assumption is justified by
the symmetry of the problem considered, while the second assumption is an approxi-
mation emanating from experimental observations. In order to solve the problem we
need to find the unknown coefficients I' and D,,. From the boundary conditions and
Rumsey’s reaction concept (8], we can deduce a variational formula for the aperture

admittance. To do this we define the reaction integral [8] at the plane z = 0 as follows

<1,1>= 1i%1// HY(z,y,2) - 1. x EV(x,y, 2))dA, (2.25)

ap

substituting Eq. (2.23) into Eq. (2.25) results

<11>_//E5(1+F)(co<(%)+ 5> Dpcos (m= ))

> s (2.26)
Yio(1 —T)cos (%) — (1 4+ T)Y;m oD cos (222) | dedy.
m=3,5,...
The orthogonality of the waveguide modal functions may be used in Eq. (2.26) to
obtain
2ab d
<11>=E0+T2 (vlol - 3 D : (2.27)
1+ F m=3,5,...

The reflection coefficient I' can be interpreted in terms of a normalized equivalent

circuit admittance y,, for the aperture by using the relation

Yo 1-T
Yo=YV = ITT (2.28)

where Yo =, /;43)- the characteristic admittance of free-space. From Eq. (2.27) and Eq.
(2.28), we can deduce the following stationary equation for the normalized aperture

admittance

<1,1>
———+ D2
2LE(1 + )i §, yw

The summation may be terminated at a given finite value of m consistent with the

Yap =

(2.29)

required numerical accuracy. Since the reaction is conserved across the aperture [8], we




26 2. Dielectric filled open-ended waveguides

can write the reaction integral in terms of the external fields radiated by the aperture

<1,1>=<2,2>=1lin / / H(z,y, 2) - (i, x E?(z,, 2))dA. (2.30)

S
After applying the boundary conditions due to the presence of the metallic flange (i.e.
E, # 0 only at the aperture) and Parseval’s theorem, we obtain an expression for the

reaction integral in the spectral domain

oo oo oo oo
<22>=— [ [E@G@yBP @ y)dedy =~ [ [ ED(ke, k)AD (ke k)b,

(2.31)
where E{?(z,y), H?(z,y), E? (k,, ky), and H® (k,, k,) are the radiated electric and
magnetic fields in the spatial and spectral domain, respectively, expressed at the plane
2z = 0. A thorough description of the spectral domain representation of the electro-
magnetic fields and the rest of the related formulation is provided in the following

section.

2.3.2 Spectral representation of fields

The plane-wave spectra technique [9, p. 14] is based on the fact that any radiating
field can be represented by a superposition of plane waves in different directions. The
amplitude of the plane waves in the various directions, or the spectrum function, is
determined from the tangential field in the aperture plane. This spectrum function
represents the far-field radiation pattern of the aperture for real angles. The reactive
aperture fields are represented by the complex directions of propagation in the spec-
trum function. For an aperture laying in the z = 0 plane and radiating into z > 0
half-space, the tangential electric and magnetic fields (in z > 0) can be written in
terms of the plane wave spectrum functions f(k, k) and g(kz, ky) of the electric po-

tential F and magnetic potentials A [9, p. 10], respectively. After applying a spatial
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Fourier transformation to the field quantities, we obtain

E.gzz)(kmkyw) (Mg( x y) +jky?(kryky)) exp(—jk.z),

EQ (k,, ky, z) = ( ‘*g( e ky) = Jhiaf(ke, ky)) exp(—jk.2), (2.32)
E®(k,, ky, 2) = —jt karky g(kz, ky) exp(—jk.z),

Hﬁ (ks Ky, z) = ( jkyg(kza ky) + J}:_:z%(krv ky)) exp(—jk z
H (ke by, 2) = (ha(be, ky) + E22 (e, k) ) exp(—ik.2), (2.33)
(2 12~
O (ky, by, 2) = LDk, k) exp(—i.2).
In order to express Eq. (2.31) only in terms of the tangential electric field, we first

write the magnetic field component H®), using Eq. (2.32) and Eq. (2.33), as
H® (ky, ky, 2) = (k kED (ko by, 2) + (K = RDED (ky ey, 2)),  (234)

According to the boundary conditions, the tangential components of the electric field

are continuous at the common plane z = ()

lim, ;o E? (k,, ky, 2) = lim,1o EQ(k,, ky, z),

. . (2.35)
lim, o EQ?) (ky, ky, 2) = lim,o B (ky, ky, 2).

Since we have assumed that E{"(z,y) = 0, it follows that E{)(k,,k,,0) = 0 and
subsequently, with Eq. (2.34), equation (2.31) can be further simplified

1 k? — 2
— (1) 5
<2,2>= 4”2_4_-0/0 o (E (ke by 2 = 0))” dydky, (2.36)
where
E;(,l)(kz, ky,z=0)= // EM (2, y) exp(jkez + jkyy)dzdy. (2.37)
S

Substituting E{Y(z, y) from Eq. (2.23) into Eq. (2.36) and performing the integration
yields the following

E(M (kz, ky) = Eo(1+ T)Co(ky) (Cl(kz)Jr > DmCm(kz)), (2.38)
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where .
f 2lmaj'~! cos (k22
Ci(k;) = /cos (MTE) exp(jk,x)dr = ——( J) & ( 22), (2.39)
-3
and (k b)
3 bsin (%=
Co(ky) = / * exp(jkyy)dy = TL (2.40)
-4 b

Squaring this expression we obtain

(B (ko ky)* = E3(1+T)°CHk,) (cf(k,)+2

m=3,5,... n

Cm(kz)cn(kz)DmDn) ) (2.41)

+ 3
=3,5,..

The plane-wave spectrum functions f(kx, ky), and g(kz, ky) can be evaluated directly
from Eq. (2.32) and are found to be

H(ka, ky) L
58| 2] o

Finally with substitution of Eq. (2.38) and Eq. (2.36) into Eq. (2.29) and after some

mathematical manipulation we can write for the aperture admittance

Y; i Y, oo 00 Y. o Yo
Yap = ?ITI) + 2,,._32,5 ;1': mﬁ% ng,;,... mDa g + mgg D2, Yl,:’ (2.43)
or in matrix form
Yi3
yale,0=Y1,1+2[D3 Doo]' :
Y100
Ys3+Ys0 Y35 e Ya o b,
+ [ Ds Do ] Vg Yest¥so - Yoo .
Do
Yeos c+o Yoo + Yao0

i

(2.44)
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where Y, (m,n = 1,3,5,...) may be regarded as the mutual admittances between

the TE,, o and the TE,, ; modes respectively, and is given by

2Y oip 2 k b <2 ,.wg
Ymn = —™*m / / 20b kz) sin®( yz)COb (k 2) dk,dk,.
o o witk ( [( m)? = (kea)?] [(mm)® = (k. a)’]

(2.45)
We must now impose on Eq. (2.43) the condition that y,, should be stationary for
small arbitrary variations in the electric field distribution about its correct value. This
condition is obtained by equating the partial derivatives of the unknown coefficients
D;, to zero and gives the best possible solution to y,, that can be obtained with the

assumed field distribution. From Eq. (2.43) we obtain

6yap

D, ~
or in matrix form
Ys3+ Y3 Y35 e Y500 D3 -Yi3
Y- Yss+Yso --- Y; D. -Y;
5,3 55 5,0 5,00 .5 _ -1,5 . (2.46)
Yoo,3 e e Yoo,oo + Yoo,O Doo _Yl,oo

This results in a novel expression for the aperture admittance of dielectric-filled wave-

guide antennas, namely

Yis
YapYr0=Y11+ | D3 -+ Dy I (2.47)

Yo
In order to find the coefficient D,, a matrix inversion operation must be performed.
The integrals in the expressions for Y, »(n,m = 3,5, ...) are converted into forms suit-
able for numerical evaluation in Appendix A. Once the coefficients D,, are known, the
aperture admittance yaj, the reflection coefficient I' and the aperture field distribution

follow directly from Eqs. (2.47), (2.28) and (2.23), respectively.
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2.3.3 Radiated far fields

Exact computation of the field in each point outside the opening is a difficult task. If
the exact aperture field was known then the radiated field could be calculated exactly
[10][11, p. 334][12, p. 460]. An exact formulation of the radiation from an open-ended
waveguide can also be achieved by using the Wiener-Hopf method (13, p. 161], but
this technique gives only asymptotic solutions for the far field, while in many cases
both the near field and the far field are needed. Another limitation of this method
is that it does not take into account the effect of the wall thickness and the metallic

flange on which the aperture is mounted.

This section is devoted to the calculation of the radiated field in terms of the
aperture field solution presented in the previous section. For an aperture mounted
in an infinite plane the method gives an exact solution to the field radiated on one
side of the aperture plane, the (z > 0) half space. For an aperture in free space,
approximate formulas based on the field equivalence principles [14, p. 106][15, p.
61][16] are presented.

Aperture mounted on an infinite metallic flange: Exact solution

For an aperture on an infinite metallic flange an exact solution can be achieved since
the electric and magnetic fields in the aperture, Eq. (2.23), are known exactly, within
numerical accuracy, after solution of the linear system in Eq. (2.46). The field in
the half space (z > 0) is uniquely determined by knowledge of either the tangential
electric field or the tangential magnetic field in the aperture plane. Due to the fact
that tangential component of the electric field is zero on the metallic flange, it is
more convenient to determine the radiated field based on only the aperture electric

field distribution. If we take the inverse Fourier transformation of the electric field
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E® (k;, ky, z), represented by Eq. (2.32), with respect to k, and k, and let

ks 3k, ky) + ik Bk, ky)

W (ky, ky) = | Rekegip k) — ok, ky) | (2.48)
ik, k)
we obtain -
1 ~ .
B(r) = // B (k,, ky) exp(—jk - r)dk,dk,. (2.49)

In Eq. (2.49), r denotes the position vector of a point in free space and k represents
the propagation vector. The far-zone radiated fields can be obtained by cvaluating
asymptotically Eq. (2.49) using the stationary-phase method. When r, the norm
of the vector r, tends to infinity the most significant contribution only comes from
the stationary phase point. The dot product k-r in Eq. (2.49) can be expressed in

spherical coordinates as

k-r=r(kysinfcosg+ kysinfsing + /K — k2 — k3 cosf) , (2.50)

where we have used the expression of the vector r in spherical coordinates, namely, r =
r (sinf cos i, -+ sin §'sin ¢, + cosbi) and k =keis +kyiy+1/k — k2 — KZi, with ko =
wy/Ho€o- The stationary phase points are found after solving the following equations
which gives k; = kgsinfcos¢, and k, = kosinfsing. After some standard mathe-
matical manipulations [15, pp. 61] we may write for the fields in the far zone

E(r) ~ Jexp( jkor)

5 ko cos 8 (ko sin 6 cos @, kq sin 8 sin ®). (2.52)

After evaluating the obtained expressions in spherical coordinates, we find

ex kor
0(T$0a¢) ~ J%
jkor)

kg sin qu(l)(lso sin 8 cos ¢, ko sin 0 sin @),

Ey(r, 6, ¢) exp(2 ko cos @ cos qu(l) (ko sin @ cos @, ko sin fsin @). (2.53)
where E(l) is given by Eq. (2.3

8).
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Aperture in free space: Approximate solution

In this section we use the equivalence principles to derive an approximate expression
for the field radiated from un-flanged dielectric-filled waveguide antennas. We first
choose a closed surface with the opening as a part of it, and assume some values
for the fields on this surface. For the aperture, these values may be assumed to be
the field distribution obtained by using the method discussed in the previous section.
Over the remainder of the surface, the field is assumed to be zero. Using the Green’s
representation of the electromagnetic fields [11, p. 80][12, p. 464], we can express the

field in free space at any point lying outside the aperture as follows

E(r) = — / o, G, P)Is() = 59 - Js() VG (r, )
+(V x G(r, ¥)Ks(r'))}dA',

(2.54)

H(r) =- / s_; {jweoG(r, ¥)Ks(r') — £V - Ks(r') VG(r,r)
—(V x G(r,r')Js(r')}dA,

(2.55)

where G(r,r') is the free-space Green’s function given by G(r,r’) = Eﬂ_-l_l__ﬂ;l’:"_ :,‘l‘" T

represents the vector position of the point at which the field is computed while r/ is the
vector position of the source element on the aperture. The above equations represent
field solutions in terms of equivalent electric Js and magnetic Ks sources lying on
the aperture surface S,,. The nabla operator V in Eqgs. (2.54) and (2.55) operates
only on the coordinate of the observation point r. Applying the V-operator within
the field integrals results in the following expressions for the near fields

B(r) = e [ (14901 +) s~ (s 3n)inl1 +3p01+ )]

— (Ks x ig) (1 + p))Gd4,

(2.56)

H() = 22 [ (1+p(L+ ) Ks + (Ks - ir) i1+ 3p(1 + )]

o (2.57)
10 (Js x ir) (1 + p)) G4,
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R
(Jko + ) Mzn and p = 1/jkoR. 1y = ,/’;f(‘)l is the characteristic impedance of

frce space. The field in the far zone is found after using the well known far-field

where the following relations were used; R = |[r—r'|, i = =X, V (QPM_RMQ) =

approximations [11, p. 87]. The result for the electric field is given by

E(r) ~ _Jwitg exp(~jkor) /

47r o

[(Js — (- Js)in) + /2 (Ks x z,)} exp(jkod, - ')dA'.

. (2.58)
The equivalent electric and magnetic current distributions Js and K on the aperture
are related to the fields just inside the waveguide by application of the equivalence

principle
Is(z,y) =i, x HO(z,y, 2z = 0), Ks(z,y) = —i, x EO(z,y,2 =0),  (2.59)

the aperture electric and magnetic fields used in (2.59) are those found in the previous
section, given by Eq. (2.23). The evaluation of the radiated field can progress directly
once the current, both electric and magnetic, distributions are known. Finally, after
some straightforward computations, we find the following expression for the far field

radiated by dielectric-filled waveguide antennas into free space

jko exp(—jkor x mim—1
Botr0,6) = Bty { (gl + £ Do) 1,

n=3,5,...
o o . sin( &2 (2.60)
Yio(l— mim (14T k. L
(ﬁf{m% - m=§,:5,..‘ D Ym0 oo = (ca? ) cos 9} cos (—;ﬂ) —g—rl+ sin ¢,
. . o m-1
E¢('r, 6, ¢) = L’C_O_e_x%('fMlanb { (?Atla;_ra—)g + 25 Dm(_::'ﬁf((%)f) cos 6
,, (2.61)
- x me— sin
+70 (%% - m:§:5 DY o(%%gé(k—;))g) } cos ’—“gﬂ) * cos @,

where k; = kysinfcos ¢, k, = kosinfsin ¢, and k, = kg cos 6.
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2.4 Discussion of numerical results and experimen-

tal validation

To validate the analysis presented in the previous sections, we consider a number
of numerical examples. First, three types of internal waveguide discontinuities are
treated, namely, the E-plane step, the H-plane step, and the double-plane step. Since
there are many examples related to this topic in open literature, the presented results

are included for validation purposes only.

Figure 2.7: Example of two dielectric-filled waveguide antennas designed and
constructed at IRCTR (L-band prototype: top, X-band prototype: bottom).

In the remainder of the section we will emphasise the aperture discontinuity prob-
lem, in particular the case of a dielectric filled waveguide with a very small cross
section. Both the radiation mechanism and matching device (air gap) are discussed
for a highly miniaturized antenna having a high aperture reflection coefficient. Key

parameters like waveguide height and dielectric filling and their effect on the miniatur-
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ization process are investigated thoroughly. The presented results include reflection
coefficients for a different aperture geometry. Both E-field and H-field distributions
are calculated for a better understanding of the radiation mechanism. The higher-
order modes and their effect on the aperture admittance and far-field patterns are
an important part of this study. The air-gap-matching network is investigated using
the multi-mode analysis and design curves are presented in order to make the task
of antenna matching easier even when having very high aperture reflections. Specific
features useful as guidelines for implementation are presented. Solving for the mode
coefficients at each discontinuity means solving the linear system of Eq. (2.17) in the
case of a step discontinuity and Eq. (2.46) in the case of a radiating aperture. This

is done iteratively by means of a conjugate-gradient scheme.
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Figure 2.8: Input reflection coefficient of an E-plane step discontinuity in a
rectangular waveguide with dimensions @, = a; = 2.286 cm, b; = 0.6 cm and

by =1.0cm (e, = 1).
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The Telecommunication and Teleobservation Technology group (TTT) at Delft
University has been working on dielectric-filled waveguides for more than ten years
[7,17,18]. A number of prototypes working at different frequency bands (S-, L-, and X-
band) were already designed and constructed, see Fig. 2.7. The results obtained by the
theory described in the previous sections were not only compared with measurements
but also with results from different methods found in the open literature, like FEM
[19] and Equivalent Static method [20].
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Figure 2.9: Input reflection coefficient of an H-Plane step discontinuity in rectangular

waveguides with dimensions a; = 1.0cm, a; = 2.286cm and b, = by, = 1.0cm (e, = 1).

(a) Step in waveguide dimensions

To validate the developed code, we present numerical results of the reflection coefficient
for three configurations, together with results obtained by FEM and the Equivalent
Static method. The FEM results were taken from [19]. The analytical formulas
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developed by Marcuvitz [20, p.296] were used to obtain the results for the Equivalent
Static case. In all presented results the assumption was made that the dominant TE,
mode is incident on the discontinuity plane. The first result, Fig. 2.8, represents the
reflection coefficient of an E-plane step discontinuity in rectangular waveguides with
dimensions a; = a; = 2.286 cm, b; = 0.6 cm and b, = 1.0 cm. Since the axes are
concentric, only waves with mode indices m = 1,3,5,... and n = 0, 2,4, ... are excited.
The number of modes required to represent the field components in the waveguide
depends on the type of discontinuity that is analyzed and the waveguide dimensions.
In this example 40 modes (both TE and TM) were used to represent the fields in both
waveguide sections near the discontinuity plane. The second example is an H-plane
step discontinuity in rectangular waveguide with dimensions a; = 1.0 cm, ay = 2.286
cm and b; = b, = 1.0 cm. Both the real part and imaginary part of the reflection

coefficient are shown in Fig. 2.9 versus frequency.
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Figure 2.10: Scattering parameters of a double-step discontinuity with a; = 15.8

mm, b; = 7.9 mm, a; = 22.9 mm, and b; = 10.2 mm (e, = 1).
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Finally the third example used for validation is a double-plane step waveguide
discontinuity, Fig. 2.10, with dimensions a; = 15.8 mm, b; = 7.9 mm, a; = 22.9
mm, and b; = 10.2 mm. This problem was solved using 100 modes in both waveguide
sections. The FEM results were obtained using 2700 tetrahedra, which cover the
volume between two reference planes located 0.5 cm left and right of the discontinuity
plane. A good agreement between the earlier published data and the numerical results

obtained using the present code was observed.

Table 1: Reflection coefficient of the fundamental mode for a dielectric filled
waveguide at 3.3 GHz (waveguide dimensions: a = b = 34.2 mm, ¢, = 2.53)

Number of Modes Magnitude of I' Phase of I" in degrees

1 0.4247 38.90
3 0.4189 38.23
9 0.4254 38.07
11 0.4220 37.55
13 0.4216 37.60
15 0.4216 37.61

(b) Aperture reflection coefficient

We now present numerical results for the aperture reflection coefficient obtained using
the formulation given in section 2.3. The convergence of the algorithm is studied first.
Although this was done for several apertures, only the results for a square aperture
(@ = b =342 mm at 3.3 GHz) and a flat aperture (¢ = 83 mm,b = 10 mm at
1.6 GHz) are given, see Tables 1 and 2. Both the magnitude and phase, versus the
number of modes used to approximate the aperture field, are calculated. The results
show a fast convergence. Measurements were performed on a waveguide with square
cross section (a = b = 34.2 mm) operating at the frequency of 3.3 GHz and filled with
Rexolite (e, = 2.53).
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Table 2: Reflection coefficient of the fundamental mode for a dielectric filled

waveguide at 1.6 GHz (waveguide dimensions: @ = 83 mm, b = 10 mm, ¢, = 2.53)

Number of Modes Magnitude of I'  Phase of I" in degrees

1 0.8743 2.63
3 0.8737 2.50
9 0.8732 241
11 0.8734 2.40
13 0.8734 2.39
15 0.8733 2.39

First, the variation of the reflection coeflicient I' at the aperture versus frequency
is considered. Fig. 2.11 shows the measurement results for two cases. Case (1),
the aperture is radiating into free space and case (2) the aperture is loaded with an
extended dielectric rod with relative permittivity ¢, = 2.53 and length /,,q = 90.6
mm. In this figure, calculations are presented for an aperture radiating into free space
and an aperture radiating into a dielectric filled half space (¢, = 2.53). With the
chosen configuration only the fundamental mode can propagate inside the dielectric
filled waveguide. In Fig. 2.11 we see that by extending the dielectric outside of the
waveguide the reflection coefficient at the aperture can be lowered. The lowest value
one can achieve will always be higher than the value obtained when the antenna
is radiating into a dielectric half-space filled with the same material. Other means
of lowering the aperture reflection coefficient are the tapering of the outside of the
metallic structure towards the aperture or the insertion of a matching network (i.e.
irises, air gap, step,...) inside the waveguide. Notec that the phase characteristic of
the reflection coefficient is ncarly flat. This is an advantage for an aperture matching
design. During the measurements, we have found that a flat waveguide flange of
standard dimensions is sufficient to approximate the infinite ground plane assumed in

theory.
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Figure 2.11: Computed and measured aperture reflection coefficient I' of a dielectric
filled waveguide with ¢ = b = 34.2 mm and ¢, = 2.53. (a)} Measured and computed

for a waveguide radiating into free space. (b) Computed for a waveguide radiating

into dielectric half-space (¢, = 2.53). (c¢) Measured for a waveguide with a dielectric

rod (e, = 2.53, l;oq = 90.6 mm).
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Figure 2.12: Effect of aperture height on the magnitude of I" for different waveguide
widths (e, = 2.53). (a) a = 0.37A. (b) a = 0.44\. (c) @ = 0.55\.
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Figure 2.13: Magnitude of aperture reflection coefficient I' versus relative dielectric
permittivity ¢, for different waveguide dimensions. (a) a = 0.6)q, b/a = 0.3. (b)
a=0.88)\g, b/a =0.6. (¢c) a = 0.88)4, b/a = 1.0.
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Hence, the reflection coefficient of waveguides with flanges of finite sizes agrees
very well with the results obtained using the present formulation. Fig. 2.12 shows
the effect of aperture height reduction on the magnitude of the reflection coefficient
for different aperture widths. This figure clearly shows that the aperture height is
an important factor in determining the aperture reflection. The effect of reducing
the dielectric permittivity on the magnitude of the reflection coefficient is shown in
Fig. 2.13. A similar behaviour was observed in the phase characteristic. During
the calculations the dimensions of the waveguide were kept constant in relation the
wavelength in the dielectric region Ay = A/ /€,. From this result it is clearly seen that
the higher the dielectric constant, the higher the reflection coefficient. If the waveguide
dimensions are kept constant while the dielectric constant is changed, one will observe
a shift in the cut-off frequency. The cut-off frequency will decrease with increasing e,
and the aperture reflection phase will become more flat and nearly constant for higher
values of €.. When designing wideband aperture antennas, the aperture height (b) and
dielectric material used should be chosen carefully as they are the major parameters
determining the magnitude of the reflections at the aperture. More results that show
how to compensate for the high reflection at the aperture will be discussed next.

(c) Aperture reflection cancellation with an air gap

An air gap of length [, located at a distance l; from the aperture plane is a simple,
low-cost, and effective matching device. It was introduced and developed by the
researchers of the Delft University [17, p. 101] in order to reduce the high aperture
reflection, especially that of very flat aperture antennas (b/a << 1). For a given
aperture geometry one can compute the scattering matrix of an air gap by cascading
the scattering matrices of two dielectric step discontinuities using the theory given
in section 2.2. During the multi-modal analysis we noticed that when a TE;, mode

is incident on the air gap, only a reflected and transmitted TE; ¢ modes are excited.
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Hence, the air gap does not excite any higher-order mode when it is inserted inside the
waveguide. The reflected and transmitted modes are enough to satisfy the boundary
conditions distorted by the presence of the air gap. However, the situation may change
if the air gap is placed nearby the aperture where higher-order modes are excited.
These modes can change the properties of the air gap by coupling energy into it.
The air gap width [, and position l; must be appropriately adjusted such that they
create a reflection with the same amplitude but with opposite phase to the reflection
caused by the aperture discontinuity. If this condition is fulfilled the reflection at the
aperture is canceled. Hence, in order to eliminate the aperture reflection completely

at a certain frequency we must have (see Appendix A)
Sy =T (2.62)

where the superscript * denotes the complex conjugate.
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Figure 2.14: Magnitude of the air-gap scattering parameters versus normalized
air-gap thickness for different aperture dimensions (e, = 2.53). —: a = 0.37A,
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Figure 2.15: Phase of the air-gap scattering parameters versus normalized air-gap
location (I, = 0.37), ¢, = 2.53).

