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Abstract—Hydrometeorological and radio propagation applica-
tions can benefit from the capability to model the time evolution of
raindrop size distribution (RSD). A new stochastic vector autore-
gressive semi-Markov model is proposed to randomly synthesize
(generate) the temporal series of the three driving parameters of
a normalized Gamma RSD. Rainfall intermittence is reproduced
through a discrete semi-Markov process, modeled from disdrom-
eter measurements using two-state analytical statistics of rain and
dry period duration. The overall model is set up by means of a
large set of disdrometer measurements, collected from 2003 to
2005 at Chilbolton, U.K. The driving parameters of the retrieved
RSD are estimated using three approaches: the Gamma moment
method and the 1-D and 3-D maximum-likelihood methods. In-
terestingly, these methodologies lead to quite different results,
particularly when one is interested in evaluating RSD higher order
moments such as the rain rate. The accuracy of the proposed RSD
time-series generation technique is evaluated against available
disdrometer measurements, providing excellent statistical scores.

Index Terms—Autoregressive process, disdrometer, estimation
techniques, intermittent rain process, raindrop size distribution
(RSD), semi-Markov chain.

I. INTRODUCTION

M EASUREMENTS of raindrop size distribution (RSD)

are largely exploited to investigate the microphysics of

precipitation and to improve rainfall remote-sensing estimation

techniques. One major source of uncertainty in the precipitation

remote-sensing methodologies is the variability of the RSD [1].

This variability is due to both climatological context and storm

cyclogenesis, and it strongly affects the relationship between

the weather radar reflectivity and the rain rate [2]. Indeed,

accurate RSD measurements, coupled with a backscattering

model, allow to simulate not only radar reflectivity but also all

radar polarimetric observables and quantities of interest such

as water content and rain rate [3]–[6]. On the other hand, ac-

curate RSD data are required not only for hydrometeorological

applications. Since rain attenuation is strongly correlated with
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rain rate intensity, the detailed analysis of rainfall size–time

distribution is crucial for satellite communication design at high

microwave frequencies and spaceborne meteorological product

validation [7], [8]. In this respect, several efforts are currently

devoted to the development of techniques to randomly synthe-

size (or generate) rain rate time-space series [9], reproducing

real rain rate measurement properties in terms of statistics and

intermittence features [10]. This capability is essential to set up

radio system simulators and numerically test them under a large

set of synthetic, but realistic, rainfall scenarios.

Early ground-based RSD measurements used filter paper (or

the so-called flour method). One of the current most widespread

techniques is the disdrometer such as the Joss–Waldvogel in-

strument. In the last decade, there has been the introduction of

new disdrometer techniques like the optical spectropluviometer

or the recent 2-D video disdrometer. Above the ground, RSD

observations may be obtained from particle-measuring systems

optical array probes on aircraft. A common difficulty with all of

these disdrometers is related to the small collection area of the

instrument, which makes the drop counting in each diameter

class very noisy, particularly for large drops characterized by

the smallest concentration. Moreover, the estimation of best

fitting analytical RSD parameters may be affected by these in-

strumental features, and, in this respect, various RSD estimation

techniques may have a different behavior and a different level

of accuracy with respect to a specific purpose, e.g., estimate of

the RSD shape, the rain rate, rain water contents, or specific

attenuation.

The objectives of this paper are manifold.

1) Characterize a large set of Joss–Waldvogel impact dis-

drometer measurements, collected from 2003 to 2005 at

Chilbolton, U.K.

2) Retrieve from this disdrometer data set the driving pa-

rameters of the normalized Gamma RSD and perform a

sensitivity analysis of these results by using different best

fitting techniques.

3) Exploit the correlation structure of the estimated RSD

parameters to extend and further investigate the properties

of the vector autoregressive (VAR) stationary model pro-

posed in [9] to simulate time series (or horizontal profiles)

of RSDs and, consequently, of either the rain rate or the

path attenuation.

4) Characterize the distribution of the inter-rain duration (or

dry periods DP ) and rain duration (or wet periods WP )

to design a simple semi-Markov chain to represent the

intermittence feature of the rainfall process.

0196-2892/$25.00 © 2008 IEEE
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The overall stochastic procedure to randomly synthesize (or

generate) RSD time series is named the VAR raindrop Markov

synthesizer (VARMS) model.

This paper is organized as follows. In Section II, the dis-

drometer measurement characteristics and the data processing

procedure are described. In Section III, the retrieval meth-

ods for estimating the RSD parameters are shown, whereas

in Section IV, the retrieved parameters are exploited to de-

fine the RSD stochastic simulation VARMS model. Finally,

in Section V, conclusions are given.

II. DISDROMETER DATA

The Joss–Waldvogel disdrometer (JWD) measurements, col-

lected from 2003 to 2005 at Chilbolton, U.K., and provided

by the British Atmospheric Data Centre (BADC), have been

thoroughly analyzed. A description of the instrument together

with its data processing is illustrated in Appendix A.

The measured RSD at the discrete instant t (in seconds) has

been calculated from JWD counts using the following equation:

Nm(Di, t) =
ni(t)

A · ∆t · νi · ∆Di

(1)

where the subscript m indicates a measured quantity; Di (in

millimeters) is the central raindrop diameter of the “channel” ci,

which has been computed as the mean value between the drop

diameters Dci and Dci+1; Nm(Di, t) (in units per millimeter

per cubic meter) is the number of raindrops per unit of volume

in the channel ci at the discrete instant t; ni(t) is the number of

drops reckoned in the ith channel at the instant t; A (in square

meters) is the sensor area; ∆t (in seconds) is the sample period;

νi (in meters per second) is the fall speed of a raindrop, in which

the diameter is given by Di; and ∆Di (in millimeters) is the ith
channel width. The parameters setup to calculate Nm(Di, t)
from (1) are as follows: A = 0.005 m2, ∆t = 10 s, ∆Di =
Dci+1 − Dci for i ranging from 1 to nc = 104 with minimum

and maximum diameter equal to 0.5 and 5 mm, respectively,

uniformly spaced in a logarithmic scale (see Appendix A). The

rainfall speed νi is assumed to be the same as that proposed

in [18], i.e.,

νi = 3.78 · D0.67
i . (2)

