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Abstrucf- We present a new approach to the analysis of 
dynamic facial images for the purposes of estimating and resyn- 
thesizing dynamic facial expressions. The approach exploits a 
sophisticated generative model of the human face originally 
developed for realistic facial animation. The face model, which 
may be simulated and rendered at interactive rates on a graphics 
workstation, incorporates a physics-based synthetic facial tissue 
and a set of anatomically motivated facial muscle actuators. We 
consider the estimation of dynamic facial muscle contractions 
from video sequences of expressive human faces. We develop 
an estimation technique that uses deformable contour models 
(snakes) to track the nonrigid motions of facial features in video 
images. The technique estimates muscle actuator controls with 
sufficient accuracy to permit the face model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto resynthesize 
transient expressions. 

Index Tem-Computer graphics, computer vision, deformable 
models, face modeling, facial image analysis, facial image syn- 
thesis, nonrigid motion analysis, physics-based modeling, snakes, 
tracking. 

I. INTRODUCTION 

HE COMPLEXITY and expressiveness of the human T face makes it a challenging subject for automated visual 
interpretation and recognition. Quick, robust facial image 
analysis is desirable for numerous applications. Among them is 
low-bandwidth teleconferencing, which may involve the real- 
time extraction of facial control parameters from live video 
at the transmission site and the reconstruction of a dynamic 
facsimile of the subject's face at a remote receiver. Telecon- 
ferencing and other applications require facial models that are 
not only computationally efficient but also realistic enough to 
accurately synthesize the various nuances of facial structure 
and motion. In this paper, we will show the following: 

1) We present a 3-D dynamic model of the face that can 
be simulated in real time on graphics workstations. Our 
face model combines a physics-based model of facial 
tissue with an anatomically based facial muscle control 
process to synthesize realistic facial motions (Fig. 1). 
We enhance the apparent realism by employing geomet- 
ric and photometric information acquired by scanning 
subjects with active sensors. 

Manuscript received October 10, 1991; revised December 1, 1992. This 
work was supported by the Natural Sciences and Engineering Research 
Council of Canada and the Information Technology Research Center of 
Ontario. Recommended for acceptance by T. Huang and P. Stucki. 

D. Terzopoulos is with the Department of Computer Science, University of 
Toronto, Toronto, Canada M5S 1A4. 

K. Waters is with Digital Equipment Corporation, Cambridge Research 
Laboratory, Cambridge, MA 02139. 

IEEE Log Number 9209281. 

Fig. 1. Images synthesized by the face model. 

We develop a technique for analyzing video sequences of 
faces undergoing transient expressions. The goal is to es- 
timate the dynamic muscle control parameters of the face 
model in order to reconstruct expressions. Our estima- 
tion technique employs interactive deformable contours 
(snakes) to track the nonrigid motions of extended facial 
features in video images. 

Section I1 reviews prior research and motivates our ap- 
proach. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 presents the face model. The presentation 
includes a brief review of the histology and mechanical 
properties of facial tissue and the anatomical structure of facial 
muscles, a description of the synthetic tissue model and its 
real-time numerical simulation, a description of the muscle 
actuators embedded in our facial tissue model, and the facial 
action coding process that controls these muscles to produce 
recognizable expressions. Section IV presents techniques for 
enhancing the realism of the face model and personalizing it 
through the exploitation of geometric and photometric data 
acquired with active range sensors. Section V considers the 
analysis of video image sequences for the dynamic estimation 
of facial muscle parameters and demonstrates our approach 
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using an example. Section VI discusses our work and suggests 
some future research directions. Section VI1 concludes the 
paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. BACKGROUND AND MOTIVATION 

The human face has attracted much attention in several 
disciplines, including psychology, computer vision, and com- 
puter graphics. Psychophysical investigations clearly indicate 
that faces are very special visual stimulii. Psychologists have 
studied various aspects of human face perception and recogni- 
tion [SI, [3]. They have also examined facial expression-the 
result of a confluence of voluntary muscle articulations that 
deform the neutral face into an expressive face. The facial pose 
space is immense. The face is capable of generating on the 
order of 55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000 distinguishable facial expressions with about 
30 semantic distinctions. For example, Ekman and Friesen’s 
facial action coding system (FACS) provides a quantification 
of facial expressions [8]. Studies have identified six primary 
expressions that communicate anger, disgust, fear, happiness, 
sadness, and surprise in all cultures [7]. The FACS quantifies 
facial expressions in terms of 44 action units (AU) involving 
one or more muscles and associated activation levels. 

