
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Analysis and transformation of source code by parsing and rewriting

Vinju, J.J.

Publication date
2005
Document Version
Final published version

Link to publication

Citation for published version (APA):
Vinju, J. J. (2005). Analysis and transformation of source code by parsing and rewriting.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/analysis-and-transformation-of-source-code-by-parsing-and-rewriting(b49b204d-aee4-4f4a-b0d4-8011902624b7).html

Analysis and Transformation of Source Code

by

Parsing and Rewriting

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. mr. P.F. van der Heijden

ten overstaan van een door het

college voor promoties ingestelde commissie,

in het openbaar te verdedigen

in de Aula der Universiteit

op dinsdag 15 november 2005, te 10:00 uur

door

Jurgen Jordanus Vinju

geboren te Ermelo

Promotor: prof. dr. P. Klint

Co-promotor: dr. M.G.J. van den Brand

Faculteit: Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum voor Wiskunde en Informat-

ica (CWI) in Amsterdam under the auspices of the research school IPA (Institute for

Programming research and Algorithmics).

Preface

Before consuming this manuscript the reader should know that I owe gratitude to

many people. First of all, it is a family accomplishment. I want to thank my mother,

Annelies, for being so strong and for always motivating me to do what I like best. I

thank my father, Fred, for always supporting me. My sister, Krista, is my soul mate. We

are so much alike. The love of my live, Rebecca, has been my support and inspiration

for the past six years.

I would like to thank my best friends: Arjen Koppen, Bas Toeter, Coen Visser,

Hugo Loomans, Mieke Schouten, Warner Salomons, and Winfried Holthuizen. You

don’t know how much of you is a part of me.

My supervisors at CWI are Mark van den Brand and Paul Klint. Mark inspired

me to study computer science in Amsterdam, and to start a PhD project at CWI. He

sparked my interest in ASF+SDF already at the age of 17. Thank you for teaching me,

caring for me, and for motivating me all these years. Paul is a great mentor and role

model. I admire him for his insight in so many issues and for his endless enthusiasm

for research. He is the most productive man I have ever seen. Thanks for your time

teaching me.

Many of my colleagues have become my friends. Thank you for the teamwork, for

providing an inspiring work environment, and for the relaxing times we spent in bars

and restaurants. They are in alphabetical order: Ali Mesbah, Anamaria Martins Mor-

eira, Anderson Santana, Anthony Cleve, Arie van Deursen, Li Bixin, Chris Verhoef,

David Déharbe, Diego Ordonez Camacho, Eelco Visser, Ernst-Jan Verhoeven, Gerald

Stap, Gerco Ballintijn, Hayco de Jong, Jan Heering, Jan van Eijck, Jeroen Scheerder,

Joost Visser, Jørgen Iversen, Steven Klusener, Leon Moonen, Magiel Bruntink, Martin

Bravenboer, Merijn de Jonge, Niels Veerman, Pierre-Etienne Moreau, Pieter Olivier,

Ralf Lämmel, Rob Economopoulos, Slinger Jansen, Taeke Kooiker, Tijs van der Storm,

Tobias Kuipers, Tom Tourwé, Vania Marangozova.

I would like to thank Claude Kirchner for allowing me to work an inspiring and

productive three month period at INRIA-LORIA. Finally, I thank the members of my

reading committee for reading the manuscript and providing valuable feedback: prof.

dr. J.A. Bergstra, prof. dr. M. de Rijke, prof. dr. C.R. Jesshope, prof. dr. K.M. van

Hee and prof. dr. J.R. Cordy.

The CWI institute is a wonderful place to learn and produce computer science.

v

vi

Contents

Contents vii

I Overview 1

1 Introduction 3

1.1 Computer aided software engineering 3

1.1.1 Source code . 4

1.1.2 Source code analysis and transformation 6

1.1.3 Translation distance . 6

1.1.4 Goals and requirements . 7

1.1.5 Mechanics . 8

1.1.6 Discussion: challenges in meta programming 9

1.2 Technological background . 10

1.2.1 Generic language technology 10

1.2.2 A meta-programming framework 11

1.2.3 Historical perspective . 12

1.2.4 Goal . 13

1.3 Parsing . 14

1.3.1 Mechanics . 14

1.3.2 Formalism . 14

1.3.3 Technology . 15

1.3.4 Application to meta-programming 16

1.4 Rewriting . 17

1.4.1 Mechanics . 17

1.4.2 Formalism . 18

1.4.3 Technology . 19

1.4.4 Application to meta-programming 20

1.5 Related work . 23

1.6 Road-map and acknowledgments . 24

vii

2 Environments for Term Rewriting Engines for Free! 29

2.1 Introduction . 29

2.2 Architecture for an open environment 31

2.3 Reusable components . 33

2.3.1 Generalized Parsing for a readable formalism 33

2.3.2 Establishing the connection between parsing and rewriting . . 34

2.3.3 Graphical User Interface . 35

2.4 A new environment in a few steps 36

2.5 Instantiations of the Meta-Environment 40

2.6 Conclusions . 41

II Parsing and disambiguation of source code 43

3 Disambiguation Filters for Scannerless Generalized LR Parsers 45

3.1 Introduction . 45

3.2 Scannerless Generalized Parsing . 46

3.2.1 Generalized Parsing . 46

3.2.2 Scannerless Parsing . 47

3.2.3 Combining Scannerless Parsing and Generalized Parsing . . . 48

3.3 Disambiguation Rules . 49

3.3.1 Follow Restrictions . 49

3.3.2 Reject Productions . 50

3.3.3 Priority and Associativity 50

3.3.4 Preference Attributes . 51

3.4 Implementation Issues . 52

3.4.1 Follow Restrictions . 52

3.4.2 Reject Productions . 53

3.4.3 Priority and Associativity 53

3.4.4 Preference Attributes . 54

3.5 Applications . 55

3.5.1 ASF+SDF Meta-Environment 55

3.5.2 XT . 55

3.6 Benchmarks . 56

3.7 Discussion . 57

3.7.1 Generalized LR parsing versus backtracking parsers 57

3.7.2 When to use scannerless parsing? 57

3.8 Conclusions . 58

4 Semantics Driven Disambiguation 59

4.1 Introduction . 59

4.1.1 Examples . 60

4.1.2 Related work on filtering . 62

4.1.3 Filtering using term rewriting 63

4.1.4 Plan of the chapter . 63

4.2 Parse Forest Representation . 64

viii

4.3 Extending Term Rewriting . 65

4.3.1 What is term rewriting? . 66

4.3.2 Rewriting parse trees . 68

4.3.3 Rewriting parse forests . 69

4.4 Practical Experiences . 70

4.5 Discussion . 72

4.6 Conclusions . 73

5 A Type-driven Approach to Concrete Meta Programming 75

5.1 Introduction . 75

5.1.1 Exploring the solution space 77

5.1.2 Concrete meta programming systems 79

5.1.3 Discussion . 83

5.2 Architecture . 84

5.2.1 Syntax transitions . 85

5.2.2 Disambiguation by type-checking 87

5.3 Disambiguation filters . 88

5.3.1 Class 3. Ambiguity directly via syntax transitions 88

5.3.2 Class 4. Object language and meta language overlap 92

5.4 Experience . 94

5.5 Conclusion . 95

III Rewriting source code 97

6 Term Rewriting with Traversal Functions 99

6.1 Introduction . 99

6.1.1 Background . 99

6.1.2 Plan of the Paper . 100

6.1.3 Issues in Tree Traversal . 100

6.1.4 A Brief Recapitulation of Term Rewriting 102

6.1.5 Why Traversal Functions in Term Rewriting? 104

6.1.6 Extending Term Rewriting with Traversal Functions 106

6.1.7 Related Work . 108

6.2 Traversal Functions in ASF+SDF . 111

6.2.1 Kinds of Traversal Functions 112

6.2.2 Visiting Strategies . 113

6.2.3 Examples of Transformers 114

6.2.4 Examples of Accumulators 117

6.2.5 Examples of Accumulating Transformers 118

6.3 Larger Examples . 119

6.3.1 Type-checking . 119

6.3.2 Inferring Variable Usage . 124

6.3.3 Examples of Accumulating Transformers 124

6.4 Operational Semantics . 125

6.4.1 Extending Innermost . 126

ix

6.4.2 Transformer . 127

6.4.3 Accumulator . 127

6.4.4 Accumulating Transformer 128

6.4.5 Discussion . 128

6.5 Implementation Issues . 128

6.5.1 Parsing Traversal Functions 128

6.5.2 Interpretation of Traversal Functions 129

6.5.3 Compilation of Traversal Functions 129

6.6 Experience . 134

6.6.1 COBOL Transformations . 134

6.6.2 SDF Re-factoring . 135

6.6.3 SDF Well-formedness Checker 136

6.7 Discussion . 136

6.7.1 Declarative versus Operational Specifications 136

6.7.2 Expressivity . 137

6.7.3 Limited Types of Traversal Functions 137

6.7.4 Reuse versus Type-safety . 138

6.7.5 Conclusions . 138

7 Rewriting with Layout 139

7.1 Introduction . 139

7.1.1 Source code transformations 140

7.1.2 Example . 141

7.1.3 Overview . 142

7.2 Term format . 142

7.2.1 ATerm data type . 143

7.2.2 Parse trees . 143

7.3 Rewriting with Layout . 144

7.3.1 Rewriting terms . 144

7.3.2 Rewriting lists . 147

7.4 Performance . 148

7.5 Experience . 150

7.6 Conclusions . 151

8 First Class Layout 153

8.1 Introduction . 153

8.2 Case study: a corporate comment convention 154

8.3 Requirements of first class layout . 156

8.4 Fully structured lexicals . 158

8.4.1 Run time environment . 158

8.4.2 Syntax . 159

8.4.3 Compilation . 160

8.5 Type checking for syntax safety . 163

8.5.1 Type checking . 164

8.5.2 Matching . 164

8.6 Ignoring layout . 164

x

8.6.1 Run time environment . 164

8.6.2 Syntax . 165

8.6.3 Compilation . 166

8.7 Summary . 167

8.8 Case study revisited . 167

8.8.1 Extracting information from the comments 167

8.8.2 Comparing the comments with extracted facts 168

8.8.3 Case study summary . 173

8.9 Discussion . 173

8.10 Conclusions . 175

9 A Generator of Efficient Strongly Typed Abstract Syntax Trees in Java 177

9.1 Introduction . 177

9.1.1 Overview . 178

9.1.2 Case-study: the JTom compiler 178

9.1.3 Maximal sub-term sharing 179

9.1.4 Generating code from data type definitions 179

9.1.5 Related work . 180

9.2 Generated interface . 181

9.3 Generic interface . 182

9.4 Maximal sub-term sharing in Java 185

9.4.1 The Factory design pattern 186

9.4.2 Shared Object Factory . 186

9.5 The generated implementation . 188

9.5.1 ATerm extension . 188

9.5.2 Extending the factory . 188

9.5.3 Specializing the ATermAppl interface 189

9.5.4 Extra generated functionality 190

9.6 Performance measurements . 191

9.6.1 Benchmarks . 191

9.6.2 Quantitative results in the JTom compiler 194

9.6.3 Benchmarking conclusions 195

9.7 Experience . 195

9.7.1 The GUI of an integrated development environment 196

9.7.2 JTom based on ApiGen . 197

9.8 Conclusions . 198

IV 199

10 Conclusions 201

10.1 Research questions . 201

10.1.1 How can disambiguations of context-free grammars be

defined and implemented effectively? 201

10.1.2 How to improve the conciseness of meta programs? 203

10.1.3 How to improve the fidelity of meta programs? 204

xi

10.1.4 How to improve the interaction of meta programs with their

environment? . 205

10.2 Discussion: meta programming paradigms 207

10.3 Software . 207

10.3.1 Meta-Environment . 208

10.3.2 SDF . 209

10.3.3 ASF . 210

Bibliography 213

11 Samenvatting 227

11.1 Inleiding . 227

11.2 Onderzoeksvragen . 229

11.3 Conclusie . 230

xii

Part I

Overview

1

C H A P T E R 1

Introduction

In this thesis the subject of study is source code. More precisely, I am inter-

ested in tools that help in describing, analyzing and transforming source

code.

The overall question is how well qualified and versatile the programming

language ASF+SDF is when applied to source code analysis and trans-

formation. The main technical issues that are addressed are ambiguity of

context-free languages and improving two important quality attributes of

analyses and transformations: conciseness and fidelity.

The overall result of this research is a version of the language that is bet-

ter tuned to the domain of source code analysis and transformation, but

is still firmly grounded on the original: a hybrid of context-free grammars

and term rewriting. The results that are presented have a broad technical

spectrum because they cover the entire scope of ASF+SDF. They include

disambiguation by filtering parse forests, the type-safe automation of tree

traversal for conciseness, improvements in language design resulting in

higher resolution and fidelity, and better interfacing with other program-

ming environments. Each solution has been validated in practice, by me

and by others, mostly in the context of industrial sized case studies.

In this introductory chapter we first set the stage by sketching the objec-

tives and requirements of computer aided software engineering. Then the

technological background of this thesis is introduced: generic language

technology and ASF+SDF. We zoom in on two particular technologies:

parsing and term rewriting. We identify research questions as we go and

summarize them at the end of this chapter.

1.1 Computer aided software engineering

There are many operations on source code that are usually not catered for in the original

design of programming languages, but are nevertheless important or even vital to the

software life-cycle. In many cases, CASE tools can be constructed to automate these

operations.

3

Introduction CHAPTER 1

The underlying global motivation is cost reduction of the development of such

tools, but we do not go into cost analyses directly. Instead we focus on simplicity

and the level of automation of the method for constructing the tools and assume that

related costs will diminish as these attributes improve.

Particular tools that describe, analyze or transform source code are considered to

be case studies from the perspective of this thesis. The techniques described here can

be applied to construct them. Apart from this tool construction domain, the tools them-

selves are equally worthy of study and ask for case studies. We will only occasionally

discuss applications of these tools.

1.1.1 Source code

What we call source code are all sentences in the languages in which computer pro-

grams are written. The adjective “source” indicates that such sentences are the source

of a translation to another format: object code.

By this definition, object code can be source code again, since we did not specify

who or what wrote the source code in the first place. It can be produced by a human,

a computer program or by generatio spontanea; it does not matter. The key feature

of source code is that it defines a computer program in some language, and that this

program is always subject to a translation. This translation, usually called compilation

or interpretation, is meant to make execution of the described program possible.

Software engineering is the systematic approach to designing, constructing, ana-

lyzing and maintaining software. Source code is one of the raw materials from which

software is constructed. The following software engineering disciplines particularly

focus on source code:

Model driven engineering [79] to develop applications by first expressing them in a

high level descriptive and technology independent format. An example is the

UML language [80]. Then we express how such a definition gives rise to source

code generators by making a particular selection of technologies.

Generative programming [60] to model similar software systems (families) such that

using a concise requirements specification, customized software can automati-

cally be constructed.

Programming language definition [67] to formally define the syntax, static seman-

tics and dynamic semantics of a programming language. From such formal defi-

nitions programming language tools such as parsers, interpreters and editors can

be generated.

Compiler construction [2] to build translators from high level programming lan-

guages to lower level programming languages or machine instructions.

Software maintenance and evolution [119] to ensure the continuity of software sys-

tems by gradually updating the source code to fix shortcomings and adapt to

altering circumstances and requirements. Refactoring [74] is a special case of

maintenance. It is used for changing source code in a step-by-step fashion, not

4

SECTION 1.1 Computer aided software engineering

�

✁

✂

✄

Source Code
Run

Transformation

Abstractions
Abstraction

C
COBOL

Java
Assembler

Documentation

Conversion

Formalization Render

PDF
HTML

GUI
UML

Generation

Presentation

Analysis

Abstract syntax trees
Facts in SQL tables

GraphXML
RSF

Figure 1.1: Three source code representation tiers and their (automated) transitions.

to alter its behavior, but to improve non-functional quality attributes such as sim-

plicity, flexibility and clarity.

Software renovation [35] Reverse engineering is to analyze the source code of legacy

software systems in order to retrieve their high-level design, and other relevant

information. Re-engineering continues after reverse engineering, to adapt the

derived abstractions to radically improve the functionality and non-functional

quality attributes of a software system, after which an improved system will be

derived.

For any of the above areas it is interesting to maximize the number of tasks that

are automated during the engineering processes. Automation of a task is expected to

improve both efficiency of the task itself, and possibly also some quality attributes of

the resulting software. Examples of such attributes are correctness and tractability:

trivial inconsistencies made by humans are avoided and automated processes can be

traced and repeated more easily than human activities. We use the term meta program

to refer to programs that automate the manipulation of source code. Thus we call the

construction of such programs meta programming.

Many meta programs have been and will be developed to support the above engi-

neering disciplines. Figure 1.1 sketches the domain, displaying all possible automated

transitions from source code, via abstract representations, to documentation. Each of

the above areas highlights and specializes a specific part of the graph in Figure 1.1.

For example, reverse engineering is the path from source code, via several abstractions

to documentation. In reverse engineering, extensive analysis of source code abstrac-

tions is common, but the other edges in the graph are usually not traversed. On the

other hand, in model driven engineering we start from documentation, then formalize

the documentation towards a more machine oriented description, before we generate

actual source code.

The example languages for each tier are meant to be indicative, but not restrictive.

A specific language might assume the role of source code, abstraction or documentation

depending on the viewpoint that is imposed by a particular software engineering task.

Take for example a context-free grammar written in the EBNF language. It is source

code, since we can generate a parser from it using a parser generator. It is also an

abstraction, if we would have obtained it from analyzing a parser written in Java source

code. It serves as documentation when a programmer tries to learn the syntax of a

language from it.

5

Introduction CHAPTER 1

Each node in Figure 1.1 represents a particular collection of formalisms that are

typically used to represent source code in that tier. Each formalism corresponds to a

particular language, and thus each transition between these formalisms corresponds to

a language translation. Even though each transition may have very specific properties,

on some level of abstraction all of them are translations.

1.1.2 Source code analysis and transformation

The above described software engineering tasks define sources and targets, but they do

not reveal the details or the characteristics of the translations they imply. Before we

consider technical solutions, which is the main purpose of this thesis, we sketch the

application domain of translation a bit further. We consider the kinds of translations

that are depicted in Figure 1.1.

1.1.3 Translation distance

A coarse picture of a translation is obtained by visualizing what the distance is between

the source and the target language. For example, by analyzing attributes of the syntax,

static and dynamic semantics of languages they can be categorized into dialect families

and paradigms. One might expect that the closer the attributes of the source and target

languages are, the less complex a translation will be.

A number of language attributes are more pressing when we consider translation.

Firstly, the application scope can range from highly domain specific to completely gen-

eral purpose. Translations can stay within a scope or cross scope boundaries. Secondly,

the level of embedding of a language is important. The level of embedding is a rough

indication of the number of translation or interpretation steps that separate a language

from the machine. Examples of high level languages with deep embeddings are Java

and UML, while byte-code is a low level language. Translations can be vertical, which

means going up or down in level, or horizontal, when the level remains equal. Thirdly,

the execution mechanism can range from fully compiled, by translation to object code

and linking with a large run-time library, to fully interpreted, by direct source exe-

cution. Translations that move from one mechanism to another can be hampered by

bottlenecks in efficiency in one direction, or lack of expressivity in the other direction.

Finally, the size of a language in terms of language constructs counts. A translation

must deal with the difference in expressivity in both languages. Sometimes we must

simulate a construct of the source language in the target language, compiling one con-

struct into several constructs. Sometimes we must reverse simulate an idiom in the

source language to a construct in the target language, condensing several constructs

into one.

However, these attributes and the way they differ between source and target does

not fully explain how hard a translation will be. A small dialect translation can be so

intrinsic that it is almost impossible to obtain the desired result (e.g., COBOL dialect

translations [145]). On the other hand, a cross paradigm and very steep translation can

be relatively easy (e.g., COBOL source code to hypertext documentation). Clearly the

complexity of a translation depends as much on the requirements of a translation as on

the details of the source and target language.

6

SECTION 1.1 Computer aided software engineering

1.1.4 Goals and requirements

The requirements of any CASE tool depend on its goal. We can categorize goals and re-

quirements of CASE tools using the three source code representation tiers from Figure

1.1. We discuss each of the seven possible transitions from this perspective:

Transformation: translation between executable languages. This is done either to-

wards runnable code (compilation), or to obtain humanly readable and maintain-

able code again (e.g., refactoring, de-compilation and source-to-source trans-

formation). With transformation as a goal, the requirement is usually that the

resulting code has at least the same observable behavior. With compilation, an

additional requirement is that the result is as fast as possible when finally exe-

cuted. In refactoring and source-to-source transformation, we want to retain as

much properties from the original program as possible. Examples of problem-

atic issues are restoring preprocessor macros and normalized code to the original

state, and retaining the original layout and comments.

Abstraction: translation from source code to a more abstract representation of the

facts that are present in source code. The abstract representation is not neces-

sarily executable, but it must be sound with respect to the source code. The

trade-off of such translations is the amount of information against the efficiency

of the extraction.

Generation: translation from high level data to executable code. The result must be

predictable, humanly readable, and sometimes even reversible (e.g., round-trip

engineering). Sometimes it is even required to generate code that emits error

messages on the level of abstraction of the source language instead of the target

language.

Analysis: extension and elaboration of facts. We mean all computations that reorga-

nize, aggregate or extrapolate the existing facts about source code. These com-

putations are required to retain fact consistency. Also, speed of the process is

usually a key factor, due to the usually high amount of facts and computational

complexity of fact analysis. Note that we do not mean transformations of the

input and output formats of all kinds of fact manipulation languages.

Presentation: compilation of facts into document formats or user-interface descrip-

tions. The requirements are based on human expectations, such as user-

friendliness and interactivity.

Formalization: extraction of useful facts from document formats or user-interfaces.