At Chilbolton, JWD measurements of Nm(Di, t) were avail-

able every ∆t = 10 s. This time series may exhibit fluctuations

in Di and t. To reduce the intrinsic noise of Nm with respect

to Di at each time step, a moving average filter on Nm with

a span of five raindrop diameters Di has been applied over

the entire range of nc = 104 samples (or channels). Moreover,

to smoothen the temporal fluctuations of Nm, the latter has

been subsequently averaged, as done in [19], over a time

interval of 2 min. Indeed, it is not easy to find a satisfactory

compromise for the integration time: If long, it may smoothen

the actual physical variations; if short, the observed RSD may

be dominated by counting fluctuations. The interval of 2 min

seems, in this case, to be a reasonable choice.

From (1) and (2) and after time–size integration, the compu-

tation of the measured rain rate Rm is straightforward through

the moments of Nm(Di, t) of order 3.67, as specified by

Rm(t) = 3.78 ·
π

6
· m3.67(t) (3)

where mn(t) is the general expression of Nm(Di, t) moment

of order n, defined as

mn(t) =

∞∫

0

Dn · N(D, t) · dD =

nc∑

i=1

Dn
i · Nm(Di, t) · ∆Di.

(4)

In (4), the third term underlines the discrete nature of the

measured RSD, whereas the extremes of the integral point out

the untruncated range of diameters.

From (3), the beginning of a rainy event has been defined as

the instant where Rm(t) exceeds the threshold of 0.1 mm · h−1

at least for 12 min, and the corresponding end has been defined

as the instant where Rm(t) is lower than the aforementioned

threshold. The duration of a rainy event implicitly defines a

wet period, and, accordingly, the time interval separating two

consecutive WP ’s defines a dry period DP . By selecting only

the 24-h measurements in which at least one WP takes place, a

set of 224 days (corresponding to 161 280 samples, spaced each

other of 2 min), among the available 785, has been obtained.

Within these 224 days, we have identified 656 rain events or

WP ’s, corresponding to 15 710 samples (about 10% of the total

number of samples).

III. ANALYSIS OF THE RSD DATA

A systematic comparison among the three distinct ap-

proaches for best fitting the observed RSD and estimating the

parameters of an assumed normalized Gamma distribution is

discussed in this section. Many authors adopt the following

expression to describe the volumetric size distribution of rain-

drops [1], [20], [21]:

N(D,p)=Nw · f(µ) ·

(
D

Dm

)µ

· exp

[
−(4+µ) ·

D

Dm

]
(5)

where N(D,p) (in units per cubic meter per millimeter) is

the number of drops per unit volume per unit size interval;

D (in millimeters) is the sphere-equivalent drop diameter;

Nw (in units per cubic meter per millimeter), µ, and Dm (in

millimeters) are the intercept, the shape, and the mass weighted

mean diameter parameters, respectively; and f(µ) takes the

following form:

f(µ) =
6

44
·

[
(4 + µ)(4+µ)

Γ(4 + µ)

]
(6)

where Γ is the complete Gamma function. The vector p =
[Nw, Dm, µ]T , with “T ” referring to matrix transpose, stands

for the time-dependent parameter set of the modeled RSD.

In general, the parameters Nw, µ, and Dm can be retrieved

using the moments of the RSD such as, for example, the second,
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the third, the fourth, and the sixth. The mass weighted mean

diameter Dm is calculated as the ratio between the fourth and

third empirical moments of the RSD, i.e.,

Dm =
m4

m3
. (7)

The generalized intercept parameter Nw is also computed from

the fourth and third moments of the RSD and can be de-

rived from

Nw =
256

6
·
m5

3

m4
4

(8)

where the moment mn of order n is expressed by (4).

In the next two subsections, the expression of the shape

parameter µ in (5) is first estimated by means of the Gamma

moment method [24] and then by means of the maximum-

likelihood (ML) method in two versions [25]. Indeed, in the

second version of the ML method, the parameters Nw and Dm

are differently estimated with respect to (7) and (8).

A. GM Estimation Method

For each 2-min averaged RSD sample, the µ parameter

has been computed by following the procedure suggested by

Ulbrich and Atlas [24] for an untruncated range of diameters.

Following that procedure, the shape parameter µ can be re-

sumed from

µGM =
(7 − 11η) −

√
(7 − 11η)2 − 4 · (η − 1) · (30η − 12)

2 · (η − 1)
(9)

where η depends from the moments m2, m4, and m6, i.e.,

η =
m2

4

m2 · m6
. (10)

Note that the temporal dependence is omitted in (7)–(10) for

simplifying the notation.

Thus, for the GM method, the estimated RSD parameter

vector is given by

pGM(t) = [Nw GM(t), DmGM(t), µGM(t)]T (11)

where NwGM and DmGM are retrieved from (7) and (8),

respectively, and the time dependence of each RSD parameter

(and, thus, of p) has been explicitly indicated.

It is worth observing that the values of µ can reach infinity

when η is close to unity. This circumstance occurs when

the measured RSD is nearly monodisperse. In fact, if we

model the monodisperse condition replacing the measured RSD

Nm(Di, t) with a shifted delta of Dirac δ(Di − Dk) and solv-

ing the integral in (4), we obtain, by means of (10), η = 1 and,

correspondingly, µ = ∞. The increase of µ for the decreasing

spread of RSD is confirmed by the trend of the average stan-

dard deviation of the drop diameters Di versus the interval of

µ (∆µ), as shown in Fig. 1. The intervals ∆µ are spaced each

Fig. 1. (Filled circle) Estimated µ by means of moment method versus
average standard deviation of drop diameters of measured RSDs. The vertical
bars indicate the ± standard deviation with respect to the average trend.

