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Analysis and Synthesis of Speech using an

Adaptive Full-band Harmonic Model
Gilles Degottex and Yannis Stylianou

Abstract—Voice models often use frequency limits to split the
speech spectrum into two or more voiced/unvoiced frequency
bands. However, from the voice production, the amplitude
spectrum of the voiced source decreases smoothly without any
abrupt frequency limit. Accordingly, multiband models struggle
to estimate these limits and, as a consequence, artifacts can
degrade the perceived quality. Using a linear frequency basis
adapted to the non-stationarities of the speech signal, the Fan
Chirp Transformation (FChT) have demonstrated harmonicity
at frequencies higher than usually observed from the DFT
which motivates a full-band modeling. The previously proposed
Adaptive Quasi-Harmonic model (aQHM) offers even more
flexibility than the FChT by using a non-linear frequency basis.
In the current paper, exploiting the properties of aQHM, we
describe a full-band Adaptive Harmonic Model (aHM) along
with detailed descriptions of its corresponding algorithms for
the estimation of harmonics up to the Nyquist frequency. Formal
listening tests show that the speech reconstructed using aHM is
nearly indistinguishable from the original speech. Experiments
with synthetic signals also show that the proposed aHM globally
outperforms previous sinusoidal and harmonic models in terms
of precision in estimating the sinusoidal parameters. As a per-
spective, such a precision is interesting for building higher level
models upon the sinusoidal parameters, like spectral envelopes
for speech synthesis.

Index Terms—Voice model, sinusoidal model, harmonic model,
non-stationary

I. INTRODUCTION

Sinusoidal and harmonic models aim to represent the speech

signal with a set of parameters such as frequencies, amplitudes

and phases [1], [2]. These models have been widely used in

speech coding and synthesis [3], speech enhancement [4], for

hearing aids [5] and voice transformation [6]. Additionally, the

parameters can be used to build higher-level representations

like spectral envelopes [7], [8], [9] or to estimate glottal source

characteristics [10]. However, for this purpose, the accuracy

and precision of the model parameters are key issues. A

representation that reproduces sounds perceived as being of

sufficient quality is another key issue.

Sinusoidal and harmonic models are mainly designed for

representing the periodic (or deterministic) part of speech.

In order to model the non-deterministic part of speech, these

models often employ a random component [2]. Alternatively,

the voiced speech spectrum can be represented using multiple

bands, with some bands representing the deterministic part
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and others the non-deterministic part of speech using noise

components [11], [12]. Simpler models have also been sug-

gested in which the spectrum is split into two bands separated

by the so-called maximum voiced frequency [13], [6]. The

lower and higher bands are used for the deterministic and the

non-deterministic components, respectively. For all multiband

models, the reliable estimation of the voicing frequency limits

are critical to avoid artifacts and provide a sufficient perceived

quality of the synthesized sound. The need of frequency

limits is however questionable for the following reasons. The

voiced source is made of glottal pulses that are basically

wideband signals whose amplitude spectrum is known to

decrease smoothly [14], [15]. Thus, from the point of view of

the voice production, there is no reason to abruptly low-pass

the deterministic component of the voice. Additionally, the

following observation support the presence of harmonic and

deterministic content higher than usually observed with the

DFT. In voiced segments, the speech signal is usually assumed

to be stationary in a small analysis window (≈ 3 pitch periods).

At low frequencies, this hypothesis is fairly acceptable because

the variations of the fundamental frequency, f0, of the glottal

source are negligible compared to the stationary basis of the

Discrete Fourier Transform (DFT). However, the variations

of f0 are proportional to the harmonic number. The non-

stationarity of the voiced signal is therefore highly increased

as frequencies increase, making the validity of the stationarity

hypothesis questionable for mid and high frequency bands.

In order to alleviate this problem of modeling sinusoidal

non-stationarities, the Fan Chirp Transform (FChT) has been

suggested that uses a chirp related frequency basis (i.e. linear

frequency trajectories) adapted to the input signal [16]. Figure

1 shows the spectrograms of a short segment of voiced speech

obtained by the DFT (left) and FChT (right) Although the

low-frequencies in the DFT-based spectrogram seem to have

a regular structure, this is not true for the frequencies around

3000 Hz where the frequency content is blurred. On the other

hand, using the FChT, a regularity in the frequency content can

be observed across all of the frequencies. This observation

suggests that current voice models often underestimate the

voicing frequency and a harmonic representation could be

appropriate for both low and high frequencies.

Following the arguments above, we seek to use a full-

band harmonics only representation of the speech spectrum.

However, instead of relying on a chirp frequency basis, as

in the FChT that limits the frequency tracks to linear time

evolution, we suggest relying on a more flexible frequency

model. For sinusoidal analysis, the Adaptive Quasi-Harmonic

Model (aQHM) has been already suggested in which the
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Fig. 1. Time-frequency segments of spectrograms using DFT and FChT. The
FChT clearly reveals a harmonic structure in high frequencies which does not
appear using the DFT.

frequency basis uses adaptive quasi-harmonic tracks based on

an f0 trajectory measured from the observed signal [17], [18].

As well as in FChT, this adaptivity allows for a non-stationary

representation of the frequency components. However, it is

not limited to linear trajectories, as is the case for FChT. By

means of interpolation of anchor points, the adapted basis can

follow any non-linear variations in the frequency modulations

of the underlying signal. However, the estimation of aQHM

parameters up to the Nyquist frequency is not straightforward.