The fact that only two parameters have to be adjusted makes the matching process
simple and fast. However, the aperture reflection cancellation can be obtained only
at a single frequency, making the air gap a narrowband matching device. In order
to achieve cancellation over a wider frequency band one has to synthesize a device in
which Sg; equals the complex conjugate of I" over the entire desired frequency band.
This device may consist of a number of air gaps, steps, irises, ...etc. If the number
of parameters to be tuned is increased, a sophisticated optimization algorithm will be
required.

A number of computations was carried out in order to investigate the effects of
the air-gap width and position on the scattering parameters. Fig. 2.14 shows that
the magnitude of the coefficient S;2 can be simply tuned by adjusting the thickness
of the air gap. The higher the aperture reflection coefficient, the thicker the air gap.
The phase of Sg; can be tuned by changing the air-gap position; this is demonstrated
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in Fig. 2.15. These design curves can give a rapid indication on the required air-gap
dimensions for a given magnitude and phase of the reflection at the aperture. They
also indicate the type of fabrication tolerance one has to expect when designing such a
device. Fig. 2.16 shows both the computed and the measured reflection coefficient for
an L-band prototype with an integrated air gap previously designed at Delft University

[18]. Good agreement is observed between simulation and experiment.
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Figure 2.16: Matching the flat dielectric filled waveguide antenna at L-band with a

single air gap (¢ = 83 mm, b = 10 mm, ¢, = 2.53, [, = 60.5 mm and l; = 10.0 mm)
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Figure 2.17: Higher-order excitations for different aperture dimensions (e, = 2.53).
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(d) Aperture fields and far-field patterns

The solution of the linear system of Eq. (2.46) together with the expression given
in Eq. (2.47) determine the reflection coefficient and the amplitude of the higher-
order modes. The obtained coefficients, when inserted in Eq. (2.23), directly give the
electric and magnetic field distribution at the aperture. Fig. 2.17 shows the amplitude
of the higher-order modes excitations relative to the amplitude of the TE; 3 mode for
three different aperture dimensions. The three considered geometries allow only the
fundamental mode TE,, to propagate. The amplitude of the higher-order modes
decays when the mode index increases, becoming less than —30dB for modes with an
index higher than five. Therefore, one may conclude that the contributions from modes
having indices higher than five are negligible. Although this is true for the electric-
field distribution, it will be shown that it is wrong for the magnetic-field distribution.
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This is clearly seen in Fig. 2.18 where the electric-ficld distribution at the aperture
is drawn for a different number of modes. The dominance of the well-known TE, o
pattern is observed. This result was expected since if we inspect the first part of
Eq. (2.23), we see that the ratio between the amplitude of the TE; o pattern and a
higher-order pattern TE,, is simply the mode coefficient D,,,. Note that the electric
field at the aperture, when constructed according to Eq. (2.23), satisfies inherently
the boundary conditions at the metallic flange. However, the singular behavior of the
electric field at the aperture edges (z = +a/2) and (y = £b/2) is not covered by this
modal field expansion. At the first boundary the electric field is parallel to the edges
of the aperture and has to undergo a singularity of order r~'/3 [21], whereas at the
second boundary the electric field is perpendicular tot the aperture edges, resulting
into a singularity of order 7—%/3 [21]. These restrictions will not affect the far field but
will certainly change the near-field behavior at the aperture plane. One example of

such effect is the tapering of the electric field at the aperture along the y-direction.
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Figure 2.18: Electric-field distribution for a square aperture antenna (a = b = 34.2

mm, €, = 2.53,frequency= 3.3 GHz).
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The effect of the higher-order modes on the aperture magnetic field is shown in
Fig. 2.19 for a square aperture (a = b = 34.2 mm) operating at a frequency of 3.3 GHz
and in Fig. 2.20 for a flat aperture (a = 83 mm, b = 10 mm) operating at 1.6 GHz.
We found that the higher-order modes strongly affect the magnetic-field distribution
at the aperture. Especially the presence of relatively high peaks nearby the aperture
edges(z = £a/2) is noticeable. This can be checked by inspecting the second part of
Eq. (2.23), which shows that the ratio between the TE, ¢ and TE,, ¢ contributions to
the aperture magnetic field is proportional to the factor ¥, 0Dm/ Y1 0Yap, Which is not
negligible.

x
25

Figure 2.19: Magnetic-field distribution for a square aperture antenna (a = b = 34.2
mm, €, = 2.53,frequency= 3.3 GHz).

The TE, ¢ pattern, in the magnetic field expression, is multiplied by the factor
(1 — T); this means that in the case of apertures with very high reflection coefficients
the contribution of the dominant mode becomes very low compared to that of the
higher-order modes. This is confirmed by a comparison of Fig. 2.19 and Fig. 2.20.
In Fig. 2.20 stronger peaks are present near the aperture edges. Note that in the
latter case we are dealing with a much stronger reflecting aperture (very flat geometry

b/a =0.12, T = —1.2dB at 1.6 GHz) than in the former case (b/a = 1, T = —7.5dB
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at 3.3 GHz).
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Figure 2.20: Magnetic field distribution for a flat aperture antenna (a = 83
mm, b = 10 mm, ¢, = 2.53, frequency =1.6 GHz).

For comparison we show calculated far-field patterns using the analysis described
in section 2.3, and measured patterns in Fig. 2.21 and Fig. 2.22, for a square-aperture
antenna (a = b = 34.2 mm, frequency = 3.3 GHz) and a very flat-aperture antenna
(¢ = 83 mm, b = 10 mm, Frequency = 1.6 GHz) respectively. A very good agrement
is obtained in the region +80° in both E- and H-planes. The disagreement in the
region nearby and above 90° is caused by the finite size of the metallic flange, which
represents the main contribution to the far side lobes, the back lobe and the cross
polarization, and is not included in the present formulation. During the measurements
absorbers were used in order to reduce the parasitic effects caused by the metallic
structure surrounding the aperture. The far-field patterns were not disturbed by the
presence of the matching air gap since it was placed far enough from the aperture
in both prototypes. Only a significant increase in radiating power was noticed, when

comparing antennas with and without air gap.
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Figure 2.22: Far-field pattern in two orthogonal planes for a flat aperture, top:
E-plane, bottom: H-plane (@ = 83 mm, b = 10 mm, ¢, = 2.53, frequency= 1.6 GHz).

— : measured. —- : computed.
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2.5 Conclusions

A formulation has been presented for the aperture admittance and the far-field radi-
ation pattern for highly miniaturized dielectric-filled waveguide antennas. The gen-
eralized scattering matrix technique was used to model the internal structure of the
antenna (i.e. discontinuities and matching devices). In this approach, both propagat-
ing and evanescent modes were included. Sequential scattering mechanisms were taken
into account by using a numerically stable direct cascading process, involving scat-
tering matrices only. To solve the radiation problem, a variational expression for the
aperture admittance has been developed using reaction integrals and spectral field
representations. A novel expression for the aperture admittance, including higher-
order excitations and their mutual interactions, was derived. The far-field patterns
were obtained by applying the field equivalence principle to the obtained aperture
field solution.

The radiation mechanism and matching device (air gap) of highly miniaturized
apertures were studied thoroughly. In the miniaturization process, two parameters
mainly control the antenna performance; the dielectric permittivity of the material
used (¢,) and the aperture height (b). The dielectric filling determines the degree of
minjaturization (~ ,/€;), causes an increase of the aperture reflection coefficient, a
shift in the cut-off frequency and affects the flatness of the phase characteristics. In
TE,; o waveguides, the aperture height reduction results in a strong increase of the
aperture reflection. It makes the antenna inefficient unless a matching device can be

synthesized for compensating this increase of reflection at the aperture.

Different means of lowering the aperture reflections were presented: extending
the dielectric rod, tapering the metallic structure nearby the aperture, stepping the

waveguide height and/or the insertion of an air gap.

The extension of the dielectric rod and the tapering of the metallic structure nearby
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the aperture will reduce the aperture reflection, but they will also affect the radiation

characteristics, see Chapter 3 and 4.

Insertion of an air gap with Se» having the same magnitude but the opposite phase
as the aperture reflection coefficient will cause a complete reflection cancellation at a
given frequency. To achieve this, two parameters must be set: the air-gap thickness
(l,) and the air-gap position (l;). The air gap width controls the magnitude of the
secondary reflection while the position, relative to the aperture plane, determines the
phase shift that is needed. The fact that only two parameters have to be adjusted

makes the air-gap matching device cheap, easy to use and effective.

The higher-order excitations decay rapidly for an increasing mode index. The
dominance of the well-known TE;, pattern was observed in the aperture electric
field distribution. The magnetic-field distribution shows the presence of relatively
high peaks nearby the aperture edges, especially in case of highly miniaturized anten-
nas. Higher-order excitations, if included, slightly affect the aperture admittance but
they also permit a more accurate determination of the radiation fields. The results
presented in this chapter were not only compared with measurements performed at
different frequencies, but also with results taken from the open literature of different
methods. During the measurements we found that, as far as the reflection coefficient
is concerned, an aperture terminated into a flat flange of standard dimensions is of
sufficient size to approximate the infinite ground plane assumed in the theoretical
description. The models presented for the radiated fields represents the fields within
+80° with reasonable accuracy. The failure of the present formulation in the region
nearby and above 90° in the radiation pattern is due to the fact that the finite size of
the metallic flange, which is the main contributing factor to the far side lobes, back

lobe and cross polarization, was not taken into account.

With the present formulation, stable convergence of the numerical results and

good agreement with experiments was achieved, even considering the involved ap-
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proximations. In the next chapter a different formulation will be derived which will
be used to accurately determine the performances of aperture antennas mounted on

finite metallic structures of arbitrary shape.
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Chapter 3

Radiation from an aperture on a

3-D metallic body

3.1 Introduction

In the previous chapter we studied the basic radiating structure, namely the single
rectangular waveguide that is terminated by an infinite metallic flange. For this end
we used a variational technique. Since practical antennas involve a combination of
metallic structures with finite sizes and different shapes, the formulation given in the
previous chapter cannot be applied to solve the more practical radiation problem.
When the shape of the metallic structure is arbitrary, an analytic solution cannot
be obtained and a numerical method must be developed. Problems related to plane-
wave scattering from conducting bodies have been studied extensively and numerous
publications are available in the literature [1],[2], [3],[4]. On the other hand, prob-
lems arising from radiation from structures involving a combination of conductors
and dielectric, which are considered in this chapter (see Fig. 3.1), have received lim-
ited attention and most available formulations are restricted to bodies of revolution

[5],[6],7] since this solution is easier to obtain.

59
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Nowadays computers exist with high performance, so that it is possible to use
general-purpose codes capable of handling problems with a wide variety of geometry.
For this reason there has been a growing interest in the use and development of numer-
ical techniques for treating scattering and radiation by arbitrary shaped bodies. The
best known approach for treating such problems is the integral equation formulation

in conjunction with the Method of Moments (MoM) [8],[9].

One of the useful formulations for accurately predicting the scattered field from
arbitrary metallic objects is the Electric Field Integral Equation (EFIE), since it can
be applied to both open and closed structures with sharp edges [3]. Implementation
of MoM for EFIE involves solving for the induced surface electric current using vector
and scalar potential solutions which satisfy the boundary condition that the tangential
electric field at the boundary of the metallic structure is zero. This is done by using
Galerkin’s technique [8] to solve the related integral equations. In a sub-domain
technique the metallic surface is generally modeled by means of planar triangular
patches because they accurately conform to any geometrical surface. The integral
equations are generated over the triangular sub-domains and combined to form a
global matrix equation. Reaction-matching is applied to circumvent the difficulties
associated with the singularities and the differentiation in the integral equation. This
results in a dense complex matrix equation, which can be solved either by a direct
(LU-decomposition) or by an iterative (conjugate gradient) technique. Generation of

the matrix equation and its solution are the major computational operations in MoM.

This chapter is devoted to the development of an analysis and design tool based on
a modified EFIE and MoM for analyzing and improving the radiation from an aper-
ture incorporating dielectric material and mounted on a metallic body. The metallic
body consists of a combination of perfectly conducting structures with different sizes
and shapes (see Fig. 3.1). The obtained code is used to study the effect of the incor-

poration of an external corrugation profile on the metallic body. Different examples
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are treated and new results are presented. An optimum rectangular-waveguide feed
design is given. The chapter is organized as described below. First the problem is
formulated and the integral equation is derived. Then the discretization of the do-
main of computation and the expansion functions are discussed. Next the accuracy
of the method and validation of the design procedure are demonstrated by comparing
computed and measured results for a few examples. Finally some concluding remarks

on the advantages and disadvantages of the method are presented.

Metallic flanges
LT

Aperture

Dielectric

Metallic waveguide

Figure 3.1: General problem of radiation from an aperture mounted on a metallic

structure of arbitrary shape.

3.2 Problem formulation and integral equation

In this section the problem of a single waveguide-fed aperture mounted on a perfect
conductor of arbitrary shape which radiates into free space is considered (see Fig.

3.1). The waveguide is uniformly filled with a non-dissipative, linear, isotropic and
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homogeneous medium having dielectric constant €; and magnetic permeability x;. The
aperture is rectangular with dimensions a and b in the 2- and y-directions, respectively.
The region outside the waveguide is assumed to be source free. The global coordinate
system used throughout this chapter is shown in Fig. 3.1. The origin is located at
the center of the aperture. The electromagnetic field inside the waveguide region is
denoted by E,,, and H,,,, and the field in free space by E and H. The excitation of the
waveguide is achieved by the impressed electric and magnetic sources {J, K'}; these
produce the dominant mode TE;q traveling toward the aperture. The waveguide is
assumed to be terminated in a matched load when viewed from the aperture. This

means that we need not consider multiple reflections inside the waveguide here.

Dielectric

{E, H}
8> Ko

Electric conductor =w

(a) Original problem

l nWB Tﬁ {Ewg’ ng} ‘Z ap

.. € Iy
T{J: K‘} SWS Jc Js 'KsT
S

P

(b) Interior equivalent

Figure 3.2: The original problem and its interior equivalent representation.
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The equivalence principle is used to divide the problem into two sub-problems,
namely the interior sub-problem and the exterior sub-problem, as follows. The wave-
guide aperture is closed with an imaginary wall [10][11][12] and surface currents Jg
and K of appropriate magnitude, see Fig. 3.2 and Fig. 3.3, are introduced on either
side of the aperture. So the fields E,, and H, inside the waveguide are due to the
known impressed sources {J, K'} and the unknown surface currents JS , Js and K
radiating in the region bounded by Sy, and S, (see Fig. 3.2). The fields E and H
exterior to the waveguide arc due to the magnetic and electric current sources, Js and

Ks, radiating in front of the closed surface S = S U S,y (see Fig. 3.3).

The condition that the equivalent magnetic current in the waveguide region must
be —K and in the exterior region +Kg ensures that the tangential component of the

electric field is continuous across the aperture. Hence, we have

i E =lim —n, = — .
rlfglp n x lanlglp Dy X Egp Ks, (3.1)
where r represents the vector position of an arbitrary point and ny, is the normal
unit vector on the surface Sy U Sy directed into the waveguide region (see Fig. 3.2)
while n is the normal unit vector on the surface Sy U Sap directed into free space

(see Fig. 3.3).

Similarly, the condition that the equivalent electric current in the waveguide region
must be —J s and in the exterior region +J s guarantees the continuity of the tangential

component of the magnetic field across the aperture. Hence, we have

lim nx H= ligl —Ny, X Hy, = Js. (3.2)

rlSap r

Eq.(3.1) and Eq.(3.2) insure the electromagnetic coupling, throughout the aperture,

between the interior and the exterior sub-problem. Furthermore, the electromagnetic




64 3. Radiation from an aperture on a 3-D metallic body

field must satisfy the following conditions in the interior sub-problem

lim ng, x Ege =0
15w wg wg ’

(3.3)
rlrlsnwlg nye X Hyy = JG,
and in the exterior sub-problem
lim nx E=0,
r|Seond (34)
lim nxH=Js.
TiOcond
”"’l N\~~\\
-~ J N
; e e .
/ 1 ! S ' 1 n - N
/ | e— 1 Free-space
/ seeseTeTes ! \
! -..-..-i {E, H} \“
4
' ! \
‘ 4 ETJ > Ks €oho \
'- j
S S N ;
[ T R M - - 1
\ ' : | €&— S’P /
\\ L H ! 1 J /s
\‘\ - ———— S ”I
~, 4
\~\~s Scund n T /,,’
\.~ Sw "" -

Figure 3.3: Equivalent representation for the exterior region.

3.2.1 Field in the waveguide region

The transverse electric field and magnetic field at any cross section inside a uniform
waveguide can be expanded as a sum of modal fields. This is based on the completeness
of the infinite set of modes inside a closed waveguide. From the results given in Chapter

2 we can write the transverse field components as (propagation in the z-direction is
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assumed)
m/
\\r., { m n (‘Xp ’)m n.“') + bm T e‘(p(’)m n" e’r]‘n‘,’;z(m* y)/\( }‘llrlr:,};:z
';:;," (3.5)
+ { 2;11\31, exp ’Ym n ) + bTM Cxp(’)'m n")} ;Ell\}z,(wv y)/\/ Yr;wr,r;;[,

-
3

L7

]

H“'g‘ = ; { mn EXp( 7111 ne ) bTF eXp(’Ym n } L X em n(I ’(/) V Yn’llk;l (3 6)

8

+ Z {ahh exp(=Ymnz) = BTN exD(7,,7) e x eEM (2, y) /DT,

The symbols used in Eq. (3.5) and Eq. (3.6) were introduced in Chapter 2. The
amplitude of the incident modes alE, and amn are considered given. The impressed
magnetic current density Ks can be related to the field inside the waveguide using

Eq.(3.1). In the vicinity of the aperture (z = 0) we have

Ks(l‘) ch(r) + Kref(r)
ch(r) = —n X ZaTE TE( )/ YTE +(IIM TM / /YTM (37)
KE(0) = - x S (1) T + e 1)

wherer €8S,, and [ = (m, n). In Eq.(3.7) the magnetic current density K is separated
into two parts. The first part, K¢, represents contributions from the waveguide
modes that are incident upon the aperture while the second part, K%', represents
contributions from the unknown waveguide modes which are excited at the aperture

plane. Note that the first part of K is considered known.

3.2.2 Integral representation for the field in free-space

In this section, we derive an integral equation for the electromagnetic field radiated by
an aperture mounted on a metallic structure of arbitrary shape. The obtained integral
equation relates the fields radiated into free space to equivalent sources (electric and

magnetic) laying along a surface enclosing the antenna structure. The evaluation
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of the fields can progress directly once the current distributions over the radiating
structure are known.

The fields in the exterior region are due to the unknown surface electric and mag-
netic currents Js and K radiating into free space. Hence, we can use the Green’s
function of free space. Summarizing: we are interested in finding a solution which
satisfies Maxwell’s equations in the region outside § = Sap U Scana, the radiation con-
dition [14, p. 464] at So, and which has a prescribed tangential electric and magnetic
intensities on S (see Fig. 3.3). We use the auxiliary vector potentials, A and F [15,
p. 254], as aids in obtaining solutions for the electric and magnetic fields. This pro-
cedure requires two steps. In the first step, the vector potentials are found, once the
boundary value problem is specified (i.e. radiating sources and Green’s function). In
the second step, the electromagnetic fields are determined from the computed vector
potentials. In free space, any solution for the time-harmonic electric and magnetic
fields must satisfy Maxwell’s equations

V x E(r) = —jwpH(r) — K(r), (3.8)
V x H(r) = jweE(r) + J(r),
V - (eE) = pe, V- (tH) = pp,

where an exp(jwt) time dependance of the field is assumed. A solution to Eq. (3.8)

in terms of electric and magnetic potentials is given by [15, p. 260]

E=-jwA-Vg, - LV xF,

(3.9)
H=;}0-V x A—jwF—-Vo¢,_,
where
1 1
= —= V- A ¢,=— V.F. 3.10
P = " Sweatt ™ jweopky (810
The vector potentials A and F are solutions to the following vector equations
V2A + wPeupA = —ppd,
olo Ho (3.11)

V2F + weopoA = —eoK.
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The solutions are found to be

A= [IE)GE IV, F =& [KE)GE.r)dV, (3.12)
v v

where r’ represents the vector position of a source element in V while r denotes the

vector position of a point, outside V, at which the field is being computed. The

Green’s function of free space, G(r,r’), is given by

_ exp(—jholr = ')

G(r,r') = (3.13)

4 |r — /|

Note that since the Green’s function of free space is used, the radiated field satisfies
the radiation condition at S. When J and K represent linear densities (m~!), the

integrals in Eq. (3.12) reduce to surface integrals
A=y, / Js(r)G(r,r')dA, F = ¢ / Ks(r')G(r, r')dA". (3.14)
s s

Substitution of Eq. (3.14) into Eq. (3.9) results in the Green’s representation of the

electric field

E(l‘) = Econd(r) + Eap(r)v (315)

Econa(r) = —S/ (jw,u(,G(r,r')Js(r’) - qu—}z; (Vs JIs(r')) VG(r,r')) d4’, (3.16)

Eap(r) = — / V x (G(r,r')Ks(r')) dA4'. (3.17)
Sap

where Vs denotes a surface divergence with respect to the source coordinates r/. The
electric field expression, Eq. (3.15), consists of two parts E.,nq and E,,. The first
part represents the field due to the electric current density Js with support SeonaU
Sap, while the second part represents the field due to the impressed magnetic current

density Ks with support S,,. Note that Eq. (3.15) is singular in the source region
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where r = r/. To circumvent the singularity we write

§-8s S8-8s

Econd(r)|es = —Jwho lim { / GJsdA'} + 7 lim {v / v - JSGdA'}

~juwp lim / GJsdA’} + - lim {v / v JsGdA'} ,
S5 Ss
(3.18)

and

San—Ss

Eop(r)|pes = — lim { / V x GstA'}
(3.19)

. !
~ lim VxS/GstA},
5

where S; is a small circular disc that is part of S, with radius §, around the singularity
point r = r/. The singularity is now contained within the second part of (3.18) and
(8.19) respectively and has to be evaluated analytically. Note that the integral over
the surface (S — S;5) and the integral over the surface (Sap — Ss) cause no problems
in their numerical evaluation { r # r'). In the limit § — 0 they will lead to principal
value integrals. The integrals over S5, however, contain a singular integrand and have

to be evaluated with care. For very small §

E(r) = —jwig / G(r, ') Js(r)dA’ ~ S 3 (r) / odd,
3,5 SG

) = &V [ (V5 3s() G r)dA ~ g [ (Vs - 3s(r)) Yk’

jweo 4rjweo fe—x'} ’

fe—r'|

Ss Ss
I(r) = -V x f G(r, I)Ks(r')dA' ~ —LK(r) / V x —L-d4’,
Ss Ss

(3.20)
where the exponential factor in the Green’s function is approximated by unity over
the small disc S5 and I is a unitary dyadic. The surface S; is considered so small that

Js and Js,, can be considered to be constant on S;. Following the same procedure as
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in [16, p. 135], we obtain

: b () — ; () —
éh_n}[] n x I{(r) =0, 61210 n x I§(r) =0, 3.21)
Jim n x L(r) = —1Ks(r)
After substitution of Eq. (3.21) into Egs. (3.18) and (3.19) and applying the boundary

conditions we obtain the following set of coupled integral equations for the radiation

from an aperture mounted on a perfectly conducting structure of arbitrary shape

Jjweo

“nxPV / (jwpeGlr. ) Is(r') — £ (Vs - Is(r') VG(r,r')) dA' =
S (3.22)
nx PV / V x (G(r,r')Ks(r')) dA' — LKs(r)Xs,, (1), T € S
Sap

lim n x Hy,(r) = Js(r), r € Sy (3.23)

r1Sap

where the PV before the integral sign signifies a principal value and the shape function

Xs,, (r) is unity for r € S,, and zero otherwise.