For example, to give UML pictures a meaning by assigning semantics to dia-

grams. In this case the requirement is to extract the necessary information as un-

ambiguously as possible. Sometimes, the goal is to extract as much information

as possible. If possible this information is already consistent and unambiguous.

If this is not the case, an analysis stage must deal with that problem. Formaliza-

tion is a most tricky affair to fully automate. User-interaction or explicit adding

of annotations by the user is usually required.

7

Introduction CHAPTER 1

Conversion: transformation of one document format into another. The conversion

must usually retain all available information, and sometimes even preserve the

exact typographic measures of the rendered results.

Most CASE tools are staged into several of the above types of source code transi-

tions. The requirements of each separate stage are simply accumulated. For example,

in modern compilers there are separate stages for abstraction and analysis, that feed

back information to the front end for error messages and to the back end for optimiza-

tion. From the outside, these stages implement a transformation process, but internally

almost all other goals are realized.

1.1.5 Mechanics

The mechanics of all CASE tools are also governed by the three source code represen-

tation tiers in Figure 1.1. Source code will be transposed from one representation to

another, either within a tier, or from tier to tier. This induces the three basic stages of

each CASE tool: input one representation, compute, and output another representation.

With each source code representation tier a particular class of data structures is

typically associated. The source code tier is usually represented by files that contain

lists of characters, or syntax trees that very closely correspond to these files. The ab-

stract representation tier contains more elaborately structured data, like annotated trees,

graphs, or tables. The documentation tier is visually oriented, containing descriptions

of pictures basically.

Input and output of source code representations is about serialization and de-

serialization. Parsing is how to obtain a tree structured representation from a serial

representation. Unparsing is the reverse. The mechanics of parsing and unparsing

depend on the syntactic structure of the input format. For some languages in combina-

tion with some goals, regular expressions are powerful enough to extract the necessary

structure. Other language/goal combinations require the construction of fully detailed

abstract syntax trees using parsing technology. The mechanics of parsing have been

underestimated for a while, but presently the subject is back on the agenda [7].

Computations on structured data come in many flavors. Usually tools specialize on

certain data structures. For example, term rewriting specializes on transforming tree-

structured data, while relational algebra deals with computations on large sets of tuples.

The most popular quality attributes are conciseness, correctness and efficiency. Other

important quality attributes are fidelity and resolution. High fidelity computations have

less noise, because they do not loose data, or introduce junk. For example, we talk

about a noisy analysis when it introduces false positives or false negatives and about a

noisy transformation when all source code comments are lost. Resolution is the level

of detail that a computation can process. High resolution services high-fidelity com-

putations, but it must usually be traded for efficiency. For example, to be maximally

efficient, compilers for programming languages work on abstract syntax trees. As a

result the precision of the error messages they produce with respect to source code

locations may be less precise.

In [152], the mechanics of tree transformation are described in a technology in-

dependent manner. Three aspects are identified: scope, direction and staging. Here

8

SECTION 1.1 Computer aided software engineering

we use the same aspects to describe any computation on source code representations.

Scope describes the relation between source and target structures of a computation on

source code. A computation can have local-to-local, local-to-global, global-to-local,

and global-to-global scope, depending on the data-flow within a single computation

step. The direction of a computation is defined as being either forward (source driven)

or reverse (target driven). Forward means that the target structure is generated while

the source structure is traversed. Reverse means that a target template is traversed while

the source structure is queried for information. The staging aspect, which is also dis-

cussed in [145], defines which intermediate results separate a number of passes over a

structured representation. Disentangling simpler subcomputations from more complex

ones is the basic motivation for having several stages.

The final challenge is to compose the different computations on source code repre-

sentations. The mechanical issue is how to consolidate the different data structures that

each tier specializes on. Parsing technology is a good example of how to bridge one

of these gaps. The natural inclusion of trees into graphs is another. However, there are

numerous trade-offs to consider. This subject is left largely untouched in this thesis.

1.1.6 Discussion: challenges in meta programming

Common ground. The above description of meta programming unifies a number of

application areas by describing them from the perspective of source code representation

tiers (Figure 1.1). In reality, each separate application area is studied without taking

many results of the other applications of meta programming into account. There is a

lack of common terminology and an identification of well known results and techniques

that can be applied to meta programming in general.

The application of general purpose meta programming frameworks (Section 1.5)

may offer a solution to this issue. Since each such framework tries to cover the en-

tire range of source code manipulation applications, it must introduce all necessary

conceptual abstractions that are practical to meta programming in general. This thesis

contributes to such a common understanding by extending one particular framework to

cover more application areas. The next obvious step is to identify the commonalities

between all such generic meta programming frameworks.

Automation without heuristics. Large parts of meta programs can be generated

from high level descriptions or generic components can be provided to implement

these parts. It is easy to claim the benefit of such automation. On the other hand,

such automation often leads to disappointment. For example, a parser generator like

Yacc [92], a powerful tool in the compiler construction field, is not applicable in the

reverse engineering field.

On the one hand, the fewer assumptions tools like Yacc make, the more generically

applicable they are. On the other hand the more assumptions they make, the more

automation they provide for a particular application area. The worst scenario for this

trade-off is a tool that seems generically applicable, but nevertheless contains heuristic

choices to automate certain functionality. This leads to blind spots in the understanding

of the people that use this tool and inevitable errors.

9

Introduction CHAPTER 1

For constructing meta programming tools the focus should be on exposing all pa-

rameters of certain algorithms and not on the amount of automation that may be pro-

vided in a certain application context. That inevitably results in less automation, but the

automation that is provided is robust. Therefore, in this thesis I try to automate with-

out introducing too many assumptions, and certainly without introducing any hidden

heuristic choices.

High-level versus low-level unification. In the search for reuse and generic algo-

rithms in the meta programming field the method of unification is frequently tried. A

common high-level representation is searched for very similar artifacts. For example,

Java and C# are so similar, we might define a common high-level language that uni-

fies them, such that tools can be constructed that work on both languages. Usually,

attempts at unification are much more ambitious than that. The high-level unification

method is ultimately self-defeating: the details of the unification itself quickly reach

and even surpass the complexity of the original tasks that had to be automated. This is

an observation solely based on the success rate of such unification attempts.

The alternative is to not unify in high-level representations, but unify to much more

low-level intermediate formats. Such formats are for example standardized parse tree

formats, fact representation formats and byte-code. Common run-time environments,

such as the Java Virtual Machine and the .NET Common Language Runtime are good

examples. This is also the method in this thesis. We unify on low level data-structures

that represent source code. The mapping of source code to these lower levels is done

by algorithms that are configured on a high level by a language specialist. Orthogo-

nally, we let specialists construct libraries of such configurations for large collections

of languages. The challenge is to optimize the engineering process that bridges the gap

between high-level and low-level source code representations, in both directions.

1.2 Technological background

Having explored the subject of interest in this thesis, we will now explain the techno-

logical background in which the research was done.

1.2.1 Generic language technology

With generic language technology we investigate whether a completely language-

oriented viewpoint leads to a clear methodology and a comprehensive tool set for effi-

ciently constructing meta programs.

This should not imply a quest for one single ultimate meta-programming language.

The domain is much too diverse to tackle with such a unified approach. Even a single

translation can be so complex as to allow several domains. The common language-

oriented viewpoint does enable us to reuse components that are common to translations

in general across these domains.

Each language, library or tool devised for a specific meta-programming domain

should focus on being generic. For example, a parser generator should be able to deal

with many kinds of programming languages and a transformation language should be

10

SECTION 1.2 Technological background

�

✁

✂

✄
Strings

Generalized
Parsing

Trees
Term

Rewriting

Generic Pretty
Printing

Relations
Relation
Calculus

Figure 1.2: Generalized parsing, term rewriting, relational calculus and generic pretty-

printing: a meta-programming framework.

able to deal with many different kinds of transformations. That is what being generic

means in this context. It allows the resulting tool set to be comprehensive and comple-

mentary, as opposed to extensive and with much redundancy.

Another focus of Generic Language Technology is compositionality. As the sketch

of Figure 1.1 indicates, many different paths through this graph are possible. The tools

that implement the transitions between the nodes are meant to be composable to form

complex operations and to be reusable between different applications and even different

meta-programming disciplines. For example, if carefully designed, a parser generator

developed in the context of a reverse engineering case study can be designed such that

it is perfectly usable in the context of compiler construction as well.

1.2.2 A meta-programming framework

This thesis was written in the context of the Generic Language Technology project at

CWI, aimed at developing a complete and comprehensive set of collaborating meta-

programming tools: the ASF+SDF Meta-Environment [99, 42, 28].

Figure 1.2 depicts how the combination of the four technologies in this framework

can cover all transitions between source code representations that we discussed. These

technologies deal with three major data structures for language manipulation: strings,

trees and relations. In principle, any translation expressed using this framework begins

and ends with the string representation and covers one of the transitions in Figure 1.1.

Generalized parsing [141] offers a declarative mechanism to lift the linear string rep-

resentation to a more structured tree representation.

Term rewriting [146] is an apt paradigm for deconstructing and constructing trees.

Relational calculus [61, 101] is designed to cope with large amounts of facts and the

logic of deriving new facts from them. The link between term rewriting and

relational calculus and back is made by encoding facts as a specific sort of trees.

Unparsing and generic pretty-printing [51, 64] A generic pretty-printer allows the

declarative specification of how trees map to tokens that are aligned in two di-

mensions. Unparsing simply maps trees back to strings in a one-dimensional

manner.

Paths through the framework in Figure 1.2 correspond to the compositionality of

tools. For example, a two-pass parsing architecture (pre-processing) can be obtained

11

Introduction CHAPTER 1

Technology Language References Goal

Generalized parsing SDF [87, 157] Mapping strings to trees

Term rewriting ASF [30, 67] Tree transformation

Generic pretty-printing BOX [51, 27, 63] Mapping trees to strings

Relational calculus RScript [101] Analysis and deduction

Process algebra TScript [12] Tool composition

Table 1.1: Domain specific languages in the Meta-Environment.

by looping twice through generalized parsing via term rewriting and pretty-printing.

Several analyses can be composed by iteratively applying the relational calculus. The

enabling feature in any framework for such compositionality is the rigid standardization

of the string, tree, and relational data formats.

The programming environment that combines and coordinates the corresponding

tools is called the ASF+SDF Meta-Environment. This system provides a graphical

user-interface that offers syntax-directed editors and other visualizations and feedback

of language aspects. It integrates all technologies into one meta-programming work-

bench.

Table 1.1 introduces the domain specific languages that we use for each technol-

ogy in our framework. The Syntax Definition Formalism (SDF) for the generation of

parsers, the Algebraic Specification Formalism (ASF) for the definition of rewriting,

BOX for the specification of pretty-printing and RScript implements a language for

relational calculus.

TScript offers a general solution for component composition for applications that

consist of many programming languages. The language is based on process algebra. In

the Meta-Environment this technology is applied to compose the separate tools. Note

that TScript is a general purpose component glue, not limited to meta-programming at

all.

1.2.3 Historical perspective

The original goal of the ASF+SDF Meta-Environment is generating interactive pro-

gramming environments automatically from programming language descriptions.

SDF was developed to describe the syntax of programming languages, and ASF

to describe their semantics. From these definitions parsers, compilers, interpreters and

syntax-directed editors can be generated. The combination of these generated tools

forms a programming environment for the described language [99].

At the starting point of this thesis, ASF, SDF, and the Meta-Environment existed

already and had been developed with generation of interactive programming environ-

ments in mind. As changing requirements and new application domains for this system

arose, the need for a complete redesign of the environment was recognized. For ex-

ample, in addition to the definition of programming languages, renovating COBOL

systems became an important application of the ASF+SDF Meta-Environment. To ac-

commodate these and future developments its design was changed from a closed homo-

geneous Lisp-based system to an open heterogeneous component-based environment

12

SECTION 1.3 Technological background

written in C, Java, TScript and ASF+SDF [28].

While the ASF+SDF formalism was originally developed towards generating in-

teractive programming environments, a number of experiences showed that it was fit

for a versatile collection of applications [29]. The following is an incomplete list of

examples:

☎ Implementation of domain specific languages [6, 68, 69, 67],

☎
Renovating Cobol legacy systems [143, 48, 34, 49],

☎
Grammar engineering [47, 114, 102]

☎
Model driven engineering [19]

Driven by these applications, the focus of ASF+SDF changed from generating inter-

active programming environments to interactive implementation of meta-programming

tools. This focus is slightly more general in a way, since interactive programming en-

vironments are specific collections of meta-programming tools. On the other hand,

re-engineering, reverse engineering and source-to-source transformation were pointed

out as particularly interesting application areas, which has led to specific extensions to

term rewriting described in this thesis.

1.2.4 Goal

The overall question is how well qualified and versatile ASF+SDF really is with respect

to the new application areas. The goal is to cast ASF+SDF into a general purpose meta

programming language. In the remainder of this introduction, we describe ASF+SDF

and its technological details. We will identify issues in its application to meta pro-

gramming. Each issue should give rise to one or more improvements in the ASF+SDF

formalism or its underlying technology. For both SDF (parsing) and ASF (rewriting),

the discussion is organized as follows:

☎ The mechanics of the domain,

☎
The formalism that captures the domain,

☎
The technology that backs up the formalism,

☎
The bottlenecks in the application to meta programming.

The validation of the solutions presented in this thesis is done by empirical study.

First a requirement or shortcoming is identified. Then, we develop a solution in the

form of a new tool or by adapting existing tools. We test the new tools by applying them

to automate a real programming task in a case study. The result is judged by quality

aspects of the automated task, and compared with comparing or otherwise relating

technologies. Success is measured by evaluating the gap between requirements of each

case study and the features that each technological solution provides.

13

Introduction CHAPTER 1

1.3 Parsing

1.3.1 Mechanics

A parser must be constructed for every new language, implementing the mapping from

source code in string representation to a tree representation. A well known solution

for automating the construction of such a parser is by generating it from a context-

free grammar definition. A common tool that is freely available for this purpose is for

example Yacc [92].

Alternatively, one can resort to lower level techniques like scanning using regular

expressions or manual construction of a parser in a general purpose programming lan-

guage. Although these approaches are more lightweight, we consider generation of a

parser from a grammar preferable. Ideally, a grammar can serve three purposes at the

same time:

☎
Language documentation,

☎
Input to a parser generator,

☎ Exact definition of the syntax trees that a generated parser produces.

These three purposes naturally complement each other in the process of designing meta

programs [93]. There are also some drawbacks from generating parsers:

☎
A generated parser usually depends on a parser driver, a parse table interpreter,

which naturally depends on a particular programming environment. The driver,

which is a non-trivial piece of software, must be ported if another environment

is required.

☎
Writing a large grammar, although the result is more concise, is not less of an

intellectual effort than programming a parser manually.

From our point of view the first practical disadvantage is insignificant as compared to

the conceptual and engineering advantages of parser generation. The second point is

approached by the Meta-Environment which provides a domain specific user-interface

with visualization and debugging support for grammar development.

1.3.2 Formalism

We use the language SDF to define the syntax of languages [87, 157]. From SDF

definitions parsers are generated that implement the SGLR parsing algorithm [157,

46]. SDF and SGLR have a number of distinguishing features, all targeted towards

allowing a bigger class of languages to be defined, while allowing the possibility for

automatically generating parsers.

SDF is a language similar to BNF [11], based on context-free production rules. It

integrates lexical and context-free syntax and allows modularity in syntax definitions.

Next to production rules SDF offers a number of constructs for declarative grammar

14

SECTION 1.3 Parsing

disambiguation, such as priority between operators. A number of short-hands for reg-

ular composition of non-terminals are present, such as lists and optionals, which allow

syntax definitions to be concise and intentional.

The most significant benefit of SDF is that it does not impose a priori restric-

tions on the grammar. Other formalisms impose grammar restrictions for the benefit

of efficiency of generated scanners and parsers, or to rule out grammatical ambigu-

ity beforehand. In reality, the syntax of existing programming languages does not fit

these restrictions. So, when applying such restricted formalisms to the field of meta-

programming they quickly fall short.

By removing the conventional grammar restrictions and adding notations for disam-

biguation next to the grammar productions, SDF allows the syntax of more languages

to be described. It is expressive enough for defining the syntax of real programming

languages such as COBOL, Java, C and PL/I. The details on SDF can be found in

[157, 32], and in Chapter 3.

We discuss the second version of SDF, as described by Visser in [157]. This ver-

sion improved on previous versions of SDF [87]. A scannerless parsing model was

introduced, and with it the difference in expressive power between lexical and context-

free syntax was removed. Its design was made modular and extensible. Also, some

declarative grammar disambiguation constructs were introduced.

1.3.3 Technology

To sustain the expressiveness that is available in SDF, it is supported by a scannerless

generalized parsing algorithm: SGLR [157]. An architecture with a scanner implies

either restrictions on the lexical syntax that SDF does not impose, or some more elab-

orate interaction between scanner and parser (e.g., [10]). Instead we do not have a

scanner. A parse table is generated from an SDF definition down to the character level

and then the tokens for the generated parser are ASCII characters.

In order to be able to deal with the entire class of context-free grammars, we use

generalized LR parsing [149]. This algorithm accepts all context-free languages by

administrating several parse stacks in parallel during LR parsing. The result is that GLR

algorithms can overcome parse table conflicts, and even produce parse forests instead

of parse trees when a grammar is ambiguous. We use an updated GLR algorithm

[130, 138] extended with disambiguation constructs for scannerless parsing. Details

about scannerless parsing and the aforementioned disambiguations can be found in

Chapter 3 of this thesis.

Theme: disambiguation is a separate concern Disambiguation should be seen as

a separate concern, apart from grammar definition. However, a common viewpoint

is to see ambiguity as an error of the production rules. From this view, the logical

thing to do is to fix the production rules of the grammar such that they do not possess

ambiguities. The introduction of extra non-terminals with complex naming schemes is

often the result. Such action undermines two of the three aforementioned purposes of

grammar definitions: language documentation and exact definition of the syntax trees.

The grammar becomes unreadable, and the syntax trees skewed.

15

Introduction CHAPTER 1

�

✁

✂

✄

Grammar
Parsetable
Generator

Parsetable

SGLR
Source code

Parse forest

Tree Filter Parse tree

Extra disambiguation
information

Figure 1.3: Disambiguation as a separate concerns in a parsing architecture.

Our view is based on the following intuition: grammar definition and grammar

disambiguation, although related, are completely different types of operations. In fact,

they operate on different data types. On the one hand a grammar defines a mapping

from strings to parse trees. On the other hand disambiguations define choices between

these parse trees: a mapping from parse forests to smaller parse forests. The separation

is more apparent when more complex analyses are needed for defining the correct parse

tree, but it is just as real for simple ambiguities.

This viewpoint is illustrated by Figure 1.3. It is the main theme for the chapters on

disambiguation (Chapters 3, 4, and 5). The method in these chapters is to attack the

problem of grammatical ambiguity sideways, by providing external mechanisms for

filtering parse forests.

Also note the difference between a parse table conflict and an ambiguity in a gram-

mar. A parse table conflict is a technology dependent artifact, depending on many

factors, such as the details of the algorithm used to generate the parse table. It is true

that ambiguous grammars lead to parse table conflicts. However, a non-ambiguous

grammar may also introduce conflicts. Such conflicts are a result of the limited amount

of lookahead that is available at parse table generation time.

Due to GLR parsing, the parser effectively has an unlimited amount of lookahead

to overcome parse table conflicts. This leaves us with the real grammatical ambiguities

to solve, which are not an artifact of some specific parser generation algorithm, but

of context-free grammars in general. In this manner, GLR algorithms provide us with

the opportunity to deal with grammatical ambiguity as a separate concern even on the

implementation level.

1.3.4 Application to meta-programming

The amount of generality that SDF and SGLR allow us in defining syntax and gen-

erating parsers is of importance. It enables us to implement the syntax of real pro-

gramming languages in a declarative manner, that would otherwise require low level

programming. The consequence of this freedom is however syntactic ambiguity. An

SGLR parser may recognize a program, but produce several parse trees instead of just

one because the grammar allows several derivations for the same string.

In practice it appears that many programming languages do not have an unambigu-

ous context-free grammar, or at least not a readable and humanly understandable one.

An unambiguous scannerless context-free grammar is even harder to find, due to the

16

SECTION 1.4 Rewriting

absence of implicit lexical disambiguation rules that are present in most scanners. Still

for most programming languages, there is only one syntax tree that is defined to be the

“correct” one. This tree corresponds best to the intended semantics of the described

language. Defining a choice for this correct parse tree is called disambiguation [104].

So the technique of SGLR parsing allows us to generate parsers for real program-

ming languages, but real programming languages seem to have ambiguous grammars.

SGLR is therefore not sufficiently complete to deal with the meta-programming do-

main. This gives rise to the following research question which is addressed in Chapters

3 and 4:

Research Question 1

How can disambiguations of context-free grammars

be defined and implemented effectively?

1.4 Rewriting

1.4.1 Mechanics

After a parser has produced a tree representation of a program, we want to express anal-

yses and transformations on it. This can be done in any general purpose programming

language. The following aspects of tree analyses and transformation are candidates for

abstraction and automation:

☎ Tree construction: to build new (sub)trees in a type-safe manner.

☎
Tree deconstruction: to extract relevant information from a tree.

☎
Pattern recognition: to decide if a certain subtree is of a particular form.

☎ Tree traversal: to locate a certain subtree in a large context.

☎ Information distribution: to distribute information that was acquired elsewhere

to specific sites in a tree.

The term rewriting paradigm covers most of the above by offering the concept of

a rewrite rule [16]. A rewrite rule l ✆ r consists of two tree patterns. The left-hand

side of a rule matches tree patterns, which means identification and deconstruction of

a tree. The right-hand side then constructs a new tree by instantiating a new pattern

and replacing the old tree. A particular traversal strategy over a subject tree searches

for possible applications of rewrite rules, automating the tree traversal aspect. By in-

troducing conditional rewrite rules and using function symbols, or applying so-called

rewriting strategies [20, 159, 137], the rewrite process is controllable such that complex

transformations can be expressed in a concise manner.