Indeed, aQHM assumes that the initial frequency tracks are

in a restricted interval around the actual values [19], [17].

Thus, any potential error in the f0 trajectory is multiplied

by the harmonic number. For example, an error in the initial

estimation of f0 of only 1Hz at 100Hz results in an error

of 50Hz at the 50th harmonic. This error is half of f0,

thus placing the 50th harmonic exactly halfway between two

harmonics and outside of any reasonable interval for possible

correction of frequency, as is necessary in the aQHM scheme.

Furthermore, this generates a frequency matching problem, i.e.

an ambiguity in terms of the connection between frequency

components from neighboring frames. A correct frequency

matching is, however, quite vital in order to preserve the

quality of the reconstructed signal, especially when this is

applied during the analysis stage as for aQHM. Consequently,

from a point of view of either analysis or synthesis, an accurate

f0 estimate is critical in order to localize harmonic content in

the high frequencies of the speech spectrum.

In [20], we recently suggested revisiting the simple har-

monic model using adaptivity and full-band representation.

This model was referred to as the Adaptive Harmonic Model,

aHM. Additionally, regarding the potential error in f0 leading

to wrong localization of sinusoidal components as discussed

above, an iterative algorithm had been also proposed in [20],

called Adaptive Iterative Refinement (AIR), to allow a robust

estimation of harmonic components up to the Nyquist fre-

quency. In the current paper, we detail the technical description

in order to facilitate the reproduction of the results and we

present the results of a new comprehensive evaluation which

should help to better understand both the model aHM and

the algorithm AIR. Indeed, in the current paper, we estimate

the accuracy and precision of the model parameters using

synthetic signals in order to assess the advantage of these

parameters before building higher-level models (e.g. spectral

envelope). Then, we discuss also The Signal-to-Reconstruction

Error Ratio (SRER) for both voiced and unvoiced segments.

Finally, we present the results of two new listening tests in

order to widen the number of existing state-of-the-art methods

for comparison.

The basic idea of the algorithm AIR is the following. It

starts by first modeling the lowest harmonics, where errors in

the f0 measurements can easily be corrected by the correction

mechanism of QHM [19]. Next, the harmonic order of the

model is iteratively increased by a continuous refinement of

the f0 trajectory. Consequently, the quasi-harmonicity is still

used as a tool to estimate the adaptivity even though the

quasi-harmonicity is not kept at the final speech representation

of the suggested model. Strict harmonicity is thus used as

a constraint in aHM in order to avoid ambiguities during

frequency matching. Compared to other approaches for speech

modeling (e.g. mixed excitation models, multi-band models,

HNM [2]), aHM does not use a random component in voiced

segments. Moreover, since aHM covers the whole spectrum

and its frequency basis is not constrained to linear trajectories,

it might also represent unvoiced segments properly. Thus,

aHM can be used, and is used in this work, for the entire

speech signal, whether or not the analyzed segment is voiced.

Consequently, the suggested analysis/synthesis procedure does

not need any detection of voiced/unvoiced transitions.

In the following paper, the description of aHM-AIR is split

into two parts: Section II first describes the mathematical

background and Section III then provides all of the technical

details. The evaluation follows in Section IV with the neces-

sary discussions and conclusions at the end of this document.

II. THEORETICAL BACKGROUND

Given the speech waveform s(t), we first assume that its

fundamental frequency curve f0(t) is known a priori, though

we consider that there is a potential error on this curve. Then,

in a single window of 3 pitch periods, we suggest using the

following adaptive Harmonic Model (aHM) to represent the

speech signal:

s(t) = 2ℜ
(

K
∑

k=1

ak(t) · e
jkφ0(t)

)

(1)

where ak(t) is a complex function of time representing both

the amplitude and the instantaneous phase of the kth harmonic

and φ0(t) is a real function defined by the integral of f0(t):

φ0(t) =
2π

fs

∫ t

0

f0(τ)dτ (2)

where the time reference t = 0 is the center of the window,

and fs denotes the sampling frequency. According to the

adaptive scheme proposed in [17], ak(t) and f0(t) are obtained

by interpolating values aik and f i
0 at specific instants ti,

termed anchor values in the following. The suggested method

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2266772

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

therefore provides estimates of these anchor parameters, which

are assumed to be sufficient for the complete representation of

the speech signal. The number of anchors has to be properly

chosen. Indeed, too many anchors may overfit the signal and

represent variations which are not related to a deterministic

component in voiced segments. Such a behavior is meaningless

for statistical modeling and may cause the voice characteristics

to be difficult to control in voice transformation. On the other

hand, underfitting the signal using too small a number of

anchors must also be avoided. Assuming that, for speech, the

frequency modulation is related to a change of pulse duration

and not to any modulation inside a single pulse, one anchor

per period should be sufficient. Even though the position of the

anchors could play a role in the quality of the resynthesized

sound, addressing the optimization of the anchor positions

would overcharge this presentation and we expect this subject

will be therefore addressed in future works. At the moment,

we consider a pitch synchronous analysis in which the distance

between anchors respects an input f0 curve.

To estimate the aHM parameters in a robust way with

the presence of potential fundamental frequency estimation

errors, we will use the frequency correction mechanism of the

adaptive Quasi-Harmonic Model (aQHM) [19]. This model is

similar to the previous one:

x(t) =

K
∑

k=1

(ak + tbk) · e
jkφ0(t) (3)

where x(t) is the modeled analytic signal of the speech

waveform, φ0(t) is still defined by equation (2) and ak, bk are

complex values that are constant in the window (in contrast

to ak(t)). To estimate the parameters ak, bk, we minimize

the following squared error by discrete sampling between the

windowed speech segment s[n] and its model x[n] (eq. 3):

ǫ =

N−1
∑

n=0

(s[n]− x[n])2 (4)

where N is the number of samples in the analysis window.