Fig. 2. Gray dots indicate the scaled RSD (Nm(D)/Nw) versus normalized
diameter (D/Dm) of the 15 710 measured samples. Black solid lines indicate
the normalized gamma distributions for values of µ ranging between −3 and
20 at step of 1 plus the curve at µ = 100.

other of 1 unit when µ range from −1.6 to 60. It is worth

mentioning that high values of µ take place when the measured

intensities of the rain rate Rm lie below 1 mm · h−1. We remark

that, according to (4), this paper deals with an untruncated range

of diameters, whereas in [24], a truncated version of the GM

method is also introduced. A further extension of the truncated

method proposed in [24], called the truncated Gamma moment

(TGM) method, has been also considered, as described in [29].

Numerical results indicate that the TGM estimates of the RSD

parameters are highly correlated with the GM ones (for Nw and

Dm, the correlation coefficient is 0.97, whereas for µ estimates,

it is 0.89). Considering the simplicity and the efficiency of the

GM formulation, we have limited our attention to GM only in

this paper.

To have a comprehensive picture of RSD best fitting, the

scaled data Nm(Di)/Nw have been plotted versus the normal-

ized drop diameter D/Dm in Fig. 2. As in [22], superimposed
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on the scaled disdrometer data, the corresponding scaled

Gamma distributions for some values of µ are shown. The

measured RSDs, when scaled as previously shown, are well

bounded by the family of scaled Gamma functions as µ varies

over the range from −3 to 20; however, values of µ outside this

range may be also represented.

B. ML Estimation Methods

In past works, various alternative methods for estimating

the three parameters of Gamma distribution N(D) in (5) were

proposed. For example, in [22], the parameters Nw and Dm

were estimated by means of the moment method, whereas the

shape parameter µ was estimated by minimizing the absolute

deviation between the scaled RSD data and the scaled Gamma

form f(µ) · xµ · exp[−(4 + µ) · x].
In this section, we remove this restriction by enabling the

three parameters in (5) to range within a prescribed bound to

minimize, at each discrete instant t, an error measure between

the measured RSD Nm(Di, t) and the Gamma distribution

N(D). We label this 3-D estimation technique as ML3 for

distinguishing it from the 1-D approach described after.

We can estimate the RSD parameter vector p(t) at each in-

stant t by minimizing, in a likelihood sense [23], the following

expression:

pML3(t) = minp

{
nc∑

i=1

[Nm(Di, t) − N(Di,p(t))]2
}

(12)

where the time dependence of p within the expression (5) of

N has been pointed out, Di is the discrete drop diameter, and

minp is an operator returning the value of p corresponding to

the minimum of its argument.

The ML approach, as already mentioned, can be applied

to estimate only the parameter µ, exploiting the GM method

to evaluate the other parameters Nw and Dm [22]. Using the

formalism of (12), µ is derived as follows:

µML1(t) = min
µ

{
nc∑

i=1

[Nm(Di, t) − N(Di, µ(t))]2
}

. (13)

Consequently, the parameter vector p using the hybrid 1-D ML

technique (ML1) is

pML1(t) = [NwGM(t), DmGM(t), µML1(t)]
T

(14)

where DmGM and NwGM are derived from (7) and (8),

respectively.

C. Results

The goal of this section is to describe the differences and

the peculiarities of the RSD estimation methods so far exposed.

Past works have already discussed the errors associated to the

GM methods in estimating the RSD parameters of a Gamma

distribution on the basis of computer simulations (e.g., [26]

and [27]). In this section, we focused our attention to compare

the GM estimation method with the ML1 and ML3 methods.

Fig. 3. Scatter plots of the 15 710 estimated RSD parameters by means of the
moment method GM and the ML methods ML3 and ML1.

The latter comparison has been also tackled in [28] on different

disdrometric measurement.

Using the whole RSD time series available, Fig. 3 shows the

scatter plots of the estimated parameters Nw, Dm, and µ for

all the 15 710 samples using the GM, ML1, and ML3 methods.

These fitting methods have been tested on the entire data set and

not only on selected homogeneous RSD sequences since, as it

will be explained in the next section, our final goal is to repro-

duce some overall characteristics (e.g., the probability density

function (pdf) and the correlation properties of wet periods and

the intermittence properties of the rainfall phenomena) of the

measured disdrometer data.

Fig. 3 is completed by Fig. 4, which shows the distribution

of the three RSD parameters, obtained for the GM, ML1,

and ML3 methods, whereas the main statistical indicators of

these distributions have been listed in Table I. The plots of

Fig. 3 show a dispersion around the bisector line, indicating

that each implemented method provides a different estimate

of the Gamma RSD parameters. However, all methods tend

to agree on the result that the most probable values of Nw,

Dm, and µ in a typical southern British climate are about 103

to 103.5 m−3 · mm−1, 1 mm, and 0–5, respectively. Because

ML1 differs from GM only for the estimation of µ [see (11)

and (14)], in Figs. 3 and 4, we limit the comparison to this

parameter only. The GM–ML1 correlation diagram denotes a

high correlation coefficient of µ of about 0.9 (see the lower

right panel of Fig. 3). On the contrary, the correlation coefficient

results to be significantly less (about 0.5–0.7) when we compare

the estimates of µ and Dm from GM and ML3 (see left panels

of Fig. 3). Indeed, the comparison between GM and ML3 tends

to show relevant differences also for the other parameter Nw,

although it shows a high correlation coefficient of about 0.8 (see

the upper right panel of Fig. 3).

It is worth stating that a statistical χ test, based on the

analysis of the sum of the square differences (SSD) between

Nm(Di, t) and N(Di,pX), where X labels the adopted esti-

mation method (i.e., GM, ML3, and ML1), has proved for every

discrete instant t that the SSD of ML3 is always smaller than
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Fig. 4. Histograms of estimated parameters (top panel) log
10

(Nw),
(middle panel) Dm, and (bottom panel) µ by (gray bins) the ML1 method,
(white bins) the ML3 method, and (black bins) the GM method.