17

Introduction CHAPTER 1

Term rewriting specifications can be compiled to efficient programs in a general

purpose language such as C [33]. We claim the benefits of generative programming:

higher intentionality, domain specific error messages, and generality combined with

efficiency [60].

Other paradigms that closely resemble the level of abstraction that is offered by

term rewriting are attribute grammars and functional programming. We prefer term

rewriting because of the more concise expressiveness for matching and construction

complex tree patterns that is not generally found in these other paradigms. Also, the

search for complex patterns is automated in term rewriting. As described in the follow-

ing, term rewriting allows a seamless integration of the syntactic and semantic domains.

1.4.2 Formalism

We use the Algebraic Specification Formalism (ASF) for defining rewriting systems.

ASF has one important feature that makes it particularly apt in the domain of meta-

programming: the terms that are rewritten are expressed in user-defined concrete syn-

tax. This means that tree patterns are expressed in the same programming language

that is analyzed or transformed, extended with pattern variables (See Chapter 5 for

examples).

The user first defines the syntax of a language in SDF, then extends the syntax with

notation for meta variables in SDF, and then defines operations on programs in that

language using ASF. Because of the seamless integration the combined language is

called ASF+SDF. Several other features complete ASF+SDF:

☎ Parameterized modules: for defining polymorphic reusable data structures,

☎ Conditional rewrite rules: a versatile mechanism allowing for example to define

the preconditions of rule application, and factoring out common subexpressions,

☎ Default rewrite rules: two level ordering of rewrite rule application, for prioritiz-

ing overlapping rewrite rules.

☎ List matching: allowing concise description of all kinds of list traversals. Com-

puter programs frequently consist of lists of statements, expressions, or declara-

tions, so this feature is practical in the area of meta-programming,

☎ Layout abstraction: the formatting of terms is ignored during matching and con-

struction of terms,

☎ Statically type-checked. Each ASF term rewriting system is statically guaranteed

to return only programs that are structured according to the corresponding SDF

syntax definition.

ASF is basically a functional language without any built-in data types: there are

only terms and conditional rewrite rules on terms available. Parameterized modules

are used to create a library of commonly used generic data structures such as lists, sets,

booleans, integers and real numbers.

18

SECTION 1.4 Rewriting

�

✁

✂

✄

ASF
rewrite
rules

Parser

SDF
grammar

Grammar
Extender

Parsetable
Generator

Add brackets

Parsetable

Parser

Extended
parsetable

Parsed
source code

ASF
rewrite engine

Parsed
rewrite rules

Parsed
target code

Parsed
target code

Target code Unparser

Source code

Extended
Grammar

Parsetable
Generator

Figure 1.4: The parsing and rewriting architecture of ASF+SDF.

1.4.3 Technology

In ASF+SDF grammars are coupled to term rewriting systems in a straightforward

manner: the parse trees of SDF are the terms of ASF. More specifically that means that

the non-terminals and productions in SDF grammars are the sorts and function symbols

of ASF term rewriting systems. Consequently, the types of ASF terms are restricted:

first-order and without parametric polymorphism. Other kinds of polymorphism are

naturally expressed in SDF, such as for example overloading operators with different

types of arguments, or different types of results. Term rewriting systems also have

variables. For this the SDF formalism was extended with variable productions.

Figure 1.4 depicts the general architecture of ASF+SDF. In this picture we can re-

place the box labeled ““ASF rewrite engine” by either an ASF interpreter or a compiled

ASF specification. Starting from an SDF definition two parse tables are generated. The

first is used to parse input source code. The second is obtained by extending the syntax

with ASF specific productions. This table is used to parse the ASF equations. The

rewriting engine takes a parse tree as input, and returns a parse tree as output. To ob-

tain source code again, the parse tree is unparsed, but not before some post-processing.

A small tool inserts brackets productions into the target tree where the tree violates

priority or associativity rules that have been defined in SDF.

Note that a single SDF grammar can contain the syntax definitions of different

source and target languages, so the architecture is not restricted to single languages. In

fact, each ASF+SDF module combines one SDF module with one ASF module. So,

every rewriting module can deal with new syntactic constructs.

The execution algorithm for ASF term rewriting systems can be described as fol-

lows. The main loop is a bottom-up traversal of the input parse tree. Each node that is

visited is transformed as many times as possible while there are rewrite rules applica-

ble to that node. This particular reduction strategy is called innermost. A rewrite rule

is applicable when the pattern on the left-hand side matches the visited node, and all

conditions are satisfied. Compiled ASF specifications implement the same algorithm,

but efficiency is improved by partial evaluation and factoring out common subcompu-

19

Introduction CHAPTER 1

tations [33].

To summarize, ASF is a small, eager, purely functional, and executable formalism

based on conditional rewrite rules. It has a fast implementation.

1.4.4 Application to meta-programming

There are three problem areas regarding the application of ASF+SDF to meta-

programming:

Conciseness. Although term rewriting offers many practical primitives, large lan-

guages still imply large specifications. However, all source code transformations

are similar in many ways. Firstly, the number of trivial lines in an ASF+SDF pro-

gram that are simply used for traversing language constructs is huge. Secondly,

passing around context information through a specification causes ASF+SDF

specifications to look repetitive sometimes. Thirdly, the generics modules that

ASF+SDF provides can also be used to express generic functions, but the syn-

tactic overhead is considerable. This limits the usability of a library of reusable

functionality.

Low fidelity. Layout and source code comments are lost during the rewriting process.

From the users perspective, this loss of information is unwanted noise of the

technology. Layout abstraction during rewriting is usually necessary, but it can

also be destructive if implemented naively. At the very least the transformation

that does nothing should leave any program unaltered, including its textual for-

matting and including the original source code comments.

The interaction possibilities of an ASF+SDF tool with its environment are limited

to basic functional behavior: parse tree in, parse tree out. There is no other

communication possible. How to integrate an ASF+SDF meta tool in another

environment? Conversely, how to integrate foreign tools and let them communi-

cate with ASF+SDF and the Meta-Environment? The above limitations prevent

the technology from being acceptable in existing software processes that require

meta-programming.

Each of the above problem areas gives rises to a general research question in this thesis.

Research Question 2

How to improve the conciseness of meta programs?

The term rewriting execution mechanism supports very large languages, and large

programs to rewrite. It is the size of the specification that grows too fast. We will

analyze why this is the case for three aspects of ASF+SDF specifications: tree traversal,

passing context information and reusing function definitions.

20

SECTION 1.4 Rewriting

Traversal. Although term rewriting has many features that make it apt in the meta

programming area, there is one particularity. The non-deterministic behavior of term

rewriting systems, that may lead to non-confluence1, is usually an unwanted feature

in the meta programming paradigm. While non-determinism is a valuable asset in

some other application areas, in the area of meta-programming we need deterministic

computation most of the time. The larger a language is and the more complex a trans-

formation, the harder is becomes to understand the behavior of a term rewriting system.

This is a serious bottleneck in the application of term rewriting to meta programming.

The non-determinism of term rewriting systems is an intensively studied prob-

lem [16], resulting in solutions that introduce term rewriting strategies [20, 159, 137].

Strategies limit the non-determinism by letting the programmer explicitly denote the

order of application of rewrite rules. One or all of the following aspects are made

programmable:

☎ Choice of which rewrite rules to apply.

☎ Order of rewrite rule application.

☎ Order of tree traversal.

If we view a rewrite rule as a first order function on a well-known tree data structure,

we can conclude that strategies let features of functional programming seep into the

term rewriting paradigm: explicit function/rewrite rule application and higher order

functions/strategies. As a result, term rewriting with strategies is highly comparable to

higher order functional programming with powerful matching features.

In ASF+SDF we adopted a functional style of programming more directly. First-

order functional programming in ASF+SDF can be done by defining function sym-

bols in SDF to describe their type, and rewrite rules in ASF to describe their effect.

This simple approach makes choice and order of rewrite rule application explicit in a

straightforward and manner: by functional composition.

However, the functional style does not directly offer effective means for describing

tree traversal. Traversal must be implemented manually by implementing complex,

but boring functions that recursively traverse syntax trees. The amount and size of

these functions depend on the size of the object language. This specific problem of

conciseness is studied and resolved in Chapter 6:

Context information. An added advantage of the functional style is that context in-

formation can be passed naturally as extra arguments to functions. That does mean that

all information necessary during a computation should be carried through the main

thread of computation. This imposes bottlenecks on specification size, and separation

of concerns because nearly all functions in a computation must thread all information.

Tree decoration is not addressed by the term rewriting paradigm, but can be a very

practical feature for dealing with context information [107]. Its main merit is that it

allows separation of data acquisition stages from tree transformation stages without

the need for constructing elaborate intermediate data structures. It could substantially

1See Section 6.1.5 on page 105 for an explanation of confluence in term rewriting systems

21

Introduction CHAPTER 1

alleviate the context information problem. The scaffolding technique, described in

[142], prototypes this idea by scaffolding a language definition with extension points

for data storage.

This thesis does not contain specific solutions to the context information problem.

However, traversal functions (Chapter 6) alleviate the problem by automatically thread-

ing of data through recursive application of a function. Furthermore, a straightforward

extension of ASF+SDF that allows the user to store and retrieve any annotation on a

tree also provides an angle for solving many context information issues. We refer to

[107] for an analysis and extrapolation of its capabilities.

Parameterized modules. The design of ASF+SDF limits the language to a first-

order typing system without parametric polymorphism. Reusable functions that can

therefore not easily be expressed. The parameterized modules of ASF+SDF do allow

the definition of functions that have a parameterized type, but the user must import a

module and bind an actual type to the formal type parameter manually.

The reason for the lack of type inference in ASF+SDF is the following circular

dependency: to infer a type of an expression it must be parsed, and to parse the expres-

sion its type must be known. Due to full user-defined syntax, the expression can only

be parsed correctly after the type has been inferred. The problem is a direct artifact of

the architecture depicted in Figure 1.4.

The conciseness of ASF+SDF specifications is influenced by the above design.

Very little syntactic overhead is needed to separate the meta level from the object level

syntax, because a specialized parser is generated for every module. On the other hand,

the restricted type system prohibits the easy specification of reusable functions, which

contradicts conciseness. In Chapter 5 we investigate whether we can reconcile syntactic

limitations with the introduction of polymorphic functions.

Research Question 3

How to improve the fidelity of meta programs?

A requirement in many meta-programming applications is that the tool is very con-

servative with respect to the original source code. For example, a common process

in software maintenance is updating to a new version of a language. A lot of small

(syntactical) changes have to be made in a large set of source files. Such process can

be automated using a meta programming tool, but the tool must change only what is

needed and keep the rest of the program recognizable to the human maintainers.

The architecture in Figure 1.4 allows, in principle, to parse, rewrite and unparse

a program without loss of any information. If no transformations are necessary dur-

ing rewriting, the exact same file can be returned including formatting and source code

comments. The enabling feature is the parse tree data structure, which contains all char-

acters of the original source code at its leaf nodes: a maximally high-resolution data

structure. However the computational process of rewriting, and the way a transforma-

tion is expressed by a programmer in terms of rewrite rules may introduce unwanted

22

SECTION 1.5 Related work

side-effects:

☎
ASF abstracts from the particular layout and source code comments of source

code patterns during matching.

☎ ASF abstracts from complex lexical syntax structures and maps them to strings

of characters.

☎
ASF abstracts from applications of bracket productions; they are removed, and

necessary brackets are reintroduced after rewriting again.

Each of the above abstractions services the conciseness of ASF+SDF specifications,

but hampers their fidelity. Even the identity transformation might result in the loss of

some characters in the input code. In Chapter 7 and Chapter 8 we address these issues.

Research Question 4

How to improve the interaction of meta programs

with their environment?

Data. One aspect of interaction of a meta program with its environment is the data

integration. Since in ASF+SDF the parse tree data structure plays a central role (Fig-

ure 1.4), the question is how we can communicate parse trees. The ApiGen tool [62]

generates implementations of the exact syntax trees of ASF+SDF in the C program-

ming language. This is the first and foremost step towards connecting ASF+SDF com-

ponents to C components. The authors of [62] characterize the generated interfaces by

efficiency, readability and type-safety.

The Java language is becoming increasingly popular, especially in the area of user

interfaces and visualization. The question arises whether the same ApiGen solution can

apply to this language, with the requirement of obtaining the same quality attributes.

We answer this in Chapter 9.

Coordination. The ApiGen solution services data integration, the question remains

how to organize the control flow of ASF+SDF and the Meta-Environment with foreign

tools. Several steps towards such integration are taken in Chapter 2. In this chapter,

we strongly separate the formalism from its particular programming environment to

ensure both are able to communicate with any other partners.

1.5 Related work

The computer aided software engineering or meta-programming field is not identifiable

as a single research community. It is divided more or less among the lines of the dif-

ferent application areas of meta-programming. To compensate, related work must be

23

Introduction CHAPTER 1

�

✁

✂

✄

Feature overlap . . . A
N

TLR

D
M

S

ELA
N

Eli Ja
st
A

dd

M
au

de

Stra
te

go
/X

T

TX
L

Meta-programming system ✓ ✓ ✓ ✓ ✓ ✓

Uses generalized parsing ✓ ✓ ✓ ✓

Uses term rewriting ✓ ✓ ✓ ✓ ✓

Shares components with ASF+SDF ✓ ✓

Table 1.2: Systems related to the ASF+SDF Meta-Environment .

discussed in a highly focused manner. We refer to the relevant chapters for a discussion

on the related work on specific research questions.

However, there are a number of highly related systems that compare to the

ASF+SDF Meta-Environment at one or more levels: ANTLR [135], DMS [13] , ELAN

[23], Eli [96], JastAdd [84], Maude [57] , Stratego/XT [162], and TXL [59]. Of those

systems, ASF+SDF, DMS, Eli, JastAdd, TXL and Stratego/XT are designed as lan-

guage processing toolkits. ELAN and Maude are logical frameworks based on parsing

and rewriting that can be applied to language processing just as well. Table 1.2 shows

on which level each system compares to the ASF+SDF Meta-Environment.

Note that in Table 1.2 I have used the terms generalized parsing and term rewriting

to denote classes of algorithms and language features. For generalized parsing a whole

range of parsing algorithms exist. For example, it can be a non-deterministic LL parser

that employs backtracking to produce a single derivation. It can also be a Tomita-

style generalized LR parser that produces all possible derivations. Term rewriting is

used to denote all algorithms that use basic features available from the term rewriting

formalism, such as matching and construction of trees. The actual language may offer

only the basics, or also automated traversals, strategies, and side-effects.

The point is that although each of the above systems has claimed a niche of its own,

from a meta-programming perspective they are highly comparable. At least algorithms,

optimizations and language features carry over easily between these systems concep-

tually, and sometimes even on the implementation level. We do not explicitly compare

the above systems from a general perspective in this thesis, rather one a minute level

compare features where appropriate.

1.6 Road-map and acknowledgments

The thesis is organized into mostly previously published chapters that each target spe-

cific research questions. Table 1.3 maps the questions to the chapters and correspond-

ing publications. The chapters can be read independently and are grouped into four

parts.

The following list details the origins of all chapters including their respective co-

authors, and other due acknowledgments. Because in our group we always order au-

thors of a publication alphabetically, it is not immediately obvious who is mainly re-

24

SECTION 1.6 Road-map and acknowledgments

�

✁

✂

✄

Research questions Chapter Publication

1 How can disambiguations of context-free gram-

mars be defined and implemented effectively?

3, 4 [46, 40]

2 How to improve the conciseness of meta pro-

grams?

5, 6 [39, 38]

3 How to improve the fidelity of meta programs? 7,8 [50]

4 How to improve the interaction of meta programs

with their environment?

2, 9 [45, 44]

Table 1.3: Research questions in this thesis.

sponsible for each result. Therefore, I explain my exact contribution to each publica-

tion.

Part I Overview

Chapter 1. Introduction. This chapter provides an introduction and motivation to

the subjects in this thesis.

Chapter 2. Environments for Term Rewriting Engines for Free. This chapter

was published at RTA in 2002 [44], and is co-authored by Mark van den Brand and

Pierre-Etienne Moreau. This work documents an intermediate stage in the process of

enabling the ASF+SDF Meta-Environment towards full configurability and extensibil-

ity. The architecture described here has been used at CWI to construct several versions

of the ASF+SDF Meta-Environment itself, at INRIA-LORIA it was used to construct

an IDE for the ELAN language, and later at BRICS to construct an IDE for Action

Notation [128, 129].

My contribution consists of the design and implementation of the proposed archi-

tectural solution, and translating this result to applications in the term rewriting domain.

Mark van den Brand contributed by implementing or enabling all ELAN components

for use in the Meta-Environment. Pierre-Etienne Moreau provided the components for

the Rho Calculus case-study.

I would like to thank the numerous people that have worked on the design and

implementation of the components of all the above systems.

Part II Parsing and disambiguation

Chapter 3. Disambiguation Filters for Scannerless Generalized LR Parsers.

I co-authored this chapter with Mark van den Brand, Jeroen Scheerder and Eelco Visser.

It was published in CC 2002 [46]. This publication marks a stable implementation of

the SGLR parser and disambiguation filters that has since been used in numerous sys-

tems and applications.

My contribution to this chapter is not the SGLR algorithm itself. It was published

25

Introduction CHAPTER 1

before [88, 157]. Together with Mark van den Brand, I have contributed to the empir-

ical validation of this algorithm by (re)implementing large parts of it, and completely

redesigning the architecture for filtering ambiguities during and after parsing. The ini-

tial version of this chapter was written by me, and it has been updated after publication

with more discussion on the usefulness of SGLR parsing.

The feedback of many users has been indispensable while developing SGLR.

Hayco de Jong and Pieter Olivier dedicated considerable time on improving SGLR

efficiency. I would like to thank Martin Bravenboer, Merijn de Jonge, Joost Visser for

their use of and feedback on SGLR. I thank Rob van der Leek, Leon Moonen, and

Ernst-Jan Verhoeven for putting SGLR to the test with “Island Parsing”. Jan Heering

and Paul Klint provided valuable input when discussing design and implementation of

SGLR.

Chapter 4. Semantics Driven Disambiguation. This chapter was published at

LDTA 2003 [40], and co-authored by Mark van den Brand, Steven Klusener, and Leon

Moonen. It continues where Chapter 3 stopped: how to deal with the ambiguities that

can not be modeled with context-free disambiguation concepts. The subject of the

chapter balances between between parsing and term rewriting. The method used is

term rewriting, but since the goal is disambiguation it is located in this part.

The algorithm and techniques for disambiguation by rewriting that are proposed in

this chapter are my contribution. The work was supervised by Mark van den Brand.

Benchmarking and validating them on (industrial) cases was done by Steven Klusener

and Leon Moonen.

Chapter 5. A Type-driven approach to Concrete Meta Programming. This chap-

ter reports on experiments with the advanced concrete syntax features of ASF+SDF.

A slightly abbreviated version of this chapter has been published in RISE 2005 [155].

This chapter is an extreme application of disambiguation filters as studied in Chapter

3 and Chapter 4: we effectively introduce syntactic ambiguity to optimize syntactic

features, only to deterministically filter them later.

Filtering ambiguity by type-checking was independently researched by me at CWI

and by Martin Bravenboer at Utrecht University. We decided to join forces resulting in

my co-authorship of a GPCE publication on meta programming with concrete syntax

in Java [52]. This chapter pushes one step further by introducing the fully automated

inference of quoting transitions between meta and object language, including its appli-

cation to the design of ASF+SDF.

I would like to thank Paul Klint, Mark van den Brand and Tijs van der Storm

for their valuable comments on drafts of this chapter. Furthermore, I thank Martin

Bravenboer, Rob Vermaas and Eelco Visser for our collaboration on this subject.

26

SECTION 1.6 Road-map and acknowledgments

Part III Rewriting source code

Chapter 6. Term Rewriting with Traversal Functions. This chapter was published

in Transactions on Software Engineering and Methodology (TOSEM) in 2003 [39]. An

extended abstract appeared in the proceedings of the Workshop on Rewriting Strategies

(WRS) 2002 [38]. Both papers are co-authored by Paul Klint and Mark van den Brand.

The algorithms and techniques in this chapter are my contribution, although shaped

by numerous discussions with Paul Klint and Mark van den Brand. As discussed in

the chapter, they have an origin in the work by Alex Sellink and Chris Verhoef on

Renovation Factories.

I would like to thank the earliest users of traversal functions for their feedback

and patience: Eva van Emden, Steven Klusener, Ralf Lämmel, Niels Veerman, Guido

Wachsmuth and Hans Zaadnoordijk. Furthermore, I thank Alex Sellink, Ralf Lämmel,

Chris Verhoef, Eelco Visser, and Joost Visser for their feedback on this work and their

respective studies on the subject of tree traversal mechanisms.

Chapter 7. Rewriting with Layout. This chapter was published in RULE 2000

[50], and co-authored by Mark van den Brand. It has been updated to reflect current

developments in ASF+SDF. The results have been used in practice, in particular in the

CALCE software renovation project.

This chapter was written by me and supervised by Mark van den Brand.

I would like to thank Steven Klusener for providing data for the case in this chap-

ter, and for his feedback on ASF+SDF with regard to high-fidelity transformations.

Together with the results of Chapter 6, this work enables ASF+SDF to be applied to

industrial cases.

Chapter 8. First Class Layout. This chapter has not been published outside this

thesis. It reports on extensions of ASF+SDF towards full fidelity and resolution for

source code transformations.