We employ a reduced version of Ekman and Friesen’s FACS 
in a sophisticated computational model of the human face that 
we originally developed for the realistic animation of synthetic 
characters. Facial animation in computer graphics began with 
Parke’s use of facial images as keyframes and his subsequent 
popularization of parameterized face models [22]. State-of-the- 
art parameterized models can produce impressive animation 
using parameters associated with facial muscle structures [33], 
[30]. Graphics researchers have devoted significant effort to 
parametric facial modeling but little effort to the inverse 
problem of extracting parameters from facial images. There is 
some relevant work on lip synchronization during continuous 
speech animation, but the parameter extraction techniques 
proposed remain predominantly manual [20], [30], [ 121. Re- 
flective markers have been placed on the face in order to 
extract parameters for performance-driven facial animation 

P I .  
Automatic facial recognition had an early start in image 

understanding, but work on the problem has been sporadic over 
the years, evidently due to the difficulty of extracting mean- 
ingful information from facial images. Facial classification 
systems based on measurements derived from interactively 
selected fiducial points (eye and mouth comers, nose, top 
of head, etc.) go back to the mid 1960’s [2], [ E ] ,  [ l l ] .  
Early attempts at recognition through automated facial feature 
identification include [25] and [13]. Part of the difficulty of 
facial image analysis is that the face is highly deformable, 
particularly around the forehead, eyes, and mouth, and these 
deformations convey a great deal of meaningful information. 
Techniques for dealing with the deformation of facial features 
include spring-loaded subtemplates [9], deformable contour 
models that are also known as snakes [14], and deformable 
templates [31], [26]. In our approach, we apply a variant of 
snakes. Snakes are dynamic deformable contour models that 
require some routine image processing and, in our application, 

a modest amount of user input during initialization. Snakes 
have also been applied to the related problem of determining 
the location of the head in images [32]. 

We argue that the anatomy and physics of the human face, 
especially the arrangement and actions of the primary facial 
muscles, provide a good basis for facial image analysis [29]. 
We use snakes to track the position of the head and the 
nonrigid motions of the eyebrows, nasal furrows, mouth, and 
jaw in the image plane. We are able to estimate dynamic 
facial muscle contractions directly from the snake state vari- 
ables. These estimates make appropriate control parameters 
for resynthesizing facial expressions through our face model. 
The model resynthesizes facial images at real-time rates. Real- 
time synthesis is desirable for model-based analysis-synthesis 
coding of facial images (see e.g., [ l ]  and [lo]). Our approach 
is philosophically similar to that described in [ 11 and in [4] but 
differs in the details of the image analysis and resynthesis. In 
particular, we employ physical rather than geometric modeling 
methods. 

The purely geometric nature of prior face models [33], 
[17], [30] limits their ability to synthesize realistic facial 
animation because it ignores the fact that the human face 
is an elaborate biomechanical system. Our face model takes 
a more fundamental, physics-based approach to synthesizing 
the many subtleties of facial tissue deformation in response to 
facial muscle actions (such as the skin wrinkles and furrows 
shown in Fig. 1). A wealth of biomedical literature on tissue 
mechanics [ 161 has provided motivation for finite element 
models of facial tissue that are suitable for surgical simulation 
[MI, [6] (see also Pieper’s deformable lattice model [23]). The 
next section describes our realistic face model that incorporates 
anatomically based muscle actuators with a physics-based 
synthetic tissue model. 

111. A REALISTIC FACE MODEL 

We have developed a hierarchical model of the face that 
provides natural control parameters and is efficient enough to 
run at interactive rates. Conceptually, the model decomposes 
into six levels of abstraction. These representational levels 
encode specialized knowledge about the psychology of human 
facial expressions, the anatomy of facial muscle structures, 
the histology and biomechanics of facial tissues, and facial 
skeleton geometry and kinematics: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Expression: At the highest level of abstraction, the face 
model executes expression (or phoneme) commands. 
For instance, it can synthesize any of the six primary 
expressions within a specific time interval and with a 
specified degree of emphasis. 
Control: A muscle control process (a subset of Ekman 
and Friesen’s FACS) translates expression (or phoneme) 
instructions into a coordinated activation of actuator 
groups in the facial model. 
Muscles: As in real faces, muscles comprise the basic 
actuation mechanism of the model. Each muscle model 
consists of a bundle of muscle fibers. When fibers 
contract, they displace their points of attachment in the 
facial tissue or the jaw. 
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Physics: The face model incorporates a physical approx- 
imation to human facial tissue. The tissue model is a 
lattice of point masses connected by nonlinear elastic 
springs. Large-scale synthetic tissue deformations, which 
are subject to volume constraints, are simulated numer- 
ically by continuously propagating, through the tissue 
lattice, the stresses induced by activated muscle fibers. 
Geometry: The geometric representation of the facial 
model is a nonuniform mesh of polyhedral elements 
whose sizes depend on the curvature of the neutral face. 
Muscle-induced synthetic tissue deformations distort the 
neutral geometry into an expressive geometry. 
Images: After each simulation time step, standard visu- 
alization algorithms implemented in dedicated graphics 
hardware render the deformed facial geometry in accor- 
dance with viewpoint, light source, and skin reflectance 
information to produce the lowest level representatation 
in the modeling hierarchy: a continuous stream of facial 
images. 