3.2.3 Weak formulation and MoM solution

An approximate solution to the coupled integral equations (3.22) and (3.23) can be
obtained by using the method of moments [8]. First we define a set of vectorial

expansion functions f,(r) and g,(r) and let

JS(r) ~ ZInfn(r)v res

(3.24)
Ks(r) = 3 Vaga(r), T € Sup

where the complex coefficients I, and V,, have to be determined numerically. Note
that the basis functions f,(r) are defined over the computation domain S while the
functions g,(r) are defined over the computation domain S,,. Substitution of the
expansions into the coupled integral equations results in an ill-defined system. Because

of the approximate sign in Eq. (3.24), the left and right sides of Egs. (3.22) and
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(3.23) cannot be equal in the entire computational domain. Hence we are dealing
with a strong statement and additional weighted measures are needed to resolve the
unknown coefficients I, and V,,. To accomplish that we define a set of testing functions
ft (r) and g, (r), over the domains of computation S and S,, respectively and use the

following product

(X,¥) 4 :// x-ydA (3.25)
A
which is a scalar satisfying [17]

(%,¥) 4= (¥, %)4 (3.26)

(X1 +X2,¥) 4 = (X1,¥) 4 + (X2,¥) 4

(A%, ¥) 4 = A(x,¥) 4

(x*,%) 4, >0, ifx#0

(x*x) 4, =0, ifx=0
where ) is a scalar and the superscript * denotes the complex conjugate. Applying
the scalar product to the coupled integral equations results in the following weak
equivalent for Eq. (3.22) and Eq. (3.23) respectively

jw (B A) + (£, V8) = —6—10 (£, V xF)_ - %(f,t,.,n xKs)_, ¥m  (3.27)
(8 ds)s = (8 x Hug ) , ¥m (3.28)

If the testing functions are chosen as f!, =f,, and g}, =g, then the obtained formulation

is known as Galerkin’s method.

3.2.4 Expansion functions and MOM matrix

In this section a selection is made for the expansion functions f,(r) and g,(r). We
assume that a triangular discretization, defined in terms of a set of faces, edges and
vertices, has been found to approximate the computational domain S and S, (see Fig.

3.4).
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Sub-domain expansion functions for the electric current density Js

The electric current density Js(r) is expanded in terms of basis functions f,,(r) similar
to those introduced by [3]. Such basis functions are defined on pairs of triangular
patches TR, and TR, € S, and have a common interior edge with length I, (sec Fig.
3.5). Each non-boundary edge, i.c. cdge belonging to a single triangle, is associated
with a basis function. Hence, the number of basis functions is equal to the number of
non-boundary edges. The vector basis function, associated with a common edge with
index n, is defined as
2—?3: pt, ifre TR,
fu(r) = ¢ s&p,, fre TR, (3.29)
0, otherwise,
where 1,, is the length of the common edge and ST is the surface of triangle TRE
Points on triangle 7RE can be designated either by the vector position r defined
with respect to the origin O, or by the vector pE defined with respect to the vertex
opposite to the common edge (free vertex). The direction of p;| is chosen away from
the free vertex while the direction of p;, is toward the free vertex (see Fig. 3.5). This
designation is chosen such that a positive current vector, associated with edge », is
directed from TR, to TR,.
The basis functions f,, when constructed according to Eq. (3.29), yield at least
a piecewise constant approximation to the current density. Since each basis function
varies linearly with distance inside the triangular pair associated with it, it can also
model linear variations to some extent. Furthermore, the basis functions have the

following properties

e f, has no component normal to the outer boundary of the triangle pair TR}

and TR, .

o The component of f,, normal to the common edge of the triangle pair is constant
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and continuous across the edge.

o The surface divergence of f,, used in the evaluation of the scalar electric poten-

tial, is simply

L, ifre TR}

Vofp(r)=9q —&, ifre TR, (3.30)

0, otherwise,

Figure 3.4: Example of discretization of the computational domain using triangular

patches.
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The first two properties imply that all edges of TRE are free of line charges while
the third property means that the charge density is constant in each triangle and
the total charge density associated with the triangle pair TRZE equal zero [3]. Since
the normal component of f, at each edge is unity, the coefficient I,, in the current

expansion represents the normal component of the current density at the n'* edge.

Global-domain basis functions for the magnetic current density Ks

The magnetic current density is cxpanded using the orthonormal transversal waveg-

uide modal functions, namely, eIE (r) and e}M (r) given by Eq. (2.11) in the previous

m,n m,n

chapter. The basis functions g;(r) are then defined as

—n x ey (r), r € Sy, TE case,

gr)=1{ —nxeM(r), r e S, TM case, (3.31)

mn

0, otherwise.

Figure 3.5: Geometry of a pair of triangular patches associated with basis function

fo-
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In Eq.(3.31), each value of the index ! corresponds to a waveguide modal distribu-

tion with index (m,n).

Determination of the MOM matrix equation

In order to find the unknown coefficients I, and V,, in Eq. (3.24) we need to have as
many linearly independent equations as unknowns. Such a system can be obtained by
taking the inner product of Egs. (3.27) and (3.28) with a set of weighting functions

ft, =f, and g, =gT%™ respectively. The result obtained is

w fm, A)rrturrs + (Em, Vo) rriurrz =

. . (3.32)
“© (fm, V x F)TR:;UTR,—,. -3 (£m,m x KS)TR;UTR;. >
TE — /oTE
<gm 1JS>SW - <gm , I X ng>slp ) (333)

™ = (oT™
(62435 ), = (6B ar),
After substituting the basis functions by their expressions, Eqgs. (3.29) and (3.31), we
obtain the following linear system
N NTE . NTM .
E Z:;cnIn — 2 Z::a',TE (‘/’TE + ‘/lx,TE) Z Zf,:a],TM (‘/ITM + ‘/ll,TM) ,
n=1 ' =1 ’ =1 ’

m=1,..,N,

(3.34)

N NTE .

E 2 =5 2oy (VI - TF), m=1,.., NTE,
NIM oaTM [(1,TM i, TM (3.35)
> Zmy ™ (V™M -V,

N
a-c,TM —
Y Zpa =
n=1 =1

m=1,...,NTM,
or in matrix notation
E VATE
dl
VM ViT™
Z&c,‘I‘E Za—a,TE 0 VI‘E Za-a,TE 0 Vi,TE
7Z8-¢,TM [= 0 72-8,TM VTM - 0 78-a,TM ViTM )

(3.36)

7ol = [ Zc-a,TE Zc-a,TM ] zc-a,TE Zc~a,TM ] [
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Expressions for the entries of the different matrices are given in Appendix B. The

lincar system of Eq. (3.36) can be written in a more compact form

I
A%

7Ze-e  _7e-a .
[ =V, (3.37)

7Za-c  _7an

T T
where V:[ VyTIE yTM ] and Vi = [ Vi Vi } . The known vectors Vi and V}, can

be obtained directly after evaluation of the following expressions

Vi,TE
Vi — [ Z(‘—:\,TE Z('-n,TM jl
1 Vi TM
e e (3.38)
Vi = - .
0 Za-aTM Vi,TM

The unknown coeflicients I and V are found after solution of the linear system of Eq.

(3.37).

3.2.5 Far-field numerical computation

The electric field strength in the far zone is found after using the well-known far-field

approximations [18, p. 88] in Eq. (3.15). The result is given by

E(r) = Econa(r) + Eap(r)7
Evond(r) ~ _MM/ JS - (ir ) JS)?T] exp(jkﬂir : rl)dAlv

4nr

(3.39)
E,(r) ~ w—”"ﬂbﬂ)\/p—o/ (Ks x 2,) exp(jkoi, - r')d A,

4mr
Sap

After putting the current expansions into Eq. (3.39), we obtain for the first part

E(‘ond(r) L&Qm Z [JS( f) - (7r ‘]S(rp))lr] exp(]"'lﬂr r; )S

ar ; (3.40)
3s(x) = 2 Tnfa(r?),
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where r¢ denotes the vector position of the centroid of the i triangle with surface
S; and NTR is the total number of triangles used to approximate S. In Eq. (3.40)
the current density Js is assumed to be constant within each triangle and equal to its
value at the triangle centroid. In a similar way, we found for the second part of Eq.

(3.39)
. . NTR
E,p(r) v —iexplbor) 570 o (r¢) (Ks(rf) x 2,) exp(ikot, - 1§)S;,

4rr

NTE : NTM .
Ks(rf) = ; g;fE(rg) (VITE + Vl:,TE) + zl: g;TM(r'g) (VlTM + ‘/ll,TM) ’

where x,, (rf) = .
0, otherwise

{ 1, r{ € Sy

3.3 Iterative solution of the MoM linear system

There are many techniques available in the literature for the numerical solution of
the MoM linear system. A good survey can be found in {19] and [20]. In this section
we solve Eq. (3.37) using the complex bi-conjugate gradient algorithm (BiCG) in the
form proposed by Jacobs [21]. For completeness a brief description of the algorithm,
for solving the system Az = b, is given below [20]

Tatl = Tn + GnPn

Tntl =Tn — GnAPn, Gni1 = G — 0 A W, (3.41)

Prtl = Tnt1 + CnPny Wnel = Qna1 + ChWn

— Arngn) o at1gnyd
On (Apn,wn)’ Cn Tn,Gn)

The algorithm starts with initial values 2, =0, 1y = p; =y, and wy = ¢ = y*, and
stops when ||r41] < tolerance * ||y|| . The superscript * denotes the complex conju-
gate, while the superscript ¥ denotes the adjoint (i.e. conjugate and transpose). In
Eq.(3.41), (z,y) = zy" and |z| = (z, x)% The bi-conjugate algorithm usually con-
verges in nearly half the iterations of the conjugate gradient (CG) algorithm. However,

the residual error of BiCG oscillates widely before convergence to a specified tolerance.
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3.4 Numerical results and experimental validation

In this section, we present a number of new numerical results obtained using the
formulation derived in the previous sections. Both the induced current distributions
and far-field patterns are analyzed. The design and construction of a single antenna
is described. The antenna is characterized by radiation pattern and reflection coef-
ficient. Measurcments were carried out and the data obtained were used to validate
the numerical code. A comparison of theoretically predicted and measured results is
presented and we discuss the code accuracy and validation of the design procedure.
Some computational aspects related to parallel processing are also reviewed. All the

presented results are normalized to their maximum value.

3.4.1 Numerical examples

(a) Antenna geometry 1

First consider a dielectric-filled waveguide terminated into a metallic flange with a
complex 3-D geometry as shown in Fig. 3.6 and Fig. 3.7. The geometry of this
example consists of a uniform waveguide section and three rectangular flanges intended
for mounting purposes. The thickness of the waveguide metallic wall (2.0 mm) is
gradually tapered toward the radiating aperture over a distance 39.6 mm, becoming
0.1 mm at the aperture plane. This reduces the reflections at the aperture plane,
i.e. adaptation to free space. The waveguide is filled with dielectric medium rexolite
(e, = 2.53) and designed to operate at the frequency of 3.3 GHz. The aperture
dimensions, ¢ = b = 34.2 mm, are equal to the inner dimensions of the feeding
waveguide and chosen to only allow the fundamental mode to propagate, namely the
TE; g. The whole metallic structure, including the aperturc, was approximated using

a surface mesh with 582 nodes and 1160 triangles. This corresponds to a number of
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unknowns of 1740 to represent the electric current density distribution. The number
of modal functions we used to approximate the aperture field distribution was 20.
The linear system associated with the problem considered involves 1760 unknowns in
complex double precision.

The resulting impressed magnetic current density is shown in Fig. 3.6, while the
obtained electric current distributions are presented in Fig. 3.7. From Fig. 3.6 we
observe the dominance of the well-known TE;  pattern in the electric-field distribution
at the aperture. The singular behavior of the current nearby the edges was predicted
very well, as is demonstrated in Fig.3.7. A more accurate prediction of the field
singular behaviour would require an increase of the mesh density in the vicinity of
all the metallic edges and especially around the aperture where the field intensity
fluctuates significantly. However, this comes at the cost of a significant increase in
the computational efforts required for solving the problem. The computed reflection
coefficient at the aperture is I' = —14.0dB (measured value: —14.3dB). The far-
field patterns in the E- and H-plane are given in Fig. 3.8 and Fig. 3.9, respectively.

Excellent agreement is observed between theory and experiment over a wide angular

range.

(b) Antenna geometry 2

The second example considered in this section is a rectangular waveguide antenna
with finite dimensions (34.2 x 34.2 x 100mm, see Fig. 3.10) and filled with a dielectric
material (rexolite, ¢, = 2.53). In this example 1326 triangles were used to approxi-
mate the structure, resulting in a total number of 2000 unknowns. The normalized
magnitude of the induced electric current density along the outer waveguide metallic
wall is shown in Fig. 3.10, while the far-field patterns in E-, H- and 45°-plane are given
in Fig. 3.11 at 3.3GHz. The results indicate a high back-lobe level (-5.4dB), a broad
radiation pattern in different planes (~ —10dB taper at 90°) and a highly symmetric
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pattern over 40°. The cross-polarization level, in the 45°-plane, is better than -20dB
in the main beam region (0°-90°). In order to reduce the unwanted radiation in the
region (90° — 180°), one can cover parts of the waveguide metallic wall with absorbing
material. Such antenna configurations find application as probes in near field and far

field antenna measurement systems.

(c) Antenna geometry 3

A further design iteration considered was the insertion of three rectangular metallic
plates with dimensions (plate 1 & 2: 50 x 50 x 12mm, plate 3: 50 x 50 x 6mm) into the
feeding waveguide of antenna geometry 2 (see Fig. 3.12). This procedure was carried
out to examine whether it is possible to cancel back-lobe radiation by destructive
interference. The resulting structure was modeled with 1940 triangles (number of
unknowns: 2920). The magnitude of the computed electric-current density at 3.3
GHz is shown in Fig.3.12, while the resulting far-field patterns, in different planes,
are given in Fig. 3.13. The introduction of the metallic plates did indeed result in a
decrease of the back-lobe radiation level and an improvement of the cross-polarization

level. A slight increase in the antenna gain was observed.

(d) Antenna geometry 4

A final design example which follows naturally from the previous numerical experiment
considers an external corrugation profile on the waveguide feed as shown in Fig. 3.14.
The number of plates and their thicknesses was arrived at heuristically. This very
complex structure was modeled with a mesh having 1305 nodes and 2606 triangles.
The total number of unknowns is 3919. The normalized electric-current density is
shown in Fig. 3.14 and the far-field patterns are given in Fig. 3.15. The results

indicate a significant gain increase and back-lobe level reduction (better than 30dB)
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at the cost of an increase of the cross-polarization level (<-14dB) in the 45°-plane.

Table 3.1: Summary of numerical results for the antenna designs presented.

E-plane H-plane

3-dB 3-dB
Antenna Reflection Cross- Back-lobe beam beam
Configuration  Coefficient  Polarization level width width
of (dB) (dB) (dB) (deg) (deg)
Fig. 3.6 -14 -18.0 -9.4 62 75
Fig. 3.10 -124 -20.3 -5.4 142 80
Fig. 3.12 -11.8 -21.6 -6.4 62 70
Fig. 3.14 -8 -14.2 -37 76 78

3.4.2 Computational aspects

Given the size of the electromagnetic problem encountered here it became both nec-
essary and essential (because of memory and CPU time requirements) to migrate the
code to a massive parallel computer system. To this end the code was ported to the
CRAY J90se computer system available at the Centre for High Performance Applied
Computing, Delft University of Technology. The J90se is a powerful, general-purpose
multiprocessor machine. It contains ten 10-nanosecond central processing units for
vector operations, a 5-nanosecond clock for scalar operations and 2.048 Gbytes of
shared central memory. In the present code, two main types of parallelism were uti-
lized: (1) the vector-syntax of FORTRAN-90 in the source code to represents all
vector—, matrix-operations, and I/O accesses, and (2) parallel execution of indepen-
dent modules of the code (pipelining). Other optimization of the code outside the
scope of this work are possible, i.e. fully parallel implementation and optimization of
the different code modules. The requirements of the present code are shown in Table

3.2,
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Table 3.2: Summary of computational requirements for selected antenna examples.

Antenna Number Memory Matrix Matrix Total

Configuration of Required Fill Inversion CPU
of Unknowns (MB) Time (h)  Time (h)  Time (h)

Fig. 3.6 1760 >25 0.51 0.73 1.25

Fig. 3.10 2000 >32 0.62 1.69 2.32

Fig. 3.12 2920 >68 1.89 3.83 5.72

Fig. 3.14 3919 >124 2.38 5.88 8.26

3.5 Conclusions

We presented an analysis and design tool for analyzing and improving the radiation
from a dielectric-filled waveguide terminated by a metallic flange of finite size and
arbitrary 3-D shape. Using the equivalence principle, we derived an equivalent prob-
lem and when the appropriate boundary and interface conditions are imposed a set of
integral equations is obtained with surface currents as the unknowns. These coupled
integral equations are solved by the MoM to yield the surface currents, from which

the radiation pattern is calculated.

The electromagnetic field inside the waveguide is represented by means of waveg-
uide modal decomposition, which takes into account both propagating and evanescent
modes arising from the discontinuities at the transition from waveguide into free space.
The electromagnetic field radiated into free space is due to equivalent electric and mag-
netic surface currents, located along a surface that encloses the whole structure. Both
ficlds are related to each other by the application of the boundary and interface condi-
tions. The whole structure, including the aperture, is approximated with a triangular

discretization. The electric-current density is expanded in terms of vector rooftop
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basis functions, and the unknown are the normal components of the electric current
along each non-boundary edge of the triangular mesh. The magnetic current density

on the aperture is expanded using transversal waveguide modal functions.

A number of numerical examples were presented and results in the form of induced
currents distribution and far-field patterns were given. The code was implemented on
a massively parallel computer system (CRAY J90se) supported by Delft University of
Technology. Some computational aspects related to parallel processing of numerical

problems have been discussed.

The presented results indicate that an antenna design that is improved in terms
of gain, side lobes, cross polarization and back lobe can be obtained by optimizing
the external corrugation profile on the metallic structure around the waveguide. The
obtained optimum design may be very complex and the construction costs of both
material and machinery become significantly high.

A single dielectric-filled waveguide antenna was built and tested. The excellent
agreement between simulated and measured antenna performances demonstrate the
accuracy of the present formulation.

The obtained code enabled the detailed design and further refinement to the wave-
guide antenna. This work resulted in a final design for a waveguide launcher, at 3.3
GHz, which will be used throughout the next chapters.
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Figure 3.6: Normalized norm of surface magnetic current density at frequency 3.3

GHz (Aperture dimensions: a = b = 34.2 mm, €, = 2.53).
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Figure 3.7: (a) Normalized magnitude of z-component of surface electric current

density at frequency 3.3 GHz (Aperture dimensions: a = b = 34.2 mm, ¢, = 2.53).
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Figure 3.7: (b) Normalized magnitude of y-component of surface electric current
density at frequency 3.3 GHz (Aperture dimensions: a = b = 34.2 mm, ¢, = 2.53).
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Figure 3.7: (c) Normalized magnitude of z-component of surface electric current

density at frequency 3.3 GHz (Aperture dimensions: a = b = 34.2 mm, €, = 2.53).
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Figure 3.8: Computed and measured far-field E-plane patterns at frequency 3.3 GHz
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Figure 3.9: Computed and measured far-field H-plane patterns at frequency 3.3 GHz

(Aperture dimensions: a = b = 34.2 mm, ¢, = 2.53)
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Figure 3.10: Normalized norm of surface electric current density at frequency 3.3
GHz (Aperture dimensions @ = b = 34.2 mm, ¢ = 2.53).
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Figure 3.11: Computed far-field patterns in different planes for antenna geometry 2.
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Figure 3.12: Normalized norm of surface electric current density at frequency 3.3

GHz (Aperture dimensions a = b = 34.2 mm, ¢, = 2.53).
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Figure 3.13: Computed far-field patterns in different planes for antenna geometry 3.
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Figure 3.14: Normalized norm of surface electric current density at frequency 3.3
GHz (Aperture dimensions a = b = 34.2 mm, ¢, = 2.53).
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Figure 3.15: Computed far-field patterns in different planes for antenna geometry 4.
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Chapter 4

Rigorous analysis of dielectric rod

antennas with arbitrary shape

4.1 Introduction

Dielectric rod antennas are among the earliest radiating structures used in radar ap-
plications. They were first used as primary sources illuminating parabolic reflectors
and as elements in phased-arrays in World War II. Recently, dielectric rod antennas
have been receiving greater attention with the advance of millimeter-wave technol-
ogy. Low production costs, high reliability, compact size and the availability of high
performance low-loss dielectric materials make dielectric antennas a good candidate
for a wide range of applications, especially those at higher frequencies where metallic
antennas are costly and inefficient radiators due to the significant increase of resistive
losses.

A dielectric antenna usually consists of two parts: the dielectric body and the
feeding structure, known as the launcher (see Fig. 4.1.). The dielectric body is of finite
length and may be solid or hollow. To improve the radiation pattern and impedance

matching, the dielectric body is often tapered toward the end. The dielectric rod is

93
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usually fed by an open-ended metallic waveguide with either a rectangular or a circular

cross section.

In order to characterize the radiation from dielectric rod antennas, a variety of
approximate methods and simple design equations have been used in the past. A good
summary of the work on dielectric antennas has appeared in a recent monograph by
Carlos Salema et al. [1]. Earlier reviews on dielectric and dielectric loaded antennas
were carried out by Kiely [2] and Chatterjee [3]. In 1967, James reviewed four different
methods for the analysis of dielectric antennas [4]. The first method [5] was based on
the application of Schelkunoff’s equivalence principle to the fictitious currents on a
surface enclosing the dielectric medium. In the second method [6] the radiation from
the end of a uniform rod carrying HE;; waves was neglected and only the field due
to the radial surface was evaluated. In the third method [7], the volume equivalence
principle is used to transform the uniform dielectric body into a volume of polarization
current density. In the fourth method (8], the dielectric rod antenna was modeled
as a structure carrying a surface wave to the end of the rod, where it is radiated.
In 1972, Yaghjian and Kornhauser [9] used a hybrid modal technique to analyze a
semi-infinite cylindrical rod excited by the HE; ; mode. Later Dombek [10] obtained
an approximate solution using Kirchoff integrals. A more rigorous formulation was
presented by Kishk and Shafai [11]: they treated the radiation from a short cylindrical
rod using a coupled surface integral formulation. All techniques mentioned above are
full of assumptions or approximations normally made in the course of analytic studies.
Moreover, these methods have been applied to rotational symmetric geometry since

the solution is more easier to obtain.

In this chapter, I propose a more rigorous technique based on a hybrid-iterative
MoM for the accurate analysis and design of dielectric rod antennas with arbitrary
3-D shape taking into account the launcher. This technique is applied to the dielectric
rod configuration given in Fig. 4.1. A design procedure for the antenna is described
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and new theoretical and experimental results are presented.

This chapter is organized as described below. First the problem is formulated and
the integral equation is derived. Then the discretization of the domain of computation
and the expansion functions are discussed. Next the accuracy of the new method
and the validation of the design procedure are demonstrated by comparing computed
and measured results for a few examples. Finally some concluding remarks on the

advantages and disadvantages of the method are presented.

Metallic flanges
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Figure 4.1: The diclectric rod antenna (left: launcher, right: dielectric scatterer);

Problem geometry and coordinate system .