Magiel Bruntink and I worked together to manually check the results of the two fact

extractors for the case study for this chapter. I would like to thank D.G. Waddington

and Bin Yoa for coining the term “high-fidelity” in the context of source code transfor-

mations [165].

Chapter 9. A Generator of Efficient Strongly Typed Abstract Syntax Trees in

Java. This chapter was published in IEE Proceedings – Software in 2005. It is co-

authored by Mark van den Brand and Pierre-Etienne Moreau. It is located in the term

rewriting part, since syntax trees are the basic data structure that is used in the ASF

rewriting engine. As such, the results in Chapter 9 can be used to construct a Java

back-end for the ASF compiler.

The algorithms and techniques in this paper are a result of several intensive sessions

with Pierre-Etienne Moreau at INRIA-LORIA. He has contributed the idea of a generic

shared object factory, while I have designed and implemented the three tier layer of the

generated Java API. The JTom compiler that is used as a case study in this chapter is

27

Introduction CHAPTER 1

written by Pierre-Etienne Moreau. I have written the chapter. Note that the subject of

API generation was fully inspired by the C version of ApiGen, written by Pieter Olivier

and Hayco de Jong.

Part IV

Chapter 10. Conclusions. In this chapter we briefly revisit the research questions

and review how they have been answered. We also identify the gaps and opportunities

for future research. We finish by summarizing the software developed in the context of

this thesis.

Chapter 11. Samenvatting. This chapter summarizes the thesis in Dutch.

28

C H A P T E R 2

Environments for Term

Rewriting Engines for Free!

Term rewriting can only be applied if practical implementations of term

rewriting engines exist. New rewriting engines are designed and imple-

mented either to experiment with new (theoretical) results or to be able

to tackle new application areas. In this chapter we present the Meta-

Environment: an environment for rapidly implementing the syntax and se-

mantics of term rewriting based formalisms. We provide not only the basic

building blocks, but complete interactive programming environments that

only need to be instantiated by the details of a new formalism. 1

2.1 Introduction

Term rewriting can only be applied if practical implementations of term rewriting en-

gines exist. New rewriting engines are designed and implemented either to experiment

with new (theoretical) results or to be able to tackle new application areas, e.g., pro-

tocol verification, software renovation, etc. However, rewrite engines alone are not

enough to implement real applications.

An analysis of existing applications of term rewriting, e.g., facilitated by for-

malisms like ASF+SDF [67], ELAN [22], Maude [58], RRL [95], Stratego [159],

TXL [59], reveals the following four required aspects:

☎ a formalism that can be executed by a rewriting engine,

☎
parsers to implement the syntax of the formalism and the terms,

☎ a rewriting engine to implement the semantics of the formalism,

☎ a programming environment for supporting user-interaction, which can range

from a set of commandline tools to a full-fledged interactive development envi-

ronment (IDE).

1This chapter was published at RTA in 2002 [44], and is co-authored by Mark van den Brand and Pierre-

Etienne Moreau.

29

Environments for Term Rewriting Engines for Free! CHAPTER 2

A formalism introduces the syntactic notions that correspond to the operational seman-

tics of the rewriting engine. This allows the user to write readable specifications. The

parsers provide the connection from the formalism to the rewriting engine via abstract

syntax trees. The programming environment can be either a set of practical command

line tools, an integrated system with a graphical user-interface, or some combination. It

offers a user-interface tailored towards the formalism for interacting with the rewriting

engine. For a detailed overview of rewriting-based systems we refer to [146].

Implementing the above four entities is usually a major research and software engi-

neering effort, even if we target only small but meaningful examples. It is a long path

from a description of a term rewriting engine, via language design for the correspond-

ing formalism, to a usable programming environment.

In this chapter we present the Meta-Environment: An open architecture of tools, li-

braries, user-interfaces and code generators targeted to the design and implementation

of term rewriting environments.

We show that by using the Meta-Environment a mature programming environment

for a new term rewriting formalism can be obtained in a few steps. Our approach is

based on well-known software engineering concepts: standardization (of architecture

and exchange format), software reuse (component based development), source code

generation and parameterization.

Requirements Real-world examples of term rewriting systems are to be found in

many areas, including the following ([146]): rewriting workbenches, computer algebra,

symbolic computation, functional programming, definition of programming languages,

theorem proving, and generation, analysis, and transformation of programs.

These application areas are quite different, which explains the existence of several

formalisms each tailored for a certain application domain. Each area influences the de-

sign and implementation of a term rewriting environment in several ways. We identify

the following common requirements:

☎
Openness. Collaboration with unforeseen components is often needed. It asks

for an open architecture to facilitate communication between the environment,

the rewriting engine, and foreign tools.

☎
Readable syntax. Syntax is an important design issue for term rewriting for-

malisms. Although conceptually syntax might be a minor detail, a formalism

that has no practical and readable syntax is not usable.

☎
Scalability. Most real-world examples lead to big specifications or big terms.

Scalability means that the implementation is capable of handling such problems

using a moderate amount of resources.

☎
User Interface. A textual or graphical user-interface automates the practical use

cases of a formalism. An interactive graphical interface also automates as much

of the browsing, editing and testing, of specifications as possible. In this work

we assume that an interactive GUI is a common requirement for programming

environments.

30

SECTION 2.2 Architecture for an open environment

�

✁

✂

✄

Text

Editor

Structure

Editor

Hook m
es

sa
ge

Service request

ASF Specific Protocol

ASF Checker

Parser Tool n

Tool m

Compiler

ASF

Interpreter

ASFGUI

Generic Meta−Environment Protocol

TOOLBUS

Figure 2.1: A complete environment consisting of a generic part and an ASF specific

part

The above four issues offer no deep conceptual challenges, but still they stand for

a considerable design and engineering effort. We offer immediately usable solutions

concerning each of those issues in this chapter. This paves the way for the application of

new experiments concerning term rewriting that would otherwise have cost months to

implement. In that sense, this chapter contributes to the promotion and the development

of rewriting techniques and their applications.

2.2 Architecture for an open environment

In Section 2.3 we discuss the specific components of the Meta-Environment that can

be used to implement a new term rewriting environment. An example environment is

implemented in Section 2.4. Here we discuss the general architecture of the Meta-En-

vironment.

The main issue is to separate computation from communication. This separation is

achieved by means of a software coordination architecture and a generic data exchange

format. An environment is obtained by plugging in the appropriate components into

this architecture.

ToolBus. To prevent entangling of coordination with computation in components we

introduce a software coordination architecture, the ToolBus [15]. It is a programmable

software bus based on Process Algebra. Coordination is expressed by a formal descrip-

tion of the cooperation protocol between components while computation is expressed

inside the components that may be written in any language. Figure 2.1 visualizes a

ToolBus application (to be discussed below).

Separating computation from communication means that each of these components

is made as independent as possible from the others. Each component provides a certain

service to the other components via the software bus. They interact with each other

using messages. The organization of this interaction is fully described using a script

31

Environments for Term Rewriting Engines for Free! CHAPTER 2

that corresponds to a collection of process algebra expressions.

ATerms. Coordination protocol and components have to share data. We use

ATerms [31] for this purpose. These are normal prefix terms with optional annota-

tions added to each node. The annotations are used to store tool-specific information

such as text coordinates or proof obligations. All data that is communicated via the

ToolBus is encoded as ATerms. ATerms are comparable to XML, both are generic data

representations. Although there are tools for conversions between these formats, we

prefer ATerms for efficiency reasons. They can be linearized using either a readable

representation or a very dense binary encoding.

ATerms can not only be used as a generic data exchange format but also to imple-

ment an efficient term data structure in rewriting engines. The ATerm library offers

a complete programming interface to the term data structure. It is used to implement

term rewriting interpreters or run-time support for compiled rewriting systems. The

following three properties of the ATerm library are essential for term rewriting:

☎
Little memory usage per node.

☎ Maximal sub-term sharing.

☎ Automatic garbage collection.

Maximal sharing has proved to be a very good method for dealing with large amounts

of terms during term rewriting [30, 159]. It implies that term equality reduces to pointer

equality. Automatic garbage collection is a very practical feature that significantly

reduces the effort of designing a new rewriting engine or compiler.

Meta-Environment Protocol. The ToolBus and ATerms are more widely applica-

ble than just for term rewriting environments. To instantiate this generic architecture,

the Meta-Environment ToolBus scripts implement a coordination protocol between its

components. Together with the tools, libraries and program generators this protocol

implements the basic functionality of an interactive environment.

The Meta-Environment protocol makes no assumptions about the rewriting engine

and its coordination with other tools. In order to make a complete term rewriting

environment we must complement the generic protocol with specific coordination for

every new term rewriting formalism.

For example, the architecture of the ASF+SDF Meta-Environment is shown in Fig-

ure 2.1. The ToolBus executes the generic Meta-Environment protocol, depicted by

the circles in the left-hand side of the picture. It communicates with external tools, de-

picted by squares. The right-hand side of the picture shows a specific extension of the

Meta-Environment protocol, in this example it is designed for the ASF+SDF rewriting

engines. It can be replaced by another protocol in order to construct an environment

for a different rewriting formalism.

Hooks. The messages that can be received by the generic part are known in advance,

simply because this part of the system is fixed. The reverse is not true, the generic part

can make no assumptions about the other part of the system.

32

SECTION 2.3 Reusable components

Hook Description

environment-name(Name) The main GUI window will display this

name.

extensions(Sig, Sem, Term) Declares the extensions of different file

types.

stdlib-path(Path) Sets the path to a standard library.

semantics-top-sort(Sort) Declares the top non-terminal of a speci-

fication.

rewrite(Sig, Sem, Term) Rewrite a term using a specification.

pre-parser-generation(Sig) Manipulate the syntax before parser gen-

eration.

rename-semantics(Sig,Binds,Sem) Implement module parameterization.

pre-rewrite(Sig,Spec) Actions to do before rewriting.

Table 2.1: The Meta-Environment hooks: the hooks that parameterize the GUI (top

half), and events concerning the syntax and semantics of a term rewriting formalism

(bottom half).

Tool Type Description

pgen SDF ✝ Table Generates a parse table.

sglr Table ✞ Str ✝ AsFix parses an input string and yields a derivation.

implode AsFix ✝ ATerm Maps a parse tree to an abstract term.

posinfo AsFix ✝ AsFix Adds line and column annotations.

unparse AsFix ✝ Str Yields a string from a parse tree.

Table 2.2: A list of the most frequently used components for SDF and AsFix

We identify messages that are sent from the generic part of the Meta-Environment

to the rewriting formalism part as so-called hooks. Each instance of an environment

should at least implement a receiver for each of these hooks. Table 2.1 shows the basic

Meta-Environment hooks. The first four hooks instantiate parameters of the GUI and

the editors. The last four hooks are events that need to be handled in a manner that is

specific for the rewriting formalisms.

2.3 Reusable components

In this section we present reusable components to implement each aspect of the de-

sign of a term rewriting environment. The components are either tools, libraries or

code generators. In Section 2.4 we explain how to use these components to create a

programming environment using an example term rewriting formalism.

2.3.1 Generalized Parsing for a readable formalism

We offer generic and reusable parsing technology. An implementation of parsing usu-

ally consists of a syntax definition formalism, a parser generator, and run-time support

33

Environments for Term Rewriting Engines for Free! CHAPTER 2

for parsing. Additionally, automated parse tree construction and abstract syntax tree

construction are offered. Table 2.2 shows a list of components related to parsing.

Syntax. SDF is a declarative syntax definition formalism used to define modular

context-free grammars. Both lexical syntax and context-free syntax can be expressed

in a uniform manner. Among other disambiguation constructs, notions for defining

associativity and relative priority of operators are present.

Furthermore, SDF offers a simple but effective parameterization mechanism. A

module may be parameterized by formal parameters attached to the module name.

Using the import mechanism of SDF this parameter can be bound to an actual non-

terminal.

Programs that deal with syntax definitions can use the SDF library. It provides a

complete high-level programming interface for dealing with syntax definitions.

Concrete syntax. Recall that a syntax definition can serve as a many-sorted signature

for a term rewriting system. The grammar productions in the definition are the opera-

tors of the signature and the non-terminals are the sorts. The number of non-terminals

used in a grammar production is the arity of an operator.

Concrete syntax for any term rewriting formalism can be obtained by simply ex-

pressing both the fixed syntax of the formalism and the user defined syntax of the terms

in SDF. A parameterized SDF module is used to describe the fixed syntax. This mod-

ule can be imported for every sort in the user-defined syntax. An example is given in

Section 2.4.

SGLR. To implement the SDF formalism, we use scannerless generalized LR pars-

ing [46]. The result is a simple parsing architecture, but capable of handling any mod-

ular context-free grammar.

AsFix. SGLR produces parse trees represented as ATerms. This specific class of

ATerms is called AsFix. Every AsFix parse tree explains exactly, for each character

of the input, which SDF productions were applied to obtain a derivation. A library is

offered to be able to create components that deal with AsFix.

2.3.2 Establishing the connection between parsing and rewriting

The SDF library and the AsFix library can be used to implement the connection be-

tween the parser and a rewriting engine. Furthermore, we can also automatically gen-

erate new libraries specifically tailored towards the rewriting formalism that we want

to implement [62] (See also Chapter 9).

We use an SDF definition of the new formalism to generate C or Java libraries that

hide the actual ATerm representation of a parse tree of a specification behind a typed

interface. The generated interfaces offer: reading in parse trees, constructors, getters

and setters for each operator of the new formalism. Apart from saving a lot of time,

using these code generators has two major advantages:

34

SECTION 2.4 Reusable components

�

✁

✂

✄

Figure 2.2: GUI of the Meta-Environment displaying an import relation.

☎
The term rewriter can be developed at a higher level of abstraction.

☎
Programming errors are prevented by the strictness of the generated types.

2.3.3 Graphical User Interface

MetaStudio. The Meta-Environment contains a user-interface written in Java (Figure

2.2). It can be used to browse modules. Every module has a number of actions that

can be activated using the mouse. The actions are sent to the ToolBus. MetaStudio has

parameters to configure the name of the environment, the typical file extensions, etc.

Editors. Editing of specifications and terms is done via a generic editor interface.

Currently, this interface is implemented by XEmacs 2, but it can be replaced by any ed-

itor capable of communicating with other software. To offer structure-editing capabil-

ities, an editor communicates with another component that holds a tree representation

of the edited text.

Utilities. Among other utilities, we offer file I/O and in-memory storage that aid in

the implementation of an interactive environment.

2http://www.xemacs.org

35

Environments for Term Rewriting Engines for Free! CHAPTER 2

2.4 A new environment in a few steps

In this section we show the steps involved in designing a new environment. We take a

small imaginary formalism called “RHO” as a running example. It is a subset of the ρ-

calculus [56], having first-class rewrite rules and an explicit application operator. The

recipe to create a RHO environment is:

1. Instantiate the parameters of the GUI.

2. Define the syntax of RHO.

3. Write some small RHO specifications.

4. Implement and connect a RHO interpreter.

5. Connect other components.

1. Instantiate the parameters of the GUI: We start from a standard ToolBus script

that implements default behavior for all the hooks of Table 2.1. We can immediately

bind some of the configuration parameters of the GUI. In the case of RHO, we can

instantiate two hooks: environment-name("The RHO Environment") and

extensions(".sdf",".rho",".trm").

Using the RHO Meta-Environment is immediately possible. It offers the user three

kinds of syntax-directed editors that can be used to complete the rest of the recipe: SDF

editors, editors for the (yet unspecified) RHO formalism, and term editors.

2. Define the syntax of RHO: Figure 2.4 shows how the SDF editors can be used to

define the syntax of RHO3. It has some predefined operators like assignment (":="),

abstraction ("->") and application ("."), but also concrete syntax for basic terms.

So, a part of the syntax of a RHO term is user-defined. The parameterization mecha-

nism of SDF is used to leave a placeholder (Term) at the location where user-defined

terms are expected4. The Term parameter will later be instantiated when writing RHO

specifications.

To make the syntax-directed editors for RHO files work properly we now have to

instantiate the following hook: semantic-top-sort("Decls"). The parameter

"Decls" refers to the top sort of the definition in Figure 2.4.

3. Write some small RHO specifications: We want to test the syntax of the new

formalism. Figure 2.3 shows how two editors are used to specify the signature and

some rules for the Boolean conjunction. Notice that the Rho module is imported ex-

plicitly by the Booleans module, here we instantiate the Term placeholder for the

user-defined syntax. In Section 5 we explain how to add the imports automatically.

We can now experiment with the syntax of RHO, define some more operators, basic

data types or start a standard library of RHO specifications. For the GUI, the location

of the library should be instantiated using the stdlib-path hook.

3For the sake of brevity, Figure 2.4 does not show any priorities between operators.
4Having concrete syntax of terms is not obligatory.

36

SECTION 2.4 A new environment in a few steps

�

✁

✂

✄

Figure 2.3: A definition of the Boolean conjunction in SDF +RHO.

37

Environments for Term Rewriting Engines for Free! CHAPTER 2

�

✁

✂

✄

Figure 2.4: A parameterized syntax definition of the formalism RHO.

4. Implement and connect a RHO interpreter: As mentioned in Section 2.2, the

ATerm library is an efficient choice for a term implementation. Apart from that we

present the details of the connection between a parsed specification and an implemen-

tation of the operational semantics of RHO. The algorithmic details of evaluating RHO

are left to the reader, because that changes with each instance of a new formalism.

The rewrite hook connects a rewriting engine to the RHO environment:

rewrite(Syntax,Semantics,Term) From this message we receive the infor-

mation that is to be used by the rewriting engine. Note that this does not prohibit to

request any other information from other components using extra messages. The input

data that is received can be characterized as follows: Syntax is a list of all SDF mod-

ules (the parse trees of Rho.sdf and Booleans.sdf). Semantics is a list of all

RHO modules (the parse tree of Booleans.rho). Term is the expression that is to

38

SECTION 2.4 A new environment in a few steps

be normalized (for example a parse tree of a file called test.trm).

Two scenarios are to be considered: either a RHO engine already exists, or a new

engine has to be designed from scratch. In the first case, the data types of the Meta-

Environment will be converted to the internal representation of the existing engine.

In the second case, we can implement a new engine based on the data types of the

Meta-Environment directly. In both cases the three data types of the Meta-Environ-

ment are important: SDF, AsFix and ATerms. The libraries and generators ensure that

these cases can be specified on a high level of abstraction. We split the work into the

signature and semantics parts of RHO.

Signature. To extract the needed information from the user-defined signature the

SDF modules should be analyzed. The SDF library is the appropriate mechanism to

inspect them in a straightforward manner.

Semantics. Due to having concrete syntax, the list of parse trees that represent RHO

modules is not defined by a fixed signature. We can divide the set of operators in two

categories:

☎
A fixed set of operators that correspond to the basic operators of the formal-

ism. Each fixed operator represents a syntactical notion that should be given a

meaning by the operational semantics. For RHO, assignment, abstraction, and

application are examples of fixed operators.

☎
Free terms occur at the location where the syntax is user-defined. In RHO this is

either as the right-hand side of an assignment or as a child of the abstraction or

application operators.

There is a practical solution for dealing with each of these two classes of operators.

Firstly, from an SDF definition for RHO we generate a library specifically tailored for

RHO. This library is used to recognize the operators of RHO and extract information

via an abstract typed interface. For example, one of the C function headers in this

generated library is: Rho getRuleLhs(Rho rule). A RHO interpreter can use it

to retrieve the left-hand side of a rule.

Secondly, the free terms can be mapped to simple prefix ATerms using the compo-

nent implode, or they can be analyzed directly using the AsFix library. The choice

depends on the application area. E.g., for source code renovation details such as white

space and source code comments are important, but for symbolic computation this in-

formation might as well be thrown away in favor of efficiency.

In the case of an existing engine, the above interfaces are used to extract informa-

tion before providing it to the engine. In the case of a new engine, the interfaces are

used to directly specify the operational semantics of RHO.

5. Connect other components: There are some more hooks that can be instantiated

in order to influence the behavior of the Meta-Environment. Also, the RHO part of the

newly created environment might introduce other components besides the rewriting

engine.

39

Environments for Term Rewriting Engines for Free! CHAPTER 2

We give two examples here. The pre-parser-generation hook can be used

to extend the user-defined syntax with imports of the RHO syntax automatically for

each non-terminal. Secondly, the pre-rewrite hook hook can be used to connect

an automatic verifier or prover like a Knuth-Bendix completion procedure.

Adding unanticipated tools is facilitated at three levels by the Meta-Environment.

Firstly, an SDF production can have any attribute to make it possible to express

special properties of operators for the benefit of new tools. An example: B "&"

B -> B ✟ left, lpo-precedence(42) ✠ . Secondly, any ATerm can be anno-

tated with extra information without affecting the other components. For example:

and(true,false) ✡ not-reduced ☛ . Finally, all existing services of the Meta-

Environment are available to the new tool. It can for example open a new editor to

show its results using this message: new-editor(Contents)

2.5 Instantiations of the Meta-Environment

We now introduce the four formalisms we have implemented so far using the above

recipe. We focus on the discriminating aspects of each language.

ASF [67] is a term rewriting formalism based on leftmost-innermost normalization.

The rules are called equations and are written in concrete syntax. Equations can have

a list of conditions which must all evaluate to true before a reduction succeeds. The

operational semantics of ASF also introduces rewriting with layout and traversal func-

tions [37], operators that traverse the sub-term they are applied to.

The above features correspond to the application areas of ASF. It is mainly used

for design of the syntax and semantics of domain specific languages and analysis and

transformation of programs in existing programming languages. From the application

perspective ASF is an expressive form of first-order functional programming. The

Meta-Environment serves as a programming environment for ASF.

ELAN [22] is based on rewrite rules too. It provides a strategy language, allowing to

control the application of rules instead of leaving this to a fixed normalization strategy.