TABLE I
MEAN AND STANDARD DEVIATION OF RSD PARAMETER DISTRIBUTIONS

that of ML1 and much smaller than that of GM. This result is,

in a way, expected, as ML3 is based on the minimization of

the SSD with respect to all parameters, as in (12). On the other

hand, it means that the ML3 estimates of the RSD parameters

always provide a better fit of the measured RSDs with respect

to the other methods. To underline the discrepancies among

the estimation methods, some examples of measured RSDs

together with the best fitted Gamma distributions N(Di,pGM),
N(Di,pML1), and N(Di,pML3) are shown in Fig. 5. In each

subplot of this figure, the values of the rain rate both from the

measured RSDs, namely, Rm, using (3) and from the estimated

RSDs, namely, RX , where the m3.67 moment has been derived

from the best fitted RSD using the three methods, i.e., from

N(Di,pX(t)), have been emphasized. The plots of Fig. 5 high-

light how the ML3-estimated RSD curves tend to follow the

measured RSDs very closely, whereas the best fitted RSDs from

ML1 and GM show the tendencies to underestimate the peaks

Fig. 5. Examples of Gamma RSD fits at four different instants. Gray line
represents the measured RSD from the disdrometer, whereas the black solid
line, gray shade, and dashed black stand for the Gamma fit with parameters
estimated by means of GM, ML1, and ML3, respectively.

(this behavior is more accentuated for GM). On the other hand,

it seems that the ML3-estimated curves, when compared to GM

and ML1 and particularly for high values of Rm, are prone

to the underestimation of the measured RSD right tails. This

could be expected because the ML3 method takes into account

the entire RSD, whereas the ML1 and GM methods focus on

high-order moments that mainly depend on the tail of the RSD.

The latter correspond to larger raindrop diameters. However,

cases where the ML3 method overestimates the measured large

raindrop diameters and, accordingly, the rain rate are possible

(see, for example, the upper right panel of Fig. 5).

To quantify the discrepancies between the Gamma RSD

estimates and the measured RSDs, the rmse between Nm(Di, t)
and each retrieved RSD, expressed as N(Di,pX(t)), for each

diameter (channel) Di, has been computed as follows:

rmseX(Di)=


 1

ns

ns∑

j=1

[Nm(Di, tj) − N(Di,pX(tj))]
2




1

2

(15)

where ns = 15 710 is the number of discrete instants tj , ob-

tained from the disdrometer measurements, and the index i
ranges from 1 to the number of channels nc (see Section II).

Fig. 6 shows the behavior of rmseX , computed by (15),

versus the discrete drop diameters Di. Values of rmseML3

smaller than rmseML1 and rmseGM are noted up to Di about

0.9 mm; however, there are larger values of rmseML3 for larger

diameters beyond about 1 mm. For the latter large raindrop

diameters, the curves of rmseML1 and rmseGM appear very

close to each other, whereas for diameters lower than 0.9 mm,

rmseML1 is positioned between rmseML3 and rmseGM. The

analysis of Fig. 6 would imply that the ML3 estimation method

is an accurate technique for the overall measured RSD best
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Fig. 6. RMSE between the whole of 15 710 measured RSDs Nm and the fitted
ones N for each channel Di using the GM, ML1, and ML3 methods.

fitting, but not a good candidate for the computation of higher

moments of RSD where the larger diameters play a major role.

To confirm the previous consideration, the rain rates Rm,

RGM, RML1, and RML3 have been compared in terms of

correlation coefficients and rmse indicator. The latter has been

obtained by replacing, in (15), Nm and N with Rm and RX ,

respectively. We found values of 0.99, 0.99, and 0.78 for the

correlation coefficient and 0.14, 0.15, and 1.79 for the rmse for

GM, ML1, and ML3, respectively. As expected, nevertheless,

the ML3 method provides the best overall fitting of measured

RSDs (see Figs. 5 and 6); the respective estimated rain rate is

not in good agreement with the measured one. The failure of the

ML3 method to reproduce RSD high-order moments underlines

that, in most of the considered cases, the conjectured Gamma

distribution may not be the best choice for representing the

tails of the measured RSDs. As shown by Figs. 3–6, a good

compromise in terms of RSD shape and moment best fitting is

the use of the ML1 approach expressed by (14) because Nw and

Dm are estimated using relatively high-order moments (mainly

controlled by the tail of the RSD). A tentative to use other

RSD shapes such as the lognormal and Weibull RSDs has been

carried out without obtaining better results. The optimization of

the RSD analytical function form for the Chilbolton JWD data

set is worth of further investigation, which is, however, beyond

the scope of this paper.

IV. SYNTHESIS OF RSD TIME SERIES

Given the stochastic nature of the RSD, rainfall may be

thought of as a time signal of a random process [30]. It is

usually characterized by a significant space-time variability;

therefore, within a rainfall process, we can basically distinguish

two different macroscopic phenomena: the rain or wet periods

WP and the no-rain or dry periods DP .

To model this “intermittent” behavior, the rainfall random

process is supposed to be a renewal process, which is a gener-

alization of the Poisson process, the latter being a continuous-

time Markov process [31]. Within each WP , the time series

Fig. 7. General scheme of VARMS procedure, modeled as a semi-Markov
chain between two states with a holding time distribution fP and fG and a
transition probability pij .

of RSD parameters p(t) is modeled as a VAR process of

order L (i.e., the future time behavior is conditioned by L past

time), thus taking into account the correlation properties of the

RSD parameters. Indeed, the problem of modeling the RSD

parameters in the WP ’s with a VAR process has been already

tackled and described in [9] for L = 1 and for a different

parameterization of the RSD with respect to that used in this

paper. Here, we propose an extension and a generalization of

the approach adopted in that work.

On the other hand, within each DP , the void values of

RSD parameters p(t) have been considered to describe the no-

rain events. The overall procedure, named VARMS, is fully

described in the next subsections.

A. Intermittent Rainfall Random Process

The intermittent rainfall process can be modeled as a discrete

state machine switching between DP and WP states (see

Fig. 7). This process may be modeled as a Markov chain, which

is defined as a discrete-time stochastic process with the Markov

property [32]. A Markov chain describes at successive times the

states of a system. The changes of state are called transitions.