The solution of this minimization problem can be found in

[21, p.12]. As it has been shown in [19], ak, bk can be used

to estimate the frequency correction of stationary components.

Specifically, for each frequency component, a correction term

can be computed as:

dfk =
fs
2π

·
ℜ(ak)ℑ(bk)−ℑ(ak)ℜ(bk)

|ak|2
(5)

where ℜ(.) and ℑ(.) denote the real and imaginary parts,

respectively. Using this correction, each anchor frequency f i
0

can be iteratively refined. The initial guess, however, has to

be in a reasonable interval around the actual frequency, and

the bandwidth of the main lobe of the analysis window can

be used to define this interval [19]. The basic idea of the

proposed iterative algorithm is the following. For a single

analysis window, we first assume that the initial predicted

frequencies fk = k · f0 for a small number of harmonics, K,

(e.g. 4) are close enough to the actual frequencies of the signal.

This means that we assume the initial pitch estimate is free

of octave errors. Then, estimating the parameters of equation

(3), the correction term related to the fundamental frequency

fcorr can be estimated as the mean of the correction terms dfk
relative to f0:

fcorr =
1

K

K
∑

k=1

dfk/k (6)

The number of harmonics K can then be updated, taking into

account this fundamental correction fcorr. Indeed, if |fcorr| is

low, the current set of K harmonics converges to the actual

values. We can therefore assume that a few harmonics above K
are now in a reasonable interval around their actual frequencies

and K can thus be increased. To control the number of new

harmonics added at each iteration, we propose linking K
to fcorr in the following way. We first assume that the f0
error remaining to be corrected is smaller or equal to fcorr.

Therefore, the highest predicted harmonic frequency inside an

interval of size 2Nw around the actual frequency is:

K = ⌊Nw/|fcorr|⌋ (7)

According to [17], equation (5) holds only if the frequency

to be corrected lies in a reasonable interval around the actual

frequency. According to experiments, the size of this interval

is about Bw/3 where Bw is the bandwidth of the squared

window’s main lobe [17]. Additionally, the highest frequency

of the new set of harmonics has to be closer to its actual

frequency than one of its neighboring frequencies (which are

located 0.5·f0 around the actual frequency). Consequently, we

chose Nw as the minimum between Bw/3 and 0.5 · f0. Using

(7), the initial number of harmonic K can also be chosen based

on an assumed initial fundamental error (e.g. 20 Hz). Using the

mechanism of frequency correction of aQHM, |fcorr| will be

reduced progressively along the iterations and K will thus be

increased up to the Nyquist frequency.

III. METHOD

In this section, we describe the whole analysis/synthesis pro-

cedure. Compared to [20], we globally detail the description

and comment on the stopping criterion as describe below. Note

that the Matlab code of both analysis and synthesis is available

on the following web-page:

http://gillesdegottex.eu/ExDegottexG2013jahmair

A. Analysis

Analysis consists of the parametrization of the speech signal

at an analysis instant ti based on (1). A sequence of instants is

thus first created using the provided f0(t) curve, for example:

ti+1 = f0(ti)
−1 + ti and t0 = 0. In unvoiced segments,

even though the estimated f0(t) does not have a particular

meaning, it is used nevertheless to generate analysis instants.

In some speech segments, like in plosives, the time amplitude

envelope can vary quickly. A minimum density of anchors

has thus to be ensured in order to model properly this time

variation. In the current implementation, we limit the distance

between two anchors to a maximum of 20ms and we thus

clip the provided f0(t) curve to a minimum value of 50Hz.

Around each anchor time ti, a Blackman window 3 local

pitch periods long is applied to the speech signal. φ0(t) is
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then computed by means of numerical integration and linear

interpolation of f i
0 (eq. 2). The parameters aik, b

i
k of the ith

frame are computed using the LS solution of (4), as well as

the frequency correction dfk and the fundamental correction

fcorr (eq. 6). The number of harmonics for that frame, Ki

is then updated using (7). Finally, the process is repeated for

all frames until the Nyquist frequency is reached for all the

frames. Algorithm 1 summarizes the analysis procedure.

Algorithm 1 Adaptive Iterative Refinement for aHM

Create a sequence of analysis instants ti according to f0(t)
Initiate each f i

0 = f0(ti)
Initiate each Ki using fcorr = 20Hz and (7)

while ∃i such as f i
0 ·K

i < fs/2 do

Compute φ0(t) using (2) and interpolation of f i
0

for each anchor c do

Create a segment of 3 periods around tc using f c
0

Compute LS solution (ack, b
c
k) of (eq. 4)

Compute dfk (eq. 5) and fcorr = mean(dfk/k)
Correct f ′c

0 = f c
0 + fcorr

if f c
0 ·Kc < fs/2 then

Update Kc = ⌊0.5 ·Nw/|fcorr|⌋
end if

end for

Set f i
0 = f ′i

0 ∀i
end while

In the above algorithm (AIR), the following three points

also have to be considered:

1) Consistency of the correction terms: A dfk term whose

harmonic lies in a frequency band made of noise cannot be

interpreted as frequency correction. It is therefore necessary to

check the consistency of the dfk values and ignore those which

may degrade the f0 curve instead of refine it. Any dfk term

which does not satisfy the following three tests is discarded

from the computation of fcorr (eq. 6): One, |dfk| has to be

smaller than f0/2, otherwise two components may be close to

each other turning the LS solution unstable. Two, kf0+dfk has

to be higher than 50Hz, this limit is assumed to be a minimum

for f0. Three, according to [17], dfk has to be smaller than

Bw/3 where Bw is the main lobe’s bandwidth of the squared

window. Finally, the median value is also used to compute the

fundamental correction term in (6) in order to avoid remaining

outliers in the distribution of corrections.