Primitive strategies are labeled rewrite rules, which can be combined using strategy

basic operators. New strategy operators can be expressed by defining them in terms of

less complex ones. ELAN supports the design of theorem provers, logic programming

languages, constraint solvers and decision procedures and offers a modular framework

for studying their combination.

In order to improve the architecture, and to make the ELAN system more inter-

active, it was decided to redesign the ELAN system based on the Meta-Environment.

The instantiation of the ELAN environment involved the implementation of several

new components, among others an interpreter. Constructing the ELAN environment

was a matter of a few months.

The ρ-calculus [56] integrates in a uniform and simple setting first-order rewriting,

lambda-calculus and non-deterministic computations. Its abstraction mechanism is

40

SECTION 2.6 Conclusions

based on the rewrite rule formation. The application operator is explicit, allowing

to handle sets of results explicitly.

The ρ-calculus is typically a new rewriting formalism which can benefit from the

the Meta-Environment. We have prototyped a workbench for the complete ρ-calculus.

After that, we connected an existing ρ-calculus interpreter. This experiment was real-

ized in one day.

The JITty interpreter [137] is a part of the µCRL [18] tool set. In this tool set it is

used as an execution mechanism for rewrite rules. JITty is not supported by its own

formalism or a specialized environment. However, the ideas of the JITty interpreter

are more generally applicable. It implements an interesting normalization strategy, the

so-called just-in-time strategy. A workbench for the JITty interpreter was developed in

a few hours that allowed to perform experiments with the JITty interpreter.

2.6 Conclusions

Experiments with and applications of term rewriting engines are within much closer

reach using the Meta-Environment, as compared to designing and engineering a new

formalism from scratch.

We have presented a generic approach for rapidly developing the three major in-

gredients of a term rewriting based formalism: syntax, rewriting, and an environment.

Using the scalable technology of the Meta-Environment significantly reduces the ef-

fort to develop them, by reusing components and generating others. This conclusion is

based on practial experience with building environments for term rewriting languages

other than ASF+SDF. We used our approach to build four environments. Two of them

are actively used by their respective communities. The others serve as workbenches for

new developments in term rewriting.

The Meta-Environment and its components can now support several term rewriting

formalisms. A future step is to build environments for languages like Action Seman-

tics [117] and TOM [127].

Apart from more environments, other future work consists of even further pa-

rameterization and modularization of the Meta-Environment. Making the Meta-

Environment open to different syntax definition formalisms is an example.

41

Environments for Term Rewriting Engines for Free! CHAPTER 2

42

Part II

Parsing and disambiguation of

source code

43

C H A P T E R 3

Disambiguation Filters for

Scannerless Generalized LR

Parsers

In this chapter we present the fusion of generalized LR parsing and scan-

nerless parsing. This combination supports syntax definitions in which all

aspects (lexical and context-free) of the syntax of a language are defined

explicitly in one formalism. Furthermore, there are no restrictions on the

class of grammars, thus allowing a natural syntax tree structure. Ambi-

guities that arise through the use of unrestricted grammars are handled

by explicit disambiguation constructs, instead of implicit defaults that are

taken by traditional scanner and parser generators. Hence, a syntax def-

inition becomes a full declarative description of a language. Scannerless

generalized LR parsing is a viable technique that has been applied in var-

ious industrial and academic projects. 1

3.1 Introduction

Since the introduction of efficient deterministic parsing techniques, parsing is consid-

ered a closed topic for research, both by computer scientists and by practitioners in

compiler construction. Tools based on deterministic parsing algorithms such as LEX

& YACC [120, 92] (LALR) and JAVACC (recursive descent), are considered adequate

for dealing with almost all modern (programming) languages. However, the develop-

ment of more powerful parsing techniques, is prompted by domains such as reverse

engineering, domain-specific languages, and languages based on user-definable mixfix

syntax.

The field of reverse engineering is concerned with automatically analyzing legacy

software and producing specifications, documentation, or re-implementations. This

area provides numerous examples of parsing problems that can only be tackled by

using powerful parsing techniques.

1I co-authored this chapter with Mark van den Brand, Jeroen Scheerder and Eelco Visser. It was published

in CC 2002 [46].

45

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

Grammars of languages such as Cobol, PL1, Fortran, etc. are not naturally LALR.

Much massaging and default resolution of conflicts are needed to implement a parser

for these languages in YACC. Maintenance of such massaged grammars is a pain since

changing or adding a few productions can lead to new conflicts. This problem is ag-

gravated when different dialects need to be supported—many vendors implement their

own Cobol dialect. Since grammar formalisms are not modular this usually leads to

forking of grammars. Further trouble is caused by the embedding of ‘foreign’ language

fragments, e.g., assembler code, SQL, CICS, or C, which is common practice in Cobol

programs. Merging of grammars for several languages leads to conflicts at the context-

free grammar level and at the lexical analysis level. These are just a few examples of

problems encountered with deterministic parsing techniques.

The need to tackle such problems in the area of reverse engineering has led to

a revival of generalized parsing algorithms such as Earley’s algorithm, (variants of)

Tomita’s algorithm (GLR) [116, 149, 138, 8, 141], and even recursive descent back-

track parsing [59]. Although generalized parsing solves several problems in this area,

generalized parsing alone is not enough.

In this chapter we describe the benefits and the practical applicability of scanner-

less generalized LR parsing. In Section 3.2 we discuss the merits of scannerless parsing

and generalized parsing and argue that their combination provides a solution for prob-

lems like the ones described above. In Section 3.3 we describe how disambiguation can

be separated from grammar structure, thus allowing a natural grammar structure and

declarative and selective specification of disambiguation. In Section 3.4 we discuss

issues in the implementation of disambiguation. In Section 3.5 practical experience

with the parsing technique is discussed. In Section 3.6 we present figures on the per-

formance of our implementation of a scannerless generalized parser. Related work is

discussed where needed throughout the chapter. Section 3.7 contains a discussion in

which we focus explicitly on the difference between backtracking and GLR parsing

and the usefulness of scannerless parsing. Finally, we conclude in Section 3.8.

3.2 Scannerless Generalized Parsing

3.2.1 Generalized Parsing

Generalized parsers are a class of parsing algorithms that are not constrained by re-

strictions on the class of grammars that they can handle, contrary to restricted parsing

algorithms such as the various derivatives of the LL and LR algorithms. Whereas these

algorithms only deal with context-free grammars in LL(k) or LR(k) form, generalized

algorithms such as Earley’s or Tomita’s algorithms can deal with arbitrary context-free

grammars. There are two major advantages to the use of arbitrary context-free gram-

mars.

Firstly, the class of context-free grammars is closed under union, in contrast with

all proper subclasses of context-free grammars. For example, the composition of two

LALR grammars is very often not a LALR grammar. The compositionality of context-

free grammars opens up the possibility of developing modular syntax definition for-

malisms. Modularity in programming languages and other formalisms is one of the

46

SECTION 3.2 Scannerless Generalized Parsing

key beneficial software engineering concepts. A striking example in which modularity

of a grammar is obviously practical is the definition of hybrid languages such as Cobol

with CICS, or C with assembly. SDF [87, 157] is an example of a modular syntax

definition formalism.

Secondly, an arbitrary context-free grammar allows the definition of declarative

grammars. There is no need to massage the grammar into LL, LR, LALR, or any other

form. Rather the grammar can reflect the intended structure of the language, resulting

in a concise and readable syntax definition. Thus, the same grammar can be used for

documentation as well as implementation of a language without any changes.

Since generalized parsers can deal with arbitrary grammars, they can also deal with

ambiguous grammars. While a deterministic parser produces a single parse tree, a non-

deterministic parser produces a collection (forest) of trees compactly representing all

possible derivations according to the grammar. This can be helpful when developing a

grammar for a language. The parse forest can be used to visualize the ambiguites in the

grammar, thus aiding in the improvement of the grammar. Contrast this with solving

conflicts in a LALR table. Disambiguation filters can be used to reduce a forest to the

intended parse tree. Filters can be based on disambiguation rules such as priority and

associativity declarations. Such filters solve the most frequent ambiguities in a natural

and intuitive way without hampering the clear structure of the grammar.

In short, generalized parsing opens up the possibility for developing clear and

concise language definitions, separating the language design problem from the dis-

ambiguation problem.

3.2.2 Scannerless Parsing

Traditionally, syntax analysis is divided into a lexical scanner and a (context-free)

parser. A scanner divides an input string consisting of characters into a string of tokens.

This tokenization is usually based on regular expression matching. To choose between

overlapping matches a number of standard lexical disambiguation rules are used. Typ-

ical examples are prefer keywords, prefer longest match, and prefer non-layout. After

tokenization, the tokens are typically interpreted by the parser as the terminal symbols

of an LR(1) grammar.

Although this architecture proves to be practical in many cases and is globally

accepted as the standard solution for parser generation, it has some problematic limi-

tations. Only few existing programming languages are designed to fit this architecture,

since these languages generally have an ambiguous lexical syntax. The following ex-

amples illustrate this misfit for Cobol, PL1 and Pascal.

In an embedded language, such as SQL in Cobol, identifiers that are reserved key-

words in Cobol might be allowed inside SQL statements. However, the implicit “prefer

keywords” rule of lexical scanners will automatically prohibit them in SQL too.

Another Cobol example; a particular “picture clause” might look like "PIC 99",

where "99" should be recognized as a list of picchars. In some other part of a Cobol

program, the number "99" should be recognized as numeric. Both character classes

obviously overlap, but on the context-free level there is no ambiguity because picture

clauses do not appear where numerics do. See [111] for a Cobol syntax definition.

47

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

Another example of scanner and parser interference stems from Pascal. Consider

the input sentence "array [1..10] of integer", the range "1..10" can

be tokenized in two different manners, either as the real "1." followed by the real

".10", or as the integer "1" followed by the range operator ".." followed by the

integer "10". In order to come up with the correct tokenization the scanner must

“know” it is processing an array declaration.

The problem is even more imminent when a language does not have reserved key-

words at all. PL1 is such a language. This means that a straightforward tokenization

is not possible when scanning a valid PL1 sentence such as "IF THEN THEN =

ELSE; ELSE ELSE = THEN;".

Similar examples can be found for almost any existing programming language.

A number of techniques for tackling this problem is discussed in [10]. Some parser

generators provide a complex interface between scanner and parser in order to profit

from the speed of lexical analysis while using the power of a parser. Some lexical

scanners have more expressive means than regular expressions to be able to make more

detailed decisions. Some parser implementations allow arbitrary computations to be

expressed in a programming language such as C to guide the scanner and the parser.

All in all it is rather cumbersome to develop and to maintain grammars which have to

solve such simple lexical disambiguations, because none of these approaches result in

declarative syntax specifications.

Scannerless parsing is an alternative parsing technique that does not suffer these

problems. The term scannerless parsing was introduced in [139, 140] to indicate pars-

ing without a separate lexical analysis phase. In scannerless parsing, a syntax definition

is a context-free grammar with characters as terminals. Such an integrated syntax defi-

nition defines all syntactic aspects of a language, including the full details of the lexical

syntax. The parser derived from this grammar directly reads the characters of the input

string and finds its phrase structure.

Scannerless parsing does not suffer the problems of implicit lexical disambiguation.

Very often the problematic lexical ambiguities do not even exist at the context-free

level, as is the case in our Cobol, Pascal and PL1 examples. On the other hand, the lack

of implicit rules such as “prefer keywords” and “longest match” might give rise to new

ambiguities at the context-free level. These ambiguities can be solved by providing

explicit declarative rules in a syntax definition language. Making such disambiguation

decisions explicit makes it possible to apply them selectively. For instance, we could

specify longest match for a single specific sort, instead of for the entire grammar, as

we shall see in Section 3.3.

In short, scannerless parsing does not need to make any assumptions about the

lexical syntax of a language and is therefore more generically applicable for language

engineering.

3.2.3 Combining Scannerless Parsing and Generalized Parsing

Syntax definitions in which lexical and context-free syntax are fully integrated do not

usually fit in any restricted class of grammars required by deterministic parsing tech-

niques because lexical syntax often requires arbitrary length lookahead. Therefore,

scannerless parsing does not go well with deterministic parsing. For this reason the ad-

48

SECTION 3.3 Disambiguation Rules

�

✁

✂

✄

Term ::= Id | Nat | Term Ws Term

Id ::= [a-z]+

Nat ::= [0-9]+

Ws ::= [\ \n]*

%restrictions

Id -/- [a-z]

Nat -/- [0-9]

Ws -/- [\ \n]

Figure 3.1: Term language with follow restrictions.

jacency restrictions and exclusion rules of [139, 140] could only be partly implemented

in an extension of a SLR(1) parser generator and led to complicated grammars.

Generalized parsing techniques, on the other hand, can deal with arbitrary length

lookahead. Using a generalized parsing technique solves the problem of lexical looka-

head in scannerless parsing. However, it requires a solution for disambiguation of

lexical ambiguities that are not resolved by the parsing context.

In the rest of this chapter we describe how syntax definitions can be disambiguated

by means of declarative disambiguation rules for several classes of ambiguities, in

particular lexical ambiguities. Furthermore, we discuss how these disambiguation rules

can be implemented efficiently.

3.3 Disambiguation Rules

There are many ways for disambiguation of ambiguous grammars, ranging from simple

syntactic criteria to semantic criteria [104]. Here we concentrate on ambiguities caused

by integrating lexical and context-free syntax. Four classes of disambiguation rules turn

out to be adequate.

Follow restrictions are a simplification of the adjacency restriction rules of [139,

140] and are used to achieve longest match disambiguation. Reject productions, called

exclusion rules in [139, 140], are designed to implement reserved keywords disam-

biguation. Priority and associativity rules are used to disambiguate expression syntax.

Preference attributes are used for selecting a default among several alternative deriva-

tions.

3.3.1 Follow Restrictions

Suppose we have the simple context-free grammar for terms as presented in Figure 3.1.

An Id is defined to be one ore more characters from the class [a-z]+ and two terms

are separated by whitespace consisting of zero or more spaces or newlines.

Without any lexical disambiguation, this grammar is ambiguous. For example,

the sentence "hi" can be parsed as Term(Id("hi")) or as Term(Id("h")),

Ws(""), Term(Id("i")). Assuming the first is the intended derivation, we add

49

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

�

✁

✂

✄

Star ::= [*]

CommentChar ::= ˜[*] | Star

Comment ::= "(*" CommentChar* "*)"

Ws ::= ([\ \n] | Comment)*

%restrictions

Star -/- [\)]

Ws -/- [\ \n] | [\(].[*]

Figure 3.2: Extended layout definition with follow restrictions.

�
✁

✂
✄

Program ::= "begin" Ws Term Ws "end"

Id ::= "begin" | "end" {reject}

Figure 3.3: Prefer keywords using reject productions

a follow restriction, Id -/- [a-z], indicating that an Id may not directly be fol-

lowed by a character in the range [a-z]. This entails that such a character should be

part of the identifier. Similarly, follow restrictions are added for Nat and Ws. We have

now specified a longest match for each of these lexical constructs.

In some languages it is necessary to have more than one character lookahead to

decide the follow restriction. In Figure 3.2 we extend the layout definition of Figure 3.1

with comments. The expression˜[☞ *] indicates any character except the asterisk. The

expression [☞ (].[☞ *] defines a restriction on two consecutive characters. The result

is a longest match for the Ws nonterminal, including comments. The follow restriction

on Star prohibits the recognition of the string "*)" within Comment. Note that it is

straightforward to extend this definition to deal with nested comments.

3.3.2 Reject Productions

Reject productions are used to implement keyword reservation. We extend the gram-

mar definition of Figure 3.1 with the begin and end construction in Figure 3.3. The

sentence "begin hi end" is either interpreted as three consecutive Id terms sepa-

rated by Ws, or as a Program with a single term hi. By rejecting the strings begin

and end from Id, the first interpretation can be filtered out.

The reject mechanism can be used to reject not only strings, but entire context-free

languages from a nonterminal. We focus on its use for keyword reservation in this

chapter and refer to [157] for more discussion.

3.3.3 Priority and Associativity

For completeness we show an example of the use of priority and associativity in an

expression language. Note that we have left out the Ws nonterminal for brevity2. In

2By doing grammar normalization a parse table generator can automatically insert layout between the

members in the right-hand side. See also Section 3.5.

50

SECTION 3.4 Disambiguation Rules

�

✁

✂

✄

Exp ::= [0-9]+

Exp ::= Exp "+" Exp {left}

Exp ::= Exp "*" Exp {left}

%priorities

Exp ::= Exp "*" Exp > Exp ::= Exp "+" Exp

Figure 3.4: Associativity and priority rules.

�

✁

✂

✄
Term ::= "if" Nat "then" Term {prefer}

Term ::= "if" Nat "then" Term "else" Term

Id ::= "if" | "then" | "else" {reject}

Figure 3.5: Dangling else construction disambiguated

Figure 3.4 we see that the binary operators + and * are both defined as left associative

and the * operator has a higher priority than the + operator. Consequently the sentence

"1 + 2 + 3 * 4" is interpreted as "(1 + 2) + (3 * 4)".

3.3.4 Preference Attributes

A preference rule is a generally applicable rule to choose a default among ambiguous

parse trees. For example, it can be used to disambiguate the notorious dangling else

construction. Again we have left out the Ws nonterminal for brevity. In Figure 3.5 we

extend our term language with this construct.

The input sentence "if 0 then if 1 then hi else ho" can be parsed

in two ways: if 0 then (if 1 then hi) else ho and if 0 then (if

1 then hi else ho). We can select the latter derivation by adding the

prefer attribute to the production without the else part. The parser will still

construct an ambiguity node containing both derivations, namely, if 0 then

(if 1 then hi ✡ prefer ☛) else ho and if 0 then (if 1 then hi

else ho) ✡ prefer ☛ . But given the fact that the top node of the latter deriva-

tion tree has the prefer attribute this derivation is selected and the other tree is removed

from the ambiguity node.

The dual of ✡ prefer ☛ is the ✡ avoid ☛ attribute. Any other tree is preferred over

a tree with an avoided top production. One of its uses is to prefer keywords rather

than reserving them entirely. For example, we can add an ✡ avoid ☛ to the Id ::=

[a-z]+ production in Figure 3.1 and not add the reject productions of Figure 3.3. The

sentence "begin begin end" is now a valid Program with the single derivation

of a Program containing the single Id "begin".

Note that naturally the preference attributes can only distinguish among derivations

that have different productions at the top. Preference attributes are not claimed to be a

general way of disambiguation. Like the other methods, they cover a particular range

of disambiguation idioms commonly found in programming languages.

51

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

3.4 Implementation Issues

Our implementation of scannerless generalized parsing consists of the syntax definition

formalism SDF that supports concise specification of integrated syntax definitions, a

grammar normalizer that injects layout and desugars regular expressions, a parse table

generator and a parser that interprets parse tables.

The parser is based on the GLR algorithm. For the basic GLR algorithms we

refer to the first publication on generalized LR parsing by Lang [116], the work by

Tomita [149], and the various improvements and implementations [130, 138, 8, 141].

We will not present the complete SGLR algorithm, because it is essentially the standard

GLR algorithm where each character is a separate token. For a detailed description of

the implementation of GLR and SGLR we refer to [138] and [156] respectively.

The algorithmic differences between standard GLR and scannerless GLR parsing

are centered around the disambiguation constructs. From a declarative point of view

each disambiguation rule corresponds to a filter that prunes parse forests. In this view,

parse table generation and the GLR algorithm remain unchanged and the parser returns

a forest containing all derivations. After parsing a number of filters is executed and a

single tree or at least a smaller forest is obtained.

Although this view is conceptually attractive, it does not fully exploit the possibili-

ties for pruning the parse forest before it is even created. A filter might be implemented

statically, during parse table generation, dynamically, during parsing, or after pars-

ing. The sooner a filter is applied, the faster a parser will return the filtered derivation

tree. In which phase they are applicable depends on the particulars of specific disam-

biguation rules. In this section we discuss the implementation of the four classes of

disambiguation rules.

3.4.1 Follow Restrictions

Our parser generator generates a simple SLR(1) parse table, however we deviate at a

number of places from standard algorithm [2]. One modification is the calculation of

the follow set. The follow set is calculated for each individual production rule instead of

for each nonterminal. Another modification is that the transitions between states (item-

sets) in the LR-automaton are not labeled with a nonterminal, but with a production

rule. These more fine-grained transitions increase the size of the LR-automaton, but it

allows us to generate parse tables with fewer conflicts.

Follow restriction declarations with a single lookahead can be used during parse

table generation to remove reductions from the parse table. This is done by intersecting

the follow set of each production rule with the set of characters in the follow restrictions

for the produced nonterminal. The effect of this filter is that the reduction in question

cannot be performed for characters in the follow restriction set.

Restrictions with more than one lookahead must be dealt with dynamically by the

parser. The parse table generator marks the reductions that produce a nonterminal

that has restrictions with more than one character. Then, while parsing, before such a

reduction is done the parser must retrieve the required number of characters from the

string and check them with the restrictions. If the next characters in the input match

these restrictions the reduction is not allowed, otherwise it can be performed. This

52

SECTION 3.4 Implementation Issues

parse-time implementation prohibits shift/reduce conflicts that would normally occur

and therefore saves the parser from performing unnecessary work.

Note that it is possible to generate the follow restrictions automatically from the

lexical syntax definition. Doing so would enforce a global longest match rule.

3.4.2 Reject Productions

Disambiguation by means of reject productions cannot be implemented statically, since

this would require computing the intersection of two syntactic categories, which is not

possible in general. Even computing such intersections for regular grammars would

lead to very large automata. When using a generalized parser, filtering with reject

productions can be implemented effectively during parsing.