4.2 Problem formulation and derivation of the in-
tegral equation

If a dielectric body is placed in the vicinity of a radiating open-ended waveguide
antenna, this will modify the antenna’s radiation pattern. This suggests that the

dielectric antenna can be treated as a scattering problem, where the incident field is
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the field that is created by the open-ended waveguide (launcher). In the scattering
formulation, the scatterers are usually supposed to be situated quite far away from
the radiating source, so that the incident field is not perturbed by the scattered field.
In the case that the scatterer, as in dielectric rod antennas, is situated in the near-
field or touches directly the source, an accurate formulation must take into account
the interactions between the scatterer (dielectric object) and the source (launcher). In
this section, the electromagnetic radiation from a dielectric rod antenna, excited by an
open-ended metallic waveguide with rectangular cross section, is formulated as a near-
field scattering problem (see Fig. 4.1). The volume and surface equivalence are used
to derive an integral representation for the electromagnetic field. Application of the
boundary and interface conditions results in a set of coupled integral equations with
the current density distributions (electric and magnetic) as the unknowns. Finally,
the equations obtained are solved iteratively to yield the unknown current density
distributions, from which the radiation pattern can be calculated. The geometry of
the problem considered and the global coordinate system used throughout this chapter
are depicted in Fig. 4.1.
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Figure 4.2: The dielectric rod antenna formulated as a near-field scattering problem.
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4.2.1 Field scattered by a dielectric body of arbitrary 3-D
shape

Consider an isotropic linear dielectric body of arbitrary shape, with magnetic perme-

ability p, = gy and complex permittivity

&(r) = e(r) — jou(r)/w (4.1)

where € (r) denotes the permittivity of the dielectric body and o,(r) represents its
conductivity. The dielectric object occupies a finite volume Vy;. and is enclosed by a
surface Sg (see Fig. 4.2). The electromaguetic field {E, H} radiated by the dielectric
rod antenna can be decomposed into a launcher field {Ejun, Hjaun } and a rod field
{E 04, Hoa}. The rod-field is the field generated by an equivalent free-space volume
electric current density Jy, given by [12, p. 328]

Ju(r) = [o1(r) + jw (e1(r) — €0)] E(r)xy, (4.2)

where the shape function x,,(r) =1 if r € V4 and zero otherwise. The first term at
the right of Eq. (4.2) represents the conduction current and the second term denotes
the polarization current density. E(r) is the total electric field inside the dielectric
medium.

The electric field E.,q produced by Jy can be expressed using the vector and scalar

electric potentials for an unbounded region as in [12, p. 257]
Ea(r) = —jwA — V¢, (4.3)
where

AG) = o [ BEGEAV, 6,00 = — [ oG )V, (44)
Viiel ‘Ovdie]
V- Jy(r)
b,

p(r) = (4.5)
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In Eq. (4.4), r represents the vector position of a source element in Vg while r
denotes the vector position of the point at which the field is computed (observation
point). The three-dimensional Green’s function of free space, G(r, r/), is given by

exp(—jko|r —r
G(r,r') = —_%Tﬁu (4.6)

where kg = w,/€fig- Substitution of Eq. (4.4) into Eq. (4.3) yields the following
expression for the scattered field

1
E.oa(r) = —jwpg / Jy(@)G(r, v )dV' + —V / V' -Jy()G(r,r)dV'.  (4.7)
Vdiel e Vdiel

4.2.2 Representation for the incident field

In this section we derive an expression for the incident field using the formulation
described in the previous chapter. The incident field is considered as that is the field
radiated by the launcher. The launcher consists of a single waveguide-fed aperture
mounted on a perfectly conducting structure (see Fig. 4.1). The waveguide is uni-
formly filled with a non-dissipative, linear, isotropic and homogeneous medium with
dielectric constant €; and magnetic permeability ;. The aperture is rectangular with
width a and height b. The electromagnetic field radiated by the launcher is given by
Eq. (3.14) and Eq. (3.15) as
Ejau(r) = — / (jwmeG(r, 1) Is() — 15 (Vs - Is(x')) VG(r,r')) dA

s (4.8)
- / V x G(r, r')Ks(r')d4,

Sap.

where §=8,, U Scona (see Fig. 4.2), Js is the equivalent current density on the closed
surface S, and K represents the magnetic current density along the aperture surface
S.p- The equivalent sources are related to the total electromagnetic field {E, H} by

the relations
Js(r) =n(r) xH(r), res

Ks(r) =E(r) x n(r), r € S

(4.9)
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where n is the vector unit normal on S and equals n.gua¢ on Seana and ng, on Suy
(see Fig. 4.2). The electromagnetic field inside the metallic waveguide {Ey,, Hy,} is
represented by the modal expansions given by Eq.(3.5) and Eq.(3.6) in Chapter 3.

4.2.3 Total field and boundary conditions

As stated above, the total electric field radiated by the dielectric rod antenna, is given
by

E(r) = Epu(r) + BEroa(r), (4.10)
where E,q and E,,,, are given by Eq. (4.7) and Eq. (4.8), respectively. Since there
are three unknown current density distributions (Jv, Js and Kg), three equations are
required to solve the problem. Each equation will be the result of imposing a certain
condition on the total field.

The total field must satisfy the following condition inside the dielectric object:

[0’1(1‘) +jw (61(1‘) bt Eo)] E(I‘) = Jv(!’), re Vdiel (411)

on the outer metallic walls of the launcher

n(r) x E(r) =0, r € Seoua (4.12)

and at the aperture
n(r) X E(r) = —Ks(r), r € S (4.13)
n(r) x H(r) = n(r) x Hy, (r) = Js(r), r € Sy, (4.14)

Substitution of each field quantity, in Eq. (6.6), (5.8), (5.9) and (4.14), by its integral

representation results in the following set of coupled integral equations

—jwpe / JyGdV' + / V'.J,VGAV' — / (jwpeGIs — = Vis - IsVG) dA

€0 jweo
Viiet Vet
- / V x GKsdA' = Jy/ (jwke), T € Vi
Sap.

(4.15)
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—jwpgn X / JyGdV' + —n x f V-3, VGaV'

Jjweo

Viiel Viiel
—nx / (jwrGIs — 7 V's - IsVG) dA — n x / V x GKsdA'  (4.16)
S Sap
= _%KSXS, re S
nxHy=Js, res, (4.17)

where the shape function xs(r) = 1 if r € S,, and zero otherwise. Note that the
integrals occurring in Eq. (4.15) and Eq. (4.16) are principle-value integrals. Solving
the problem means finding the unknown current distributions Jy, Js and Kgs. This

is done in the next section using the MoM.

4.3 Expansion functions and MoM solution

In this section, the geometry of the dielectric rod that is analyzed is approximated
with a set of elementary sub-domains. A local description of the current densities in
1 each sub-domain is given. Multiplication of the discretized coupled integral equations

with testing functions and integration of the resulting products over the sub-domains
results in a linear system of algebraic equations. Iterative solution of the linear system

yields the current expansion coefficients from which the total radiated field can be

computed.

Figure 4.3: Discretization of the computational domain.
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4.3.1 Discretization of the computational domain and expan-

sion functions

Two types of elementary sub-domains are used to model the complex geometry of
Fig. 4.2. Triangles are used to approximate the closed surface § = Sconq U Sy, while
tetrahedra are used to approximate the dielectric scatterer volume Vg (see Fig.
4.3). The dielectric properties are assumed constant within each tetrahedron. For
the computations it is necessary to know which vertices, edges and faces belong to
each individual triangle or tetrahedron. These data (nodes, topology and material
properties within each tetrahedron) are generated by the mesh generator. A good
survey on mesh generation methods and software can be found in {13].

To represent locally, in each triangular patch, the surface electric current Js and
the surface magnetic current Ks we use the vectorial expansion functions, f,{r) and
gn(r), given in the previous chapter by Eq. (3.27) and Eq. (3.29), respectively. For
the volumetric electric-current density J, we need to define a different set of basis
functions. We chose basis functions defined over tetrahedral volume elements. Each
single basis function d,(r) is associated with a face of the tetrahedral approximation
of Vi1 They are analogous to the rooftop functions used in the previous chapter
and are constructed to guarantee a continuous flux density across the faces of the

tetrahedral computational model. They are defined as [14]

oy, e T}
do(r) = 2P, r €T, (4.18)
0, otherwise
where S,, is the surface of the face with index n and V¥ is the volume of the tetrahedral
T.%. Fig. 4.4 shows a pair of tetrahedra, 7,7 and 7,”, associated with the n' face of

the divided dielectric scatterer volume V). Points in 7, can be designated either by

the position vector r defined with resect to the origin O or by the vector pf defined
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with respect to the free vertex opposite to the n'® face in 7,%. The vector p;, is directed
toward the free vertex while the direction of p} is chosen away from the free vertex.
The positive flux reference direction is chosen to be directed from 7.} to T”. When
a face is located on the boundary Sg;e of Vi then the basis function associated with
that face is defined only over the tetrahedral interior to Vgi. Hence, the total number
of basis functions N4 equals the total number of faces in the tetrahedral model of V1.

The basis functions d,,, when constructed according to Eq. (4.18), can provide at
least a piecewise constant approximation to the quantity being approximated. The
fact that each basis function varies linearly with distance inside the tetrahedron pair
related to it, makes it also capable of representing linear variations. However, since
these functions are constant in the transverse direction, they can accurately model
linear variations only if the variation is in the same direction of the basis function.

Other properties of these basis functions are given below [14]

o A constant vector in any direction can be represented as the sum of four linearly

independent basis functions within each tetrahedral.

e The basis function d,, has no component normal to any face except at the com-

mon face of the tetrahedra pair 7,*.

e The component of d,, normal to the n'* face is constant and continuous across

the face.

A useful expression, which will be needed later, is the divergence of d,, given by

g&-, reT}t
V - d,(r) = —gg-, re7; (4.19)

0, otherwise
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n* face with surface S,

O

Figure 4.4: Geometry of a pair of tetrahedra associated with fase S,..

4.3.2 Discretization of the current densities and integral equa-

tions

In this subsection we discuss the discretization of the current densities, Jy, Js and K,
and the coupled integral equations (4.15), (4.16), and (4.17) using the linear expan-
sions mentioned above. In the previous chapter we have given a discrete approximate

to the surface current densities as follows

Js(r) = %Infn(r), res (4.20)
Ny
Ks(r)y= 3 (Vn + V,{) gn(r), r €S, (4.21)

where f,(r) and g, (r) are given by Eq. (3.27) and Eq. (3.29) in Chapter 3, respectively.

I, and V,, are the unknown expansion coefficients. V;! represents the known amplitude
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of the n'® incident mode in the waveguide traveling toward the aperture. In order to
find a discrete representation of the volume current density Jy(r) we first approximate

the unknown flux density D(r) = &(r)E(r) inside the dielectric volume Vy; as follows
Ny
D(r) & ) Dyda(r), t € Viia (4.22)

where d,(r) is given by Eq. (4.18) and D,, are the unknown electric flux coefficients.
The summation is taken over all the faces in the tetrahedral model of V. The

volume current density Jy is related to the total electric flux density D as follows
Iv(r) = [o1(r) + jw (€2(r) — €0)] D(r)/&(r)xy = jwr(r)D(r), (4.23)

where the normalized contrast function (r) is defined as (&(r) — €) /&(r). Since the
electric flux density D has a continuous normal component at media interfaces, all
discontinuities in the normal component of Jy are contained within the normalized
contrast function x(r). Substituting Eq. (4.22) into Eq. (4.23) results in a discrete

form for the volumetric current density Jy
Ny
Jy(r) = jwk(r) Y Dpda(r), r € Vaia (4.24)

When we replace each current density in Eq. (4.15), (4.16) and (4.17) by its discretized

form, we obtain the following set of linear equations

NZdD,, [BA(r) — da(r)/e] = ZI El(r) +Z(V +V3)ES(), Vr € Vo (4.25)
nx%DnEﬂ(r)=nx§InEf Z( )[ang( )—%g,,(r)], Vres
" " (4.26)
Ny
nx Y (Va—V;) Yagalr ZI f,(r), Vr € S, (4.27)
where

Ed(r) = w?y, / k(r')d,(rYGAV' + i / v’ [rz(r')dn(r')] vGdv’, (4.28)

Vdiel Viiel
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El(r) = é (jquan(r) - Jw—VS n( ’)VG) dA', (4.29)
EX(r) = / V x Gga(r')dA'. (4.30)

4.3.3 Weak formulation and MoM system

The problem as stated in Eq. (4.25), Eq. (4.26) and Eq. (4.27) results in an ill-defined
system since it cannot hold in the entirc computational domain. Hence, we are dealing
with a strong form. To resolve the unknown cocfficients one has to solve the problem

in a weighed form. Let’s define two products between the vectors x and y as follows

(x,¥)s //x ydA, (4.31)

(x,¥)y ///x ydV, (4.32)

which are scalars satisfying the properties given by Eq. (3.24) in Chapter 3. Next, we
define a set of testing functions ff, = f,,, g, = gm, and d}, = d,, over the domains
of computation S, S.p, and Vs, respectively. Applying the scalar products to the
discretized integral equations results in the following weak equivalent for Eq.(4.25),
Eq.(4.26) and Eq.(4.27), respectively

ic

N N Ng
Znd: Dn <dm’ E(Ti" - dn/€>vdiel - ;f In <dm7 E£L>Vd' 1 + ; (Vn + an) <dm’ Ei)Vd"cl ’

Ym=1,..,Ng
(4.33)
N, N¢ Ng ,
3502 B2), S0 B, + 3306 ) (B )y
Ym=1,..,N¢
N
zg: (V VI) Y. (gmagn ZI gm’f X n>5"" (435)

Ym=1,..,Ng
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or in matrix form

Zd-d 7df gdg D —7d-8
ztd gt 7ie I|=| -7« |V, (4.36)
0 zet zee ||V z8%
T T
Dz[Dl DN“J ’.Iz{ll IN‘]T’ (4.37)
V:[V1 VNg] ,V‘:[Vli ﬁg] :

The remaining expressions are defined in appendix C. Note that the matrices ZFf,
ZFe, 78% and Z#% are equal to the matrices Z°<, —Z%%, 7*°,and —Z**® in Chapter 3,

respectively. The linear system of Eq. (4.36) can be written in a more compact form

[Zd_d z b = - D ) (4.38)
V/cl/ L L
where _-
2 7 7te |
7et 7ee ]
741 — [ 704 i ] Zhd — LZM 0 ]T’ (4.39)

L= [1 A ]T, L= [ —Zts 788 ] Vi, D' = —ZdeVi.
In Eq.(4.38), the vectors D and L contain the unknown expansion coefficients while
the vectors D' and L! contain contributions from known sources. Note that in order
to compute the matrix Z¢ only knowledge of the dielectric scatterer geometry is
required. Similar, for the evaluation of the matrix Z"! only the geometrical description

of the launcher is needed.

4.3.4 Iterative solution of the MoM system

The linear system of Eq. (4.38) can be solved using the bi-conjugate algorithm de-

scribed in Chapter 3. However, due to the size of the numerical problem this procedure
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may require a large evaluation time before convergence. In this section we propose a
relatively simple iterative scheme based on solving one part of the problem, at cach
iteration, (i.e. the vector L or D); we use the obtained result to update the other
part. The main advantages of the proposed iterative scheme are the fast convergence
and the high flexibility for integration within an optimizer. The algorithin works as
follows. First, we compute the vector L (Launcher) in the absence of the dielectric

body (D= 0). This is given by

L) = () L. (4.40)
Next, the vector L in Eq. (4.38) is replaced by the obtained vector L(0), resulting
into the following approximation for the vector D

D(0) = (z) " (D' - 2*'1(0)). (4.41)

Similarly, by replacing D in Eq. (4.38) by its approximate value D(0) we can solve for
the vector L at iteration 1. The same procedure must be repeated until convergence

is achieved. In general, the algorithm can be represented as follows

L(n) = Ll + Z1L(n — 1),

(4.42)
D(TL) = D1 — ZgL(’Il),
where B
L, = (ZH) (L' _ Zl—le) ,
-1
7 = ZH Z““Z ,
1= (27) o (4.43)
D, = (Zd-d) D,
Zy = (Zil-d)’l 7d1
A numerical convergence test can be defined as
|L(n) — L(n — 1)|| < tolerance (4.44)

After some forward mathematical manipulations one can prove that, when n — oc,

L(n) will approaches its exact value L. This is only true if all eigenvalues of the matrix
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Z, are inside the unit circle. We obtain
n . n—1 .
lim L(n) = lim 3 (Z))'L(0) + 3 (Z)) [L ~ L)) = I~ Z) 'Ly =L (4.45)
=0 i=0
where 1 is a unity matrix. In the presented algorithm, two matrix inversion operations

are required (only once) and all the other operations are mainly vector summations

and matrix-vector multiplications.

4.3.5 Far-field computations

The field in the far zone can be calculated directly after the linear system of Eq.
(4.39) has being solved, for which the far-field approximation of Eq. (4.7) and Eq.
(4.8) must be used. We obtain for the incident electric field

Bunun(r) = ~2L0ZIN) 5 15y G, (e explie - )50

4.46)
r NTR (
o oBlIRT) S (K1) x 1) explibets - ¥
where
3 Ng X
Is(r$) = 3 Lfa(rd), Ks(rd) = 3 ga(s) (Vo + ;) (4.47)
n=1 n
and for the scattered electric field
witg exp(—Jjkor NTE
Ecoa(r) M LG Jy(r5)Yir] explikod - £5)Vi,  (4.48)
where
4
Ju(rf) = jwk(rf) E D,d,(r) (4.49)
n=1

and r = 7 (sin @ cos ¢i; + sin @ sin @iy + cosbi,) . 6 and ¢ are spherical coordinates. In
the above expressions r¢ denotes the position vector of the centroid of the it* triangle
or i** tetrahedral. NTR is the total number of triangles while NTE is the total number
of tetrahedra used in the geometrical model.
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4.4 Numerical results and experimental validation

This section deals with a number of numerical examples obtained using the formulation
described in the previous sections. A single dielectric rod antenna was designed and
constructed (see Fig. 4.5). Measurements were performed and the results were used
to validate the present computer code. In this section the design procedure for the

rod antenna is presented and new results are given for alternative configurations.

4.4.1 General design procedure

Here we discuss the design and construction of a dielectric rod antenna at S-band
(83.3GHz). The design of dielectric rod antennas usually starts with a gain requirement.
The gain is determined by the dielectric rod length. Rod dimensions are usually
found by experiment; one starts with a given dielectric cross section and incrementally
adjusts the length of the dielectric material until the measured field pattern satisfies
the requirements (see Fig. 4.6). The next stage is to match the impedance of the
dielectric rod to the waveguide feed using an air gap and tuning the waveguide probe
for maximum excitation power.

The basic antenna geometry of Fig. 4.5 consists of a dielectric waveguide of a
rectangular cross section fed by a metallic waveguide with the same cross section. The
geometry is shown schematically in Fig. 4.7. The transition from the metallic wave-
guide into the dielectric rod was made sufficiently continuous by tapering the metallic
walls gradually toward the dielectric rod (see Fig. 4.7). This insures the excitation of a
slow surface wave which will propagate, unperturbed, along the uniform section of the
dielectric rod. The cross section of the dielectric body is maintained constant over a
length (L-L1, see Fig. 4.7) and then decreased monotonically in the forward direction.
By doing so, one reduces the reflections caused by an abrupt ending of the rod and

thus improves the radiation efficiency (see Fig. 4.8). A matching network based on a
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single air gap and the design steps described in Chapter 2 was constructed in order
to cancel unwanted reflections from the waveguide-rod transition. Any reflections
caused by the coax-waveguide transition are reduced by carefully tuning the probe
(pin) thickness and length (Lp, see Fig. 4.7). The antenna dimensions for the final
optimized design are summarized in Table 4.1 and related measurements results are

given in Fig. 4.9-4.13.

Figure 4.5: Example of a dielectric rod antenna designed to operate at S-band.
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Figure 4.6: Measured H-plane patterns showing the effect of different dielectric slab

lengths on the radiation pattern.
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Figurc 4.7: Geometry of a dielectric rod antenna optimized at 3.3GHz (Dimensions

are given in Table 4.1).
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relative Power { dB }
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Figure 4.8: Measured H-plane patterns demonstrating the effect of terminal tapering
on the radiation pattern for two different rod lengths (L-L1=92mm, 100mm).

Table 4.1: Rod dimensions in (mm).
L Ll 12 La Lp a é

90.1 30.0 436 33 123 342 0.1

4.4.2 Numerical examples

In this section, three dielectric rod configurations are analyzed numerically using the
formulation described above. All three antenna examples assume the same launcher,
the same dielectric material, and operate at the same frequency. They differ only in the
shape of the dielectric body. In order to validate the numerical code, we first consider
the antenna configuration of Fig. 4.5. The antenna geometry was modeled using
1160 triangles and 701 tetrahedra, which is equivalent to 3280 (Nd=1530, Ny=1740
and N,=10) total number of unknowns. The computer code was migrated to the
massively parallel computer system at Delft University of Technology (CRAY-J90se).
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Figure 4.9: Measured magnitude and phase of the reflection coefficient at the

waveguide-slab and coax-waveguide reference planes with and without matching

network.
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The computational aspects discussed in section 3.4.2 were also considered in the

implementation of the present formulation. The most time-consuming operations in

the present formulation are the filling of the matrix Z%¢, since it involves volume

integrations, and the solution of the linear system.

Table 4.2: Summary of numerical results for the antenna configurations considered.

E-plane H-plane
First Cross- 3-dB 3-dB
Side lobe Back lobe polarization beam beam
Antenna level level level width width
configuration (dB) (dB) (dB) (deg) (deg)
o6& (03 17.3
=2.53 @(100°,0° <-27
= ( ) -13.4 58 64
S— -12.5 (main-beam)
@(126°,90°)
099
< 3 -17
8=2.53 @(96°,0°) <-29.3
-134 57 63
-13 (main-beam)
@(126°,90°)
2%
B — 115 <-28
-13.15 60 67
@(124°,90°) (main-beam)

The measured and computed far-field patterns for the antenna geometry of Fig.

4.5 are given in Fig. 4.10-4.13 for the planes ¢ = 0°, 90°, and 45°. A good agreement

between theory and experiment is observed. Fig. 4.14 shows the first three individ-

ual contributions to the far-field pattern in the E-plane while Fig. 4.15 shows the

individual contributions to the far-field pattern in the H-plane.

The individual contributions are fields due to (1) the Launcher, (2) the dielectric
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body and (3) the second interaction (dielectric— launcher). Although the obtained
results arc approximate, they provide the antenna designer with a lot of insight into
the physics of dielectric rod antennas. One can clearly identify and quantify which
parts of the geometry contribute to the radiation in a certain region. From the phase
information one can also see which parts interfere constructively or destructively. This
information helps in improving the antenna design with respect to side lobes, back
lobe and cross polarization by altering the geometry of the launcher and shape of the
dielectric body in light of computed results. The second antenna geometry we ana-
lyzed is a dielectric rod antenna with the terminal part of the dielectric body shaped
like a cut-wedge profile (see Table 4.2). The antenna geometry was discretized into
1160 triangles and 829 tetrahedra, resulting in 3584 total number of unknowns. The
obtained far-field patterns in different planes are given in Fig. 4.16. The individual
contribution to the far-field pattern are shown in Fig. 4.17 and Fig. 4.18 for the
E-plane and H-plane respectively. The third antenna geometry we analyzed is a di-
electric rod antenna with its dielectric body totally tapered in both planes (wedge
profile, see Table 4.2). This geometry was discretized into 1160 triangles and 1765
tetrahedra. The total number of unknowns is 5580. The computed far-field patterns
are shown in Fig. 4.19-21.

4.4.3 Discussion of the numerical results

Table 4.2 gives a summary of the obtained results for the three different geometries
treated in this section. Details of the computational requirements of the present
code are shown in Table 4.3. All the selected antenna examples have a similar gain
(9.5£0.5 dBi). The purpose of the investigation carried out was to study the effect of
the dielectric body shape on the radiation pattern. From the results it is clear that the
launcher contributions are not negligible and in certain regions may even dominate

the contributions from the dielectric body. The launcher radiation is responsible for




116 4. Rigorous analysis of dielectric rod antennas with arbitrary shape

the high side-lobe levels occurring in short dielectric rod antennas, especially in the

E-plane.

Table 4.3 Summary of computational requirements for selected antenna examples.

Number Memory Matrix Matrix Total
Antenna of required fill inversion CPU
configuration  unknowns (MB) time (h)  time (h)  time (h)
_ 06 |03
§=2.53
3280 >90 5 3.2 8.2

0.992

%

£=2.53
3584 >100 5 3.2 8.2
2

5580 >125 12 6.3 18.3

The side-lobe level in the configurations studied were found to be around =~ —13dB

in the E-plane and ~ —17dB in the H-plane. For the third example (wedge profile),
the pattern in the H-plane is side-lobe free. The cut-wedge profile (second example)
has resulted in the best configuration with respect to the cross-polar performance.
Although the cut-wedge and wedge configurations, when optimized, indicate better
performances with respect to either cross-polar or side-lobe level, they may result, at
certain frequencies, in very fragile structures. This makes the fabrication process very
costly and the manufactured structures will be very difficult to handle mechanically.
A solution to this problem may be the combination of different dielectric materials
having different dielectric properties.

An optimized design at 3.3 GHz has been presented. The antenna has a highly
symmetrical pattern, very low return loss (< -30 dB), low cross-polar (< -27 dB) and
high gain (9.5 dBi) at the frequency of interest. The whole metallic waveguide was
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filled with dielectric material (¢, = 2.53), resulting in an antenna size reduction factor

of (= 1.6). The overall dimensions of the final antenna design are (0.55\ x 0.55A X 2X).