2) Stopping criterion: Even though Algorithm 1 stops

when the model is full-band, extra iterations may still improve

the representation of the signal. In the current implementation,

the iterations stop when the following two convergence crite-

ria are met: i) the correction at the highest harmonic level

K · |fcorr|, has to be smaller than 10% of f0 to ensure that

the modifications of the frequency grid are negligible and ii)

the maximum improvement of Signal to Reconstruction Error

Ratio (SRER) for all of the frames is smaller than 0.1 dB.

3) Final iteration: Finally, Algorithm 1 provides param-

eters of aQHM and not aHM, the former having bigger

flexibility than the latter because of the quasi-harmonicity

in aQHM. Consequently, in order to ensure the consistency

between the analysis and the synthesis models, the aHM model

is used in the last iteration.

B. Synthesis

The synthesis procedure generates each harmonic succes-

sively (1) for the whole signal, without the use of any synthesis

window [20]. Below, we describe the way to generate each

harmonic from its estimated parameters, namely its amplitudes

|aik|, its phases ∠aik and the fundamental frequency f i
0.

First, the instantaneous amplitude |ak(t)| is simply obtained

by means of linear interpolation across time of the anchor

amplitudes |aik| using a logarithmic scale. The instantaneous

phase ∠aik cannot be interpolated like the amplitudes because

of the linear phase term related to the time advance between

each anchor instant. Consequently, we suggest first removing

this time advance using the integral of f0(t) (eq. 2 with t = 0
at the start of the signal and f0(t) being obtained by linear

interpolation of f i
0):

∠ãik = ∠aik − kφ0(ti) (8)

With this preprocessing, the phase values change smoothly

from one anchor to the next if the shape of the signal is also

changing smoothly. ∠ãik can then be interpolated to obtain

its continuous counterpart ∠ãk(t). In order to avoid phase

jumps in the interpolation (e.g. between −π and π), real and

imaginary parts of ej·∠ãi

k are interpolated independently and

the interpolated values are recovered through the arctangent

function. Additionally, a spline or cubic interpolation is nec-

essary so that the time-derivative of ∠ãik, i.e. the frequency,

is still continuous. Finally, φ0(t) is obtained using (2) (t = 0
being the start of the signal) and ak(t) is |ak(t)| · e

j∠ãk(t).

All harmonics are finally summed as in (1) while discarding

time segments of harmonics whose frequency are above the

Nyquist frequency.

IV. EVALUATION

In this section, we evaluate the suggested method aHM-AIR

by making comparisons with state-of-the-art methods. Before

evaluating the whole analysis/synthesis procedure, some com-

ments are first given about the number of parameters used in

aHM and the other methods. Then, we evaluate the relevance,

i.e. accuracy and precision, of the model parameters estimated

during the analysis step using synthetic signals. Since we

designed the estimation algorithm to be robust against an error

in the estimated fundamental frequency f0, the accuracy and

precision of the methods are evaluated as a function of this

error. Then, the reconstruction of the speech signal is evaluated

using the Signal to Reconstruction Error Ratio (SRER) as

measurement. Using a set of 24 recordings (12 languages

with both male and female voices), we show the SRER

distributions of the compared methods for both voiced and

unvoiced segments. Finally, the results of two formal listening

tests are presented which evaluate the perceived subjective

quality.

For the comparisons, the three following models are used:

SM The Sinusoidal Model [1] represents sinusoidal com-

ponents which are estimated through peak picking

on the DFT spectrum. For this method, the length
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of the window plays a crucial role in both parameter

estimation and perceived quality of the resynthesis.

Although the initial version of SM uses fixed length

analysis windows, improved accuracy and precision

are obtained if the analysis window is adaptive to f0.

Moreover, as the window length is not the subject

of the following evaluations, its influence on the

results has to be minimized. Therefore, the window

length for SM is adapted to the input f0 (similarly

to the other methods). Also, in order to evaluate the

accuracy and precision of the parameter estimation,

it is necessary to associate a harmonic number to

each peak observed on the amplitude spectrum. For

this reason, the original version is slightly modified

by using the closest peaks to the integer multiples

of the input f0. The DFT bins of each peak are

then interpolated using a parabola in order to retrieve

amplitude and frequency parameters and the phase

parameter is obtained by linear interpolation of the

phase spectrum [22].

HM The Harmonic Model [2] represents harmonically

related sinusoids which are estimated through the LS

solution of equation (3) using stationary frequency

components (i.e. φ0(t) = 2πtf0/fs) and without

quasi-harmonicity (i.e. bk = 0 ∀k).

aQHM The adaptive Quasi-Harmonic Model [17] is based

on (3), but with frequency components not restricted

to being harmonically related (i.e. φ0(t) becomes

φk(t) and f0(t) becomes fk(t) in (2)). Note that it

is not the mixed model proposed in [18] which uses

a random component modulated in both time and

frequency. Since all other methods are full-band rep-

resentations, we preferred to make aQHM also full-

band in order to obtain comparisons more straight-

forward, especially for the listening tests. This model

comes with an iterative estimation algorithm which

starts directly with a full-band representation unlike

Algorithm 1 [17]. In the following evaluations, 6

iteration steps have been used.