Consider the reject production Id ::= "begin" ✡ reject ☛ , which declares

that "begin" is not a valid Id in any way (Figure 3.3). Thus, each and every deriva-

tion of the subsentence "begin" that produces an Id is illegal. During parsing, with-

out the reject production the substring "begin" will be recognized both as an Id and

as a keyword in a Program. By adding the reject production to the grammar another

derivation is created for "begin" as an Id, resulting in an ambiguity of two deriva-

tions. If one derivation in an ambiguity node is rejected, the entire parse stack for that

node is deleted. Hence, "begin" is not recognized as an identifier in any way. Note

that the parser must wait until each ambiguous derivation has returned before it can

delete a stack3. The stack on which this substring was recognized as an Id will not

survive, thus no more actions are performed on this stack. The only derivation that

remains is where "begin" is a keyword in a Program.

Reject productions could also be implemented as a back-end filter. However, by

terminating stacks on which reject productions occur as soon as possible a dramatic

reduction in the number of ambiguities can be obtained.

Reject productions for keyword reservation can automatically be generated by

adding the keyword as a reject production for the nonterminal in the left-hand side

of a lexical production rule whenever an overlap between this lexical production rule

and a keyword occurs.

3.4.3 Priority and Associativity

Associativity of productions and priority relations can be processed during the con-

struction of the parse table. We present an informal description here and refer to [157]

for details.

There are two phases in the parse table generation process in which associativity

and priority information is used. The first place is during the construction of the LR-

automaton. Item-sets in the LR-automaton contain dotted productions. Prediction of

new items for an item-set takes the associativity and priority relations into considera-

tion. If a predicted production is in conflict with the production of the current item, then

the latter production is not added to the item-set. The second place is when shifting a

3Our parser synchronizes parallel stacks on shifts, so we can wait for a shift before we delete an ambiguity

node.

53

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

dot over a nonterminal in an item. In case of an associativity or priority conflict be-

tween a production rule in the item and a production rule on a transition, the transition

will not be added to the LR-automaton.

We will illustrate the approach described above by discussing the construction of a

part of the LR-automaton for the grammar presented in Figure 3.4. We are creating the

transitions in the LR-automaton for state si which contains the item-set:

�

✁

✂

✄
[Exp ::= . Exp "+" Exp]

[Exp ::= . Exp "*" Exp]

[Exp ::= . [0-9]+]

In order to shift the dot over the nonterminal Exp via the production rule Exp ::=

Exp "+" Exp every item in si is checked for a conflict. The new state s j has the

item-set:

�✁ ✂✄[Exp ::= Exp . "+" Exp]

Note that s j does not contain the item [Exp ::= Exp . "*" Exp], since that

would cause a conflict with the given priority relation "*" > "+".

By pruning the transitions in a parse table in the above manner, conflicts at parse

time pertaining to associativity and priority can be ruled out. However, if we want

priority declarations to ignore injections (or chain rules) this implementation does not

suffice. Yet it is natural to ignore injections when applying disambiguation rules, since

they do not have any visible syntax. Priority filtering modulo chain rules require an

extension of this method or a post parse-time filter.

3.4.4 Preference Attributes

The preference filter is an typical example of an after parsing filter. In principle it

could be applied while parsing, however this will complicate the implementation of the

parser tremendously without gaining efficiency. This filter operates on an ambiguity

node, which is a set of ambiguous subtrees, and selects the subtrees with the highest

preference.

The simplest preference filter compares the trees of each ambiguity node by com-

paring the avoid or prefer attributes of the top productions. Each preferred tree

remains in the set, while all others are removed. If there is no preferred tree, all

avoided trees are removed, while all others remain. Ignoring injections at the top is

a straightforward extension to this filter.

By implementing this filter in the back-end of the parser we can exploit the redun-

dancy in parse trees by caching filtered subtrees and reusing the result when filtering

other identical subtrees. We use the ATerm library [31] for representing a parse forest.

It has maximal sharing of sub-terms, limiting the amount of memory used and making

subtree identification a trivial matter of pointer equality.

For a number of grammars this simple preference filter is not powerful enough,

because the production rules with the avoid or prefer are not at the root (modulo

injections) of the subtrees, but deeper in the subtree. In order to disambiguate these

ambiguous subtrees, more subtle preference filters are needed. However, these filters

54

SECTION 3.6 Applications

will always be based on some heuristic, e.g., counting the number of “preferred” and

“avoided” productions and applying some selection on the basis of these numbers,

or by looking a the depth at which a “preferred” or “avoided” production occurs. In

principle, for any chosen heuristic counter examples can be constructed for which the

heuristic fails to achieve its intended goal, yielding undesired results.

3.5 Applications

3.5.1 ASF+SDF Meta-Environment

In the introduction of this chapter we claimed that generalized parsing techniques are

applicable in the fields of reverse engineering and language prototyping, i.e., the devel-

opment of new (domain-specific) languages. The ASF+SDF Meta-Environment [28] is

used in both these fields. This environment is an interactive development environment

for the automatic generation of interactive systems for manipulating programs, specifi-

cations, or other texts written in a formal language. The parser is this environment and

in the generated environments is an SGLR parser. The language definitions are written

in the ASF+SDF formalism [67] which allows the definition of syntax via SDF (Syn-

tax Definition Formalism) [87] as well as semantics via ASF (Algebraic Specification

Formalism).

ASF+SDF has been used in a number of industrial and scientific projects. Amongst

others it was used for parsing and compiling ASF+SDF specifications, automatically

renovating Cobol code, program analysis of legacy code via so-called island gram-

mars [126], and development of new Action Notation syntax [72].

3.5.2 XT

XT [66] is a collection of basic tools for building program transformation systems in-

cluding the Stratego transformation language [159], and the syntax definition formal-

ism SDF supported by SGLR. Tools standardize on ATerms [31] as common exchange

format. Several meta-tools are provided for generating transformation components

from syntax definitions, including a data type declaration generator that generates the

data type corresponding to the abstract syntax of an SDF syntax definition, and a pretty-

printer generator that generates default pretty-print tables.

To promote reuse and standardization of syntax definitions, the XT project has

initiated the creation of the Online Grammar Base4 currently with some 25 syn-

tax definitions for various general purpose and domain-specific languages, including

Cobol, Java, SDL, Stratego, YACC, and XML. Many syntax definitions were semi-

automatically re-engineered from LEX/YACC definitions using grammar manipulation

tools from XT, producing more compact syntax definitions. SDF/SGLR based parsers

have been used in numerous projects built with XT in areas ranging from software

renovation and grammar recovery to program optimization and compiler construction.

4http://www.program-transformation.org/gb

55

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

Grammar Average Tokens/second Tokens/second

file size with filter & tree5 w/o filter & tree5

ATerms 106,000 chars 108,000 340,000

BibTEX 455,000 chars 85,000 405,000

Box 80,000 chars 34,000 368,000

Cobol 170,000 chars 58,000 146,000

Java 105,000 chars 37,000 210,000

Java (LR1) 105,000 chars 53,000 242,000

Table 3.1: Some figures on SGLR performance.

Grammar Productions States Actions Actions with Gotos

conflicts

ATerms 104 128 8531 75 46569

BibTEX 150 242 40508 3129 98901

Box 202 385 19249 1312 177174

Cobol 1906 5520 170375 32634 11941923

Java 726 1561 148359 5303 1535446

Java (LR1) 765 1597 88561 3354 1633156

Table 3.2: Some figures on the grammars and the generated parse tables.

3.6 Benchmarks

We have bench-marked our implementation of SGLR by parsing a number of larger

files and measuring the user time. Table 3.1 shows the results with and without

parse tree construction and back-end filtering. All filters implemented in the parse table

or during parsing are active in both measurements. The table shows that the parser is

fast enough for industrial use. An interesting observation is that the construction of the

parse tree slows down the entire process quite a bit. Further speedup can be achieved

by optimizing parse tree construction.

Table 3.2 shows some details of the SLR(1) parse tables for the grammars we used.

We downloaded all but the last grammar from the Online Grammar Base. ATerms

is a grammar for prefix terms with annotations, BibTEX is a bibliography file format,

Box is a mark-up language used in pretty-print tools. Cobol and Java are grammars

for the well-known programming languages. We have bench-marked two different

Java grammars. The first is written from scratch in SDF, the second was obtained by

transforming a Yacc grammar into SDF. So, the first is a more natural definition of Java

syntax, while the second is in LR(1) form.

The number of productions is measured after SDF grammar normalization6. We

mention the number of states, gotos and actions in the parse table. Remember that

5All benchmarks were performed on a 1200 Mhz AMD Athlon(tm) with 512Mb memory running Linux.
6So this number does not reflect the size of the grammar definition.

56

SECTION 3.7 Discussion

the parse table is specified down to the character level, so we have more states than

usual. Also, actions and gotos are based on productions, not nonterminals, resulting

in a bigger parse table. The number of actions with more than one reduce or shift

(a conflict) gives an indication of the amount of “ambiguity” in a grammar. The two

Java results in Table 3.1 show that ambiguity of a grammar has a limited effect on

performance. Note that after filtering, every parse in our test set resulted in a single

derivation.

3.7 Discussion

3.7.1 Generalized LR parsing versus backtracking parsers

A Tomita-style GLR parser produces all possible derivations7. This is a fundamentally

different approach than parsing algorithms that employ backtracking. Backtracking

parsers can also accept all context-free languages8. Most backtracking parsers like

ANTLR [135] return the first valid derivation that they find. The ordering of deriva-

tions is implicit in the parsing algorithm, but sometimes it may be influenced by or-

dering production rules (TXL [59]) or providing other kinds of predicates. Note that

backtracking parsers can also produce all derivations, but using an impractical (expo-

nential) amount of time. Exponential behavior may also be triggered when an input

sentence contains a parse error. In the following we assume backtracking parsers re-

turn a single derivation. We also assume that no arbitrary side-effects for influencing

the parser are allowed.

So, both approaches can accept all context-free languages. The question remains

what the difference is. The most important difference between the two methods is a

priori disambiguation (backtracking) versus a posteriori disambiguation (GLR). With

a priori disambiguation the user could never find out that a grammar is in fact ambigu-

ous. With a posteriori disambiguation the user is always confronted with ambiguity

after parsing an ambiguous input. After this confrontation she is obliged to provide a

conscious choice in the form of a disambiguation rule.

So, with backtracking we get a unique but arbitrary derivation, and with GLR pars-

ing we may get more than one derivation but there is no arbitrary choice made. The

difference is the disambiguation method: either heuristically or declaratively. The

declarative GLR parsing method may imply more work for the language designer,

while the heuristic backtracking method may leave blind spots in her understanding

of a language. Neither of the two methods can guarantee full semantically correct and

unambiguous derivations (See Chapter 4).

3.7.2 When to use scannerless parsing?

Clearly, not in all cases scannerless parsing is necessary. This is witnessed by the

fact that many scanners are still written and used with success. For languages with no

7We assume a fix is included for the hidden right recursive grammars [130].
8In this discussion we ignore any issues with hidden left recursive grammars.

57

Disambiguation Filters for Scannerless Generalized LR Parsers CHAPTER 3

reserved keywords and irregular rules for longest/shortest match the benefit of scan-

nerless parsing is immediately clear, but what are the other use cases? Apart from the

motivating cases described in Section 3.2, there are two use-cases we consider to be

important.

The first use-case is when a declarative (technology independent) language de-

scription is a requirement. Using a scanner there will always be implicit lexical dis-

ambiguation heuristics at play, or some arbitrary side-effects must be used. Therefore

it is hard to obtain a full description of all the properties of a language, since we may

have blind spots due to implicit (global) choices that a scanner makes. With a scanner-

less parser all lexical disambiguation needs to be explained explicitly and precisely in

a syntax definition. Especially in the context of language standardization documents,

scannerless parsing could be an essential tool for obtaining technology independent

descriptions.

The second use-case is when we combine the syntax of two languages. Then, scan-

nerless parsing becomes an essential tool. We combine languages in hybrids, such as

COBOL/CICS or COBOL/SQL, or when we translate from one language to another

using a meta programming system (like translating C to Java). Scannerless parsing en-

sures that lexical disambiguations can remain modular, with the language they belong

to, without influencing the lexical disambiguation rules of the other language. The

alternative is to construct one big combined unambiguous scanner, which at the very

least will be rather complex, and may not even exist.

3.8 Conclusions

In this chapter we discussed the combination of generalized LR parsing with scan-

nerless parsing. The first parsing technique allows for the development of modular

definition of grammars whereas the second one relieves the grammar writer from inter-

face problems between scanner and parser. The combination supports the development

of declarative and maintainable syntax definitions that are not forced into the harness

of a restricted grammar class such as LL(k) or LR(k). This proves to be very beneficial

when developing grammars for legacy languages such as Cobol and PL/I, but it also

provides greater flexibility in the development of new (domain-specific) languages.

One of the assets of the SGLR approach is the separation of disambiguation from

grammar structure. Thus, it is not necessary to encode disambiguation decisions using

extra productions and non-terminals. Instead a number of disambiguation filters, driven

by disambiguation declarations solve ambiguities by pruning the parse forest. Lexical

ambiguities, which are traditionally handled by ad hoc default decisions in the scanner,

are also handled by such filters. Filters can be implemented at several points in time,

i.e., at parser generation time, parse time, or after parsing.

SGLR is usable in practice. It has been used as the implementation of the expressive

syntax definition formalism SDF. SGLR is not only fast enough to be used in interactive

tools, like the ASF+SDF Meta-Environment, but also to parse huge amounts of Cobol

code in an industrial environment.

SGLR and the SDF based parse table generator are open-source and can be down-

loaded from http://www.cwi.nl/projects/MetaEnv/.

58

C H A P T E R 4

Semantics Driven

Disambiguation

Generalized parsing technology provides the power and flexibility to at-

tack real-world parsing applications. However, many programming lan-

guages have syntactical ambiguities that can only be solved using seman-

tical analysis. In this chapter we propose to apply the paradigm of term

rewriting to filter ambiguities based on semantical information. We start

with the definition of a representation of ambiguous derivations. Then we

extend term rewriting with means to handle such derivations. Finally, we

apply these tools to some real world examples, namely C and COBOL.

The resulting architecture is simple and efficient as compared to semantic

directed parsing. 1

4.1 Introduction

Generalized parsing is becoming more popular because it provides the power and flexi-

bility to deal with real existing programming languages and domain specific languages

[9, 46]. It solves many problems that are common in more widely accepted technology

based on LL and LR algorithms [7, 92].

We start by briefly recalling the advantages of generalized parsing. It allows ar-

bitrary context-free grammars instead of restricting grammars to classes like LL(k) or

LALR(k). Due to this freedom, a grammar can better reflect the structure of a lan-

guage. This structure can be expressed even better using modularity. Modularity is

obtained because context-free grammars are closed under union, as opposed to the

more restricted classes of grammars.

An obvious advantage of allowing arbitrary context-free grammars is that the num-

ber of grammars accepted is bigger. It seems that real programming languages (e.g.,

Pascal, C, C++) do not fit in the more restricted classes at all. Without ‘workarounds’,

such as semantic actions that have to be programmed by the user, off-the-shelf parsing

technology based on the restricted classes can not be applied to such languages.

1This chapter was published at LDTA 2003 [40], and co-authored by Mark van den Brand, Steven

Klusener, and Leon Moonen.

59

Semantics Driven Disambiguation CHAPTER 4

The main reason for real programming languages not fitting in the restricted classes

is that they are ambiguous in one way or the other. Some grammars have simple con-

flicts that can be solved by using more look-ahead or by trying more alternative deriva-

tions in parallel. Generalized parsing offers exactly this functionality. Other grammars

contain more serious ambiguities, which are all accepted as valid derivations. The re-

sult is that after parsing with a generalized parser we sometimes obtain a collection of

derivations (a parse forest) instead of a single derivation (a parse tree).

4.1.1 Examples

Many examples of the more serious ambiguities can be found in existing programming

languages. In this section we will discuss briefly a number of ambiguous constructs

which are hard to solve given traditional parsing technology.

Typedefs in C In the C programming language certain identifiers can be parsed as

either type identifiers or variable identifiers due to the fact that certain operators are

overloaded:

�✁ ✂✄Bool *b1;

The above statement is either a statement expression multiplying the Bool and b1

variables, or a declaration of a pointer variable b1 to a Bool. The latter derivation is

chosen by the C compiler only if Bool was declared to be a type using a typedef

statement somewhere earlier in the program, otherwise the former derivation is chosen.

Section 4.4 describes a solution for this problem via the technology presented in this

chapter.

Offside rule Some languages are designed to use indentation to indicate blocks of

code. Indentation, or any other line-by-line oriented position information is obviously

not properly expressible in any context-free grammar, but without it the syntax of such

a language is ambiguous. The following quote explains the famous offside rule [115]

from the users’ perspective:

“The southeast quadrant that just contains the phrase’s first symbol must

contain the entire phrase except possibly for bracketed sub-segments.”

For example, the following two sentences in typical functional programming style il-

lustrate an ambiguity:

�

✁

✂

✄

a = b a = b

where b = d where b = d

where d = 1 vs. where d = 1

c = 2 c = 2

On the left-hand side, the variable c is meant to be part of the first where clause.

Without interpretation of the layout of this example, c could just as well part of the

second where clause, as depicted by the right-hand side.

60

SECTION 4.1 Introduction

There are several languages using some form of offside rule, among others, Haskell

[89]. Each of these languages applies “the offside rule” in a different manner making a

generic definition of the rule hard to formalize.

Nested dangling constructions in COBOL For C and Haskell we have shown am-

biguities that can only be solved using context information. A similar problem exists

for COBOL, however we will present a different type of ambiguity here that is based

on complex nested statements.2

Note that the following example can be parsed unambiguously using some of the

existing parser generators. In that case, the parser generators contains implicit heuris-

tics that accidentally fit the disambiguation rules of COBOL. However, we assume the

goal is to obtain an explicit definition and implementation of the COBOL disambigua-

tion rules.

The example resembles the infamous dangling else construction, but it is more

complex due to the fact that more constructs are optional. Consider the following piece

of COBOL code in which a nested ADD statement is shown:

�

✁

✂

✄

0001 ADD A TO B

0002 SIZE ERROR

0003 ADD C TO D

0004 NOT SIZE ERROR

0005 CONTINUE

0006 .

The SIZE ERROR and NOT SIZE ERROR constructs are optional post-fixes of the

ADD statement. They can be considered as a kind of exception handling. In order to

understand what is going on we will present a tiny part of a COBOL grammar, which

is based on [110]:

�

✁

✂

✄

Add-stat ::= Add-stat-simple Size-err-phrases

Size-err-phrases ::= Size-err-stats? Not-size-err-stats?

Size-err-stats ::= "SIZE" "ERROR" Statement-list

Not-size-err-stats ::= "NOT" "SIZE" "ERROR" Statement-list

Statement-list ::= Statement*

The above grammar shows that the COBOL language design does not provide explicit

scope delimiters for some deeply nested Statement-lists. The result is that in

our example term, the NOT SIZE ERROR can be either part of the ADD-statement on

line 0001 or 0003. The period on line 0006 closes both statements.

The COBOL definition does not have an offside rule. Instead it states that in

such cases the “dangling” phrase should always be taken with the innermost construct,

which is in our case the ADD-statement on line 0003. There are 16 of such ambiguities

in the COBOL definition. Some of them interact because different constructs might be

nested.

2There are many versions of the COBOL programming language. In this chapter we limit ourselves to

IBM VS COBOL II.

61

Semantics Driven Disambiguation CHAPTER 4

�

✁

✂

✄Grammar Generator Parser Tree Filters TreeForestTable

Input String

Figure 4.1: General parsing and disambiguation architecture

In some implementations of LL and LR algorithms such dangling cases are implic-

itly resolved by a heuristic that always chooses the deepest derivation. In this chapter

we describe a more declarative and maintainable solution that does not rely on such a

heuristic.

Discussion The above examples indicate that all kinds of conventions or computed

information might have been used in a language design in order to disambiguate its

syntax. This information can be derivable from the original input sentence, or from

any other source.

Generalized parsing is robust against any grammatical ambiguity. So, we can

express the syntax of ambiguous programming languages as descriptive context-free

grammars. Still, in the end there must be only one parse tree. The structure of this

parse tree should faithfully reflect the semantics of the programming language. In this

chapter we will fill this gap between syntax and semantics, by specifying how to dis-

ambiguate a parse forest.

4.1.2 Related work on filtering

The parsing and disambiguation architecture used in this chapter was proposed earlier

by [104] and [166]. An overview is shown in Figure 4.1. This architecture clearly

allows a separation of concerns between syntax definition and disambiguation. The

disambiguation process was formalized using the general notion of a filter, quoted

from [104]:

“A filter F for a context-free grammar G is a function from sets of parse

trees for G to sets of parse trees for G, where the number of resulting parse

trees is equal to or less than the original number.”

This rather general definition allows for all kinds of filters and all kinds of imple-

mentation methods. In [46] several declarative disambiguation notions were added

to context-free grammars (See Chapter 3). Based on these declarations several filter

functions were designed that discard parse trees on either lexical or simple structural

arguments. Because of their computational simplicity several of the filters could be

implemented early in the parsing process. This was also possible because these filters

were based on common ambiguity concepts in language design.

In this chapter we target more complex structural parse tree selections and selec-

tions based on non-local information. More important, we aim for language specific

disambiguations, as opposed to the more reusable disambiguation notions. Such filters

62

SECTION 4.1 Introduction

naturally fit in at the back-end of the architecture, just before other semantics based

tools will start their job. In fact, they can be considered part of the semantic analysis.

Wagner and Graham [166] discuss the concept of disambiguation filters including

an appropriate parse forest formalism, but without presenting a formalism for imple-

menting disambiguation filters. This chapter complements their work by describing a

simple formalism based on term rewriting which allows the user to express semantics-

guided disambiguation. Furthermore, we give a ‘proof of concept’ by applying it to

real programming languages.