The hierarchical structure of the model hides from the user 
most of the complexities of the underlying representations, 
relegating the details of their computation to automatic pro- 
cedures. At the higher levels of abstraction, our face model 
offers the user a semantically rich set of control parameters 
that reflect the natural constraints of real faces. 

With the above top-down overview in mind, we will now 
present some of the details of our model in a bottom-up 
fashion. We explain the structure and functionality of the 
synthetic tissue model and then describe the facial muscle 
models and how they interact with the tissue. Finally, we 
explain the assembly of the face model from these components 
as well as a specified surface geometry. 

A. Physics-Based Synthetic Tissue Model 

Our synthetic facial tissue model is motivated by histology 
and tissue biomechanics. Human skin has a nonhomogeneous 
and nonisotropic layered structure consisting of the epidermis 
(a superficial layer of dead cells), which is about one tenth the 
thickness of the dermis that it protects [16], [18]. The dermis 
is primarily responsible for the mechanical properties of skin. 
Dermal tissue is composed of collagen (72%) and elastin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4%) 
fibers forming a densely convoluted network in a gelatinous 
ground substance (20%). Under low stress, dermal tissue offers 
little resistance to stretch as the collagen fibers begin to uncoil 
in the direction of the strain, but under greater stress, the fully 
uncoiled collagen fibers resist stretch much more markedly. 
This yields an approximately biphasic stress-strain curve (Fig. 
2). The incompressible ground substance retards the motion 
of the fibers and thereby gives rise to viscoelastic behavior. 
Finally, the elastin fibers act like elastic springs that return 
the collagen fibers to their coiled condition under zero load. 
A layer of subcutaneous fatty tissue that allows the skin to 
slide rather easily over fibrous fascia covering the underlying 
muscle layer is underneath the skin (see Section 1114). 

The synthetic tissue is a deformable lattice, which is an 
assembly of point masses connected by springs, that is, a dis- 
crete deformable model [28]. Let node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  where i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . . , N ,  

Stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
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Fig. 2. Stress-strain curve of facial tissue and its biphasic approximation. 

The large-strain threshold e‘ occurs at the intersection of the two lines. 

represent a point mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi whose three-space position is 
xi(t)  = [z(t) ,y(t) ,z(t)]’ .  The velocity of the node is v; = 
dxi/dt, and its acceleration is ai = d2xi/dt2. 

Let spring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk have natural length l k  and stiffness Ck. Suppose 
the spring connects node i to node j ,  where r k  = xj -xi is the 
vector separation of the nodes. The actual length of the spring 
is I lrkl l. The deformation of the spring is e k  = llrkll - l k .  The 
(nonlinear) force that the spring exerts on node z is 

with 

(2) 
when e k  5 e; ,  
when e k  > e; c k  = { ;: 

where the small-strain stiffness Qk is smaller than the large- 
strain stiffness /&. Like real dermal tissue, this biphasic spring 
is readily extensible at low strains but exerts rapidly increasing 
restoring stresses after reaching a threshold e‘ (Fig. 2). 

We assemble the tissue model by arranging biphasic springs 
into structurally stable tetrahedral and hexahedral elements. 
Diagonal springs strut each face of the hexahedral elements so 
that they will resist shearing. Fig. 3 illustrates a small patch of 
the facial tissue model consisting of three layers of elements 
representing the cutaneous tissue, subcutaneous tissue, and 
muscle layer (the layers are not shown to scale). The biphasic 
springs (line segments) in each layer have different stiffnesses 
in accordance with the inhomogeneity of real facial tissue. The 
top-most surface represents the epidermis (which is a rather 
stiff layer of keratin and collagen), and we set the spring 
stiffnesses to make it moderately resistant to deformation. 
The biphasic springs underneath the epidermis represent the 
dermis. The springs in the second layer are highly deformable, 
reflecting the nature of subcutaneous fatty tissue. Nodes on the 
bottom-most surface of the second layer represent the fascia to 
which the muscle fibers in the third layer are attached. Nodes 
on the bottom surface of the third layer are fixed (in “bone”). 