All methods use windows of 3 local pitch periods and the

parameters are estimated each 5ms. In each analysis window,

enough components are used to cover the full spectrum up to

the Nyquist frequency. For resynthesis, the method described

in section III-B is used for HM, aQHM and aHM. For SM,

we used a standard overlap-add method since the frequency

matching between components of neighboring frames is far

from straightforward and not the subject of the following

evaluations.

Each model uses an f0 input. An algorithm is therefore

necessary to estimate these values. For the sake of clarity in the

following plots and discussions, a suffix such as STRAIGHT,

YIN, AIR etc. is used to distinguish the algorithm used when

this information need to be emphasized (e.g. HM-STRAIGHT,

HM-AIR, aHM-AIR).

A. Number of parameters

Compared to aQHM, the number of parameter in aHM

is reduced since only one parameter (i.e. f0) is sufficient

to reconstruct the full harmonic frequency grid. Conversely,

aQHM uses a frequency parameter for each quasi-harmonic

component. aHM is therefore similar to HM where 2 ·K + 1
parameters are necessary per frame and aQHM is similar to

SM where 3 ·K parameters are necessary.

B. Parameter estimation error

The purpose is here to evaluate the accuracy and preci-

sion of the estimated parameters in terms of a sinusoidal

representation, compared to state-of-the-art methods. In the

following, the estimated frequency, amplitude and phase values

are compared to ground truth values of synthetic signals. To

obtain a synthetic signal which is as close as possible to a

natural speech signal, a Liljencrants-Fant glottal model [14]

is used to synthesize the glottal source. To obtain a realistic

vocal tract filter a digital simulator is used [23] that allows

production of 13 different voiced phonemes. The synthetic

signal is obtained as:

s(t) = 2ℜ
(

∑

k∈R+

Gf0(t)(kf0(t)) · C(kf0(t)) · e
jkφ0(t)

)

(9)

where Gf0(t)(f) is the spectrum of the Liljencrants-Fant

model, C(f) is the vocal tract filter representing a random

phoneme among 13 covering the vocalic triangle, and φ0(t)
follows (2). The pulse shape of the glottal model is controlled

by a random parameter Rd ∈ [0.3; 2.7] [14] and its period is

defined by f0(t), The definition of the synthetic fundamental

frequency f0(t) will depend on the following evaluations.

1) Influence of additive f0 error: Since AIR is designed to

alleviate the consequences of potential errors in the f0 curve,

the following test evaluates the robustness of the different

methods when errors in the initial f0(t) curve exist. In (9),

the original f0(t) curve is first synthesized using 5 anchors

per seconds with random values in [80; 400] Hz. Then, a

zero-mean Gaussian noise with various STandard-Deviation

(STD) is added to this curve which is finally input to the

methods. In the following plots, the estimation error of the

sinusoidal parameters is plotted as a function of the STD of

this additive f0 error. A total of 320 test samples of 500ms

duration each are generated using a sampling frequency of

44.1kHz. The samples are analyzed at regular intervals of 5ms

and the differences between the estimated parameters using

each method and the reference parameters, are computed. For

each method, Fig. 3 shows the mean of the estimation error on

the first three rows and the STD using a base-10 logarithmic

scale on the last three rows. For all figures, we follow the

same line style convention which is shown in Fig. 2. To avoid

the influence of outliers in the computation of the mean and

the standard-deviation, we computed these two values through

the median and the interquartile range, respectively.

❙�

❍�

❛✁❍�

❛❍�✂✄☎✆

Fig. 2. Line styles for all the methods shown in Fig. 3 and Fig. 6
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Fig. 3. Error of sinusoidal parameters with respect to a potential error on
the f0 curve provided to the analysis methods.

In the last three rows of Fig. 3, where the error STD

is shown, the suggested method aHM-AIR always shows a

smaller STD than the other methods except for the amplitude

estimation under 4kHz. The estimation of the frequency grid

is thus most precise when using aHM-AIR (4th line). The

estimation of the phase is also more precise especially above

4kHz (last line, right column). Globally, the improvement

provided by aHM-AIR compared to the other methods is most

apparent when considering the upper band of the signal. The

aHM-AIR method thus provides better parameter precision

in the high frequencies. For the Harmonic Model (HM), the

error increases quickly as the f0 error increases because no

correction method is used to reduce the influence of the

f0 errors. On the other hand, the SM method selects the

observed peaks in the amplitude spectrum even though the

input f0 values can be erroneous. Also, aQHM/aHM-AIR

both use an iterative method for the refinement of the input

f0. Concerning the precision of SM in the estimation of the

amplitudes below 4kHz (5th row, left column), an explanation

could be the following. The SM method always modifies the

integer multiples of f0 by means of quadratic interpolation in

order to fit the maximum amplitude of a peak. Even though

the frequency can be modified towards an erroneous value,

this behavior ensures that the amplitude is always maximized.

However, for aHM and aQHM, if the harmonic frequency,

k · f0, is not properly aligned with the peak before the LS

solution is computed and it slides down the main lobe of

the window, the estimated amplitude can be substantially

erroneous and consequently have higher variability than the

maximized amplitude provided by SM.

2) Parameter estimation error corresponding to f0 esti-

mation methods: In practice, the additive f0 error in the

evaluations above is related to that of f0 estimation methods.