The notion of semantics/attribute directed parsing [3, 25] also aims to resolve

grammatical ambiguities that can be solved using semantical information. However,

the approach is completely different. In case of semantics directed parsing the parser

is extended to deal with derived semantic information and directly influence the pars-

ing process. Both in the specification of a language and in the implementation of the

technology syntax and semantics become intertwined. We choose a different strategy

by clearly separating syntax and semantics. The resulting technology is better main-

tainable and the resulting language specifications also benefit from this separation of

concerns. For example, we could replace the implementation of the generalized parser

without affecting the other parts in the architecture3.

4.1.3 Filtering using term rewriting

Given the architecture described, the task at hand is to find a practical language for

implementing language specific disambiguation filters. The functionality of every dis-

ambiguation filter is similar, it analyzes and prunes parse trees in a forest. It does this

by inspecting the structure of sub-trees in the parse forest and/or by using any kind of

context information.

An important requirement for every disambiguation filter is that it may never con-

struct a parse forest that is ill-formed with respect to the grammar of a language. This

requirement ensures that the grammar of a language remains a valid description of the

parse forest and thus a valuable source of documentation [93], even after the execution

of any disambiguation filters.

The paradigm of term rewriting satisfies all above mentioned requirements. It is

designed to deal with terms (read trees); to analyze their structure and change them

in a descriptive and efficient manner. Term rewriting provides exactly the primitives

needed for filtering parse forests. Many implementations of term rewriting also ensure

well-formedness of terms with respect to the underlying grammar (a so-called signa-

ture). Term rewriting provides a solid basis for describing disambiguation filters that

are concise and descriptive.

4.1.4 Plan of the chapter

In the rest of this chapter we give the implementation details of disambiguation filters

with term rewriting. In Section 4.2, we give a description of the parse tree formalism

we use. Section 4.3 briefly describes term rewriting basics before we extend it with the

3If the parse forest representation remains the same.

63

Semantics Driven Disambiguation CHAPTER 4

�

✁

✂

✄

Bool "|" Bool -> Bool

"true" -> Bool LAYOUT? "|" LAYOUT? "false" -> Bool

true false

Figure 4.2: An example parse tree.

ability to deal with forests instead of trees. In Section 4.4 we give a number of examples

with details to show that it works for real programming languages. In Section 4.5, we

discuss how our techniques can be applied to other paradigms and describe our future

plans. We present our conclusions in the final section.

4.2 Parse Forest Representation

Based on a grammar, the parser derives valuable information about how a sentence

is structured. However, the parser should also preserve any information that might be

needed for disambiguation later on. The most obvious place to store all this information

is in the syntax tree.

Furthermore, we need a practical representation of the alternative derivations that

are the result of grammatical ambiguity. Ambiguities should be represented in such a

way that the location of an ambiguous sub-sentence in the input can be pinpointed eas-

ily. Just listing all alternative parse trees for a complete sentence is thus not acceptable.

In this section we describe an appropriate parse tree formalism, called AsFix. A

more elaborate description of AsFix can be found in [157]. We will briefly discuss

its implementation in order to understand the space and time efficiency of the tools

processing these parse trees.

AsFix is a very simple formalism. An AsFix tree contains all original characters

of the input, including white-space and comments. This means that the exact original

sentence can be reconstructed from its parse tree in a very straightforward manner.

Furthermore, an AsFix tree contains a complete description of all grammar rules that

were used to construct it. In other words, all valuable information present in the syntax

definition and the input sentence is easily accessible via the parse tree.

Two small examples illustrate the basic idea. Figure 4.2 shows a parse tree of the

sentence “true | false”. Figure 4.3 shows a parse tree of the ambiguous input

sentence “true | false | true”. We have left out the white-space nodes in

latter picture for the sake of presentation. The diamond represents an ambiguity node

which indicates that several derivation are possible for a certain sub-sentence. The

64

SECTION 4.3 Extending Term Rewriting

�

✁

✂

✄

Bool

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool "|" "true" -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

"true"

"true" -> Bool "|" Bool "|" Bool -> Bool

"true" "false" -> Bool "|" "true" -> Bool

"false" "true"

Figure 4.3: An example parse forest.

following grammar (in SDF [87]) was used to parse these two sentences:
�

✁

✂

✄

context-free syntax

"true" -> Bool

"false" -> Bool

Bool "|" Bool -> Bool

The implementation of AsFix is based on the ATerm library [31]. An AsFix parse

tree is an ordinary ATerm, and can be manipulated as such by all utilities offered by the

ATerm library. The ATerm library is a library that implements the generic data type

ATerm. ATerms are a simple tree-like data structure designed for representing all kinds

of trees. The characteristics of the ATerm library are maximal sub-term sharing and

automatic garbage collection.

The maximal sharing property is important for AsFix for two reasons. Firstly, the

parse trees are completely self-contained and do not depend on a separate grammar

definition. It is clear that this way of representing parse trees implies much redun-

dancy. Maximal sharing prevents unnecessary occupation of memory caused by this

redundancy. Secondly, for highly ambiguous languages parse forests can grow quite

big. The compact representation using ambiguity nodes helps, but there is still a lot

of redundancy between alternative parse trees. Again, the ATerm library ensures that

these trees can be stored in an minimal amount of memory. To illustrate, Figure 4.4

shows the parse forest of Figure 4.3 but now with full sharing. For the sake of pre-

sentation, this picture does not show how even the information in the node labels is

maximally shared, for example such that the representation of Bool appears only once

in memory.

4.3 Extending Term Rewriting

In this section we explain how a parse tree formalism like AsFix can be connected to

term rewriting. This connection allows us to use term rewriting directly to specify dis-

ambiguation filters. The important novelty is the lightweight technique that is applied

to be able to deal with ambiguities. After explaining it we present a small example to

65

Semantics Driven Disambiguation CHAPTER 4

�

✁

✂

✄

Bool

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

Bool "|" Bool -> Bool

Figure 4.4: A parse forest with maximal sharing.

illustrate the style of specification used for defining disambiguation filters. More elab-

orate examples are given in Section 4.4. We start by briefly and informally describing

the basics of term rewriting.

4.3.1 What is term rewriting?

In short, a Term Rewriting System (TRS) is the combination of a signature and a col-

lection of rewrite rules. The signature defines the prefix terms that are to be rewritten

according to the rewrite rules. We refer to [105] for a detailed description of term

rewriting.

Signature A many-sorted signature defines all possible terms that can occur in the

rewrite rules and the term that is to be rewritten. Usually a signature is extended with a

collection of variables, which are needed for specifying the rewrite rules. The follow-

ing is an example signature, with constants (nullary functions), function applications,

and a variable definition:

�

✁

✂

✄

signature

true -> Bool

false -> Bool

or(Bool,Bool) -> Bool

variables

B -> Bool

66

SECTION 4.3 Extending Term Rewriting

This signature allows ground terms like: “or(true,or(false,true))”. Ground

means containing no variables. Terms containing variables are called open terms.

Rules A rewrite rule is a pair of such terms T1 = T2. Both T1 and T2 may be open

terms, but T2 may not contain variables that do not occur in T1. Furthermore, T1 may

not be a single variable. A ground term is called a redex when it matches a left-hand

side of any rule. Matching means equality modulo occurrences of variables. The result

of a match is a mapping that assigns the appropriate sub-terms to the variable names.

A reduct can be constructed by taking the right-hand side of the rule and substituting

the variables names using the constructed mapping. Replacing the original redex by

the reduct is called a reduction. Below we give an example of a set of rewrite rules:

�

✁

✂

✄
rules

or(true, B) = true

or(false, B) = B

The redex “or(false, false)” matches the second rule, yielding the binding of

B to the value false. The reduct is false after substitution of false for B in the

right-hand side.

In most implementations of term rewriting, the rewrite rules are guaranteed to be

sort-preserving. This implies that the application of any rewrite rule to a term will

always yield a new term that is well-formed with respect to the signature.

Normalization Given a ground term and a set of rewrite rules, the purpose of a

rewrite rule interpreter is to find all possible redices in a larger term and applying all

possible reductions. Rewriting stops when no more redices can be found. We say that

the term is then in normal form.

A frequently used strategy to find redices is the innermost strategy. Starting at the

leafs of the tree the rewriting engine will try to find reducable expressions and rewrite

them. For example, “or(true,or(false,true))” can be normalized to true

by applying the above rewrite rules in an innermost way.

Associative matching Lists are a frequently occurring data structure in term rewrit-

ing. Therefore, we allow the * symbol to represent repetition in a signature:

�

✁

✂

✄

signature

set(ELEM*) -> SET

variables

E -> ELEM

Es[123] -> ELEM*

The argument of the set operator is a list of ELEM items. By using list variables4,

we can now write rewrite rules over lists. The following examples removes all double

elements in a SET:

4Es[123] declares three variables, Es1, Es2 and Es3, using character class notation.

67

Semantics Driven Disambiguation CHAPTER 4

�
✁

✂
✄rules

set(Es1,E,Es2,E,Es3) = set(Es1,E,Es2,Es3)

A list variable may bind any number of elements, so left-hand sides that contain list

variables may match a redex in multiple ways. One possible choice of semantics is to

take the first match that is successful and apply the reduction immediately.

4.3.2 Rewriting parse trees

Grammars as signatures The first step is to exploit the obvious similarities between

signatures and context-free grammars. We replace the classical prefix signatures by

arbitrary context-free grammars in a TRS. There are three immediate consequences.

The non-terminals of a grammar are the sorts. The grammar rules are the function

symbols. Terms are valid parse trees over the grammar. Of course, the parse trees can

be obtained automatically by parsing input sentences using the user-defined grammar.

Rules in concrete syntax If we want to rewrite parse trees, the left-hand side and

right-hand side of rewrite rules should be parse trees as well. We use the same parser

to construct these parse trees.5 In order to parse the variables occurring in the rules, the

grammar has to be extended with some variables as well.

Using grammars as signatures and having rules in concrete syntax, the TRS for the

or can now be written as:�

✁

✂

✄

context-free syntax

"true" -> Bool

"false" -> Bool

Bool "|" Bool -> Bool

variables

"B" -> Bool

rules

true | B = true

false | B = B

A formalism like this allows us to use term rewriting to analyze anything that can be

expressed using an unambiguous context-free grammar.

Brackets In order to be able to explicitly express the structure of terms and to be able

to express rewrite rules unambiguously, the notion of bracket rules is introduced. The

following grammar adds a bracket production to the booleans:�
✁

✂
✄context-free syntax

"(" Bool ")" -> Bool bracket

Bracket productions may only be sort-preserving. This allows that applications of

bracket productions can be removed from a parse tree without destroying the well-

formedness of the tree. The result of this removal is a parse tree with the structure that

the user intended, but without the explicit brackets.

5We implicitly extend the user-defined grammar with syntax rules for the rewrite rule syntax, e.g., Bool

"=" Bool -> Rule, is added to parse any rewrite rule for booleans.

68

SECTION 4.3 Extending Term Rewriting

�

✁

✂

✄

amb({Bool ","}*) -> Bool {amb}

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool "|" "true" -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

"true"

"true" -> Bool "|" Bool "|" Bool -> Bool

"true" "false" -> Bool "|" "true" -> Bool

"false" "true"

Figure 4.5: Translating an ambiguity node to an ambiguity constructor.

4.3.3 Rewriting parse forests

The step from rewriting parse trees to rewriting parse forests is a small one. If we want

to use term rewriting to design disambiguation filters, we want to be able to address

ambiguities explicitly in a TRS.

Extending the signature The ambiguity nodes that exist in a parse forest are made

visible to a TRS by augmenting the signature automatically with a new function symbol

for every sort in the signature. The new function symbols are referred to as ambiguity

constructors. For example, the following ambiguity constructor is added for Bool

expressions:
�
✁

✂
✄

context-free syntax

amb(✟ Bool "," ✠ *) -> Bool ✟ amb ✠
Each ambiguity constructor has a comma separated list of children. These children

represent the original ambiguous derivations for a certain sub-sentence.

Preprocessing before rewriting Just before the normalization process begins we

translate each amb node in the parse forest of an input term to an application of an

ambiguity constructor as described in the previous paragraph. The result of this trans-

lation is a single parse tree, representing a parse forest, that is completely well-formed

with respect to the augmented signature of the TRS.

Figure 4.5 depicts the result of this translation process. It shows how the parse

forest from Figure 4.3, containing an ambiguity node, is translated to a parse tree with

an explicit ambiguity constructor. Due to the reserved production attribute ✡ amb ☛ the

translation back is a trivial step. This is done after the normalization process is finished

and there are still ambiguities left. This step is necessary in order to make the normal

form completely well-formed with respect to the original grammar.

Since the extended signature allows empty ambiguity clusters, e.g., amb(), the

final translation can sometimes not be made. In this case we return an error message

similar to a parse error. An empty ambiguity constructor can thus be used to indicate

that a term is semantically incorrect.

69

Semantics Driven Disambiguation CHAPTER 4

Rewrite rules Using the ambiguity constructors, we can now define rewrite rules

which process ambiguity clusters. The following example specifies the removal of

right-associative application of the “|” operator. This is performed by the first rewrite

rule�

✁

✂

✄

variables

"Bs"[12] -> Bool*

"B"[123] -> Bool

rules

amb(Bs1, B1 | (B2 | B3), Bs2) = amb(Bs1, Bs2)

amb(B1) = B1

The second rule transforms an ambiguity cluster containing exactly one tree into an

ordinary tree. Using innermost normalization, the above rewrite rules will rewrite a

parse forest of the ambiguous term “true | false | true” to a parse tree that

represents “(true | false) | true”.

The following features of term rewriting are relevant for this example. Concrete

syntax allows specification of the functionality directly in recognizable syntax. The

use of brackets is essential to disambiguate the left-hand side of the first rewrite rule.

Associative matching is used to locate the filtered derivation directly without explicit

list traversal. Finally, the innermost strategy automatically takes care of executing this

rewrite rule at the correct location in the parse tree.

4.4 Practical Experiences

The above ideas have been implemented in ASF+SDF [67], which is the combina-

tion of the syntax definition formalism SDF and the term rewriting language ASF.

ASF+SDF specifications look almost like the last examples in the previous section.

C typedefs To test the concept of rewriting parse forests, we developed a small spec-

ification that filters one of the ambiguities in the C language. We started from an

ambiguous syntax definition of the C language.

The ambiguity in question was discussed in the introduction. Depending on the ex-

istence of a typedef declaration an identifier is either interpreted as a type name or as

a variable name. The following specification shows how a C CompoundStatement

is disambiguated. We have constructed an environment containing all declared types.

If the first Statement after a list of Declarations is a multiplication of an iden-

tifier that is declared to be a type, the corresponding sub-tree is removed. Variable

definitions have been left out for the sake of brevity.�

✁

✂

✄

context-free syntax

"types" "[[" Identifier* "]]" -> Env

filter(CompoundStatement, Env) -> CompoundStatement

equations

[]Env = types[[Ids1 Id Ids2]]

===========================

filter(amb(CSs1,Decls Id * Expr;Stats,CSs2),Env) =

amb(CSs1,CSs2)

70

SECTION 4.4 Practical Experiences

Note the use of concrete C syntax in this example. The filter function searches and

removes ambiguous block-statements where the first statement uses an identifier as a

variable which was declared earlier as a type. Similar rules are added for every part of

the C syntax where an ambiguity is caused by the overlap between type identifiers and

variable identifiers. This amounts to about a dozen rules. Together they both solve the

ambiguities and document exactly where our C grammar is ambiguous.

The offside rule in Sasl We have experimented with Sasl [150], a functional pro-

gramming language, to implement a filter using the offside rule. The following func-

tion uses column number information that is stored in the parse forest to detect whether

a certain parse tree is offside.
�

✁

✂

✄

equations

[] Col = get-start-column(Expr),

minimal(Expr,Col) < Col = true

==============================

is-offside(NameList = Expr) = offside

An expression is offside when a sub-expression is found to the left of the beginning

of the expression. The function minimal (not shown here) computes the minimal

column number of all sub-expressions.

After all offside expressions have been identified, the following function can be

used to propagate nested offside tags upward in the tree:
�

✁

✂

✄

equations

[] propagate(Expr WHERE offside) = offside

[] propagate(NameList = offside) = offside

[] propagate(offside WHERE Defs) = offside

Next, the following two rules are used to remove the offside expressions:
�

✁

✂

✄
equations

[] amb(Expr*1, offside, Expr*2) = amb(Expr*1,Expr*2)

[] amb(Expr) = Expr

Note that if no expressions are offside, the ambiguity might remain. Rules must be

added that choose the deepest derivation. We have left out these rules here for the sake

of brevity because they are similar to the next COBOL example.

Complex nested dangling COBOL statements The nested dangling constructs in

COBOL can be filtered using a simple specification. There is no context information

involved, just a simple structural analysis. The following rewrite rules filter the deriva-

tions where the dangling block of code was not assigned to the correct branch:
�

✁

✂

✄

equations

[] amb(ASs1, AddStatSimple1

SIZE ERROR Stats1 AddStatSimple2

NOT SIZE ERROR Stats2,

ASs2) = amb(ASs1, ASs2)

71

Semantics Driven Disambiguation CHAPTER 4

Size Lines Parse time Number of Filter time

(bytes) (seconds) ambiguities (seconds)

Smallest file 10,454 158 16.57 0 0.46

Largest file 203,504 3,020 36.66 1 10.55

File with most ambigu-

ities

140,256 2,082 28.21 8 7.21

Largest file without am-

biguities

124,127 1,844 26.61 0 8.79

Totals of all files 5,179,711 79,667 1818.67 125 259.25

Averages 59,537 916 20.90 1.44 2.98

Table 4.1: Some figures on parsing and filtering performance.

The variable AddStatSimple2 terminates the nested statement list. In the rule, the

NOT SIZE ERROR is therefore assigned to the outer AddStatSimple1 statement

instead of the inner AddStatSimple2.

This is exactly the alternative that is not wanted, so the rule removes it from the

forest. We have defined similar disambiguation rules for each of the 16 problematic

constructions.

Performance To provide some insight in the computational complexity of the above

COBOL disambiguation we provide some performance measures. We used a rewrite

rule interpreter for these measurements. Compiling these rules with the ASF-

compiler [30] would lead to a performance gain of at least a factor 100. However,

it is easier to adapt the ASF interpreter when prototyping new language features in

ASF. In Table 4.1 we compare the parsing time to time the rewriter used for filtering.

The figures are based on a test system of 87 real COBOL sources, with an average file

size of almost 1,000 lines of code.

The parse times include reading the COBOL programs and the parse table from

disk, which takes approximately 15 seconds, and the construction and writing to disk of

the resulting parse forests. The parse table for this full COBOL grammar is really huge,

it consists of 28,855 states, 79,081 actions, and 730,390 gotos. The corresponding

grammar has about 1,000 productions. It was derived from the original Reference

Manual of IBM via the technique described in [110].

The time to execute this set of disambiguation filters for COBOL is proportional to

the size of the files and not to the number of ambiguities. The computation visits every

node in the parse tree once without doing extensive computations.

4.5 Discussion

Object-oriented programming We demonstrated the concept of semantic filters via

rewriting. An important question is what is needed to apply the same idea in a more

general setting, for instance using Java or an Attribute Grammar formalism. We will

formulate the requirements and needed steps as a recipe:

72

SECTION 4.6 Conclusions

1. It is necessary to have a parse forest or abstract syntax forest representation

which has ambiguity clusters. The amount and type of information stored in

the trees influences the expressiveness of the disambiguation filters directly.

2. The ambiguity nodes should be made addressable by the user.

3. It is necessary to create a mapping from the output of the parser to this parse for-

est representation. This mapping should preserve or derive as much information

as possible from the output of the parser.

4. If possible, it is preferable to guarantee that the output of a filter is well-formed

with respect to the grammar.

Programming filters becomes a lot simpler if there exists a practical application

programming interface (API) to access the information stored in the parse forest repre-

sentation. ApiGen (See Chapter 9) has a backend that generates Java class hierarchies

that provide a mapping from AsFix to a typed abstract syntax tree in Java that is ready

for the Visitor design pattern.

Strategic programming In our description of term rewriting we have not addressed

the notion of first class rewriting strategies that is present in languages like Strat-

ego [159] and Elan [22]. Rewriting strategies allow the specification writer to explicitly

control the application of rewrite rules to terms, as opposed to using the standard in-

nermost evaluation strategy. Ambiguity constructors can be combined seamlessly with

rewriting strategies, allowing disambiguation rules to be applied under a certain user-

defined strategy. Recently both Elan and Stratego started to use SDF to implement

concrete syntax too, [43] and [161], respectively.

4.6 Conclusions

Starting from the notion of generalized parsing we have presented a solution for one

of its implications: the ability to accept ambiguous programming languages. Term

rewriting can be extended in a simple manner to filter parse forests. Specifying filters

by explicitly addressing ambiguity clusters is now as simple as writing ordinary rewrite

rules.

The resulting architecture provides a nice separation of concerns and declarative

mechanisms for describing syntax and disambiguation of real programming languages.

Practical experience shows that writing filters in term rewriting with concrete syn-

tax is not only feasible, but also convenient. This is due to the seamless integration

of context-free syntax definition, parse forests and rewrite rules. Based on a large col-

lection of COBOL programs we have presented performance figures of an interpreter

executing a collection of simple disambiguation filters.

73

Semantics Driven Disambiguation CHAPTER 4

74

C H A P T E R 5

A Type-driven Approach to

Concrete Meta

Programming

Meta programming can be supported by the ability to represent program

fragments in concrete syntax instead of abstract syntax. The resulting meta

programs are far more self-documenting because “what you see is what

you manipulate”.

One caveat in concrete meta programming is the syntactic separation be-

tween the meta language and the object language. To solve this problem,

many meta programming systems use quoting and anti-quoting to indi-

cate precisely where level switches occur. These “syntactic hedges” can

obfuscate the concrete program fragments. ASF+SDF has no syntactic

hedges, but must trade this for a simple type system, and very basic error

messages. Other meta programming systems have more freedom in their

typing systems, but must trade this for more syntactic hedges. We analyze

this apparent trade-off and bypass it by applying disambiguation by type

checking.