4.5 Conclusions

In this chapter, I proposed a rigorous technique based on a hybrid-iterative MoM
for analyzing diclectric rod antennas with arbitrary 3-D shape. The method takes
into account the launcher (waveguide feed) and can handle arbitrary shaped dielectric
bodies. A number of numerical examples were treated and new results were presented.
The general design procedure of dielectric rod antennas was reviewed and a detail
description was given for an optimized prototype operating at S-band. The prototype
was constructed and the experimental data used to validate the numerical code. A
good agreement was observed between the proposed model and the experimental data.

Three different antenna geometries were investigated: (1) a uniform dielectric sec-
tion with terminal tapering, (2) a cut-wedge configuration, and (3) a wedge configura-
tion. The results indicate that by properly shaping the dielectric body, improvements
can be achieved in side-lobe level and cross-polar performance. In dielectric rod anten-
nas with moderate length, the launcher contributions are clearly visible and dominant
in the side-lobe region. A good design first stresses the optimization of the launcher,
and then that of the dielectric extended body.

When considering optimization of dielectric rod antennas, one need to take into
account many control parameters, which often conflict. The present numerical code
allows the investigation of their effects. In general any “geometry” can be numerically
analyzed and optimized. However, it should be mentioned for completeness that the
computational cost of the method is high for complex structures and with the present
formulation it would be limited to very large computer platforms. Further work on

techniques to speed up the computational scheme should be investigated.
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The optimized S-band prototype presented herein has a highly symmetrical pat-
tern, very low return losses (< -30 dB), low cross-polar (< -27 dB in 45° plane), and
high gain (9.5 dBi) at 3.3GHz. A compact antenna resulted when a dielectric filling
was used. An air-gap matching network was employed in the design. A number of
identical antennas were constructed that demonstrated similar performances. From
the results obtained, it is found that the design proposed can be used as a very efficient

array element for various applications.

The integration of the proposed design in an array environment and aspects related

to mutual coupling and array synthesis are addressed in the next chapters.
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Figure 4.10: Computed and measured E-plane far-field patterns for the antenna

geometry of Fig. 4.5 at frequency 3.3GHz.
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Figure 4.11: Computed and measured H-plane far-field patterns for the antenna
geometry of Fig. 4.5 at frequency 3.3GHz.
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Figure 4.12: Computed and measured 45°-plane far-field patterns for the antenna
geometry of Fig. 4.5 at frequency 3.3GHz.
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of Fig. 4.5 at frequency 3.3GHz.
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antenna geometry of Fig. 4.5 at frequency 3.3GHz.
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Figure 4.16: Computed far-field patterns in different planes for the cut-wedge profile
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Chapter 5

Mutual coupling between two

separate dielectric rod antennas

5.1 Introduction

The radiation pattern of an array of identical antenna elements is usually obtained by
taking the product of the element pattern and the array factor [1, p.11-5] [2, p. 249].
In this approach the assumption is made that all elements have the same radiation
pattern (i.e. the isolated pattern). In practical arrays, however, the presence of nearby
elements has a distorting effect on the pattern of the single antenna, causing pattern
degradation and mismatches. The degree of distortion depends on the element type,
its physical size and on the array geometry, i.e. inter-element spacing and array lattice.
In general, the smaller the inter-element spacing, the larger the distortions. Hence,
the mutual coupling causes the element pattern to vary within the array. The element
pattern which embraces the mutual coupling effects is characterized by the active or
embedded pattern [3].

An understanding of the mutual coupling requires a rigorous solution of the elec-

tromagnetic problem. Since the mutual coupling is typically a near-field phenomenon,

131




132 5. Mutual coupling between two separate dielectric rod antennas

a numerical technique will usually involve complex computations resulting in signifi-
cant computational requirements (time and memory). To avoid this one has to rely on
measurements (far-field pattern and S-parameters) for obtaining a clear picture of the
effects caused by the mutual coupling. However, measurements of mutual coupling
between all pairs of combinations within an array can become very laborious and cost

a lot of money and time, even for small finite arrays.

Finite arrays are used in many applications, like radar, satellite antennas, and mo-
bile communications, and especially as feeding devices for reflector or lens antennas.
They have a number of important uses which include generating contour coverage pat-

terns, correction for reflector distortions and improving wide-angle scan performances.

A dielectric rod antenna is an attractive candidate to be used as a feed-array
element for reflector antennas since it can, due to its dielectric filling and extension,
produce a relatively high gain with a small cross section. Because of this the feed
elements can be packed closely together. Consequently it is possible to design arrays
with a relative spacing in the order of 0.5 < d/A < 1.0, where )\ stands for the
wavelength. Due to the small spacing, mismatches due to mutual coupling can become
a serious problem and should be investigated carefully. However, because dielectric
antennas involve a combination of metal and dielectric, solution of the field problem is
complex, even for a single antenna, as was demonstrated in Chapter 4. Approximate

techniques are then required.

In this chapter, the Minimum Scattering Antenna (MSA) theory is used for pre-
dicting the effect of the coupling between two adjacent dielectric rod antennas. Earlier
work on coupling theory between MSA antennas has been published by Wasylkiwskyj
and Khan [4][5]. Andersen [6] later applied the same theory with success for predicting
the coupling between crossed dipoles and helices. Although dielectric rod antennas
do not belong to the class of MSAs, it will be shown that under certain conditions

one can still model the free-space mutual coupling between dielectric rod antennas
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in terms of a coupling between the radiation modes of MSAs. By doing so one can
represent the mutual impedance by an integral which involves only the far-field power
pattern of a single rod antenna. Once the mutual impedance is calculated for a given
spacing and a given power pattern, the excitations and the embedded pattern of each
element in the array are found by simple array calculations.

This chapter is organized further as follows. For completeness, we begin with a
brief review of the theory of MSAs in section 2. In section 3, we examine to what
extent the necessary assumptions and approximations of the MSA theory allow us
to characterize the dielectric rod antenna. In section 4, computations of the mutual
impedance and embedded patterns for an array of two dielectric rod antennas are
given. The calculations are then verified with measurement results for different inter-
element spacing. Finally, some concluding remarks on the limitations of the present

method are discussed.

5.2 Review of the theory on MSAs

Work has been published in [4][5] on the mutual coupling among a class of idealized
antennas, the electromagnetic properties of which are determined in terms of their
radiation patterns only. Such antennas are called Minimum Scattering Antennas

(MSAs). They have the following properties:
1. They become “invisible” when their local ports are open circuited.
2. They receive as much power as they scatter.

3. Their electromagnetic properties are completely and uniquely defined by their

transmitting (receiving ) patterns.

In this section, the scattering matrix representation of a single MSA is discussed

followed by a physical interpretation of the properties mentioned above. Next, a
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system of two coupled MSAs is treated and an expression is given for their mutual

impedance in terms of the radiation pattern of a single MSA.

5.2.1 General scattering matrix representation

The general scattering matrix representation of an antenna may be written as

b=Sa= = ' # Ao , (5.1)

bg Sga Spp | | as
where a, and b, are vectors of finite length containing incident and reflected wave
amplitudes at the antenna local ports, respectively. az and bg are vectors of infinite
length denoting incident and reflected wave amplitudes of the radiated modes (i.e.
spherical, plane-wave,...,etc.) defined at a surface enclosing the antenna. Note, that
in the transmit case, an input wave a, at the antenna ports produces a wave bg
radiated into free space and a wave b, reflected back into the antenna terminals.
In receive mode, an incident wave ag from free space gives rise to a wave b, at
the antenna terminal ports and a wave bg scattered back into free-space. The sub-
matrix S, , describes the mutual and self coupling among the antenna ports while the
sub-matrices Sq,g, Sgo and Sgg represent the receiving, transmitting and scattering
properties of the antenna being considered, respectively. If the antenna is lossless then

power must be conserved and the matrix S is unitary
StS=1, (5.2)

where the superscript ¥ denotes the transpose complex conjugate of the matrix. If

the antenna is matched to free space we have no reflections on the local ports, hence

Saa =0. (5.3)

s
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The lossless and matching constraints result in the following equations
Sg’asﬂ,a = Ia,aa
S} oSas =0, (5.4)
SapSas + 844588 = sz,
where L, 4 is an N (N= number of antenna ports) dimensional and I3 is an infinite

(number of radiating modes) dimensional unit matrix.

5.2.2 Minimum scattering antennas

The scattering matrix representation of free space is

b - - aAq
b=Sa=| = |= : (5.5)
by = Lgs | | as
The “~” sign in Eq.(5.5) means that the corresponding quantities are omitted since

in the absence of any antenna they are meaningless. The matrix I g represents the
reflection coefficients of the radiating modes. In the absence of any antenna the
incident modes must be totally reflected since they cannot be absorbed.

In order to derive the scattering matrix representation of an MSA we first enforce
property 1. From this property it follows that when the antenna ports are open-

circuited (i.e. reflection coefficient is onc),
b, = a,. (5.6)
After substitution of Eq.(5.6) into Eq.(5.1) we obtain
bs = (Sp.aSas + Sa,s) as. (5.7)

According to property 1 the MSA must be invisible, meaning that the scattering
matrix in Eq.(5.1) must be identical to the one for free space, see Eq.(5.5). Thus we

obtain

Sﬁ‘asa"g + Sﬁ,ﬁ = Iﬁ‘ﬂ. (5.8)




136 5. Mutual coupling between two separate dielectric rod antennas

Multiplying Eq.(5.8) by the matrix S}, and using Eq.(5.4) yields
Sas = Shq- (5.9)

The scattered field due to an antenna, is defined as the difference between the reflected
fields when an antenna (Sggag) is present and when the antenna is removed (ag).

Kahn [4] then introduced the following expression for the scattered field
fﬂ = Sg’ﬁag —ag = —Sﬂ,aS;,aap, (5.10)
where we have used Eq. (5.8) and Eq. (5.9). The scattered power is defined as

Pscnt = f‘; fﬁ‘ )

= (Sﬂ,as‘;aaﬁ)-,- (Sp,as;;aaﬂ) s

(5.11)
= 8553,457 055,05 0251
2
= al-; Sﬂ»"‘sg.aaﬁ = ISE,aaﬁl .
The power received by the antenna is given by (a, = 0)
2

where we have used Eq. (5.9). From Eq. (5.11) and Eq. (5.12) follows that the
power received equals the power scattered, which confirms the second property of
the MSA. Eq. (5.10) implies that the scattered field is a linear combination of the
columns of the matrix Sg .. Hence, the scattered pattern is a linear combination of the
amplitudes of the radiation modes Sg, (Property 3). Finally, we obtain the scattering
matrix representation of a Minimum Scattering Antenna cast in terms of radiation
characteristics only as

0 SE
S = Pre . (5.13)
Spa Iss —SpaShe
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Free-space A

Figure 5.1: Scattering representation of two coupled antennas.

5.2.3 Mutual coupling between two minimum scattering an-

tennas

Consider an array of two MSAs as shown in Fig. 5.1. The electromagnetic properties
of each antenna, expressed in the antenna local coordinate system, can be represented
by a scattering matrix similar to Eq. (5.13). We can write, respectively, for antenna

(1) and antenna (2)

(b, ] [ o sty |[a]

Y= i e (5.14)
| b3 | [ Ss1 I- S3,1571 ]| as
(b, ] [ o St [ ay |

= o | ]a , (5.15)
| s | | Sa2 I— S125%s || ae

where a; and a, are vectors of amplitudes of incoming waves at the ports of antenna

(1) and antenna (2), respectively. b; and by are vectors of amplitudes of outgoing
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waves at the ports of antenna (1) and antenna (2), respectively. The vectors bs and
by represent amplitudes of the transmitted waves, while the vectors az and a4 contain
amplitudes of the received waves, defined with respect to the reference spheres S; and
Sz (see Fig. 5.1). Note that if the antennas are single-mode, the quantities in Eq.
(5.14) and Eq. (5.15) become vectors with length one. The system of the two coupled

antennas can be represented by a single scattering matrix S, o
by $11 81,2 a)
b= Sa,ua = = ) (516)
by S2,1 S22 a2
and a single impedance matrix Z

v=7Zi=
V2

| 2 Zie 1 (5.17)
Zay Zap iz

where Z,,, Z32, Z12 and Z,; are, respectively, the self and mutual impedances. v;,
vz, i1 and i, are total voltages and total currents at the ports of antenna (1) and
antenna (2) respectively. The impedance and scattering matrices are related by the

relation

1z [ 1 A2 ] = (I+Saa) (I Sau)™", (5.18)

Zo 221 222
where Z, represents the characteristic impedance of the feeding line, while z; 1, 2332,
z1,2 and zy; are the normalized and dimensionless self and mutual impedances. For a
system of two antennas which are identical, we have z; 5 = 23 ;. Wasylkiwsky;j derived
the following expression, Eq. (73) in [5], for the normalized mutual impedance between
two MSAs that radiate only in the half space z > 0

2n
2y . .
21 = 7 =2 / /P(G,t,o)exp( jk - D) sin 8dédep, (5.19)

=0T
where D is the vector position of antenna (2) with respect to the coordinate system of

antenna (1) and k = ko(sin @ cos p, sin 8 sin @, cos ). @ and ¢ are spherical coordinates.
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P(6, ) is the radiation intensity in the far-field zone of an isolated antenna in free

space and is defined as
,,.2
P(b,p) = lim 5-E(rf,¢) E(r0,9), (5.20)
0

where 7, is the intrinsic impedance of free space and E(r, 8, ) is the electric field of
the antenna in the far-field zone. The 8 integration in Eq. (5.19) must be taken in

the complex plane along the path I' in the same way as in [6] (see Fig. 5.2).

Im®) »

Vad

—n/2 © m2  Re(®)

Figure 5.2: Integration contour in the § complex plane.

5.3 Application to an array of two dielectric rod

antennas

In this section, we derive a general expression for the mutual impedance between two
separate dielectric rod antennas using the general equivalent network representation

of the antennas given in (7].



140 5. Mutual coupling between two separate dielectric rod antennas

5.3.1 General network representation of a single rod antenna

Consider a model of a single dielectric rod antenna consisting of a single local port and
M radiation modes representing the transmitting, receiving, and scattering properties
of the antenna (see Fig. 5.3 (a)). A general network representation of this antenna
can be obtained by considering an array of M single-mode, matched and de-coupled
minimum scattering antennas. Each array element radiates a single mode (i.e. spher-
ical mode). The M ports of the array are interconnected via a lossless network S as
shown in Fig. 5.3 (b). The scattering matrix S (M + 1) x (M + 1)) of the feeding
network must be identical to the scattering matrix given by Eq. (5.1).

M-Radiation Modes

b, 4|
w [ . (o

M) Array of MSA's

1) o) M-Ports

S
Lossless Network

(a) General antenna (b) MSA-Network Equivalent

Figure 5.3: Network equivalent of a general antenna.
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(a) Array of two general antennas (b) MSA-Network Equivalent

Figure 5.4: Network equivalent of an array of two coupled general antennas.

5.3.2 General network representation of an array of two rod

antennas

Let us consider an array of two identical dielectric rod antennas. Each antenna, when
isolated in free space, can be represented by a scattering matrix of the type in Eq.
(5.1). Let S; and S2 be the scattering matrices of antenna (1) and antenna (2),

respectively. We have

[ b ] [ s S1.: 11 a ]

b=Sa=| ' |=|"" P (5.21)
L bs | L 83,1 9533 1L asz ]
[ b ] [ s s 11 a; ]

b=Sa=| _ |=| 2 " 1, (5.22)
| by | | S42 Sa4 B ay |

where s;,; and sy are reflection coefficients at the antenna ports. The matrices $; 3,
83,1, Sp.4 and 49 represent the receive and transmit properties of the two antennas,
while the scattering properties are represented by the matrices s33 and s44. All the

quantities occurring in Eq. (5.21) and Eq. (5.22) apply to the case when the antennas
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are isolated in free space and they are defined with respect to each antenna local
coordinate system (see Fig. 5.1). A general network representation of the system of
the two coupled rod antennas is shown in Fig. 5.4. The equivalent network consists of
an array of two sub-arrays of MSAs. Each sub-array consists of M single port, single
mode and matched MSAs. The two sub-arrays are individually excited using two
lossless networks having scattering matrices S; and S, respectively (see Fig. 5.4). In
this equivalent model the free-space coupling between the two antennas is represented
by the mutual coupling between the radiation modes of the two sub-arrays of the
MSAs. We can write for the normalized mutual impedance between mode ¢ of sub-

array (1) and mode j of sub-array (2) [7]

27
z,-,,-=l lim r? / / EX(r,0,¢) - EP*(r,0, p) exp(—jk - D)sin0dddp,  (5.23)

Mo " =0T
where the superscript * denotes the complex conjugate. In Eq. (5.23), E,(l) (r,8,0)
and E§~2)(r, 0, ) are the radiated electric field strength due to, respectively, mode ¢ in
sub-array (1) and mode j in sub-array (2). D is the vector position of antenna (2)
with respect to antenna (1). All the quantities are expressed in the coordinate system
of antenna (1) (see Fig. 5.1). In order to determine the impedance matrix of the two
coupled rod antennas, we first excite antenna (1) at its input local port with a current

i, and let antenna (2) be open circuited (i; = 0) (see Fig. 5.5). Next, we write the
network relation of the coupled MSAs as

[v“’ ! Z} [_ia}, (5.24)
V4 VAR —i4

where I is an MxM unit matrix and Z is an MxM matrix with entries given by Eq.

(5.23). s, vy, i3 and iy contain total voltages and total currents at the input ports of

the MSA array (see Fig. 5.5). The network relations, Eq. (5.21) and Eq. (5.22), can
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be written as follows (8]

3 (01 = Zoir) s s 3 (01 + Zoiy)

- L
3 (va — Zola) | s s3] | 3 (V3 + Zois) ]
1 (vg — Zgia) | S22 S2a 3 (v2 + Zoia)
% (va — Zols) | | S42 Saq || % (Ve + Zois) ]

(5.25)

(5.26)

After substitution of iy by 0 in Eq. (5.26) and having solved v; and v; in terms of 4,

we obtain [5]

Z1 1 1+ 811 1 (2)
= = = —— =513Z(I -8 Z'E: y
zl,l ZO 1 — 81,1 2(1 — 31,1)2 1,3 ( 0 ) 93,1
Z; 1
zy =22 = 524Z'Es3 1,

Zy (1- 51,1)(1 - 32,2)

where
E=[1-X"", X=11-sM"za-sP)z,

(2 _ _ 1
S = Tos;5 542524 1 844,

1 _ 1
Se’ = 781‘133,181,34-83,3-

Array of MSA's
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Figure 5.5: Voltage and current descriptions.
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Eq. (5.27) and Eq. (5.28) represent the self and mutual impedance between the
two antennas in terms of the radiating, receiving and scattering properties of each

antenna in free space. If the two antennas are identical and reciprocal, we have

VARE R
Zay Zya

(5.30)

Zarray =

The normalized self and mutual impedances can be approximated by the following
series
1+ S1.1 1

- 1 _ Q@ 2, ..
=T 2(1_31,1)231,3Z(I S)Z (T+X+X2+-+)s31,  (5.31)

1
1- 81,1)(1 - 82)2)

21 =1 spaZ' (T+X+X2+--) s34, (5.32)

where we have used E= (I-X)™! = (I+ X+ X2+ ---). The successive terms in the
series in Eq. (5.31) and Eq. (5.32) correspond to successive multiple reflections
between antenna (1) and antenna (2). Note that the first term in the second series
depends only on the transmit properties of antenna (1) and the receive properties of
antenna (2). If we neglect the terms related to multiple reflections between antenna

(1) and antenna (2) in Eq.(5.32), we obtain for the mutual impedance [5](7]

~ 1 t
221 N T $24%'83,15
2

lim, o072 / /E1 (r,8,¢) - E3(r, 6, @) exp(—jk - D) sin 6dédy,
@=0T

(5.33)
where Ei(r, 0, ¢) and Ey(r, 8, ¢) are the electric far fields of antenna (1) and antenna
(2), respectively. The obtained final expression of the normalized mutual impedance
is similar to the expressions published by Kerns [9] and Yaghjian {10].
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20)9 A

x(z)

Figure 5.6: Array geometry and coordinate systems.

5.3.3 The embedded patterns of an array of two dielectric
rod antennas
Here, we will consider the canonical problem of an array of two identical dielectric

rod antennas as shown in Fig. 5.6. The electric far field radiated by antenna (1) and

antenna (2) can be written respectively as

—ik

Ei(r,0, o) = bs, /;’—;’r,/cl(e, go)we, (5.34)
_'k

Ea(r6.) = buy 2260, 9 22 T2, (5.35)

where G1,2(8, ¢) is a function representing the antenna gain, while e is a vector denot-
ing the antenna polarization. These quantities are found using the numerical method

described in Chapter 4. bs and by are complex constants yet to be determined. The
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total electric far field radiated by the array is given by

E(r.0,0) = [ 12 (z,a X q,)%’s@ b ﬁz—(&_so)exp(;jk"”)) )

The coefficients b3 and b4 are related to the amplitudes of incoming waves a; and a,

at the local ports of antenna (1) and antenna (2), respectively, as follows

b S
3 — $3,1 83,2 a, ‘ (5.36)
by 532 831 az

We should note that we have assumed that the dielectric rod antenna radiates a single
mode, i.e. the mutual coupling will affect only the antenna current amplitude and not
the distribution. The embedded pattern of antenna (1) can be found when antenna
(1) is excited by a; and antenna (2) is terminated in a matched load (a; = 0). We have

then b3 = ss1a1 and by = s32a;. The generalized Ohm’s Law for this case becomes

{ z:‘ ] , (5.37)
12

where i, and i, are proportional to the current distribution of antenna (1) and antenna

v Za 212

Zoy Za2

—Zoty

(2), respectively. The ratio sg2/ss1, which is a measure of the amount of pattern

degradation due to mutual coupling, can be determined from Eq. (5.37) as

B2 —Zan 221
33’2/53,1 il = Zz,z +Zo = 2 5 (538)

where the normalized mutual impedance z; is given by Eq. (5.19). Appendix D
contains the numerical evaluation of the integral in the complex plane for a dielectric
rod antenna. At this stage, the array pattern, including mutual coupling effects, can
be calculated for any set of excitations. Although the study was done for an array of
two dielectric rod antennas (the canonical problem), the obtained model can easily be

extended to arrays with more elements.
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5.4 Experimental and numerical results

In this section we analyze the mutual coupling in an array of two dielectric rod an-
tennas using the technique described in the previous sections. After completing the
design of a single antenna element using the steps described in Chapter 4, we con-
structed an array of two identical elements. The antennas are designed to provide a
linearly polarized, broad pattern at a central frequency 3.3GHz. A special antenna
mounting interface was required for the DUCAT positioning system for making array
measurements. The mounting platform allows us to vary the inter-element spacing
about the range (5.0cm—14.0cm). The lower bound is reached when the antennas’
metallic flanges are in contact. Mutual coupling measurements are sensitive to the
external environment, and it is a condition of the technique that a reflection-free or
at least very low-scattering situation exists. For this reason the measurements were
repeated independently at the ESTEC Compact Antenna Test Range (CATR) to
confirm the results, see Fig. 5.7.

The coupling ratio (ss2/s31), which is a measure of the amount of pattern degra-
dation due to mutual coupling, was computed for different inter-element spacings
(D = di,). The results are indicated in Fig. 5.8. As expected, the larger d, the lower
the coupling ratio and dli_r.noo s32/s31 = 0. Hence, the embedded pattern approaches

the isolated pattern for an increasing inter-element spacing,.

Although the embedded patterns were computed for different inter-element spac-
ings, we here give the results only for two cases: d = 0.77X and d = 0.55\. Since a
single dielectric rod antenna has a Gain of = 9.5 dBi at the frequency that is consid-
ered, the two dielectric rod antennas are highly coupled at such inter-element spacings,

i.e. their equivalent aperture distributions are strongly overlapping.