To account for the incompressibility of the cutaneous ground 
substance and the subcutaneous fatty tissues, we include a 
constraint into each element that minimizes the deviation of the 
volume V, of a deformed element Ej from its natural volume 
yo at rest. The volumes of elements are readily computable 
using vector algebra. The tissue incompressibility constraint is 
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(a) (b) 

Fig. 3. Trilayer facial tissue model: (a) Top view; (b) side view showing 
(right to left) epidermal surface, dermal layer (pentahedral elements), and 
subcutaneous and muscle layers (hexahedral elements). 

given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c,(V, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyo)2. Differentiation of the constraint 
yields a net volume restoration force q, for each node i :  
q, = d Q / d x , .  Note that the derivative at a given node involves 
nonzero terms only over elements that share the node. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Numerical Simulation of Facial Tissue 

other nodes j E Nt in the deformable lattice is 
The total force on node i due to springs that connect i t  to 

gz(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS k .  (3) 
j €N,  

The discrete Lagrange equations of motion for the dynamic 
nodelspring system is the system of second-order ordinary 
differential equations 

d2xa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx, 
m , ~ + : I I - + g t + q , = f , :  dt L = 1  . . . . ,  1v (4) 

where ya is the coefficient of velocity-proportional damping 
dissipating kinetic energy in the lattice, g, is the net spring 
force (3), q, is the net volume restoration force, and f, is 
the net external force acting on node 2 .  It is possible for facial 
muscle fibers to displace specific attachment nodes by applying 
driving forces f, to them. In our current face model, however, 
the f, are not used. Instead, inextensible muscle fibers displace 
attachment nodes by directly modifying their positions x,, as 
the following section will explain. 

To simulate the dynamics of the deformable lattice, initial 
positions x: (as determined by the face assembly procedure; 
see below) and velocities vp = 0 are provided for each node L ,  

and the equations of motion are numerically integrated forward 
though time. Each time step requires the evaluation of forces, 
accelerations, velocities, and positions for all of the nodes. 

The explicit Euler method is a simple and quick time- 
integration method, but it has a limited range of stability 
[24]. Unfortunately, the greater computational complexity per 
time step of inherently more stable numerical methods can 
compromise interactive performance. A satisfactory solution 
to the stability/complexity tradeoff is provided by a second- 
order Runge-Kutta method, which requires two evaluations of 
the nodal forces per time step. 

We choose m, and 7, such that the facial tissue exhibits 
a slightly overdamped behavior. The overdamped dynamics, 

the high flexibility of the biphasic springs in the small-strain 
region, and the use of muscle fiber displacements rather than 
driving forces all contribute to enhance the stability of the 
numerical simulation. 

C. Facial Muscle Control Process 

Muscles are bundles of muscle fibers working in unison. 
The shape of the fiber bundle determines the muscle type 
and its functionality. There are three main types of facial 
muscles: linear, sphincter, and sheet. Linear muscle, such as 
the zygomaticus major (which attaches to and raises the corner 
of the mouth), consists of a bundle of fibers that share a 
common emergence point in bone. Sheet muscle, such as the 
occipito frontalis (which attaches to and raises the eyebrow), 
is a broad, flat sheet of muscle fiber strands without a localized 
emergence point. Sphincter muscle consists of fibers that loop 
around facial orifices and can draw toward a virtual center; an 
example is the orbicularis oris, which circles the mouth and 
can pout the lips. 

In the human face, more than 200 voluntary muscles can 
exert traction on the facial tissue to create expressions. When 
the muscles contract, they pull the facial soft tissue to which 
they attach toward the place where they emerge from the 
underlying bony framework of the skull. Waters [33] and 
others have achieved a broad range of facial expressiveness by 
incorporating about 20 muscle actuators into their geometric 
face models. 

In our physics-based face model, muscle actuators run 
through the third layer of the synthetic tissue (Fig. 3). Muscles 
fibers emerge from some nodes fixed in “bone” at the bottom 
of the third layer and attach to mobile nodes on the upper 
surface of the layer (fascia). 

Let m: denote the point where muscle i emerges from the 
“bone,” and m: its point of attachment in the tissue. These 
two points specify a muscle vector mt = m: - mp. The 
displacement of node J in the fascia layer from xJ to xi due to 
muscle contraction is a weighted sum of m muscle activities 
acting on node j: 

where 0 5 c, 5 1 is a contraction factor, and b,, is a muscle 
blend function that specifies a radial zone of influence for the 
muscle fiber. Defining rT3 = mp - x3 

where T ,  is the radius of influence of the cosine blend profile. 
Once all muscle interactions have been computed, the 

positions x, of nodes that are subject to muscle actions are 
displaced to their new positions xi. As a result, the nodes in 
the fatty, dermal, and epidermal layers that are not directly 
influenced by muscle contractions are in an unstable state, and 
unbalanced forces propagate through the lattice to establish a 
new equilibrium position. 