In the test below, using the same synthetic signals as in the

previous test, we measured the parameter error with respect to

three f0 estimation methods which are well known state-of-

the-art methods for speech signals: YIN [24], SWIPEP [25],

STRAIGHT [26, p.9] (the f0 method used in STRAIGHT) and

the refined f0 estimate obtained from aHM-AIR. The AIR

algorithm needs an input f0 estimate. The comparison with

the other methods would not be fair if the most accurate and

precise f0 method was used for AIR since AIR would anyway

refine and improve the results. Thus, in this test, we used the

f0 estimate of SWIPEP because its precision is between that

of the two other state-of-the-art f0 estimation methods, i.e.

YIN and STRAIGHT (see Fig. 5). Additionally, according to

our experiments, SWIPEP seems to be more robust to octave

errors. Fig. 4 shows the results of this evaluation with the

mean of the error to the left and the STD of the error to the

right using a base-10 logarithmic scale. Fig. 4 shows only

the results computed on the full-band of the signal. From

our experiments, the results computed on the first 4kHz are

very similar to these results and do not provide additional

information. For the sake of comparison, Fig. 5 shows the f0
error of each method. The plots related to the mean of the

error (left column) show that the AIR algorithm provides the

smallest bias for frequency and phase estimation and a slightly

larger bias for amplitude estimation compared to STRAIGHT.
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Also, the right column shows that the STD of the error is

unequivocally smaller using AIR for all the parameters. In

conclusion, the AIR method clearly provides the most robust

parameters estimation. According to the right plot of Fig. 5,

it is also worth noting the improvement of the f0 estimation

using AIR compared to the SWIPEP method.

3) Influence of the f0 chirp rate: As argued in the intro-

duction, variations in the f0 curve can be significant within an

analysis window. In this third test, we therefore evaluate the

estimation error with respect to a constant variation of f0(t),
that is, the f0 chirp rate. In (9), the f0(t) curve is synthesized

using: f0(t) = f0(tc)+cr ·t, where tc is the time at the middle

of the segment and cr is the chirp rate. For each synthetic

sample, the polarity of the rate is chosen randomly as is the

value of f0(tc) which is chosen in [80; 400] Hz, so that the f0
boundaries at the start and end of the segment lie in the same

frequency interval. Due to this limitation at the boundaries,

the f0(tc) values are restricted by the duration of the segment.

Accordingly, a duration of only 100ms has been used and 1000

samples have been generated with a sampling frequency of

44.1kHz. All of the methods use the same input f0. Since the

ideal f0 values in synthesis would not be realistic, we blurred

the f0 in synthesis by adding a zero-mean Gaussian noise with

standard-deviation 10−1[Hz] and we provided these blurred f0
values to all of the methods evaluated. The standard-deviation

of the Gaussian noise is chosen according to the previous

evaluation (see right plot of Fig. 5). Fig. 6 shows the mean of

the estimation error in the first three rows and the STD using a

base-10 logarithmic scale in the last three rows (the legend, see

Fig. 2, is the same as in Fig. 3). First, when looking at the 1st

and 4th rows, it is worth noting that the unbiased and precise

frequency estimates corresponding to HM are only due to the

input f0 which has been fixed as described above. According

to Fig. 5, this precision of estimation can only be reached using

aHM-AIR. Then, similarly to Fig. 3, the suggested aHM-AIR

method again shows good precision for frequency and phase

estimation (4th and last rows) especially for significant high

chirp rate and above 4kHz. Also, the SM method again shows

a more precise estimate than the other methods concerning the

amplitude parameter below 4kHz (5th row to the left).

C. SRER distributions

Comparing the two adaptive models, aHM is less flexible

than aQHM, since the former imposes a harmonic relationship

between the frequency components of the signal. On the other

hand, the frequency components in aQHM are free to deviate

from the harmonicity. To evaluate this difference globally, we

measured the Signal to Reconstruction Error Ratio (SRER)

between recorded utterances and their models. The set of

recordings should cover the voice variability as much as pos-

sible. In order to maximize this coverage in the test, we used

recordings made of 12 different languages, assuming that the

different phonemes and the different origins of these languages

provides a sufficient voice variability. Each language was

represented by one example from one male voice and one

example from one female voice, so 24 recordings were used

in total. These utterances were approximately 3 seconds long

with a sampling frequency between 16kHz and 44.1kHz. The
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Fig. 4. Error of sinusoidal parameters according to state-of-the-art f0
methods and the suggested f0 refinement method AIR (computed on the
full-band of the signal).
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Fig. 6. Sinusoidal parameter error with respect to a chirp rate of f0.

samples can be found on the following web-page with their

corresponding resynthesis using the four analysis/synthesis

methods: http://gillesdegottex.eu/ExDegottexG2013jahmair

In order to minimize the influence of the input f0 curve on

the results, the refined f0 values given by the output of the

AIR algorithm are used for all methods since this method

provides the best frequency estimation results according to

Fig. 5. Similarly to section IV-B2, SWIPEP has also been

used to provide the initial f0 estimate to the AIR algorithm.