The computed and measured embedded patterns for an array of two dielectric

rod antennas at an inter-element spacing 0.77A are given in Fig. 5.9 for antenna (1)
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and in Fig. 5.10 for antenna (2). It is clearly seen that both embedded patterns are
asymmetrical with respect to the z—axis, they are broader than the isolated pattern
(see Fig. 4.11, Gain-loss ~ 1 dB) and as might intuitively be expected, are the mirror
image of each other. The embedded patterns were measured by exciting one antenna
and terminating the other antenna in a matched load. When both antennas are excited
(a1 # 0 and as # 0), the array pattern will be a superposition of the two embedded
patterns multiplied by the excitation coefficients a; and as. Fig. 5.11 shows the
measured and computed array pattern when the array elements are unequally excited
in amplitude and phase (a;/a; = —6.4 dB (-12.2°)). The results of the case where
the array elements are equally excited are given in Fig. 5.12 (Gain-increase ~ 2.5
dB). The computed and measured embedded element pattern for an array of two
dielectric rod antennas at an inter-element spacing of 0.55\ is given in Fig. 5.13
(Gain-loss = 1.5 dB), while the array pattern that results when both elements are
equally excited is shown in Fig. 5.14. From the results we see that even at this
very small inter-element spacing the agreement between theory and experiment is still
good. Discrepancies between the model and the experiment results are due to the
multiple reflections between the two antennas. The muitiple reflections, which are
neglected in the present model, become more significant as the inter-element spacing

is decreased.

The inter-port coupling between the two dielectric rod antennas was measured
and the results are given in Fig. 5.15. Although there is a strong interaction in terms
of pattern degradation, the inter-port coupling has been found to remain small in
all cases. This may be explained if one recalls that the dimensions of the dielectric
rod were chosen carefully to preferentially excite a quasi single mode in the forward
propagation direction. When the antenna is used in a coupled environment, most of
the coupled energy will eventually be transferred to this forward mode and less energy

will be coupled to the back-traveling mode.




5.5. Conclusions 149

The model assumes only coupling between fields which propagate to the far zone;
any present reactive coupling is not taken into account. However, in the case of
dielectric rod antennas the reactive coupling may be neglected. This is because the
reactive field is confined to a region very near to the dielectric slab and decays rapidly

with distance.

5.5 Conclusions

In this chapter the Minimum Scattering Antenna (MSA) theory was applied to predict
the effect of mutual coupling between two identical dielectric rod antennas. To the
author’s knowledge this is the first time such a technique has been applied with success
to dielectric rod antennas. Although dielectric rod antennas do not belong to the
class of MSAs, we have found that even when the multiple scattering between the
two antenna elements is neglected, one can still approximate the free-space coupling
between dielectric rod antennas by a coupling between the radiation modes of two
coupled MSAs. This resulted in an expression for the mutual impedance which involves
only the radiation pattern of a single dielectric rod antenna when isolated in free space.

A coupling ratio was introduced to represent the amount of pattern degradation
due to the mutual coupling. The embedded patterns can be obtained by using the
coupling ratio and standard array theory. Note that in this approach the power con-
servation law is enforced inherently, which is not the case when standard array theory
is used where a normalization factor must be introduced. A number of examples were
treated and a comparison with measurement results was provided. The presented ex-
amples include different inter-element spacings and different array excitations (sym-
metrical and asymmetrical). A very good agreement was observed between theory and
experiment, even for asymmetrical excited arrays and arrays having relatively small

separation distances.
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The inter-port coupling between two dielectric rod antennas was measured for
different configurations. Although there is a strong interaction in terms of pattern
degradation, it was found that the inter-port coupling remains small (< —25 dB) in
all cases considered.

The accuracy of the model presented depends on the inter-element spacing. It was
found that for moderate inter-element spacing, down to 0.55, the presented model
predicted the mutual coupling between two dielectric rod antenna well. In cases where
multiple reflections between the array elements are strong, the approximations made
are no longer valid and a different approach must be sought. In the case of finite
arrays of dielectric rod antennas, one can still use the numerical method described
in the previous chapter to analyze the mutual coupling. Such a method takes into
account all electromagnetic scattering between the array elements, provided that the
computational requirements are available.

This chapter has shown that the dielectric rod antenna design that was optimized
in the previous chapter is a very good candidate for array applications where both
high-gain elements and small inter-element spacings are required. Since the embedded
patterns are linearly dependent on the isolated element pattern and the inter-port
coupling is very low, one can design an appropriate network which can compensate
for the mutual coupling effects or at least make use of it in a beneficial way. This will

be demonstrated in the next chapter.
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Figure 5.7: Array of two dielectric rod antennas ready for measurements. Top: in

ESA-ESTEC CATR. Bottom: in DUCAT.
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Figure 5.8: Amplitude and phase of the coupling ratio (s32/s3,1) versus

inter-element spacing.
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Figure 5.9: Computed and measured far-field patterns for an array of two dielectric

rod antennas: Antenna (1) excited and antenna (2) resistively terminated

(d = 0.77), frequency = 3.3 GHz).
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Figure 5.10: Computed and measured far-field patterns for an array of two dielectric

rod antennas: Antenna (2) excited and antenna (1) resistively terminated

(d = 0.77), frequency = 3.3 GHz).
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Figure 5.11: Computed and measured far-field patterns for an array of two dielectric
rod antennas unequally excited in phase and amplitude (d = 0.77), frequency = 3.3
GHz, ay/ay = —6.4 dB(-12.2°)).
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Figure 5.12: Computed and measured far-field patterns for an array of two dielectric
rod antennas equally excited in phase and amplitude (d = 0.77), frequency = 3.3
GHz, ay/a3 = 1).
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Figure 5.13: Computed and measured far-field patterns for an array of two dielectric
rod antennas: Antenna (2) excited and antenna (1) resistively terminated

{(d = 0.55), frequency = 3.3 GHz).
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Chapter 6

Multiple-beam reflector antenna

using a dielectric rod array

6.1 Introduction

At the Delft University of Technology a new Transportable Atmospheric RAdar (TARA)
has been designed and constructed [1]. The project was financed by the Netherlands
Technology Foundation (STW). The TARA antenna system consists of two separate
reflector antennas with parabolic shape: one used for transmitting and the other for
receiving. Each antenna system has multiple beams pointing at different directions
(i.e. 0°, 15° in both the horizontal and the vertical plane). The beams are switched
electronically to measure three-dimensional wind fields.

Reflector antennas are widely used in communication and radar systems because of
their low cost, low weight, and high reliability when compared to lens or phased-array
systems. Most reflectors are parabolic, with a single focal point (focus). A plane wave
received from the bore-sight direction is reflected by the parabolic surface and focused
at the focal point. By reciprocity, a transmitted wave emanating from a feed located

at the focus will be collimated by the reflector into a highly directive beam. A good
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review on the theory of reflector antennas can be found in [2].

In a reflector antenna, beam switching can be achieved by using a feed positioned
at a distance out of the focus (off-focus). However, the beam generated by a reflector
antenna with a source located off-focus is very broad (low gain) and has high side lobes.
Thus, the obtained beam is not of practical use. This performance deterioration can
be substantially reduced if more than one feed element is simultaneously employed.
The resulting feed array creates the required amplitude and phase distribution across
the reflector surface, which produces a well-shaped beam at a given pointing angle in
the far-field zone. Hence, the parameters to be optimized are the location, geometry
and individual excitation of the array elements.

The location of the feed array, the number of elements and the inter-element spac-
ing are obtained by considering the reflector antenna system in the receive situation.
A plane wave arriving from a known angular direction is then assumed to be incident
on the reflector surface, and the Physical Optics (PO) technique is used to construct
the field distribution (amplitude and phase) that is created in the focal region. The
array geometry and location are found by inspecting the focal fields; by looking for
regions with high energy density.

The array excitations are obtained by considering the reflector antenna system
(array and reflector) in the transmit situation. Each array element is excited separately
and the individual gains are computed at the required pointing angle using PO. The
results are combined and the array excitations are adjusted to achieve a maximum
total gain. In the optimization process, aspects related to mutual coupling, losses
in the Beam-Forming Network (BFN) and aperture blockage caused by struts and
feed housing are very crucial. It are these factors that really determine the overall
performance and they must be included in the optimization procedure for an accurate
antenna design.

In this chapter, a design procedure is provided for reflector antennas fed by a finite
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array of dielectric rod antennas. The method proposed makes use of the electromag-
netic models developed in the previous chapters. It takes into account mutual coupling
between the dielectric rods and blockage due to the feed housing and struts, which are
required for mechanical stability and mounting purposes. The method was applied
to design the novel feed system of TARA. The goal of the feed design in TARA was
to maximize the gain and decrease the side-lobe level of the beams at the different
pointing angles. The novelty aspect is the use of high-gain miniaturized rods packed
closely together to achieve full sampling of the focal field distribution in the receive
case and to improve the scanned beams patterns in the transmit case.

This chapter is organized as follows: in section 2, the reflector antenna. is considered
in the receive mode and the Physical Optics technique is used to construct the field
distribution in the focal region and to determine the array geometry. In section 3, the
computation of the far-field pattern of a reflector antenna fed by an array of dielectric
rods is described (transmit case). Then the optimization of the array excitation vector
for maximal directive gain, including mismatches and mutual coupling, is treated.
In section 4, a hybrid Physical Optics-Moment Method is presented for analyzing
the blockage caused by struts and feed housing. In section 5, the design method is
applied to the feed system of TARA. Finally, some concluding remarks on the design

procedure are given.

6.2 Reflector antenna in receive case: Focal plane
analysis
In this section the Physical Optics (PO) technique is used to compute the fields in

the focal region of a parabolic reflector antenna when receiving a plane wave from

an arbitrary direction. The general problem geometry and coordinate system used
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throughout this section are shown in Fig. 6.1. The reflector surface has a diameter

D, a focal distance F and is assumed to be perfectly conducting.

Incident plane wave
E, H, K; +y
Reflector (D) 7

|
Focal Plane 7':

1

x

Figure 6.1: General geometry of a reflector antenna illuminated by a plane wave.

6.2.1 Computation of the focal fields

Consider a reflector antenna in the receive mode. A plane wave (E;, H;) is assumed
incident on the reflector surface from a fixed direction k; as shown in Fig. 6.1. A

plane wave propagating in free space may be represented as follows
E; = e exp(—jk; - r), 6.1)

1
Hi=—kixeiex —‘ki’l' y 6.2
o p(—jk; - 1) (6.2)
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where €; is a unit vector defining the polarization of the plane wave.

When the plane wave reaches the conducting reflector surface, it induces an electric
current distribution Jg. The induced electric current density excites the scattered
field. When the transverse dimensions of the reflector, i.e. the radii of curvature of
the reflector surface and the radii of curvature of the incident wave front, are all much
larger than several wavelengths, then the Physical Optics technique can be used. The

Physical Optics approximation to the induced electric current density Js is given by
Js =~ 2n x H;, (6.3)

where n is the unit outward normal at the reflector illuminated side Sg and H; is
the incident plane wave magnetic field. Note that the PO current exists only on the
illuminated side of the reflector. Hence, the diffracted field at the reflector edge is not
taken into account.

Using the Green’s representation for the electromagnetic field, Eq. (2.56) and Eq.
(2.57), we can express the electric field in free space at any point Pr located on the

focal plane (see Fig. 6.1) as

Be(rr) = ~jwo [ [(1+p(1+p)Is ~ (Bs-ir)ir (1+3p(1+1))]Gd4,  (6.9)
Sr

b= G- i o5
R=rp—1g, ir=1%§,
where rp and rg are position vectors denoting a point on the reflector surface Sp
(illuminated side) and a point on the focal plane, respectively. Note that the focal
plane is located in the near-field zone of the reflector antenna. Computation of the field
at a single point in the focal region involves an integration over the entire reflector
surface. Construction of the focal field means repeating the integration for a large
number of points. This may require a large computational time. One can use simple

ray tracing, i.e. based on Snell’s law for reflection, in order to select a particular region
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and then use Eq. (6.4) to accurately determine the power and phase distribution in
that region. This reduces the computational time significantly. Although the study
done here was for a single plane-wave incidence, one can easily extend it to a general
source by expressing the incident field as a superposition of plane waves with different

amplitudes, directions and polarizations.

6.2.2 Near-field matching condition

Now we proceed with the synthesis of the primary source, which will create, when
transmitting, a beam in a direction opposite to the direction of incidence of the plane
wave. The electromagnetic field created in the focal plane in the receive case is
denoted by Er and Hy, while E, and Hj, represent the unknown electromagnetic
field which will be present at the same plane when the primary source is transmitting.
Furthermore, let Sr be the part of the focal plane with the highest power density in the
receive situation. The primary fields E, and H,, must be matched to the focal region
fields Er and Hy to guarantee maximal power transfer from the transmitting primary
source into the angular direction of the plane wave. The matching is performed
across the surface Sp. This condition is represented mathematically by the power

transmission coefficient 7 defined as [2, p. 68]
2

1
nzm!(prHp+HFpr)-dA , (6.6)
F

where Pr and P, are the total powers contained in the focal fields and primary source

fields, respectively. They are defined by

1 . 1 .
PF=§Res/EpxHF-dA,Pp=§Re!prHP-dA. (6.7)
F F

The power transmission coefficient 1, Eq. (6.6), represents the efficiency of the primary

source and must be maximized. In the ideal case, i.e. perfect matching, it will become
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one. At this stage, Eq. (6.6) can be used to synthesize the primary source using a
set of elementary sourccs. Howcever, this procedure is very difficult because it requires
complete knowledge of the near field of the elementary sources, including their mutual
coupling. A different approach, which takes into account mutual coupling and requires

only the far field of the elementary sources, will be presented in the next section.

6.3 Reflector antenna in transmit case: Array syn-

thesis

In this section the dielectric rod antenna is chosen as the elementary source and the
array synthesis is performed based only on far-field patterns. First we derive an
expression for the far-field pattern (secondary pattern) of a reflector antenna fed by
an array of dielectric rod antennas (see Fig. 6.2). Then, the secondary pattern due
to each rod is computed separately and the results are combined to maximize the
directivity at a given angular direction. The effects due to mutual coupling between

the dielectric rod antennas are included.

6.3.1 Secondary pattern of reflectors fed by a dielectric rod

array

Consider the problem of Fig. 6.2. A reflector antenna is illuminated by an array of
N dielectric rod antennas. Each individual dielectric rod produces an electromagnetic

field (E;, H;) incident on the reflector surface Sg which may be represented by

Mo (Ao . €XP (—jkoRi)
E,' = \/_% Gi(r)cie,-——RiO—, (68)
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Figure 6.2: Reflector antenna fed by an array of dielectric rods located in the focal
region.

H, = /2_”1_7% /Gi(r)c: [Ri x €] E{B_(%];M‘i)., (6.9)

where r is the position vector of a point P on the reflector surface. e;, G; and r;

are respectively the polarization vector, the directive gain pattern and the position
vector of the dielectric rod antenna with index i. These quantities are numerically

determined using the electromagnetic model developed in Chapter 4. R; is defined in
Fig. 6.3. The complex coefficients ¢; (i = 1,...,,N) are related to the array excitation

vector a by
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Furthermore we have
b S11 *t SIN a
b=S,a=| : | = Do S I (6.11)
L by SN, SNN anN

where we have used the general scattering matrix representation of the dielectric rod
antenna developed in chapter 5. The transmission matrix Sg, and reflection matrix
Se,« represent the mutual coupling and mismatches in the array environment. The
induced electric current density on the reflector’s illuminated side is obtained using

the PO approximation. We have

Is(r) = ;Gi-]i(l‘),

i= (6.12)
Ji(r) = \/%,/G,-(r) [n x (R; x e;)] ZRljhel),
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The secondary pattern in the far-field zone can be obtained from Eq. (6.4) after using

the well-known far-field approximations. The result for the electric far-field is

Wito €xp(—jkoTtar) & A g s
Buu(ri) = —j2L02ER00) 5 15, (3,3, 0, explibor i, )04, (613
ar i=1 Sk

where %, = Tfar/Ttar and the vector r,, is defined in Fig. 6.3. Eq. (6.13) may be
written in general as

—ikor N
B (0,) = |[Je SR be) o, ) 3 [G1 6, ) expG08 6.0), - (619

Tfar

where €®(8, ¢) is a vector denoting the wave polarization. G™ (8, ) and ¥ (4, ©)
are, respectively, the gain and phase patterns due to each individual dielectric rod
computed in the far field. They can be found in Eq. (6.13).

6.3.2 Far-field conjugate matching including mutual coupling

For any array excitation vector a, the vector ¢ is first caiéulated using Eq. (6.10).
Then the far-field pattern, including mutual coupling, mismatches and the reflecting
surface, is simply given by Eq. (6.14). Note that the far-field gain and phase patterns,
G™ (8, ) and ¥ (6, ), depend only on the individual rod locations. The array
geometry (rod locations) is found by inspecting the power and phase distribution in
the focal region. One should search for high power density regions. They are found
using the method described in the previous section. Once the array geometry is known,
only optimization of the excitation vector a is still required.

An important performance index for optimizing array antennas is the directive gain
G(0,¢). The directive gain is defined as the ratio of the radiation intensity (radiated
power per solid angle) in the direction of the main beam to the total power accepted
by the antenna P, [3, p. 1-25]

27rrf2ar Ef&r(ei Lp) ’ EFar (0’ Cp)

G(8, ) =
(6,) ™ 2

. (6.15)
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where P, = a*a — b*b. The optimum excitation vector a is found after maximizing
Eq. (6.15) for a given pointing angle (65, ¢,). After substituting Eq. (6.14) into Eq.

(6.15) we obtain
ctggte

Glne) = 2T

(6.16)

where the superscript ¥ means the transpose and conjugate of the vector. The vector

g is constructed as follows

t

g= [ G (65, ) exp(—J T (85, 00)) -+ /G (B, 0,) exp(—J TR (65, )

(6.17)

Eq. (6.16) can also be expressed only in terms of the vector a. We obtain
a*S}.gg™Sse.a  atAa

at[I—S,Saa|a a*Ba’

G(s,,) = (6.18)

A=ff*, f=S},g B=[1-8¢S.a. (6.19)

The matrices A and B are both Hermitian, i.e. At =A and BT =B. Furthermore, the
matrix B is positive definite, i.e. Va # 0 = a*Ba >0. Hence the optimization problem
reduces to the determination of the vector a such that Eq. (6.18) is maximized. Since
Eq. (6.18) is a ratio of two Hermitian forms with the second form being positive
definite we can use the following theorem from linear algebra [4, p. 322]

Theorem: Let a function G of a vector a be defined as

_atAa
atBa

where A and B are both Hermitian and B is positive definite. Then

1. The eigenvalues Ay > -+ > A, of the “regular pencil” det (A — AB) = 0 are

real-valued.

2. The eigenvalues represent the bounds of the function G(a); Ay >G(a) > A;.
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A very useful corollary, proven in [5], makes the optimization problem very simple
and is repeated here for completeness

Corollary: If the matriz A can be written as A= ff+ then

1. The largest and only nonzero eigenvalue of the “reqular pencil”, A—\B, is
max()\) = f*B~If.
2. The eigenvector corresponding to max(}) is & =B!f.

In the case of maximization of the directive gain G given by Eq. (6.18), we obtain

max(G)= 8" Sp [~ S%.5aa]  Shak, (6.20)

a=a

8=[1-S5S0a] Sha&. (6.21)

Eq. (6.21) represents the optimum array excitation vector for a given array geom-
etry, frequency, and pointing angle. It includes the effect of mutual coupling and
mismatches in the array environment. The interactions between the reflecting surface
and the feeding array, known as aperture blockage, will cause a further gain drop and
must be included in the model. This can be done when constructing the vector g.
A method for computing aperture blockage caused by feed housing and struts, which
are required for mechanical stability and mounting purposes, is presented in the next

section.

6.4 Analysis of feeds and struts blockage in reflec-

tor antennas

6.4.1 Introduction

Nowadays antennas have strict requirements for low side lobes and low cross polar-

ization. This is why offset reflector antennas are preferable compared to symmetrical
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ones because the latter suffer from high side lobes caused by the blockage of the struts
supporting the feed system. However, symmetrical reflectors are structurally simpler,
more compact and cheaper to manufacture. It is therefore important to analyze the
effects of strut blockage in order to reduce it.

When the blocking structure interacts with the wave that is leaving the reflec-
tor and with the wave emanating from the feed it leads to gain loss and increases
the side lobes and cross polarization. The amount of beam degradation depends
strongly on the cross-sectional shape (circular, triangular, rectangular), size, geom-
etry (quadrupod, tripod), and orientation of the struts. The disadvantages caused
by the obstruction of the aperture by the feed struts can be partially overcome by
carefully dimensioning those parameters.

Studies on the evaluation of the scattering from struts and their effects on the radi-
ation performance of reflector antennas have been reported by a number of researchers
using different techniques. The shadow method [6], the induced field ratio method
[7], equivalent current technique [8], and experimentally based methods [9] have all
been employed to investigate the effects of blockage in reflector antennas. However
those techniques are either approximate and/or limited only to some basic geometry
or symmetrical feeding.

In this section, a hybrid Physical Optics-Moment Method is used for an efficient
and accurate analysis of the radiation from reflector antennas having a perfectly con-

ducting struts of arbitrary shape and off-axis feeds.

6.4.2 Problem description and method of solution

The Method of Moments (MoM) represents a suitable procedure for dealing with elec-
tromagnetic scattering from arbitrary shaped metallic bodies in the lower frequency
range. However, with increasing frequency or size of the body, both the computation

time and the memory requirements exceed available computer capacities. Due to the
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electrically large nature of reflector antennas, their rigorous analysis using the method
of moments requires enormous computer resources. The numerical tool most used for
the analysis of reflector antennas is the Physical Optics technique (PO). Therefore a
hybrid method combining Physical Optics with the MoM is suitable for the analysis
of large reflector antennas with metallic struts of arbitrary shape.

Let us consider the reflector surface to be the PO region and the metallic struts to
be the MoM region. The total scattered field at an observation point P in free space

can be obtained by a superposition of partial fields in the following manner
E(r) = Eu(r) + E(r) + Eq(r), (6.22)

where the first term represents the total field generated by the focal array and is given
by
N
Eq(r) = ) Ei(r), (6.23)

i=1

N is the total number of feed elements and E; is given by Eq. (6.8). The aésumption
was made that the primary source (focal array) is not affected by the field scattered
from the reflector and the blocking structure. The second term of Eq. (6.22) represents
the field scattered by the reflector in the presence of aperture blockage and is computed
using PO. We have

1
E()=- [ (ijoG(r,l‘/)Jgo(rI) - Vs VG, r')) a,  (629)
0
Sr
Finally, the last term of Eq. (6.22) denotes contributions from the metallic blocking

structure and is given by

B = [ (jwuoc(r, INE) - Vs VG, r')) A, (6.25)
Ss

where Sg is the surface enclosing the metallic blocking structure. The remaining

symbols were defined in Chapter 3. The electric current density J5° is given by the
s
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PO approximation as
JEO(r) = 2n x (H.(r) + H.(r)), Vr € Sy (6.26)

NF
H.(r) =) Hi(r),
i=1
where H; is given by Eq. (6.9). Since the electromagnetic problem addressed here is
a large-scale problem, we assume in the remaining of this section that the first term
of Eq. (6.26) is dominant. This means that multiple scattering between struts and

reflector is not taken into account. Hence, Eq. (6.26) is approximated by

JEO(r) = 2n x H,(r), Vr € Sg (6.27)

The unknown electric current density J¥°M is found after enforcing the following

boundary condition
n x Eq(r) = —n x (E,(r) + E.(r)), ¥r € S5 (6.28)

Eq. (6.28) is solved using the MoM and following the same procedure described in
Chapter 3. As a result, the obtained MoM matrix is identical to the matrix Z*°

defined in Eq. (B.7) (see Appendix B). Hence we can use the same computer code.

6.5 The design procedure applied to the feed sys-
tem of TARA

6.5.1 Introduction

At the Delft University of Technology, different radar systems with reflector anten-
nas have been developed. One of the larger systems is the S-band Delft Atmospheric
Research Radar (DARR) [10], which is used for atmospheric profiling. DARR is a

permanent system constructed in an urbanized coastal area and is located on the top
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of the electrical engineering building at Delft University of Technology (DUT). As at-
mospheric conditions depend on the geographical situation, measurements carried out
at different locations could give extra information on the atmosphere. Therefore, at
the Delft University of Technology a new Transportable Atmospheric RAdar (TARA)
has been designed and constructed [1]. The project was financed by the Netherlands
Technology Foundation (STW) under grant No. Del.44-3311. In this section, we ap-
ply the procedure described in the previous sections to design the novel feed system

of TARA.