The Markov property means that the conditional probability

distribution of the state in the future, given the state of the

process currently and in the past, depends only on its current

state and not on its state in the past. In a word, a Markov

chain is memoryless. It is worth remarking that a Markov model

imposes the state duration to follow an exponential law [32]. In

particular, in a Markov chain, the probability that the machine

stays in the particular state k for a duration T is equal to f(T ) =
pT−1

kk (l − pkk), with pkk the probability to remain in state k
during two consecutive samples. The function f(T ) represents

then an exponential pdf of duration T in state k. To remove

this limitation when describing the rainfall intermittence, in the

VARMS approach, we have adopted a semi-Markov chain with

the two states the DP and WP states.

A semi-Markov chain is used to enable any possible duration

Td for the DP state and Tw for the WP state, described

by arbitrary pdfs f(Td) and f(Tw), respectively (see Fig. 7).

Table II lists the moments of measured WP and DP duration

pdfs, derived from the rain events defined as in Section II. From

this table, it is clear that the exponential pdf is only a crude
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TABLE II
MOMENTS OF THE MEASURED WET AND DRY PERIOD

DISTRIBUTIONS (EXPRESSED IN MINUTES)

TABLE III
RMSE VALUES BETWEEN THE BINS OF THE MEASURED AND

SYNTHESIZED DRY AND WET PERIOD DISTRIBUTIONS

Fig. 8. (Left panels) PDF and (right panels) CDF of (solid line) measured and
(dotted line) synthesized duration for (bottom panels) dry and (upper panels)
wet periods.

approximation (e.g., the measured mean is not equal to the

standard deviation).

The optimal pdf describing the measured WP and DP
duration distributions is assessed first by using an exponential

best fitting. Other probability distributions such as the Weibull,

the Gamma, and the Pareto pdfs have been also tested. The

latter pdf form for a generic duration T is

fP (T ) = a(ba) · T−(a+1), for T ≥ b (16)

where fP is the Pareto pdf. The rmse’s between the measured

and conjectured distributions for the WP and DP duration are

shown in Table III. The results in this table indicate that a Pareto

distribution for the WP duration Tw and the DP duration Td

provides a good agreement with respect to the measured pdfs.

This consideration, based on Table III, is confirmed by

Fig. 8, which compares the pdfs due to the generated and

measured WP and DP duration. The same figure shows the

corresponding cumulative distribution functions (cdfs) for a

better comparison. For WP and DP , the Pareto distribution is,

TABLE IV
PARAMETERS OF THE PARETO DISTRIBUTION OF DRY

AND WET PERIOD DURATION, RESPECTIVELY

respectively, in an excellent and reasonable agreement with the

measured WP and DP distributions. The optimal values for

(16) are given in Table IV. Accordingly, with the definition of

the Pareto distribution in (16) and the definition of WP and DP
given in Section II, the parameter b represents the minimum

duration of WP and DP (i.e., 12 and 2 min, respectively). The

transition matrix T of the semi-Markov chain between DP and

WP states is, by construction, a banded unit matrix [10], [32],

where pdd = 0 and pww = 0 are the probabilities to remain

into DP and WP states, respectively, whereas pdw = 1 and

pwd = 1 are the probabilities of transition for a DP to a WP
state and vice versa, respectively (see Fig. 7).

B. Raindrop Distribution Autoregressive Generation

When the semi-Markov discrete system is in the wet period

state, the three RSD parameters are generated through an appro-

priate VAR model. On the contrary, when the discrete system is

in the dry period state, we can consider that it generates null

rain rate samples for each of the RSD parameters (see Fig. 7).

In this section, we will describe the methodology developed

to synthesize (or generate, henceforth, used as synonymous)

the correlated time series of the three RSD parameters pX(t)
of the Gamma distribution N(Di,pX(t)), estimated by means

of the X method on the whole of the 15 710 values of pX .

To this aim, we assume, as in [9], that the stochastic process

governing the RSD variability can be modeled as a discrete

stationary VAR process. It is worth observing that, in our case,

unlike [9], the order L of the autoregressive process is set

to 7 rather than 1, and the analysis is carried out for all the

three RSD parameters rather than only on Nw and Dm. The

choice of the optimum order Lopt = 7 to generate realistic RSD

parameters will be motivated in Section IV-C.

Some details about the general case of VAR processes of

order L, named VAR3(L) in our case, are summarized in

Appendix B. The model of VAR3(Lopt) is given by

z(t) =

Lopt∑

i=1

D(i) · z(t − i) + ε(t) (17)

where z(t − i) is the synthesized time sequence vector z at the

ith time lag before, and the vector z(t) is related to the mean-

centered value of the synthesized RSD parameters p(t) through

a logarithmic relation, i.e.,

z(t) = ln [p(t)] − 〈ln [pX(t)]〉 (18)

where 〈ln[p(t)]〉 is the temporal ensemble mean of ln[p(t)].
The mean subtraction in (18) holds under the assumption,

valid in this paper, of considering the rainy events and then
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the RSD parameters p as a quasi-stationarity process. The

compact expression ln[p(t)] is equivalent to a column vector

[ln(Nw(t)) ln(Dm(t) ln(µ(t))]T . It should be noted in (18)

that µ may assume negative values (see the lower panel of

Fig. 4) so that the log transformation may fail. To avoid

this limitation, we have added to µ the absolute value of its

minimum so that the translated µ is positive defined (when

inverting (18), this translation must be corrected, of course).