Fig. 7 shows the distribution of SRER for each method using

a sliding window of 10ms with 50% overlap. The SRER

was computed using the full-band of the recordings and its

distribution over the voiced and unvoiced segments is shown

on the top and bottom plot, respectively. The 24 sentences

were sufficient to obtain more than 8000 values for each

distribution. Globally, the three models HM, aQHM and aHM
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Fig. 7. Estimation of the full-band SRER distributions for voiced and
unvoiced frames on top and bottom plots respectively.

have very similar distributions compared to the SM model. For

the voiced frames, the mean of these distributions are clearly

higher than that of SM. The mean corresponding to aQHM

is more than 10dB above SM which is in accordance with

the results given in [17]. On the one hand, the three models

HM, aQHM and aHM use the LS solution, which explicitly

minimizes the reconstruction error during the parameters es-

timation. On the other hand, in the SM method, it is only

assumed that estimating sinusoidal parameters by peak picking

provides a set of sinusoids which properly represent the signal.

The observed difference between the harmonic models and SM

in Fig. 7 thus makes sense. Finally, the aQHM model has a

slightly better SRER compared to aHM. One can also expect

this result since aQHM is more flexible than aHM, thanks to

the quasi-harmonicity. Concerning the unvoiced frames, the

average SRER is obviously lower for all of the methods since

the limited number of sinusoids of the models cannot properly
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cover the noise that fills the whole spectrum. The aHM model

also provides a better fitting of the noise than the HM model

because of its adaptivity. However, as for voiced segments, we

could expect that aQHM provides a better SRER than aQHM,

which is not the case in Fig. 7. An explanation might be that

the corrections terms dfk (in eq. 5) are meaningless for noise

and lead to misplaced quasi-harmonics. On the other hand, the

strict harmonicity of aHM ensures, at least, that the full-band

is regularly sampled.

D. Perceived subjective quality of the models

In this part of the evaluations, the perceived quality of the

reconstructed signals using the four models was evaluated

subjectively using listening tests. According to Fig. 5, aHM-

AIR provides the most precise f0 estimate. Thus, all of the

compared methods in this test use the f0 estimate of aHM-

AIR, as in the SRER evaluation step. This minimizes the

influence of f0 errors in this 1st listening test. The influence

of f0 errors on the perceived quality has been evaluated in

another test whose results are presented in the next section.

All listening tests have been carried out using a web interface.

Compared to tests carried out locally in a laboratory, we

believe that for the addressed subject, there is a variability

in the listening conditions of web-based tests which is more

realistic than that of a specific room prepared especially for

experiments. One can also note that it improves the objectivity

of the results by using listeners who are not related to the

author’s work [27]. The listeners were first asked to listen to

one original recording among the 24 utterances used for the

SRER measurements. Then, they had to rate the impairment

of five sounds: four of them were the synthesized made with

SM, HM, aQHM and aHM, while the fifth sound was the

original recording, which was added to the comparison set

in order to check the consistency of the answers. The test

duration needed to be moderate in order to keep the listeners

focused. An exhaustive evaluation of the 24×5 sounds was

therefore not possible. In this test, each listener was asked

to grade only 2 languages randomly selected from the set of

the 12 languages. Since each language was represented by

one male and one female voice, each listener evaluated the

resynthesis of 4 recordings. According to the recommenda-

tion ITU-R BS[28], we used the following grading scale of

impairment: (5)Imperceptible, (4)Perceptible but not annoying,

(3)Slightly annoying, (2)Annoying, (1)Very annoying. In order

to optimize the listening conditions, we kept only the answers

of listeners who used headphones or earphones. Additionally,

answers from listeners who did not rate the original recordings

systematically between 4 and 5 were discarded considering

that the instructions were not understood or the listener was

not focused enough. 48 people answered the test and the

answers of 44 listeners were kept. Since the sounds to evaluate

were selected randomly, the number of occurrences of each

sound was not uniform (even though it tends to be when the

number of listeners increases). In order to remove any possible

bias, the mean and confidence intervals of the results were

therefore normalized according to the number of occurrence

of each sound. Figure 8 shows the results of this listening

test. Firstly, the SM method has been clearly graded lower
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✺

■✞
✟
✠
✡☛
✞
☞
✌
✍

❖�✁✂✁✄☎✆ ❙✝ ❍✝ ☎❛❍✝ ☎❍✝
✶

✷

✸

✹

✺

■✞
✟
✠
✡☛
✞
☞
✌
✍
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❋▼✓☎✆▼ ✎✏✁✑▼✒

Fig. 8. Impairment evaluation of the resynthesis quality by 44 listeners using
24 utterances of 12 different languages, with the 95% confidence intervals.
Global results above and gender-specific results below. The used f0 values
are those provided by the aHM-AIR method.

than the other methods. By the authors, significant artifacts

appear in the high frequencies of the resynthesis using this

method. Then, globally, the three other methods provide very

similar results. These three methods use a harmonic or quasi-

harmonic frequency grid which ensures minimal continuity of

the sinusoidal components. Conversely, in SM, a component

can disappear from one frame to the next which generate a

persistent artifact mainly in the high frequencies. This lack

of continuity can partially explain the substantial difference

between SM and the other models. Note that by replacing

the overlap-add method used for SM by a birth-and-death

technique [1], we noticed the same artifacts.

The slight downward trend of the aQHM method compared

to aHM and HM can be explained by some musical sounds

which can be sparsely perceived along the resynthesis. Hav-

ing the frequency components completely independent, as in

aQHM, may provide better flexibility, though it also adds

a risk that components leave the frequency band in which

they are supposed to be. Conversely, the strict harmonicity

may oversimplify the representation, even though it offers a

global constraint stabilizing the resynthesis. This argument of

stability has already been discussed for the SRER distributions

in Fig. 7 where one can see that the SRER of aQHM is

lower than that of aHM in unvoiced segments. Even though

the SRER of aQHM is higher than that of aHM in voiced

segments, the SRER difference around 10dB in unvoiced

segments is easier to perceive than that around 30dB in voiced

segments. The global difference can therefore explain the

slight downward trend seen in the listening test. Finally, the
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results specific to gender show that the resynthesis of the male

voices made by the HM method are clearly indistinguishable

from their original recordings.