6.5.2 TARA antenna requirements

The TARA system is a Frequency Modulated Continuous Wave (FM-CW) radar de-
signed to work at S-band. The system will have high gain and therefore large antennas
which should remain transportable. Two separate reflector antennas, one for transmit
and one for receive, are used to satisfy the strong isolation usually required in FM-
CW radars. Each reflector is of parabolic shape with a diameter D= 3m and a focal
distance F= 1.535m. The diameter is a trade-off between transportability and narrow
beam (high gain), while the focal distance is a trade-off between mechanical stability
and low cross-polarization. The antenna system of TARA is capable of forming mul-
tiple beams pointing at different directions (i.e. 0°, 15° in both the horizontal and the
vertical plane). The beams are switched electronically to measure three-dimensional
wind fields. This is achieved by exciting the parabolic reflector by a feed located at
the focus and two small arrays located off-focus. The feed located at the focus is
dually polarized to allow for full polarimetric measurements while the offset feeds are
linearly polarized. All the feed elements used in TARA are identical dielectric rod
antennas, the design of which is described in Chapter 4. The fact that TARA must be
transportable adds more constraints to the size and mechanical stability of the whole

antenna system; see Table 6.1 for a list of the TARA antenna specifications.
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Table 6.1: TARA antenna specifications

Centre frequency 3.2975Ghz A =9,1cm

Reflector diameter (D) 3m 33X

Focal distance (F) 1.535m F/D=0.51

Number of beams 3 0° and 15° in two orthogonal planes
Gain > 37dBi All beams

Beam width <3 All beams

Cross polarization < ~30dB  Average value

1¥* side-lobe level < —25dB  All beams

90° side-lobe level < —80dB  All beams

6.5.3 Central feed design

The first configuration treated here is a parabolic reflector with a dielectric rod antenna
located at the focus. The procedure described in Chapter 4 (section 4.4) is used to
design a dielectric rod antenna with a gain of 9.5 dBi at centre frequency. Furthermore,
the design must provide an edge taper, i.e. power drop at the reflector edge, of
—10dB. This guarantees an optimum illumination [11, p. 814] of the reflector surface
and reduces the spillover (energy which does not reach the reflector) and diffraction
occurring at the reflector edge. The optimized dielectric rod (see Fig. 4.5 and Table 4.1
in Chapter 4) is integrated in a metallic housing and is mechanically supported by four
very thin cylindrical struts (cross-dimensions 0.25X). For stability purposes, the struts
are connected to the back of the reflector system. This configuration has minimal
aperture blockage and is used to validate the theoretical model. All measurements and
computational results presented here were obtained with the TARA configuration with
the parameters listed in Table 6.1. The experiments were carried out at the IRCTR
far-field outdoor range [12]. Fig. 6.4 shows the computed and measured H-plane far-

field pattern of the TARA antenna system with a dielectric rod antenna at the focus.
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The computed pattern in Fig. 6.4 was obtained using PO without considering the
blockage. From the measurements it is clear that the aperture blockage by the four
struts and feed housing causes an increase of the level of the near side lobes and that

it fills in the nulls of the radiation pattern.

Table 6.2: Summary of the results obtained for the minimum blockage configurations

18t 3-dB
Pointing  Directive

side-lobe  beam

angle gain
level width
. 0° 39.4dBi —25dB 2.0°

Computed (PO without blockage)
13.7° 37.3dBi —8.4dB 2.6°
. 0° 38.8dBi —22dB 2.0°
Measured (minimum blockage)

13.4° 36.4dBi —8.4dB 2.5°

The second configuration analyzed is a parabolic reflector antenna with a dielectric
rod located off-focus. This configuration is obtained from the previous configuration
by changing the length of only two of the four struts, i.e. making one shorter and
lengthening the other. It was then possible to put the dielectric rod off-focus at
location r = 0.41i, and to direct it toward the reflector centre (tilt angle 14.9°). The
computed and measured far-field patterns for the off-focus configuration are given in
Fig. 6.5. As expected, a significant beam degradation is observed (very high side
lobes). If the requirements are to be satisfied, more elements are indeed required. A
comparison of the computed and measured results for the two antenna configurations

is provided in Table 6.2.

6.5.4 Dielectric rod array design for the 15° pointing angle

In this part we focus on the design of the 15° feed array. Let a plane wave, linearly
polarized in the y-direction, be incident on the TARA reflector. The field distribution
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in the focal region is computed and the results for the electric field y—component are
drawn in Fig. 6.6. The power distributions along two orthogonal lines crossing the
point with maximum field intensity are shown in Fig. 6.7. The phase distributions
along the same two lines are given in Fig. 6.8 and Fig. 6.9. Any primary source having
a power distribution identical to that of Fig. 6.7 and a phase distribution conjugate
to that of Fig. 6.8 and Fig. 6.9 will create a well-shaped beam at 15° in the far-field
zone. If the size of the primary source is finite, then the formed beam will have side

lobes.

When a large array of elements is used as primary source, many elements will
have very low excitations since the field intensity is non-uniformly distributed. The
large number of elements increases the aperture blockage and the complexity of the
beam-forming network (resulting in more losses, high costs and calibration problems).
The result is a feed design with a very poor efficiency. A trade-off between all these
factors is made by considering only the region with the highest power density. This
region of elliptical shape is called the focal spot.

The cross-dimensions of the focal spot depend on the scan angle. The larger the
scan angle, the larger the spot. Hence, the size of the array depends on the cross-
dimensions of the focal spot. In the case of 15, the cross-dimensions are approximately
(= 0.8 x 0.6A\(3dB) and 1.5 x 1.1A(10dB)). Hence, a design consisting of two dielec-
tric rod antennas with unequal complex amplitudes is sufficient to form a beam at
15°(design step 1). Subsequently, Eq. (6.20) is used to tune the array inter-element
spacing until the required directive gain at 15° is achieved (design step 2). For each
inter-element spacing the mutual coupling matrix is calculated using the method of
Chapter 5 (Eq. 5.35). In the case of TARA, an array of two dielectric rod antennas
separated by 0.77) is required (see Table 6.3). The array excitations follow directly
from Eq. (6.21) (design step 3). A plot of the directive gain versus power ratio and

phase difference between the two elements is presented in Fig. 6.10. The maximum
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directive gain, including mutual coupling, is reached at a power ratio of —6.5dB and
a phase difference of 1°. According to Fig. 6.10, the directive gain depends strongly
on the power ratio and not on the phase difference. Hence, by varying the phase
difference one may change the radiation pattern at different angles without seriously
affecting the maximum directive gain at 15°. This is demonstrated in Fig. 6.11 where
the phase difference is used to lower the first side-lobe level. The data for the TARA
15° final array design is given in Table 6.3.

Table 6.3: The TARA dielectric rod array design data
Location (m ) Coefficient

Feed (1) | (0.39,0.0,—0.035) —6.5dB(—13°)
Feed (2) | (0.46,0.0,—0.035)  0.0dB(0°)

6.5.5 Analysis of struts and housing blockage in TARA

Since TARA is transportable and has to operate under different weather conditions
it has a bulkier feed supporting structure (see. Fig. 6.12). This supporting struc-
ture is used to mount the three feed systems of TARA and guarantees mechanical
stability even under severe weather conditions (wind force 6). However, the electrical
performance of the antenna system may be degraded due to aperture blockage. To
quantify the blockage effects caused by such a large metallic structure we used a hybrid
PO/MoM technique. Only first-order scattering was considered. The whole antenna
system was discretized using triangular patches (NTR egiector= 5888, NTRgtrus= 3831).
To approximate blockage due to the feed housing, each feed system was replaced by a
metallic cylinder occupying the same volume (see Fig. 6.12). Given the large size of
the electromagnetic problem encountered here (memory > 257MB, CPU time > 24
h), the code had to be migrated to the Cray-J90se parallel computer system of the
Delft University of Technology.
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Table 6.4: Summary of the results obtained for the TARA 15° beam

18 3-dB
Pointing Directive
side-lobe becam

angle gain
level width
Computed 14.98° 37.2dBi —18dB 2.73°
Measured 15.4° 37.0dBi —20.5dB 2.78°

Fig. 6.13 shows the computed and measured far-field patterns including blockage
and mutual coupling for the case when feed (1) is excited and feed (2) is terminated
in a matched load. The results for the case when feed (2) is excited and feed (1) is
terminated in a matched load are given in Fig. 6.14. Both results are combined to
obtain the total far-field pattern for the scanned beam. The different contributions
from individual blocking structures are given separately in Fig. 6.15. Note that Fig.
6.15 provides the antenna engineer with a lot of insight into which blocking part
causes the most pattern degradation at a certain angular region. The measured and
computed total far-field pattern for the scanned beam, including mutual coupling and
blockage, are given in Fig. 6.16. A good agreement is observed between the theory
and the measurements. A summary of the performance of the TARA 15° beam is
listed in Table 6.4. The feed designs presented here are currently integrated in the
operational transportable atmospheric radar TARA. A picture of the final antenna
system of TARA and the TARA radar can be found in Fig. 6.17 and Fig. 6.18,

respectively.

6.6 Conclusions

In this chapter, a technique was presented for the synthesis and analysis of finite
arrays of miniaturized dielectric rods that is used to improve the scan capabilities

of multiple-beam reflector antennas. The synthesis method includes mutual coupling
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and mismatches in the array environment and permits an accurate determination of
the array geometry, location and excitations.

The location, geometry and size of the feed array is obtained from the knowledge
of the field distribution in the focal region of the reflector system. The focal region
fields are accurately constructed by illuminating the reflector by a plane wave and by
computing the reflected field using the Physical Optics method.

A novel array design based on miniaturized dielectric rod antennas was used to
achieve a better sampling of the field distribution in the focal region in the receive
situation and to improve the radiation pattern in the transmit situation.

Once the array geometry is determined, computation of the far field due to each
dielectric rod separately is performed. Next, an analytical expression is used to find
the array excitations that maximize the directive gain at a given angular direction.
This method first compensates for the mutual coupling matrix and then performs a
conjugate matching to the computed individual patterns. The obtained complex array
excitations give the best possible gain achievable for a fixed array geometry. Further
tuning of the phase of the individual elements permits a lowering of the near side lobe
levels without seriously diminishing the maximum directive gain.

In the design of feed arrays for reflector antennas, the aperture blockage caused by
the struts and the feed housing is very crucial. These cause a gain drop and an increase
in the level of the near side lobes. A numerical method that combines Physical Optics
and Method of Moment was used to analyze the aperture blockage caused by large
metallic structures of arbitrary shape positioned in front of a large reflector antenna
system. The scattered field from different blocking metallic parts can be computed
separately and the results may be used to design supporting structures which are
both mechanically stable and at the same time electrically “invisible” in some angular
regions.

The synthesis method was applied with success to design and analyze the novel
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feed system of the transportable atmospheric radar (TARA) which was designed at the
Delft University of Technology. The blockage caused by the metallic struts and feed
housing in the TARA antenna system was analyzed. Measurements werc performed at
the IRCTR far-field outdoor range. A good agreement between theory and experiment
was observed. The feed designs resulting from this work have now been integrated in

the operational transportable atmospheric radar TARA.
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Figure 6.4: Far-field pattern of the TARA antenna system with feed at focus
(frequency 3.3 GHz, minimal blockage setup).
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Figure 6.5: Far-field pattern of the TARA antenna system with single feed off-focus
(frequency 3.3 GHz, minimal blockage setup).
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Figure 6.6: Field distribution in the focal region for 15° plane-wave incidence.
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Figure 6.11: Directive gain versus phase difference between the two dielectric rod

antennas for different pointing angles.

Horz. Struts

v

Feed Housing
Vert. Struts

N

Figure 6.12: Discretized geometry used for blockage calculations.
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Figure 6.13: Far-field pattern of the TARA reflector antenna when Feed (1) is
excited and Feed (2) is terminated in a matched load (Mutual coupling and blockage
included).
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Figure 6.14: Far-field pattern of the TARA reflector antenna when Feed (2) is
excited and Feed (1) is terminated in a matched load (Mutual coupling and blockage
included).
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Figure 6.16: The TARA 15° scanned beam including mutual coupling and blockage.
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Figure 6.17: Left: The TARA antenna system. Right: The offset focal plane array.

Figure 6.18: The Transportable Atmospheric Radar (TARA).
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Chapter 7

Conclusions and discussion

7.1 Discussion of research

In this dissertation, a complete and accurate design and analysis procedure is provided
for multiple-beam reflector antennas using arrays of dielectric rods. It is demonstrated
that the miniaturized dielectric rod antenna is a good reflector feed-array element be-
cause it can produce a relatively high gain although it has a small cross section so that
feed elements can be packed closely together. This makes it possible to design arrays
with an inter-element spacing in the order of half a wavelength without a serious degra-
dation of the array performances. Aspects related to the miniaturization process, the
radiation mechanism and the electromagnetic model of a single dielectric rod antenna
and the analysis of the mutual coupling for arrays with very small inter-element spac-
ing are all addressed in this work. The array of miniaturized dielectric rod antennas
is employed to improve the off-axis beam switching capabilities of conventional reflec-
tor antennas. The novel hybrid reflector array-feed design permits a full sampling of
the focal field distribution in the receive case and significantly improves the scanned
beam patterns in the transmit case. The feed-array synthesis method adopted in this

research takes into account mutual coupling between the dielectric rods, losses in the
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beam-forming network and blockage due to the metallic feed housing and the struts

which are required for mechanical stability and mounting purposes.

In Chapter 2, a formulation is presented for the aperture admittance and the
far-field radiation pattern for highly miniaturized dielectric-filled waveguide antennas
mounted on an infinite ground plane. The generalized scattering matrix approach
is used to model the antenna’s internal structure (i.e. discontinuities and matching
devices). Sequential scattering mechanisms are taken into account by using a numeri-
cally stable direct cascading process, involving scattering matrices only. A variational
expression for the aperture admittance is developed that uses reaction integrals and
spectral-field representations. A novel expression for the aperture admittance, includ-
ing higher-order excitations and their mutual interactions, is derived. The radiation
mechanism of highly miniaturized apertures is studied thoroughly and new results are
given. Different means of increasing the radiation efficiency are presented and the
advantages and disadvantages are discussed. Measurements were performed on differ-
ent antenna configurations and the good agreement between theory and experiment

demonstrates the accuracy of the model.

Chapter 3 is devoted to the development of a 3-D diagnostic and design tool for
a.nalyzir/{g and improving the radiation characteristics of dielectric-filled waveguide an-
tennas. The obtained code enabled the detailed design and further refinement of the
outer metallic profile of the waveguide antenna. Using the equivalence principle and
boundary conditions a set of integral equations is obtained with surface electric and
magnetic currents as the unknowns. These coupled integral equations are solved by
the MoM to yield the surface currents, from which the radiation pattern is calcu-
lated. The electromagnetic field inside the waveguide is represented by means of the
waveguide modal decomposition derived in Chapter 2. The electric current density is
expanded in terms of vector rooftop basis functions defined over triangular patches.

The magnetic current density is expanded using transversal waveguide modal func-
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tions defined over the aperture. The code was implemented on a massively parallel
computer system (CRAY J90se) supported by the Delft University of Technology. A
number of numerical examples arc presented and results are given in the form of in-
duced currents distribution and far-field patterns. The presented results indicate that
an antenna design that is improved with respect to gain, side lobes, cross polarization
and back lobe can be obtained by optimizing the external corrugation profile on the
metallic structure around the waveguide. A single dielectric filled waveguide antenna
was then built and tested. The excellent agreement between simulated and measured
antenna performances (pattern and reflection coefficient) demonstrate the accuracy

and robustness of the formulation.

In Chapter 4, a rigorous technique based on a hybrid-iterative MoM is proposed
for analyzing dielectric rod antennas with arbitrary 3-D shape. The method takes
into account the launcher (waveguide feed) and can handle arbitrary shaped dielectric
bodies. When one wants to optimize dielectric rod antennas, many control parame-
ters must be taken into account, and often these conflict. The present numerical code
allows the investigation of their effects. In general any “geometry” can be numerically
analyzed and optimized. However, it should be stressed for completeness that the
computational cost of the method is high for complex structures and with the present
formulation the method would be limited to very large computer platforms. Further
work on techniques that speed up the computational scheme should be done. Three
different antenna geometries were investigated: a uniform dielectric section with ter-
minal tapering, a cut-wedge configuration, and a wedge configuration. The results
indicate that by properly shaping the dielectric body, improvements can be achieved
in side-lobe level and cross-polar performance. The general design procedure of di-
electric rod antennas is reviewed and a detailed description is given for an optimized
prototype operating at S-band. The prototype was constructed and the experimen-

tal data were used to validate the numerical code. Excellent agreement is observed
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between the proposed model and the experimental data.

In Chapter 5, the Minimum Scattering Antenna (MSA) theory is used to predict
the effect of mutual coupling between two identical dielectric rod antennas. To the
author’s knowledge this is the first time such a technique has been applied with suc-
cess to dielectric rod antennas. Although dielectric rod antennas do not belong to
the class of MSAs, we have found that by neglecting the multiple scattering between
the two antenna elements one can still approximate the free-space coupling between
dielectric rod antennas by a coupling between two MSAs. This resulted in an expres-
sion for the mutual impedance which involves only the radiation pattern of a single
dielectric rod antenna when isolated in free space. A number of examples were treated
and a comparison with measurement results was provided. The presented examples
include different inter-element spacings and different array excitations (symmetrical
and asymmetrical). A good agreement was observed between theory and experiment,
even for asymmetrical excited arrays and arrays having small separation distances.
In cases where multiple reflections between the array elements are strong, the ap-
proximations made are no longer valid and a different approach must be sought. In
the case of finite arrays of dielectric rod antennas, one can use the numerical method

developed in Chapter 4 to analyze the mutual coupling effects accurately.

In Chapter 6, a technique was presented for the synthesis and analysis of finite
arrays of miniaturized dielectric rod antennas that are used to improve the scan ca-
pabilities of multiple-beam reflector antennas. The synthesis method includes mutual
coupling in the array environment and permits an accurate determination of the ar-
ray geometry, location and excitations. A novel array design based on miniaturized
dielectric rod antennas was used to achieve a better sampling of the field distribution
in the focal region in the receive situation and to improve the radiation pattern in the
transmit situation. An analytical expression was used to find the array excitations

which maximize the directive gain at a given angular direction. This method first
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compensates for the mutual coupling matrix and then performs a conjugate matching
to the far field from each array element. The obtained complex array excitations give
the best possible gain achievable for a fixed array geometry. Further tuning of the
phase of the individual clements permits a lowering of the near side lobe levels with-
out seriously diminishing the maximum directive gain. In the design of feed arrays
for reflector antennas, aperture blockage caused by struts and feed housing is very
crucial. The blockage causes a gain drop and an increase in the level of the near side
lobes. A numerical method based on a combination of Physical Optics and Method
of Moment was used to analyze the aperture blockage caused by large metallic struc-
tures of arbitrary shape positioned in front of a large reflector antenna system. The
scattered field from different blocking metallic parts can be computed separately and
the results may be used to design supporting structures which are both mechanically

stable and at the same time electrically “invisible” in some angular space regions.

7.2 Main conclusions

e The electromagnetic models and the array synthesis method presented in this
dissertation were applied with success in the design and analysis of the novel
feed system of the transportable atmospheric radar (TARA), which was realized

at full scale at the Delft University and is at the moment fully operational.

e The design procedures and the techniques used to model a single miniaturized
dielectric rod antenna and an antenna in an array environment have been de-

scribed in detail.

e A miniaturized dielectric rod antenna design with exceptionally good low input

loss, high gain and low mutual coupling levels has been realized.

e It is believed that the miniaturized dielectric rod antenna, the physics of which
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was discussed in this work, is a very good candidate for a wide variety of array

applications.

7.3 Implications of research

In this section recommendations are made for future research. They concern two main
subjects:

The Hybrid surface/volume MoM method is a robust flexible electromagnetic anal-
ysis tool suitable for many applications, like antenna-design, simulation of ground-
penetrating radar scenarios, development of antennas for mobile telecommunications,
...etc. Because of the large area of application of such a technique, further work is rec-
ommended especially on improving the efficiency of the implementation of the method,
development of a machine-user interface, and making it commercially available.

The miniaturized dielectric rod antenna is a good candidate for many applications:
smart arrays for mobile telecommunications, polarimetric feed systems for satellite
antennas, radars for air safety (bird detection), ...etc. Additional studies are needed
on the theoretical and experimental characterization of the dielectric rod antenna
behaviour, especially at the high frequencies (millimeter-waves). Investigations should
be carried out on antenna matching, the use of different excitation methods and the
use of different materials.

Finally, this Ph.D. study has contributed to the realization of a unique trans-
portable FM-CW radar with a sophisticated antenna system. The antennas developed
in this thesis allow accurate polarimetric measurements of meteological targets and
3-D wind profiles. This permits further research on the physics of the atmosphere.
The TARA system is currently involved in a joint European remote sensing project.

Measurement campaigns are planned for the next 5-10 years.




Appendix A

Expressions for admittance integral

and matching condition

A.1 Derivation of scattering matrix of general step

In this section, the scattering matrix S of a general step discontinuity is derived. First,

we write the linear system of Eq. (2.17) as follows

a; + VTaz = bl + VTbg,

(A1)
Val —ag = '—Vbl + b27
qUTE o2 TE pLTE p2.TE
where a; = , Qg = , by = and by, = . The
QlT™ @™ pLIM p2T™
S-matrix representation of a linear network is defined by
b1 = Snia; + Spoay, (A2)

by = So1a; + Spoay,

where a; and a; contain the amplitudes of incident waves at port 1 and port 2 respec-

tively and b; and b, contain the amplitudes of outgoing waves at port 1 and port 2
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respectively. The sub-matrices S;; and Sy; can be found after solving Eq. (A.1) for

the case a; = 0; we then have

a; = b; + VTh,,
1 1 2 (A.3)
Va; = —Vb; + by,
Solving for b, yields
bz =V [al + b1] =V [I + Su] ai, (A4)

where we have used the relation (b; =S;;a; when a; = 0). Eq. (A.4), when inserted
into Eq. (A.3), gives
a1 =by+ VIV (a + by] = by = [1+ VTV] ' [[- VV]a.. (A.5)
Hence,
-1
Su = [I+VTV]" [I-VvTV],
Sa=V [I + Su] .
The sub-matrices S;2 and Sg; can be found in a similar manner to S;; and Sy by

letting a; = 0 and solving Eq. (A.1). We obtain

(A.6)

Sl2 = Sgla (A 7)
822 = VSu - I

A.2 Evaluation of the mutual admittance integral

This appendix deals with aspects related to the evaluation of the following integral

v _ / / 2ab k2 k2) sin® (k, §) cos® (k. $) dk,dk,

o e wph, (ky3)” [(v)? = (ksa)?] [(mr)? — (Ko
(A.8)

This integral plays an essential role in the computation of the aperture admittance as

formulated in Chapter 2. If we apply Parseval’s theorem and let

Fi(ke, ky) = 4k—”2 (A.9)
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2ab(k* — k2) sin®(k, 2) cos? (k.

B3 (ke y) = =™ "nm : : q (A0
Wit (kyg) [(mr)? - (kxa)g] [(mvr)l - (kza.)z]
then we obtain
1 TT o m,n 7T nn
Yoo = 13 / / Fy (ks k) )FT" (ke Ky )dkpdky = / / £y (2, y) " (2, y)dedy,
50 00 —o0 —00
(A.11)

where fi(z,y), and f5*"(z,y) are the inverse Fourier transform of F)(k,,k,), and
o™ (ke k,), respectively. The first function can be evaluated directly after appli-

cation of the stationary phase point method

exp(—jkovzI + 42
fl(zvy) = 27('_] ( \jfg +y2 : )

(A.12)

Before computing the second function f3"", we define two new functions f™"(x)

and g(y) as follows

. 2 .
f‘.’zn' (l'v y) = mg('y)fm’ ('T)a (A13)
where
T sin(k,b/2 .
gly) = / %lexp(ﬂkyy)dky, (A.14)
e v
and

T _jmrrnm(k? — k2) cos?(k,2)

rw) = | () = (hea)?] [(mm)* = (kaa)]

exp(—jk.z)dk,, (A.15)
-0
The function g(y) can be written in terms of complex exponential functions only

oy) = - 7’ exp(jky (b —y)) + eXP(—i:g (b+ ) —2exp(=ikyt) g
Yy

(A.16)

—00
This integration is carried out in the complex k, plane. The exponential functions
should remain finite; this implies conditions on the integration path in the complex
plane. The double singularity at zero is avoided during the integration. By using the

Cauchy’s theorem, we get the following result

8w) =5 G-l Il <b. (A.17)
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Similar we find for f™"(z)
sty (|1 = (22)| moin 22 — [ig — (22)"] msin 222
lz| < a, n# m, and n,m odd
sobem (3 [k + (%)) i =2+ 2 [k8 - (22)7] (@~ Jal) cos 222

|z| < a, n=m, and n,m odd

fmn(z) =

(A.18)
After replacing Eq. (A.12), Eq. (A.17) and Eq. (A.18) into Eq. (A.11) we finally get

=-2_“//(b_1y|) (|2 |)exp( —IRVE V) oy, (A.19)

x2 + y2
Since the kernel of Eq. (A.19) is an even function with respect to z and y, it can be

simplified further. We obtain

- wa / / (b — ) () 2R jg’;‘;fy;y ) dzdy. (A.20)

This integral can be evaluated numerically using standard quadrature rules.

a, b,

Matching
b, network a,

[
>

4

Aperture

A

<@
«

Figure A.1: Radiating aperture and matching network.