In (17), the matrices D(i) are 3 × 3 autoregressive coefficient

matrices, whereas ε(t) is a (3 × 1) zero-mean Gaussian white

noise vector. The autoregressive coefficient matrices D(i) are

arranged in the coefficient matrix D, which has the following

expression:

D = S̃−1
zX(Lopt − 1) · S̃zX(Lopt) (19)

where S̃zX(Lopt) and S̃zX(Lopt − 1) are matrices formed

when the autocovariance matrix SzX(L) (3 × 3) is arranged

up to the time lag Lopt and Lopt − 1 respectively, as detailed in

(B7). The autocovariance matrix SzX(L) has been computed as

SzX(L) =
〈
zX(t) · zT

X(t − L)
〉

(20)

where zX = ln[pX(t)] − 〈ln[pX(t)]〉 is specified by the cho-

sen estimation method X . Once the coefficient matrices D(i)
are estimated through (19), the synthesized RSD parameter

vector p(t) can be recovered from the time series of z(t) by

simply inverting (18), i.e.,

p(t) = exp [z(t) + 〈ln [pX(t)]〉] . (21)

The choice of developing the VAR algorithm in (17) by

using the logarithm of p(t), instead of directly p(t), has been

prompted by the consideration that: 1) under the hypothesis

that the joint pdf of the estimated RSD parameters p follows

a lognormal distribution, the estimated zX(t) time sequence

follows a Gaussian distribution, and this is a characteristic

that is required to apply an autoregressive model under the

Gaussian hypothesis on ε(t); and 2) as shown in [30], the

rainfall process in logarithmic coordinates can be regarded as a

stationary Gaussian process. Indeed, the Gaussian assumption

on the RSD parameters in the logarithmic plane seems to be

confirmed by a visual inspection of the lower panel of Fig. 9,

where the marginal pdfs of the RSD parameters are shown.

To generate a time series of correlated RSD parameters

through the VARMS scheme of Fig. 7, (17) has to be iterated

for a given number of time steps. The number nt of steps

is provided, every time the RSD generator is in a wet state,

by a value extracted from the Pareto duration distribution,

as discussed in Section IV-A.

C. Results

In this section, the overall performances of the proposed

model VARMS are shown and discussed.

To generate a set of synthesized RSD samples by means

of (17), the coefficient matrices D(i) and the autocovariance

matrix Sε of the white noise vector in (17) have been evaluated

using the Chilbolton JWD data set. The choice to drive the

Fig. 9. (Upper panels) Autocovariance functions of RSD parameters esti-
mated by the ML1 method and (gray line) rain rate superimposed to (black
lines) the synthesized ones obtained by VARMS for different orders L of
VAR3(L) ranging from 1 to 8. (Lower panels) Distributions of synthesized
and estimated RSD parameters and rain rate.

VAR3(L) process using the whole WP data set is motivated

by three main considerations.

1) About 98% of U.K. RSD parameter samples are classified

as stratiform (i.e., they belong to the same type of rainfall

process) when the classification procedure detailed in

[22] is applied.

2) We tested the VAR3(L) process by using only a single

WP sequence of RSD parameters; however, the obtained

results were worse than those presented later in this

section.

3) To account the different types of rainfall processes, main-

taining the same approach here adopted, the complexity

of the semi-Markov chain shown in Fig. 7 should be

increased.

For example, we could split up the WP state in three or more

states (e.g., the stratiform, the convective, and the hybrid rain

state [33]), calculate the probabilities of transition from one

state to another one, and, for each state, drive the VAR3(L)
process with homogeneous preclassified RSD sequences.

However, this possible improvement is beyond the scope of

this paper.

The ML1 estimation method has been used to drive the

VARMS tool and then generate 720 000 samples to synthe-

size WP and DP of the rainfall process. In addition, for

each wet state of the VARMS, the synthesized wet period of

p(t) has been computed for different orders L, ranging from

1 to 8, of the VAR3(L) process. In this numerical experiment,

which lasted a few minutes with a commercial computer,

90 236 WP samples of p(t) for each of the considered values

of L, and of z(t) through (18), have been extracted from the

whole sequence of 720 000 generated samples. The percentage

of wet periods (about 12%) is fairly well reproduced with

respect to the estimated ones (about 10%: see Section II).
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TABLE V
RMSE VALUES BETWEEN ESTIMATED AND SYNTHESIZED

AUTOCOVARIANCE FUNCTIONS OF RSD PARAMETERS AND RAIN RATE

To choose the optimal order Lopt of the VAR3(L), the auto-

covariance functions of the estimated RSD parameters pML1

and the synthesized ones p(t), for different orders L, have

been compared, as shown in the upper panels of Fig. 9. From

these plots, it seems that, as the order L increases, the auto-

covariance functions of the synthesized RSD parameters and

the rain rate tend to approach the measured ones, particularly

for their RSD tails. This behavior is partially confirmed by

looking at the rmse’s, given in Table V, between the esti-

mated and synthesized curves, depicted in the upper panels of

Fig. 9. The minimum discrepancy, in terms of rmse, between

the measured and synthesized autocovariance functions of all

the RSD parameters and the rain rate has been found for the

order of the VAR process L = 7. The error analysis performed

on the corresponding rain rate has confirmed the same trend.

As a result of this comparison, Lopt has been set to 7. This

behavior confirms the qualitative good agreement between the

measured and synthesized autocovariance functions, plotted in

the upper panels of Fig. 9. The autocovariance function of µ
sharply decreases between lag 0 and lag 1 that corresponds

to a time lag of 2 min. This behavior indicates that, for the

U.K. disdrometer data, there is a significant variability of µ
within a 2-min lag with respect to the other RSD parameters.

If the RSD data are processed so that the time sampling of the

RSD spectra is degraded to 1 min, the high variability of µ is

confirmed as well. The lower panels of the same figure show

the comparison between the estimated distributions of the RSD

parameters and the synthesized ones for the orders of the VAR

process L = 1 and L = 8. This figure suggests an acceptable

agreement between the estimated and synthesized distributions

of all quantities independently from the values taken from L.

On the whole, Fig. 9 seems to indicate that orders L of the

VAR process higher than 1 can only improve the correlation

characteristics of the synthesized time series with respect to the

estimated ones, but with a scarce influence on their probability

distributions.