The face model incorporates a subset of the FACS repre- 
sentation [SI, which was implemented as part of Water’s prior 

I 
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Fig. 4. Epidermal mesh and 16 muscle vectors (dark lines). 

geometric model [33]. The FACS AU’s are grouped into those 
that affect the upper and lower faces, and they include vertical 
actions, horizontal actions, oblique actions, orbital actions, 
and miscellaneous actions such as nostril shape, jaw drop, 
and head and eye position. Through the FACS abstraction, 
it is possible to suppress the low-level details of coordinated 
muscle actuation and provide an interface to the model in terms 
of high-level expression commands. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Assembling and Simulating the Model 

The automatic face model assembly procedure starts with 
a nonuniform triangular facial mesh whose nodes and springs 
represent the epidermis. First, it projects normal vectors from 
the center of gravity of each triangle into the face to establish 
subcutaneous nodes and forms terahedral dermal elements by 
connecting them to epidermal nodes using dermal springs. Sec- 
ond, it forms hexahedral subcutaneous elements by attaching 
short weak springs from the subcutaneous nodes downwards 
to muscle layer nodes. Third, it adds the muscle layer of 
hexahedral elements, whose lower nodes are constrained, 
anchoring them in “bone.” Finally, i t  inserts the muscle fibers 
through the muscle layer from their emergence in “bone” to 
their attachments at muscle layer nodes. 

Fig. 4 shows the epidermal triangles and 14 muscle vec- 
tors (the dermal and subcutaneous layers are suppressed for 
clarity) after the automatic assembly starting from the facial 
mesh employed in [33]. The synthetic tissue includes about 
960 elements with approximately 6500 springs in total. The 
physics-based face model can be simulated and rendered at 
interactive rates on a single CPU of a Silicon Graphics Iris 
4D-340VGX workstation. Fig. 1 shows several frames from a 

videotape recorded in real-time as the user interacted with the 
model through a menu-driven, mid-level interface enabling the 
contraction of individual muscles. 

Iv .  PERSONAL FACE MODELS FROM SCANNED DATA 

I t  is possible to enhance the realism of the face model 
dramatically through texture mapping, which is a widely 
adopted technique in model-based facial image coding. We 
describe initial work in this direction in [34] as well as recent 
work in [19]. 

More specifically, our polygonal face model is useful for 
capturing the 3-D geometry of faces from scanned data. For 
example, Fig. 5 shows a 360’ head-to-shoulder scan of a 
woman (Heidi, which was acquired by Cybenvare, Inc.) using 
a Cybenvare Color 3-D Digitizer. The data set consists of a 
radial range map (Fig. 5(a)) and a registered RGB photometric 
map (Fig. 5(b)). The range and RGB maps are high-resolution 
512x256 arrays in cylindrical coordinates, where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis is 
the latitudinal angle around the head, and the y axis is vertical 
distance. Fig. 5(c) shows the epidermal mesh of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 radially 
projected into the 2-D cylindrical domain and overlayed on the 
RGB map. The triangle edges in the mesh are stretchy springs, 
and the mesh has been conformed semi-interactively to the 
woman’s face using both the range and RGB maps [34], [19]. 
The nodes of the conformed mesh serve as sample points in 
the range map. Their cylindrical coordinates and the sampled 
range values are employed to compute 3-D Euclidean space 
coordinates for the polygon vertices. In addition, the nodal 
coordinates serve as polygon vertex texture map coordinates 
into the RGB map. Fig. 5(d) shows the 3-D facial mesh with 
the texture-mapped photometric data. 

The visual quality of the face model is comparable to a 
3-D display of the original high resolution data, despite the 
significantly coarser mesh geometry. We can visualize the 
texture-mapped model from arbitrary viewpoints at interactive 
rates on the SGI workstation that implements texture mapping 
in hardware. 

Once we have reduced the scanned data to the 3-D epider- 
mal mesh of Fig. 5(d), we can assemble a physics-based face 
model of Heidi using the assembly procedure described in the 
previous section. Fig. 5(e) and (f) demonstrates that we can 
animate the resulting face model by activating muscles. 

v. ANALYSIS OF DYNAMIC FACIAL IMAGES 

In this section, we consider the inverse problem to facial 
image synthesis, i.e., the analysis of images of expressive 
faces. Our specific goal is to infer dynamic muscle contraction 
parameters that may be used to drive the physics-based model. 
This problem is challenging because it requires the reliable 
estimation of quantitative information about extended facial 
features that are moving nonrigidly. We develop a method 
that enables us to capture dynamic facial expressions directly 
from video sequences. 