A.3 Aperture matching condition

The aim of this subsection is to derive a matching condition for dielectric filled wave-
guide antennas. Let S denote the scattering matrix of a lossless two-port matching

network. We may write
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by = Snia1 + Sigay,
1 1141 1242, (A21)
b2 = S21a1 + SQQ&Q.

Making use of the diagram of Fig. A.1l, we can cxpress the aperture reflection coeffi-

cient as
a2

=5

The matching network is assumed to be located far enough from the aperture disconti-

T (A.22)

nuity. The higher-order modes, excited at the aperture, will be sufficiently attenuated
when they reach the matching device and one can simply use 2-port network rep-
resentations. The reflection coefficient at the input of the matching device is given
by

b ,
2L =8+ 82, (A.23)
ay ay

substituting Eq. (A.22) into the second part of Eq. (A.21), yields

sz = Qg = T (82101 + SQQ(LQ) y

and hence
ag 'Sy
f2_ P2 A.
a) 1— 1-‘822’ ( 24)
When this result is used in Eq. (A.23), we obtain
by I'S21S12  S11 — I' (811822 — S125%1)
2 —g = . A.25
a; n+ 1-— FSzz 1- FSQQ ( O)

Since the matching device is represented by a symmetric lossless two-port network,

the following properties are valid

IS11| = S22l
Si2 = Sai,
8118{2 + 812832 =0,

S12] = /1 = ISuu|*.

(A.26)
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Before we can derive the matching condition, we need to prove an indispensable ex-

pression. This is done using the properties mentioned above.

(Suszz - Srzszl) 332 = Su |Su|2 — Sz (Smséz) )
= Sn |Sll|2 + Si2 (511312) ’

= Su (ISul® +1Swl), (A.27)
= Su (ISul® + (1-1Sul*)),
= Spn.

By applying this equality to the input reflection coefficient, given by Eq. (A.25), we
obtain
b 2o — I

= = det 22
ay € [S]l - FSzz’

where det[S] = (S11522 — S12521) .
It is obvious that Eq. (A.28) is zero when the following condition is fulfilled:

(A.28)

Sy, =T. (A.29)




Appendix B

Derivation of the MOM matrix for

aperture on 3-D metallic body

B.1 Entries of the sub-matrix Z¢°¢

The entries of the sub-matrix Z*¢ are found after evaluation of the following expression
w (fm,A)T + {£,,, Vé,) TRE = Z:Z,‘n‘n y m=1,...,N (B.1)

substituting the basis functions f,, by their expressions and taking the inner product

gives

w<fm7A>TR$,:j‘*)lm{.‘2§1"f / A(r') - pRdA’ + 5= / A(rl)‘pr_ndA’}v

TR TRm

, o , 1 ®2
~ ol { Shr A(S) / dA' + AR5 p / aas,
TRm TRm

% jwln [SA(GY) - pGF + SA(ET) - po7], m=1,..,N
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(Fn Voras = [ Vou(F) - fn(r')dA’ = / V- @dn)dd = [ 4.(V-£a)dA,

TRm TRm
= [ 6e(V tmyaa - { [ e =2 [ ot ')dA'}
TRm T'R.+
= lm [¢e( Tm ) - ¢e(rfr’1+)] ) = x~"7N

(B.3)
The vector potential A is given by

A(re) = gy / Is(t)C(rsE, r')d A,
N (B.4)

N
f.GdA’ onln, m=1,..,N
#0; (7_1{“ ) Z m

n

Q2

The scalar potential ¢, is given by

$o(e5) = — & / (V- 35())G (x5, ¥)dA,

N (B.5)
~ok S| [ (7 ot)6ad | 1= S ek L m= 1N

n Rn n

where

exp(—jko|rSE —r'|) exp(—jkofrSE —r'|)
G(ryF,r) = -E]r_gnll__r:'iy ) / fn(l")—q;]],—gn,lr_,—,rk‘df‘ﬂ
TRn B.6)
exp(=jko[riE—r’) (B.
= e / (V' £,(t)) _F.ﬁél_'_L_rl dA’.
TRa

Finally we obtain for the entries of the sub-matrix Z°¢ with size [N x N]
A L“"_ AT ot LA~ - —oF =1 N B.7
mn T 'm 2 mun  FPm + m,n pm +¢m,n ¢m,n y M, ey ( * )

The integrals over 7R can be evaluated numerically using standard quadrature

schemes.
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B.2 Entries of the sub-matrix Z°c ¢

The entries of the sub-matrix Z°* are found after evaluation of the following expression

NTE NTM i
(fm7Eap>s — Z Z;:\ﬁTE (VITE +Vln,w) + Z Z:.:nTM (VIM Vln,TM)’ m=1,..,N
1 1
(B.8)
where
1 1
Eap - —'E—OV X F—§n X KS(I'), (Bg)
we may write
I .
(s Bup)s = 5 [Bup (657 - 057 + Bap (137) - 257 (B.10)
and
1
E., (r / VG, r5") x Ks(r')dA'~3n x Ks(riy) (B.11)
Sap
Using the following properties
1 (‘Xp( .]kORm) + ot ~ rfﬁi r
VG(I‘,I‘ )__(Jk0+R,i)R—#L RL Rm— m —-r ylpt = Rr:% ’
(B.12)
results
. 1 |ex kR 1 .
E,, (x5) = / (ko + %)%&R x Ks(r')dA'~5n x Ks(rs). (B.13)

Sap

The magnetic current density is defined as

NTE ey | M M i, T™M
=2 &) (VAT R e (V) B19)
1
where
pLETM QIETM
YIETM _ Vi TETM g/"™(1) = —n x ¢/ "™(r). (B.15)

\/}ﬁﬁﬁ\/—m

After substituting Eq. (B.14) into Eq. (B.13) we obtain

NTE . NTM )
E, (r5%) = L FETE (VB4 )+ 3 FETY (V™M ™), (B.6)
l 1
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where

. 1  exp(—jkoRL).
+TETM TETM TETM (_c,+
Fy; S/(J’“*‘R#)‘Tm— x g ()dA — 2n x g (x5E).
ap

(B.17)
The entries of the sub-matrices Z**TF and Z**™ are found using Eqs. (B.8) and

(B.16)

anTE — i F+TE c,+ +F_ ,TE c,— ,
-a,TM 12 [ +,T™M ":+ TM pmc]_ (B.18)
Z(m,lY = '? [Fm,,l * P + F ; P ] .
Finally the sub-matrix Z°* is given by
Zea — [ Zc-a,TE Zc-a,TM } . (Blg)
Note that the size of Z°* is [N x (NTE + NTM)] .
B.3 Entries of the sub-matrix Z* ¢
The entries of the sub-matrix Z** are found using the following expression
<g,TnE,ng / gIE(r) - Hyg(r)dA, m=1,..,NTE
(B.20)
(854, Hug) / gl (r)dA, m=1,..,NTM

The magnetic field H,, is given by
NTE )
Hug(r) = 3 gTE(r)Y,TE (VITE Vi TE) + Z g™ (r)y,™ (VTM le,TM) (B.21)
i

After putting Eq. (B.21) into Eq. (B.20) and applying the orthogonality of the

wave-guide modal functions we obtain

<gm 1ng>s = I\gfsm,lY[TE (‘IITE - Vli'TE) yy M= 1, waey NTE

N NTM . (B.22)

(€M, Hug), = 3 6™ (V™ = V™), m=1,..,NTM
ap -
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where 6,,; = 1 if m = [ and zero otherwise. From Eq. (B.22) we derive the sub-matrix

Zl\’?\

Za—a,TE 0
7+ = N (B.23)
0 Zﬂ—ﬂ.-
where
Za—a,TE — 5m‘lY;TE
(B.24)

a-a, TM 9 7TM
Zng = bmiY

The sub-matrix Z** is a square matrix with dimensions [(NTE+NTM) x (NTE+NTM)].

B.4 Entries of the sub-matrix Z* ¢

The entries of the sub-matrix Z*° can be derived from

<gm ,Js x n /gm - (Js(r) x n)dA, m=1,..,NTE

S
(B.25)
<g,TnM,J5 x n>$ = /g,Tn“(r) -(Js(r) x n)dA, m=1,..,NTM

where
N
Js(r) = an(r)In. (B.26)

Putting Eq. (B.26) into Eq. (B.25) results in

N
<grl; 1']5 X n>$ = E (/ g;lE(r) : (fn(r) X n) dA Im m= 17 aNTE

N S (B.27)
(g 3s xn). =3 | [ (flr) x n)dA| I, m =1,..,NTM
n Sup

The sub-matrix Z** is found to be

[ Za—(',TE :i
7o = (B.28)
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where
ZsT = [ TG - (1) x ) dA,
Sup (B.29)
ZooT™ / gIM(r) . (f,(r) x n)dA.
S

The sub-matrix Z*° has dimensions [(NTE+NTM) x N].




Appendix C

Derivation of MoM matrix for

dielectric rod antenna problem

This appendix is devoted to the numerical evaluation of the set of coupled integral

equations derived in Chapter 4

—jwhy / 3GV’ + & / V.3, VGAV' — / (jwpGTs — 7= Vs - IsVG) dA
S

Jwe jwep
Vdiel Vel

- / V x GKsdA' = Jv/ (th@), r € Viial
Sap

(C.1)
—jwpon X / J,GdV' + Ln x / VI, VGV’
Viiel Viiel
—nx / (1015 ~ Z= Vs JsVG) dA' —n x / V x GKsdA' (C.2)
S S
= —%KSX& resS
nxHy, =Js, 1 €8y (C.3)
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C.1 The discretized form of the integral equations

The electric surface current density Js is approximated using RWG’s basis functions

f,., defined over triangular patches, and is given by the following expansion
N¢
Js(r) ) Lf.(r), reS (C.4)

where f, is defined in Eq. (3.27). The magnetic surface current density K is related
to the field inside the waveguide, in Eq. (3.6), as

Ng
Ks(r)=~ " (Vn + V,:) gn(r), T €S, (C.5)

n

where V,, = oI5 /[y, TET™ yi — pTEIM /Y TETM and g,(r) = —n x eTETM(r)
if r € Sap and zero otherwise. Note that the summation in Eq. (C.5) is taken over
both the TE and TM modes and that each value of the subscript n corresponds to a
waveguide modal function with mode index (k, ). The volume electric current density
Jy can be obtained from the expansion of the electric flux density D into vectorial
basis functions, d,,, defined over a pair of tetrahedra, as

Ng
Jy(r) = jwk(r)D(r) = jwk(r) d_ Duda(r), T € Viia (C.6)

Replacing each current density, in Eq. (A.1-3), by its discretized form results in

5° D [B2(E) — due)/2] = S LEL®) + 35 (Vo t Vi) BA), Ve Vs (C)

n x NZdD,,Eﬁ(r) =nx %I,,Ef,(r) + Zg (V,, + V,i) [n x E&(r) — %gn(r)] ,Vres
i i " (C8)

Ng Nf
nx Y (Vo= V) Yugalr) = 3 Lfu(r), Vre S, (C.9)

where

EX(r) = iy, / n(r')d,,(r')advurel / V' [k(r)da(r)] VGAV',  (C.10)
0
Viiel Viiel
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Bl = [ (jpran(r’) _ L. f,,_(r')vc> dA' (C.11)
s Jwep
= / V x Gga(r')dA'. (C.12)
S

The MoM matrix is obtained after multiplying Eq. (C.7), Eq. (C.8) and Eq. (C.9) by
d,, £, and g, respectively and integrating the resulting products over the individual
sub-domains. We get

iDn (dm, B - dn/é> . ZI,L (dm,EL),

Z(V +V‘) (dm, EE),,

Viiel

Ym = 1, ceey Nd
(C.13)
Nd Ny Nl(
a\ _ £ i 1
;Dn (60 B8) = ;In (. EL)_ + an (Vo + Vi) (En BE + dn x g0 ) (C.14)
Vm = 1, veey N[
Ng
Vn_Vyi; Y my Bn I mafn X
2 (Vo= V2) Yo (gms 80, = Z (&m: b x ), (C.15)
Ym=1,..,N,
or in matrix form
7d-d  gdf 7dg D 748
Zid g gfg I | =1~z |V (C.16)
0 z&t Ze= A\ YA
| T T
=1| Dy -+ Duu ,I:[[ []
1 Ni-l] | 1 Nf T (0.17)
V:[Vi VNg] ,Vl=|:‘/1l l\llg}

The total number of unknowns equals (Ng+Ng+N,).
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C.2 Entries of the sub-matrix Z* ¢

The entries of the sub-matrix Z4 are found after evaluation of the following expression

Zgt = (dm ), = (dmda/e)y,,, Ymn=1,..,Nq (C.18)
The second part of the term in Eq. (C.18) can be evaluated analytically as
1
(dm, Ao /8y, = 75 [ dm(®) - du(®)dV + = / dun(r) - du(r)dV (C.19)
=4 i

In Eq. (C.19), if 7,5 # T,* then the first integral is zero and if 7,; # 7, then the
second integral equals zero. In all other cases, both integrals can be evaluated by
utilizing normalized volume coordinates (Ref. Chapter 4, [14] [15]),

. 1 SnSa ” 1 8,8,
(drmy du/E)y,,. =§9v;,:v,$ / dV+:9V Ve f po-pEdV  (C20)

m

The vector p, can be written as + (r - r",;,*) , where ri% is the position vector of the
free vertex in 7,F opposite to the face associated with the basis function with index
m. In the numerical evaluation of Eq. (C.20) the following rule may be used

/pm = (1), (£)m /(r - r’.,;‘*) - (r - ri,;*) dav

q

— (&), (&), q[sw ) (BB - L T

4

where r*¢ = 1 21 r; is the vector position of the centroid of 7; and r; (i =1,...,4) are
=

vector positions of the vertices of 7.

In order to evaluate the first term in Eq. (C.18), we write it as follows

<dm’ Egl>vdiel - <dm,Ai>vdie] N <dm’ V¢2>Vdie1 (0.22)
First, we evaluate the expression <dm, A‘,‘,>v
diel
(dm,AZ), = S / o - AL(D)AV + Sm / pm. - Ad(r)dV
g T (C.23)

S [pit - AS(rsT) + P - AR(rs)]




C.2. Entries of the sub-matrix Z¢¢ 217

where p0F = + (rc’jE - ri,’ni) and r$* denotes the vector position of the centroid of

7. The vector Ad(r;*) is defined as

Ad(r ) Ad +( e ) Ad.—( (-.i)

ALE(r52) = PropSza(rs®) [ px exp(—jhoRE)/RiadV” (C.24)
TF
Ri |I‘ - rm pn == ([‘ -} i)

Next, we evaluate the expression <dm. V¢2>

Vdiel
<dm,V¢n _ /dm Vldv = / [V~dm¢ - ¢lv. d] dav
Viiel Viiel (C25)
- / $idn - ndd— [ GV dnav
Sdiel Viiet

where Sgiq is the boundary of Vi Eq. (C.25) can be further simplified as

(anvet) = { S [B(r57) — $4(51)] L i TF and T; € Vi
diel (:k:) S

[n(esE £ §555) — ()] i Tt or T ¢ Vi
(C.26)

where we have used the property ( d,, - n =1) and all the integrals have been approx-
imated by their value at the centroid. The vector ri* + 1pG* represents the vector

position of the centroid of the face associated with basis function d,, and located on

Saier- The scalar @2 (r) equals

94 =~z [ V" [r()dn(r)] exp(—jkoR)/RAV"
Viiel

S / [4a(r') - V() +4(') V" da(r')] exp(~koR) /RAV” (C.27)
Viiel
= 3" (r) + oy (v),
Ak Sutty R)/RAV' + ikoR)/RdA'  (C.28
4w = F e [ enl-ihR)/ exp(~jkoR)/ (C.28)

ﬂ n

where R = |r' — r| and &% is the value of x(r) inside 7,F. In Eq. (C.28) the first part

represents the contribution from the induced volume charge densities while the second
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term represents the contribution from induced surface charge distributions. Note that

in a homogeneous medium the total volume charge densities must be zero.

C.3 Entries of the sub-matrix Z4-f

The elements of the matrix Z are given by

Zgr;fn =- <dm’ E;.>

Viiel |
~ =5 o BLO) + o - EL ()] (C-29)

Vm = 1, ...,Nd, Vn = 1, ...,Nf
where

B (r5) = Bl (1) + B (15) (C.30)

ER05) = & |om [ PRGN g = [ VGaA
i kR (C.31)
Ry =& — 7|, tpg = R/ R

G = exp(—jkoR)/ (4nR%), VG = — (ko + 7 ) Gigs
S, represents the surface of a triangular patch on S.

C.4 Entries of the sub-matrix Z¢9

The elements of the matrix Z4# are given by
ngﬂ == <d"” EE‘)vdiel ?
~ =S [t B () + o - BE ()] (C.32)
Ym=1,.,Ng,Vn=1,..,N;

where
Ef(rgt) = BEY(e5F) + BE (1) (C.33)
ESt(rot) = / VXG(r, 155)ga(r')dA’ = / VG, 1) x g, (')A’ (C.34)
Sup SKP

The integration is taken over the waveguide aperture surface S,p.
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C.5 Entries of the sub-matrix Z/~¢
The elements of the matrix Z&¢ can be obtained from
fd _ d
Zm,n - <fm7 En>s 3
~ b (ot - EA(rst) + o - BA()] (C.35)
Ym=1,..,Ny, ¥n=1,...,Ny
EA(r55) = B (r57) + b~ (c5%) (C.36)
where
B (r5) = wito iz n(rs®) [ pf exp(—jkoRs)/RbdV’
n Tn:.t
(C.37)

+i is—{;-'i‘i'-/VG(r’,r
g

AV’ F k[ VG, rgtda’
sﬂ






Appendix D

Numerical evaluation of the mutual

impedance

This appendix is devoted to the numerical evaluation of the mutual impedance be-
tween two dielectric rod antennas. The array geometry and coordinate systems are
given in Fig. 5.6. The gain function of a single dielectric rod antenna can be well

fitted by

N
G() = §gi cos*(6), (D.1)

where g; (i =0,1,...,N) are constants. The gain function is defined in the coordinate
system (i, iy,1,) with spherical coordinates (r, 8, ). For computational convenience
we express the gain function in the coordinate system (i, i,,1,) with spherical coor-

dinates (r, o, ¢'). After a coordinate rotation (see Fig. 5.6) we obtain

N .
Gla,¢') =Y g (sinasing’)*. (D.2)
i=0
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The mutual impedance is given by

21 = ﬁ /G(a, ¢') exp(—jk - D) sin adady’,
Ky

=+, gi/

™

=L¥y¥,0 |:/ (sin )% dgo'} l/ (sin o)**! exp(—jko cos ad)da
0 T

(sin asin ¢')* exp(—jko cos ad) sin adady, (D.3)

S~ oS~ 3
-

where we have used D = di,,. The integral over dy'can be evaluated analytically and
is given by

™

{ (ing)* a¢' = VAt (D4

where I'(x) is the gamma function with argument z. The integration along the I" path

in the complex plane must be taken as follows

§ Ftool
/ ()da = / () da + / 0 da. (D.5)
r 0 5+0j
Let
3 §+o0j
Zi = / (sin @)** exp(—jko cos ad)da, Zi = / (sin @) **" exp(—jkg cos ad)da.
0 10
(D.6)
After applying a change of integration variable ¢t = cos o we obtain
1 o0
/ 1 - t2 exp(—Jkodt)dt, Zy= J/ (1 + t2) exp(—kodt)dt. (D.7)
0 0

Finally we have
_1 N TGE+13)

P v

The remaining integrations can be evaluated numerically using standard quadrature

[Z;‘ +2i].

rules.




Appendix E

List of symbols and acronyms

CATR  Compact Antenna Test Range

DARR  Delft Atmospheric Research Radar

DUCAT Delft University Chamber for Antenna Tests

ESA European Space Agency

IRCTR International Research Centre for Telecommunications-
transmission and Radar

MSA Minimum Scattering Antenna

STW Netherlands Technology Foundation

TARA  Transportable Atmospheric RAdar

TE Transverse Electric
™ Transverse Magnetic
TTT Telecommunication and Teleobservation Technology

VSWR  Voltage Standing Wave Ratio
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j f=-1
w Angular frequency
fe Cut-off frequency
(iz, 1y, 1z) Cartesian coordinates system
r, r/ Position vectors
7,0, Spherical coordinates

k = k;i; + ki, + ki,
a,b
n

€

a = ™

x

G(r,17)
S, W
oW

1%

I

A

F
E(z,y,2)
D(z,y,2)
H(z,y, 2)
EWg

HWS

Propagation vector

Rectangular waveguide cross-section dimensions

Unit normal

Electric permittivity

Complex electric permittivity
Magnetic permeability
Conductivity

Contrast function

Charge density

Green’s function

Closed Surfaces

Boundary of surface W

Volume

Hertzian vector potential

Electric vector potential
Magnetic vector potential
Electric field

Electric flux density

Magnetic field

Electric field inside the waveguide
Magnetic field inside the waveguide

E(k,, ky, kz),fl(k,, ky,k.) Electic and magnetic field in spectral domain
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Js

Jy

Ks
£n(r)
d,(r)
gn(r)
5 (5.0
A
Am.n
bm.n
Y;I‘n]’iiTM
Ymn
G(8,¢)
P(0, )
Ynp

r

PV
TR

Surface electric current density

Volume electric current density

Surface magnetic current density

Expansion function for electric current density
Expansion function for flux density
Expansion function for magnetic current density
Transverse modal field distribution

Wave traveling in —z direction

Wave traveling in +z direction

Amplitude of incident wave

Amplitude of reflected wave

Admittance of mode (m, n)

Propagation constant of mode (m, n)

Antenna gain function

Antenna power pattern

Aperture admittance

Reflection coefficient of the fundamental mode
Scattering matrix

Impedance matrix

Unit matrix

Vector at iteration n

Gamma function with argument z

Complex conjugate and transpose

Complex conjugate

Transpose

Principal value

Triangle

Tetrahedral
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Samenvatting (Summary in Dutch)

In dit proefschrift wordt een volledige en nauwkeurige ontwerp en analyse proce-
dure voor multibundel reflectorantennes behandeld waarbij kleine arrays van gem-
iniaturiseerde diélectrische staafantennes gebruikt worden. Het is aangetoond dat
deze staafantennes goed functioneren als reflector belichters omdat ze met relatief
kleine elementen toch een hoge gain kunnen genereren. Doordat ze zo klein zijn
kunnen individuele elementen dicht op elkaar geplaatst worden waardoor het array
compact wordt (weinig blokkering) en een verbeterde offset bundel geeft (verbeterde
resolutie). Verschillende aspecten die samenhangen met het miniaturiseringsproces
alsmede met het stralingsmechanisme en het elektromagnetisch model van een enkele
diglectrische staafantenne worden behandeld. Ook de mutuele koppeling voor kleine
interelement afstanden is bestudeerd. Dit heeft geresulteerd in het ontwerp en de
bouw van een geminiaturiseerde didlectrische staaf antenne array met lage reflectie
coéfficient, hoge bundelingsfaktor en lage mutuele koppeling. De arraysynthese die
in dit proefschrift behandelt wordt houdt rekening met effecten als mutuele koppel-
ing, blokkering ten gevolge van behuizing en arrayondersteuning en verliezen in het
bundelvormend netwerk. Het ontworpen belichter systeem is toegepast in de trans-
porteerbare atmosfeer radar (TARA) die door het Internationale Research Centre for
Telecomunications-transmission and Radar (IRCTR) van de Technische Universiteit

Delft ontwikkeld en gebouwd is, en momenteel volledig operationeel is.
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