As a further comparison between estimated and synthesized

characteristics, Fig. 10 shows the scatter plots between the

90 236 generated samples (associated to L = 7) of the com-

ponents of p(t) superimposed to the pML1(t) ones for the

whole of the 15 710 selected instants (see Section II). From this

figure, an overall good agreement between the estimated and

synthesized Dm and log10(Nw) is noted. The other correlation

diagrams, representing Dm against µ and log10(Nw) against µ,

Fig. 10. Scatter plots between (top panel) mean diameter Dm and log
concentration log10(Nw), (middle panel) mean diameter Dm and shape pa-
rameter, and (lower panel) log concentration log

10
(Nw) and shape parameter

µ. Gray crosses are measured samples, whereas black dots indicate synthesized
samples.

seem to confirm the capability of RSD generation to reproduce

the measurement domain.

Summarizing the scheme in Fig. 7, the VARMS approach

of the Gamma RSD parameter time series consists of the

following steps.

1) Define a total duration Ts of the RSD parameter synthetic

generation.

2) Start with a dry period DP , extracting a realization of Td

from (16) and setting p(t) equal to void values at each

instant within this dry period.

3) After the period Td, extract a realization of Tw from (16)

with its proper WP coefficient values to determine the

wet period WP duration.

4) Within WP , use (20) to set up all unknown matrices to

apply (17) and determine z(t) by means of the VAR3(7)
algorithm.

5) Convert z(t) into p(t) through (21) for each instant

belonging to WP .

6) At the end of WP , go to step 2 until the sum of previous

Td and Tw is larger than Ts.
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Fig. 11. Example of synthesized RSD parameters and rain rate by using
VARMS and the ML1 approach for RSD parameter retrieval. From the top to
the bottom panels, a realization for each of the synthesized RSD parameters
log10 Nw , Dm, µ, and the synthesized rain rate is shown.

An example of a synthesized time series of the Gamma

RSD parameters Nw(t), Dm(t), and µ is shown in Fig. 11

together with the derived rain rate time series. The synthesized

rain rate has been estimated by using (3) and by considering,

in (4), N(D,pML1) in place of Nm. Fig. 11 is calibrated on

available Chilbolton time-series JWD data and is derived from

the ML1 approach for RSD parameter retrieval. Of course, the

same VARMS methodology can be applied to any available

disdrometer data set and with any method to estimate RSD

parameters from disdrometer data.

V. CONCLUSION

A large set of Joss–Waldvogel impact disdrometer measure-

ments, collected from 2003 to 2005 at Chilbolton, U.K., have

been analyzed in this paper. The RSD derived from previous

measurements has been approximated by means of the well-

known normalized Gamma distribution. The driving parameters

of the latter have been estimated using three methods. The

first one is based on the consolidated GM approach, whereas

the second and third ones are founded on the ML procedure

in 1-D or 3-D configuration, respectively. The results of the

comparison between these three RSD estimation methods have

shown that they may lead to quite different results, particularly

when one is interested in evaluating RSD higher order moments

such as the rain rate. Based on this RSD estimation, a stochastic

VAR model has been developed to randomly synthesize (gen-

erate) temporal series of normalized Gamma RSD parameters.

To account for rainfall intermittence, a two-state semi-Markov

chain has been modeled from measurements using two-state an-

alytical statistics of rain- and dry-period duration. The accuracy

of the overall methodology, named VARMS, has been evaluated

on Chilbolton data, providing excellent statistical scores.

This stochastic RSD generation tool may find useful appli-

cations in hydrometeorology and radio propagation (e.g., [6]

and [9]). The ambition of VARMS is to provide an easy tool,

fully documented, to generate the time series of realistic RSDs

to, for example, simulate polarimetric radar observables (e.g.,

reflectivity, differential reflectivity, linear depolarization ratio,

specific differential phase) and/or radio propagation parameters

(e.g., specific attenuation and differential attenuation, cross-

polarization phase shift) by using a rain scattering and ab-

sorption model. In addition, the use of VARMS together with

further development, based on spectral approaches, will make

it possible to extend the RSD generation to a spatial case or a

2-D case.

APPENDIX A

DISDROMETER MEASUREMENTS

A brief description of the JWD instrumentation, the mea-

surement process, and the performed data processing is here

provided.

A disdrometer is an instrument designed to measure RSDs.

There are various classes of disdrometers, including optical

beam devices [11], video devices [12], and impact disdrom-

eters [13], [14]. The latter is known as JWD too. The JWD

RD-69 type [15], which is exploited in this paper, consists of

two units the sensor, which is exposed to the rain, and the

processor for analog processing and digitizing of the sensor-

measured information.

The sensor transforms the mechanical momentum of an im-

pacting drop into an electric pulse, whose amplitude is roughly

proportional to the mechanical momentum. The sensor consists

of an electromechanical unit and an amplifier housed in a

common case. A conical Styrofoam body is used to transmit

the mechanical impulse of an impacting drop to a set of two

moving coil systems in magnetic fields. At the impact of a

drop, the Styrofoam body together with the two coils moves

downward, and a voltage is induced in the first sensing coil.

This voltage, which is also the output information, is amplified

and applied to the second driving coil, producing a force that

counteracts the movement. As a consequence, the excursion is

very small, and it takes very little time for the system to return

to its original resting position and, therefore, to get ready for the

next impact of a drop. The voltage amplitude of the pulse at the

amplifier output is a measure for the size of the drop that caused

it, and it is related to the drop diameter with the following

relation [16], [17]:

VL = k · Dn (A1)
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where D is the drop diameter in the range 0.5–5 mm, VL is

the output voltage, and k and n are the calibration constants.

A usual value for k is 0.02586, and a usual value for n ranges

between 3.1 and 4.3 [17]. Afterward, a pulse height analyzer,

embedded in the processor unit, classifies the peaks amplitude

VL and, accordingly, the impacting drop diameters into nc

classes (sometimes named channels or bins or size category)

whose boundaries are specified by the following law:

Dci =

[
10{1−α·(nc−i)}

γ

]β

(A2)

where Dci is the lower boundary of the channel ci, the index i
assumes values from 1 to nc, α = 0.014253, β = 0.6803, and

γ = 0.94. In this way, small drop diameters are classified

by means of a fine channel with respect to the large ones.