Through straightforward image processing, we convert digi- 
tized image frames into 2-D potential functions whose ravines 
(extended local minima) correspond to salient facial features 
such as the eyebrows, mouth, and chin. We employ a variant 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Facial modeling using scanned data: (a) Radial range map; (b) RGB photometric map; (c) RGB map with conformed epidermal mesh overlayed; 
(d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D mesh and texture mapped triangles. 

of deformable contour models, or snakes, introduced in [14] 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27]. The deformable contours lock onto the ravines, 
tracking them from frame to frame. The deformable model’s 
state variables provide quantitative information about the non- 
rigid shapes and motions of the evolving facial features. The 
automatic interpretation of this information leads to dynamic 
muscle parameters that allow the face model to reconstruct 
motions. 

calls for deformable contours that have some viscoelasticity 
and rigidity. We define a discrete deformable contour as a set 
of n nodes indexed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. . . . , n. We associate with these 
nodes time-varying positions xz(t) = [zcp(t) ,  y Z ( t ) ] ’ ,  along with 
“tension” forces az( t ) ,  “rigidity” forces @,(t), and external 
forces f,(t) that act in the image plane.’ 

We connect the nodes in series using nonlinear springs. 
Following the formulation of (l), let I ,  be the given reference 

A. Discrete Deformable Contour Models ‘Note that although the vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, and f, for the deformable contour 
are analogous to those found in the dynamics equations (4) of the synthetic 
facial tissue model, they are different, two-component vectors in the ensuing A contour can be thought Of as an energy mini- 

mizing spline in the z-y image plane. The present application discussion. 
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(e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 
Fig. 5.  Facial modeling using scanned data: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e). (f) Animate face model. 

length of the spring connecting node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI + 1, and let 
r t ( t )  = x,+1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, be the separation of the nodes. We want the 
spring to resist compression only when its actual length Ilr,il 

is less than 1 , .  Hence, given the deformation r l ( t )  = /lr211 - l , ,  
we define the tension force 

(7)  

where the a, 's are tension variables. A viscoelastic contour 
may be obtained by letting 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvi is a coefficient of viscoelasticity. Introducing rigidity 
variables 6;, the rigidity force is 

The behavior of an interactive deformable contour is gov- 
erned by the first-order dynamic system 

dX 

lit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY-+a,+p, = f , :  i = 1. . 71, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is a velocity-dependent damping coefficient. Tension 
and rigidity are locally adjustable though the o, and 6, vari- 
ables. In particular, by setting a,  = 6, = 0, we are able to 
break a deformable contour to create several shorter contours 
on an image. 

To simulate the deformable contour, we integrate the system 
of ordinary differential equations (10) forward through time 
using a semi-implicit Euler method [24]. Applying the forward 
finite difference approximation dxl/dt z (xj+If - x j ) /At  
to (lo), evaluating the linear terms in the x, (i.e., p,) at 

time t + At and the nonlinear terms at time t yields the 
pentadiagonal system of algebraic equations 

for the new node positions x l + l f  in terms of the current po- 
sitions x:. Since the system has a constant coefficient matrix, 
we factorize it only once at the beginning of the deformable 
contour simulation using a direct LDU factorization method 
and then efficiently resolve with different right-hand sides at 
each time step (see [27] for details). 

B. External Forces and Imuge Processing 

The deformable contour is responsive to an image force 
field that influences its shape and motion. It is convenient 
to express the force field as the gradient of a time-varying 
potential function P(. i .  y. t ) .  A user may also interact with the 
deformable contour by applying forces fF(t) using a mouse 
(see [14] for details about user forces). Combining the two 
types of forces, we have 

(12) f, = yYP(x, )  +,,,I 

where 11 is the strength of the image forces and V = 

In the present application. we are concerned with the 
localization of extended image features such as the eyebrow 
and lip boundaries. Usually, these features correspond to high- 
contrast regions in the image intensity function I ( z .  y. t ) .  To 
make these regions deformable contour attractors, we use 

[ d /d . r .  d/d ! / ] ' .  

P(.r.,y.t) = -lITGu * I ( . r . y , t ) ~ ~  (13) 

where G,* denotes convolution with a 2-D Gaussian smooth- 
ing filter of width IT, which broadens the ravines of P so that 
they attract the contours from a distance. 
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C. Tracking Nonrigid Facial Features 

In a few simulation time steps, the deformable contours 
slide downhill in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(x ,  y, t k )  (image frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC), conforming to 
the shapes of its ravines as they come to equilibrium at their 
bottoms. Once they equilibrate, the contours accurately trace 
the facial features of interest. As soon as the contours have 
equilibrated in P(x ,  y, t k ) ,  we replace it with P(z ,  y, t k + l )  

associated with the next video frame. Continuing from their 
previous equilibrium positions, the contours slide downhill to 
again equilibrate in the perturbed ravines, thus tracking their 
nonrigid motions. We repeat the process on successive frames. 