E. Influence of the f0 estimate on the subjective quality

The f0 curve obviously has an influence on the resynthesis

quality. Consequently, we carried out a second listening test

for this purpose by comparing state-of-the-art methods used

in section IV-B2. Unlike the test in section IV-D, the goal

here is to evaluate the f0 methods and not the models. Since

HM provides the best quality according to Fig. 8, we chose

this model for this new test. The same evaluation scheme

as in the previous listening test was used. Listeners were

asked to evaluate the impairment of sound files compared

to an original recording using a web interface. The same

24 utterances previously described were used. In order to

reduce the number of sounds to evaluate and thus encourage

participation in the test, the YIN method was not used since

it provides the least precise f0 estimates according to Fig.

5. SWIPEP, STRAIGHT and AIR were therefore compared,

while the original recordings were again used for verification

purposes. Similarly to the previous tests, SWIPEP was used

to provide the input f0 of the AIR algorithm. 52 people

answered the test and 46 answered the test by rating the

original recordings systematically between 4 and 5. Note

that the listening test described here and that from above

have been carried out independently and the listeners were

not necessarily the same. Globally, HM-AIR and HM using

the f0 given by STRAIGHT (HM-STRAIGHT) provide a

quasi-perfect reconstruction unlike HM-SWIPEP. Comparing

HM-STRAIGHT and HM-AIR, HM-AIR shows only a slight

positive trend. By informally listening to the resynthesis, HM-

AIR has indeed slightly less localized artifacts.

F. Discussions

According to the evaluation of the parameter estimation

error (Figures 3, 4, 6), even though the simple peak picking

method provides a more precise estimation of the amplitude

than the suggested aHM-AIR below 4kHz, the latter method

offers more precise estimates of the frequency and phase val-

ues. It is worth noting that in order to build higher level models

upon the sinusoidal parameters (e.g. spectral envelopes), the

accuracy and precision of the amplitude parameters is neces-

sary in addition to its location in the time-frequency space.

From this point of view, we show in this paper that the aHM-

AIR method clearly improves the localization of the frequency

tracks compared to state-of-the-art methods. The comparison

between the f0 estimation methods in Figure 4 also shows that

the f0 estimate plays a crucial role in the reliability of the

sinusoidal parameters estimates. According to this evaluation,

we also show in this paper that AIR clearly improves the f0
estimates used for sinusoidal parameter estimation.

Concerning the listening tests, a ceiling effect can be

observed. The simple harmonic model, when f0 estimation is

precise enough, provides already almost perfect reconstruction

quality in terms of perception (Figures 8 and 9). Improvements

are therefore difficult to obtain. Based on the results specific

to the gender, it is however interesting to note that it is not
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✑
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Fig. 9. Impairment evaluation of the resynthesis quality by 46 listeners using
the same 24 utterances of 12 different languages, with the 95% confidence
intervals.

possible to state if a difference exist between the male voices

resynthesized using HM-AIR and their original recordings.

This observation is even further supported by the fact that the

two tests have been carried out independently. Comparing HM-

SWIPEP and HM-AIR in Figure 9, the AIR method clearly

improves the quality of the resynthesis based on HM-SWIPEP

by refining the f0 values provided by SWIPEP. Finally, trends

can also be observed that indicate aHM-AIR slightly improves

the perceived quality compared to aQHM. By informally

listening to the resynthesis, aQHM has indeed more artifacts

which are mainly localized in time rather than persistent along

the sound. We also observed the same difference between HM-

AIR and HM-STRAIGHT in the second test (Fig. 9), with

HM-AIR having less artifacts than HM-STRAIGHT.

V. CONCLUSIONS

Arguing that the need of frequency limits is questionable

to model the speech spectrum and inspired by the observation

of the FChT, we assumed that the speech spectrum could be

modeled using a full-band harmonic model. Taking advantage

of the non-stationary frequency basis of the Adaptive Quasi-

Harmonic Model (aQHM), which adapt its frequency basis to

the time variations of the frequency components, we suggested

in a previous publication a full-band Adaptive Harmonic

Model (aHM) for both voiced and unvoiced segments of

the speech signal. We had also suggested a new algorithm,

the Adaptive Iterative Refinement (AIR), to deal with the

localization of the high frequency harmonics up to the Nyquist

frequency. In this paper, we provided a new comprehensive

evaluation of aHM-AIR. First, using synthetic signals, we eval-
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uated the accuracy and precision of the parameter estimation

of aHM-AIR and other state-of-the-art methods and we carried

out listening tests to assess the perceived quality provided by

the suggested analysis/synthesis procedure compared to other

methods. These listening tests clearly show that a full-band

Harmonic Model (HM) is sufficient to reproduce a quasi-

perfect quality when the fundamental frequency curve has

the necessary precision. Compared to aQHM, aHM globally

provides the same high quality, with the benefit of a slight

positive trend, without using quasi-harmonicity, and thus re-

ducing the number of parameters. Compared to HM, the aHM

model does not improve the perceived quality. However, as

shown in the evaluation with synthetic signals, the algorithm,

AIR, allows for precise estimation of the sinusoidal parameters

which is important to build higher-level representation like

spectral envelopes.
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