When raindrops fall on the sensor surface, the JWD records

the number of counts in each of the nc channels for a given

averaging period.

APPENDIX B

RSD AUTOREGRESSIVE PROCESS

In this appendix, we provide a brief overview of the au-

toregressive process theory to explain the expressions of the

coefficient matrix (19) and error covariance matrices.

The general expression of an autoregressive model of order L
allows predicting the actual observation as a linear combination

of the L past observations plus a random error as follows:

z(t) =
L∑

i=1

D(i) · z(t − i) + ε(t) (B1)

where the vector z(t) is the (k × 1) predicted zero-mean vector

at the instant t, L is the order of the autoregressive process,

D(i) are (k × k) autoregressive coefficient matrices, ε(t) is a

(k × 1) zero-mean Gaussian white noise vector, which repre-

sents the part of z(t) that is not linearly dependent on L past

observations z(t − i), and k is the number of variables that have

to be generated. Equation (B1) expresses the general form of the

k VAR process of order L [VARk(L)]. Knowing the matrices

D(i) and the Gaussian white noise ε(t), we can generate the

correlated sequence z(t) at each desired instant. To calculate

D(i) and ε(t), the estimated sequence zX , from which we want

to extract the correlation structure and then generate correlated

RSD parameter realizations, has to be exploited. As specified

in Section IV-B, zX(t) is the logarithm of the instantaneous

vector of the RSD parameters, estimated by the X method,

where X = ML1, ML3, or GM. Therefore, the calculus of D(i)
and ε(t) can be done replacing in (B1) z(t) with zX(t) and

rewriting (B1) as follows:

ε(t) =

L∑

i=0

(−D(i)) · zX(t − i) (B2)

where D(i) is equal to the integer −1 when i = 0. Multiplying

both terms of (B2) by zX(t − h) (with the shift h > 0) and

applying on them the temporal average operator 〈·〉, we obtain

the following equation:

〈
ε(t) · zT

X(t − h)
〉

=

L∑

i=0

(−D(i)) ·
〈
zX(t − i) · zT

X(t − h)
〉

(B3)

where the symbol T indicates matrix transposition. Assuming

that the zero-mean Gaussian white noise ε is uncorrelated at

different time lags, or, equivalently, assuming that its auto-

covariance matrix at the generic lag h, i.e., Sε(h), can be

expressed by

Sε(h) =
〈
ε(t) · εT (t − h)

〉
=

{
Sε(0) for h = 0
0 for h �= 0

(B4)

then the first term in (B3) can be set to zero. Therefore, (B3)

becomes

L∑

i=0

(−D(i)) · ST
zX(h − i) = 0 (B5)

where SzX(h − i) is the autocovariance matrix of zX(t) at lag

(h − i) computed as in (B4), but replacing ε(t) with zX(t)
and where the property SzX(i) = ST

zX(−i) has been exploited.

Varying the indexes i and h from 0 to L in (B5), we obtain an

equation system that can be written in a matrix form as follows:

S̃zX(L) = S̃zX(L − 1) · D (B6)

where D, S̃zX(L), and S̃zX(L − 1) are given in (B7), shown

at the bottom of the page.

D =




D(1)
D(2)
...

D(L)




kL×k

S̃zX(L) =




ST
zX(1)

ST
zX(2)

...

ST
zX(L)




kL×k

S̃zX(L − 1) =




SzX(0) SzX(1) · · · SzX(L − 1)
ST

zX(1) SzX(0) · · · SzX(L − 2)
...

...
. . .

...

ST
zX(L − 1) ST

zX(L − 2) · · · SzX(0)




kL×kL

(B7)
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At this point, from (B6), taking the inverse matrix of

S̃zX(L − 1), the autoregressive coefficient matrix is de-

rived from

D = S̃−1
zX(L − 1) · S̃zX(L). (B8)

We observe that when L = 1, D reduces to D(1), S̃zX(L −

1) reduces to SzX(0), and S̃zX(L) reduces to ST
zX(1), and only

the autocovariance matrix of zX(t) at lags 1 and 0 has to be

computed as

D(1) = S−1
zX(0) · SzX(1). (B9)

The final step to describe the autoregressive generation

process concerns the modeling of the white noise ε(t) that must

have a zero mean to generate a vector time sequence with an

autocorrelation structure similar to the measured one. If we

consider the case h = 0 in (B3), we can rewrite it as follows:

〈
ε(t) · zT

X(t)
〉

=
L∑

i=0

(−D(i)) ·
〈
zX(t − i) · zT

X(t)
〉
. (B10)

Substituting (B1) with zX(t), exploiting the properties of

ε(t) and the definition of autocovariance matrix as in (B4) for

the vector zX(t), (B10) transforms as follows:

Sε(0) =

L∑

i=0

(−D(i)) · SzX(i). (B11)

In case of VARk(1), Sε(0) takes the following simplified

form:

Sε(0) = Sz(0) − D(1) · SzX(1). (B12)

In summary, to synthesize a vector sequence z(t), which

shows the same time correlation properties as a given set of

estimated data zX(t), we have to compute the autocovariance

matrix of zX(t) at different lags L, i.e., SzX(L). Then, we have

to apply (B8) and (B11), and, finally, compute (B1) for a desired

number of iterations. In this paper, all 15 710 estimated RSD

samples of zX(t), described in Section III, have been exploited

as measured data to compute the autocovariance matrix at lags

from 0 to L = 8. Eventually, we can provide VAR matrix details

for the special case of L = 1 order, assumed as a reference

framework in [9]. The autoregressive coefficient matrix D and

the error covariance matrix Sε(0) for L = 1 are

D(1) =




0.7794 −0.4069 −0.1410
0.0129 0.9093 0.0345
−0.0674 −0.0637 0.7335


 (B13a)

Sε(0) =




0.3461 −0.0510 0.0972
−0.0510 0.0229 −0.0326
0.0972 −0.0326 0.2460


 (B13b)

〈ln [p(t)]〉 =




7.8686
0.1063
2.2720


 (B13c)

where the mean vector is needed to reconstruct (17).
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