This simple tracking scheme works if the motion of the 
facial features of interest is small enough to retain the contours 
on the slopes of the perturbed ravines along most of their 
lengths. Should part of a contour escape the attractive zone of 
a ravine, however, the rest of the contour will usually pull it 
back into place. 

D. Estimating Facial Muscle Contractions 

As the deformable contours evolve from frame to frame, 
their dynamic state variables X: and their time derivatives 
provide explicit information about the nonrigid shapes and 
motions of the facial features. The information is reduced to 
a head reference frame and 11 dynamic fiducial points. 

In our muscle contraction estimation process, we have 
employed, to date, nine deformable contour sections. These 
localize and track the hairline, the left and right eyebrows, 
the left and right nasolabial furrows, the tip of the nose, the 
upper and lower lips, and the chin boss. Using the deformable 
contour state variables, an automatic procedure first calibrates 
the input image to the face model and then computes the 
following: 

A head reference frame from the average position of the 
hairline contour 
contractions of the left and right inner, major, and outer 
occipitofrontalis from the positions of the inner-most, 
center, and outer-most points of the associated eyebrow 
contours, respectively 
contractions of the left and right zygomaticus major 
and depressor labii inferioris from the positions of the 
endpoints of the upper lip contour 
contraction of the left and right levator labii superioris 
alaeque nasi from the positions of the upper-most points 
of the associated nasolabial furrow contours 
jaw rotation from the average position of the chin boss 
contour. 

Fig. 6 illustrates the positions of the nine deformable 
contours in equilibrium at two different frames of an image 
sequence that will be described in the next section. The dots 
indicate the 11 fiducial points mentioned above, which are 
computed from the snakes. The positions of the points are 
computed relative to the head reference frame, whose origin 
is marked by the crosshair in the figure. Assuming a frontal 
view and relatively stable hairline, the head reference frame 
will track the head motion in the image. 

The muscle contraction estimation scheme makes the sim- 
plifying assumption of orthographic projection. It estimates 

w 

(a) (b) 

Fig. 6. Snakes and fiducial points used for muscle contraction estimation: 

(a) Neutral face; (b) surprise expression. 

ci( t )  in the 2-51 image plane using (5) for each muscle 
independently while ignoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz coordinates. Starting with an 
image of the neutral face, the calibration procedure establishes 
the origin of the head reference frame and positions the muscle 
vector emergence points appropriately with respect to it. The 
snake fiducial points in Fig. 6(a) serve to approximate the 
positions of the muscle attachments. Once the natural lengths 
of the primary facial muscles have been established, the muscle 
contractions that are responsible for a dynamic expression may 
be estimated immediately as the snake fiducial points move 
from frame to frame. The jaw rotation is also estimated as the 
chin snake fiducial point descends from its neutral position in 
the head reference frame. 

The next section illustrates this dynamic estimation proce- 
dure with an example. 

E. An Experiment in Facial Kdeo Analysis 

We have applied our facial image analysis technique to a 
video sequence of one of the authors (DT) performing facial 
expressions in frontal view before a CCD camera.2 A surprise 
expression was digitized as a sequence of 2 5 6 ~ 2 5 6 x 8 - b  
images and analyzed using deformable contours. Fig. 7 illus- 
trates the facial image analysis and the results of the muscle 
contraction estimation on three image frames. Fig. 7(b) shows 
the (negative) potential functions computed from the frames 
in Fig. 7(a). To compute the potential, we apply a discrete 
smoothing filter G(i ,  j )  consisting of two four-neighbor local 
intensity averaging steps followed by the discrete gradient 
operator Vv( i , j )  = [ ( ~ ( i  + 1 , j )  - u ( i , j ) ) , ( u ( z , j  + 1) - 
~ ( i ,  j))]’. We bilinearly interpolate the result between pixels 
( i ,  j )  to obtain the continuous potential function P(x ,  y, t k ) .  

We initialize the deformable contours on the first frame of 
the sequence using the mouse. The initialization procedure 
places their nodes roughly 1 pixel apart and sets the rest of the 
lengths Zi in (8) to the initial node separations. The parameter 
values of the deformable contour simulation are y / A t  = 0.5, 
a, = 1.0 and bi = 0.5 (except at the jump discontinuities 
between the contours where a, = bi = 0.0), vi = 0.2, and 

2Using the available video camera and lighting in our lab environment, 

it was necessary to enhance DT’s lips, eyebrows, and nasolabial furrows by 
subjecting him to a humiliating makeup job. Under more favorable imaging 

situations, makeup may not be necessary, depending on the individual. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1- 
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Fig. 7. Dynamic facial image analysis and expression resynthesis. Sample 
video frames with superimposed deformable contours trackingfacial features; 
(a) intensity images with black snakes, (b) imagepotentials with white snakes. 
(c) Facial model resynthesizes surpriseexpression from estimated muscle 
contractions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = 0.001. Fig. 7(a) and (b) shows the deformable contours 
at equilibrium locked onto the facial features. 

From the first frame in the video sequence, which captures 
DT's face in a relaxed state, the analysis procedure first 
calibrates the face model to the frontal view of the subject 
and then estimates dynamic muscle contractions c , ( t ) ,  as we 
explained in the previous section. Fig. 8 shows a plot of the 
estimated contractions versus the frame number. They are 
input to the physics-based model as a time sequence. The 
model quickly attains dynamic equilibrium on each frame 
input, and the state variables are rendered in real time on the 
SGI workstation to synthesize an animated sequence of facial 
images, three of which are shown in Fig. 7(c). 

VI. DISCUSSION 

Our experiment has demonstrated the estimation of muscle 
contractions from video of a subject's face and their use 
in resynthesizing facial expression. Clearly, our technique 
is tolerant of the significant discrepancy between the 3-D 
geometry of the subject's face and the face model. It is difficult 
to assess quantitative accuracy, however, because ground-truth 
data are not readily available. Even though some contraction 
estimation errors may be quantitatively significant, we have 
noted that the expression resynthesis remains qualitatively 
robust. 

The simple feed-forward analysis/synthesis scheme that we 
describe in this paper has some limitations. At present, the 

snakes require manual initialization, but we are confident 
that some heuristic facial feature detection procedure, like 
the one described in [13], can be modified to initialize them 
adequately. Although it is very efficient, the 2-D nature of the 
muscle-estimation scheme can cause problems in general, e.g., 
when the head turns significantly. Three-dimensional mus- 
cle contraction estimation assuming full, and not necessarily 
frontal, perspective projection is desirable. We can probably 
accomplish this in the future by exploiting multiple views of 
the face. It is evident that we can also improve the fidelity 
of the image-based facial expression analysis and graphical 
resynthesis loop with a more complete modeling of facial 
musculature. A limitation of the present facial model is the 
lack of an adequate model of the orbicularis oris, which is 
the highly articulate sphincter muscle that defines the lips. 
Once we incorporate a more sophisticated lip actuator, it will 
make sense to exploit more of the nodal variables available 
in the lip tracking snakes, rather than the two fiducial points 
that we currently employ. Another deficiency, at present, is 
the lack of eyelid and eye position estimation that results 
in discernible differences between the input expression and 
resynthesized expression. The eyelid is particularly difficult to 
track because of its speed. A more feasible solution would be 
to simply detect whether the eyelids are open or shut and input 
this information to the model. 

Our work opens up many avenues for further research. For 
example, it seems possible to further automate the modeling 
approach that we have developed for working with scanned 
data and possibly extend it to the reconstruction of faces 
from grey-level images. Another interesting research direction 
would investigate the possibility of running the hierarchical 
model backward from the image level all the way up to the 
expression level, thereby addressing the problems of measur- 
ing, classifying, and recognizing dynamic human expressions 
from video sequences of the face. The FACS representation 
promises to be useful in addressing the expression recognition 
problem, as Mase [21] has argued recently. 

Our demonstration that it is possible to analyze a particular 
face captured on video and reconstruct, with reasonable degree 
of accuracy, the expression in the different facial geometry of 
the model affirms the notion that muscle actions are the salient 
features of expression that are common across individual faces. 

VII. CONCLUSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A solid foundation for facial image analysis is the anatomy 

of the face, especially the arrangements and actions of the 
primary facial muscles. This paper has presented a new 
approach to facial image analysis using a realistic facial model. 
We have described a hierarchical model of the human face 
that incorporates a physics-based synthetic facial tissue and a 
set of anatomically motivated facial muscle actuators. Despite 
its sophistication, the model is efficient enough to produce 
facial animation at interactive rates on a graphics workstation. 
We use snakes to track the position of the head and the 
nonrigid motions of the eyebrows, nasal furrows, mouth, and 
jaw in the image plane. Reducing the snake measurements 
to fiducial points within a head reference frame, we are able 
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Conuxuon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“Left Occipitofrontalis Inner” 0.0 

“Left Occipirofron~aJis Major” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo,o 

“Left Occipitofronalis Outer” o,o 

“R~ght Occrpirofmntalis Inner” o,o 

“Right Occipirofronlalis Major” o.o 

“Right kipitofronlalis Outer” o,o 

“Jaw Relation" 0 0 
I 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10 15 20 25 30 35 

Frame Number 

Fig. 8. Estimated muscle contractions plotted as time series. 

to estimate the dynamic contractions of the primary facial 
muscles. These estimates make appropriate control parameters 
for resynthesizing facial expressions through our face model. 
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