This chapter contributes by removing the technical need for quotes and

anti-quotes, allowing more “what you see is what you manipulate” than

before in meta programming applications. 1

5.1 Introduction

Applications that manipulate programs as data are called meta programs. Examples of

meta programs are compilers, source-to-source translators, type-checkers, documen-

tation generators, refactoring tools, and code generators. We call the language that

is used to manipulate programs the meta language, and the manipulated language the

object language.

1An abridged version of this chapter appeared in RISE 2005 [155].

75

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

Any general purpose programming language can be used to write meta programs.

The program is represented using the data type constructs available in that language. In

general, the data type used is an abstract syntax tree, but sometimes a string represen-

tation seems to be sufficient. Many code generators just print out strings for example,

while compilers and type-checkers depend on a more structured representation of a

program. Although the string representation is very readable, it is to weak to be a de-

vice for modeling program structure. Consequently strings do not scale for use in more

complex meta programs; there is not enough compile-time checking.

The main disadvantage of using a general purpose programming language for meta

programming is that the original program is encoded in a very complex data type. The

abstract syntax tree data type has to be designed in advance, and the basic functionality

to manipulate this data also needs to be developed before the actual manipulation can

be expressed. Tool support is offered to help design the above features, such as code

generators for abstract syntax tree representations (see Chapter 9). Some tools provide

a typed interface to program structures, modeling programs more faithfully and strictly.

The high level of abstraction offered by these tools brings a meta program conceptually

closer to the object program. The meta program becomes more self-documenting.

An old idea to facilitate meta programming is the use of concrete syntax to repre-

sent program fragments [124]. Using concrete syntax, as opposed to abstract syntax,

all program fragments in a meta program are represented in the syntax of the object lan-

guage [144, 87]. Concrete syntax combines the readability of the string representation

with the structural and type-safe representation of abstract syntax trees. The meta pro-

grammer embeds the actual program fragments literally in his meta program, but the

underlying representation of these fragments is an abstract syntax tree. The resulting

meta programs are far more self-documenting because “what you see is what you ma-

nipulate”. Anybody who can program in the object language can understand and even

write the embedded program fragments in a concrete meta program. Compare this to

learning a complex abstract syntax representation that may be application specific.

One caveat in concrete meta programming is the syntactic separation between the

meta language and the object language. Conventional scanning and parsing technolo-

gies have a hard time distinguishing the two levels. To solve this problem, many meta

programming systems use quoting and anti-quoting to indicate precisely where level

switches are made. To further guide the system, sometimes the user is obliged to ex-

plicitly mention the type of the following program fragment. These “syntactic hedges”

help the parser, but they can obfuscate the concrete program fragments. In practice, it

leads to programmers avoiding the use of concrete syntax because the benefit becomes

much less clear when it introduces more syntactic clutter than it removes.

Road-map. This chapter contributes by removing the technical need for quotes and

anti-quotes, allowing more “what you see is what you manipulate” than before in meta

programming applications. We first explore meta programming with concrete syntax in

some detail and then describe a number of existing systems that implement it (Section

5.1.2). We shortly evaluate these systems and then describe the goals of our work,

before we detail the actual contributions.

We introduce an architecture that automatically detects implicit transitions from

76

SECTION 5.1 Introduction

Data-structure Linear (strings) vs. Structured (trees)

Typing Untyped (homogeneous) vs. Typed (heterogeneous)

Syntax Abstract syntax vs. Concrete syntax

Quoting Explicit quoting vs. Implicit quoting

Annotations Explicit type annotations vs. No explicit type

annotations

Nested meta code Not allowed vs. Allowed

Table 5.1: Solution space of code fragment representation in meta programming.

meta language to object language (Section 5.2). This architecture is based on general-

ized parsing and a separate type-checking phase. By making the transitions between

meta language and object language implicit we introduce some challenges for the pars-

ing technology: ambiguous and cyclic grammars. In Section 5.3 we address these

issues. Sections 5.4 and 5.5 describe experience and conclusions respectively.

5.1.1 Exploring the solution space

Table 5.1 is an overview of the syntactic features of meta programming languages

for representing code fragments. We prefer systems that represent program fragments

using all the features in the right column, since there is no syntactic distance between

the program fragments and the actual object language.

Suppose we use Java as a meta programming language to implement a Java code

generator. Consider the following method that generates a Java method. It is written

in four different styles: using strings, using some abstract syntax, concrete syntax no-

tation with quotation, and finally concrete syntax without quotation. To demonstrate

the expressivity of concrete syntax in a familiar setting, we use an imaginary concrete

syntax feature for Java in the last two examples.

String representation
�

✁

✂

✄

String buildSetter(String name, String type) ✟
return "public void set" + name + "(" + type + " arg) ✌ n"

+ " this." + name + " = arg; ✌ n"
+ " ✠✍✌ n";

✠

The string representation is unstructured, untyped and uses quotes and anti-quotes.

There is no guarantee that the output of this method is a syntactically correct Java

method. However, the code fragment is immediately recognizable as a Java method.

77

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

Abstract syntax representation
�

✁

✂

✄

String buildSetter(String name, String type) ✟
Method method = method(

publicmodifier(), voidType(), identifier("set" + name),

arglist(formalarg(classType(type),identifier("arg"))),

statlist(stat(assignment(

fieldref(identifier("this"),identifier(name)),

expression(identifier("arg"))))));

return method.toString();

✠

This style uses a number of methods for constructing an abstract syntax tree in

a bottom-up fashion. If the used construction methods are strictly typed, this style

exploits the Java type system towards obtaining a syntactically correct result. That

means that if all toString()methods of the abstract representation are correct, then

the new expression will also generate syntactically correct Java code. An alternative to

the above is to use a generic tree data type. This leads to an untyped representation,

such that there is no guarantee on the syntactic correctness of the result.

Concrete syntax representation with quoting
�

✁

✂

✄

String buildSetter(String name, String type) ✟
Method method = [[public void ‘"set" + name‘ (‘type‘ arg) ✟

this.‘name‘ = arg;

✠]];
return method.toString();

✠

To guide the parser the user explicitly indicates the transition from meta language

to object language by quoting ([[...]]), and the transition from object language to

meta language by anti-quoting (‘...‘). This style with quoting is close to the string

representation in terms of readability. It is structured and typed. The implementation of

this syntax would introduce compile-time parsing and type-checking of the generated

code fragment with respect to the Java grammar. This means that it is guaranteed to

generate syntactically correct Java code, except for the parts that are anti-quoted.

Concrete syntax representation without quoting
�

✁

✂

✄

String buildSetter(String name, String type) ✟
Method method = public void "set" + name (type arg) ✟

this.name = arg;

✠ ;
return method.toString();

✠

78

SECTION 5.1 Introduction

The final example shows our ideal notation. There is a seamless integration be-

tween meta language and object language. This approach automates the quoting and

anti-quoting for the user. Compare this to type-inference in functional programming

languages; if a type can be inferred automatically, we do not ask the user to type it in.

Similarly, in concrete syntax without quotation we want to infer the quotes automati-

cally without asking the user to express the obvious.

5.1.2 Concrete meta programming systems

The ASF+SDF system is based on scannerless generalized LR parsing (SGLR) [157,

46] and conditional term rewriting. The syntax of the object language is defined in the

SDF formalism, after which rewrite rules in ASF in concrete syntax define appropriate

transformations [28]. The SGLR algorithm takes care of a number of technical issues

that occur when parsing concrete syntax:

☎ It accepts all context-free grammars, which are closed under composition. This

allows the combination of any meta language with any object language.

☎ Due to scannerless parsing, there are no implicit global assumptions like longest

match of identifiers, or reserved keywords. Such assumptions would influence

the parsing of meta programs. For example, the combined language would have

the union set of reserved keywords, which is incorrect in either separate lan-

guage.

☎ Parallel parse stacks take care of local conflicts in the parse table.

ASF+SDF does not have quoting, or anti-quoting. There are two reasons for this.

Firstly, within program fragments no nested ASF+SDF constructs occur that might

overlap or interfere. Secondly, the ASF+SDF parser is designed in a very specific

manner. It only accepts type correct programs because a specialized parser is generated

for each ASF+SDF module. The following rephrases the examples of the introduction

in ASF+SDF:�

✁

✂

✄

context-free syntax

buildSetter(Identifier, Type) -> Method

variables

"Name" -> Identifier

"Type" -> Type

equations

[] buildSetter(Name, Type) =

public void set ++ Name (Type arg) ✟
this.Name = arg;

✠
Note that we have used an existing definition of the concatenation of Identifiers (++).

This notation is achieved by exploiting a one-to-one correspondence between

the type system of ASF+SDF and context-free grammars: non-terminals are types,

and productions are functions. The type system of ASF+SDF entails that all equa-

tions are type preserving. To enforce this rule, a special production is generated for

79

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

each user-defined non-terminal X: X "=" X -> Equation. So instead of having

one Term "=" Term -> Equation production, ASF+SDF generates specialized

productions to parse equations. After this syntax generation, the fixed part of ASF-

+SDF is added. That part contains the skeleton grammar in which the generated syntax

for Equation is embedded.

The equation shown above has some syntactic ambiguity. The meta variable

Type for example, may be recognized as a Java class name, or as a meta vari-

able. Another ambiguity is due to the following user-defined injection production:

Method -> Declaration. By applying it to both sides of the equation, it may

also range over the Declaration type instead of simply over Method. To disam-

biguate such fragments, ASF+SDF uses two so called meta disambiguation rules:

Rule 1: Prefer to recognize declared meta variables instead of object syntax identifiers.

Rule 2: Prefer shorter injection chains.

Rule 1 separates meta variables from program fragments. Rule 2 prefers the more

specific interpretations of rules, an arbitrary but necessary disambiguation. Note that

such ambiguities also occur for productions that can simulate injections. For example

in A X B -> Y, where both A, and B are non-terminals that optionally produce the

empty string. We call this a quasi-injection from X to Y. Quasi injections are not

covered by meta disambiguation rule 2.

Although the above design offers the concrete syntax functionality we seek, the

assumptions that are made limit its general applicability:

☎ The type system of the meta language must be expressible as a context-free gram-

mar. Higher-order functions or parametric polymorphism are not allowed.

☎ Usually, meta programming languages offer more meta level constructs than

meta variables only. Consider for example let or case expressions.

☎ Typing errors are reported as parsing errors which makes developing meta pro-

grams unnecessarily hard.

☎ The user is expected to pick meta variable names that limit the amount of ambi-

guities that can not be solved by the above two meta disambiguation rules. No

feedback other than ambiguity reports and parse tree visualizations are given to

help the user in this respect.

In Stratego [159] the concrete object syntax feature also uses SDF for syntax defini-

tion and SGLR to parse Stratego programs. The separation between the meta language

and the object language is done by quoting and anti-quoting. The programmer first

defines quotation and anti-quotation notation syntax herself. Then the object language

is combined with the Stratego syntax. After parsing, the parse tree of the meta program

is mapped automatically to normal Stratego abstract syntax [161].

80

SECTION 5.1 Introduction

By letting the user define the quotation operators, Stratego offers a very explicit way

of combining meta language and object language. This is natural for Stratego, since:

☎
There is no type system, so parsing can not be guided by a type context.

☎ There are meta operators that could appear nested in a program fragment.

The following are example user-defined quotation and anti-quotation operators for a

non-terminal in Java, with or without explicit types:
�

✁

✂

✄

context-free syntax

"|[" Method "]|" -> Term ✟ cons("toMetaExpr") ✠
"Method" "|[" Method "]|" -> Term ✟ cons("toMetaExpr") ✠

"˜" Term -> Method ✟ cons("fromMetaExpr") ✠
"˜Method:" Term -> Method ✟ cons("fromMetaExpr") ✠

The productions’ attributes are used to guide the automated mapping to Stratego ab-

stract syntax.

The ambiguities that occur in ASF+SDF due to injections and quasi-injections also

occur in Stratego, but the user can always use the explicitly typed quoting operators.

An example code fragment in Stratego with meta variables defined in SDF is:

�

✁

✂

✄

context-free syntax

"|[" Method "]|" -> Term ✟ cons("toMetaExpr") ✠
"˜" Term -> Identifier ✟ cons("fromMetaExpr") ✠

variables

"type" -> Type

strategies

builderSetter(|name, type) =

!|[public void ˜<conc-strings> ("set", name)(type arg)

this.˜name = arg;

]|

In this example, we used both Stratego syntax like the ! operator and the

conc-strings library strategy, and Java object syntax. We assume no quotation

operator for Declaration is present, otherwise an explicitly typed quote should

have been used to disambiguate. To indicate the difference, we used an implicit meta

variable for the type argument, and a normal explicitly anti-quoted variable for the field

name that we set.

The above leaves a part of implementing concrete syntax, namely combining the

meta language with the object language to the user. The use of quotation makes this

job easier, but the resulting meta programs contain many quoting operators. Questions

the user must be able to answer are:

☎
For which non-terminals should quotation operators be defined.

☎
When to use explicit typing.

☎
What quotation syntax will be appropriate for a specific non-terminal.

81

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

If not carefully considered, the answers to these questions might differ for different

applications for the same object language. A solution proposed in [161] is to generate

quoting operators automatically from the syntax definition of the object language. The

current solution is to let an expert define the quotation symbols for a certain language,

and put this definition in a library. Still, like the ASF+SDF system, the feedback that

such a design can offer in case the user or the expert makes a mistake is limited to parse

errors and ambiguity reports.

Concrete syntax in Lazy ML. In [1] an approach for adding concrete syntax to Lazy

ML is described. This system also uses quotation operators. It employs scannerless

parsing with Earley’s algorithm, which is roughly equivalent to SGLR. Disambiguation

of the meta programs with program fragments is obtained by:

☎ Full integration of the parser and type-checker of Lazy ML. All type information

can be used to guide the parser. So, only type correct derivations are recognized.

☎
Overlapping meta variables and the injection problem are partially solved by

optionally letting the user annotate meta variables explicitly with their type inside

program fragments.

This system is able to provide typing error messages instead of parse errors. Both the

level of automated disambiguation, and the level of the error messages are high. There

is explicit quoting and anti-quoting necessary:
�

✁

✂

✄

fun buildSetter name type =

[| public void ˆ(concat "set" name) (ˆtype arg) ✟
this.ˆname = arg;

✠
|]

The Jakarta Tool Suite is for extending programming languages with domain spe-

cific constructs. It implements and extends ideas of intentional programming, and work

in the field of syntax macros [118]. Language extension can be viewed as a specific

form of meta programming, with a number of additional features.

The parser technology used in JTS is based on a separate lexical analyzer and an

LL parser generator. This restricts the number of language extensions that JTS accepts,

as opposed to scannerless generalized parsing algorithms. The program fragments in

JTS are quoted with explicit typing. For every non-terminal there is a named quoting

and an anti-quoting operator, for example:
�

✁

✂

✄

public FieldDecl buildSetter(String name, String type) ✟
QualifiedName methodName = new QualifiedName("set" + name);

QualifiedName fieldName = new QualifiedName(name);

QualifiedName typeName = new QualifiedName(type);

return mth ✟ public void $id(methodName) ($id(typeName) arg) ✟
this.$id(fieldName) = arg;

✠
✠

82

SECTION 5.1 Introduction

Meta-Aspect/J is a tool for meta programming Aspect/J programs in Java [172]. It

employs context-sensitive parsing, similar to the approach taken for ML. As a result,

this tool does not need explicit typing:

�

✁

✂

✄

MethodDec buildSetter(String name, String type) ✟
String methodName = "set" + name;

return ‘[public void #methodName (#type arg) ✟
this.#name = arg;

✠
];

✠
Note that Meta Aspect/J offers a fixed combination of one meta language (Java) with

one single object language (Aspect/J), while the other systems combine one meta lan-

guage with many object languages.

TXL [59] is also a meta programming language. It uses backtracking to general-

ize over deterministic parsing algorithms. TXL has a highly structured syntax, which

makes extra quoting not necessary. Every program fragment is enclosed by a certain

operator. The keywords of the operators are syntactic hedges for the program frag-

ments:�

✁

✂

✄

function buildMethod Name [id] Type [type]

construct MethodName [id]

[+ ’set] [+ Name]

replace [opt method]

by

public void MethodName (Type arg) ✟
this.Name = arg;

✠
end function

The example shows how code fragments are explicitly typed, and also the first occur-

rence of fresh variables. The [...] anti-quoting operator is used for explicit typing,

but it can also contain other meta level operations, such as recursive application of a

rule or function. The keywords construct, replace, by, etc. can not be used

inside program fragments, unless they are escaped.

Although technically TXL does use syntactic hedging, the user is hardly aware of it

due to the carefully designed syntax of the meta language. The result is that, compared

to other meta programming languages, TXL has more keywords.

5.1.3 Discussion

Table 5.2 summarizes the concrete meta programming systems just discussed. The list

is not exhaustive, there are many more meta programming systems, or language exten-

sion systems out there. Clearly the use of quoting and anti-quoting is a common design

decision for meta programming systems with concrete syntax. Explicit typing is also

used in many systems. Only ASF+SDF does not use quoting or explicit typing, except

83

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

ASF Stratego ML JTS TXL MAJ

Typed ✎ ✏ ✎ ✎ ✎ ✎
Implicit quoting ✎ Opt. ✏ ✏ ✎ ✏
No type annotations ✎ Opt. ✏ ✏ ✏ ✎
Nested meta code ✏ ✎ ✎ ✏ ✎ ✏

Table 5.2: Concrete syntax in several systems.

that the meta variable names picked by the user are a form of explicit disambiguation.

Type-safety is implemented in most of the systems described.

From studying the above systems and their concrete syntax features, we draw the

following conclusions:

☎
The more implicit typing context is provided by the meta programming language,

the less syntactic hedges are necessary. Strictly typed languages will therefore

be more appropriate for concrete syntax without hedges than other languages.

☎ Syntactic hedges are not necessarily obfuscating the code patterns. The TXL

example shows how a carefully chosen keyword structure provides a solution

that does not bother the user too much with identifying the transitions to and

from the meta level.

☎ Even if syntactic hedges are not necessary, some kind of visualization for iden-

tifying the transitions to and from the meta level is always beneficial. Syntax

highlighting is a well known method for visualizing syntactic categories.

☎ It is hard to validate the claim that less quotation and anti-quotation is better in

all cases. Possibly, this boils down to a matter of taste. Evidently unnecessary

syntactic detail harms programmer productivity, but that argument just shifts the

discussion to what is necessary and what is not. A hybrid system that employs

both quote inferencing and explicit quoting would offer the freedom to let the

user choose which is best.

☎
The most important shortcoming of any system that employs concrete syntax is

the low quality of the error messages that it can provide.

Our goal is now to design a parsing architecture that can recognize concrete syntax

without hedges, embedded in languages with non-trivial expression languages, but with

strict type systems. Providing a hybrid system that also allows explicit hedges is a

trivial extension that we do not discuss further. Also syntax highlighting is well known

functionality that does not need further discussion.

5.2 Architecture

We start with a fixed syntax definition for a meta language and a user-defined syntax

definition for an object language. In Fig. 5.1 the general architecture of the process

84

SECTION 5.2 Architecture

�

✁

✂

✄

Meta Syntax

Syntax Merger

Object Syntax

Meta Program Parser
Syntax
Tree

Error
Message

Parser Generator

Type checker and
Disambiguation filter

Forest

Figure 5.1: Overview: parsing concrete syntax using type-checking to disambiguate.

�

✁

✂

✄

Meta Language

1: C -> S

2: Term -> S

3: A -> Term

4: B -> Term

5: B -> A

S

C

1

Term

2

A

3

B

4

5

X

Y

p

Z

q

r

V

s

W

t

�

✁

✂

✄

Object Language

p: Z -> X

q: Y -> X

r: Z -> Y

s: V -> Y

t: W -> Z

Figure 5.2: A trivial meta syntax and object syntax are merged. Syntax transitions bidi-

rectionally connect all non-terminals in the object language to the Term non-terminal

in the meta language

starting from these two definitions and a meta program, and ending with an abstract

syntax tree is depicted. The first phase, the syntax merger, combines the syntax of the

meta language with the syntax of the object language. The second phase parses the

meta program. The final phase type-checks and disambiguates the program.

5.2.1 Syntax transitions

The syntax merger creates a new syntax module, importing both the meta syntax and

the object syntax. We assume there is no overlap in non-terminals between the meta

syntax and the object syntax, or that renaming is applied to accomplish this. It then

adds productions that link the two layers automatically. For every non-terminal X in

the object syntax the following productions are generated (Fig. 5.2): X -> Term and

Term -> X, where Term is a unique non-terminal selected from the meta language.

For example, for Java, the Term non-terminal would be Expression, because ex-

pressions are the way to build data structures in Java.

We call these productions the transitions between meta syntax and object syntax.

They replace any explicit quoting and unquoting operators. In order for easy recogni-

tion, we will call the transitions to meta syntax the quoting transitions and the transi-

tions to object syntax the anti-quoting transitions. Figure 5.3 illustrates the intended

purpose of the transitions: nesting object language fragments in meta programs, and

nesting meta language fragments again in object language fragments.

The collection of generated transitions from and to the meta language are hazardous

for two reasons. They introduce many ambiguities, including cyclic derivations. An

ambiguity arises when more than one derivation exists for the same substring with the

85

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

�

✁

✂

✄M
et

a

M
et

a
sy

nt
ax

anti−quoting transition

quoting transition

sy
nt

axO
bj

ec
t
sy

nt
ax

Figure 5.3: A parse tree may contain both meta and object productions, where the

transitions are marked by quoting and unquoting transition productions.

�

✁

✂

✄

Object
Language Language

Meta

3

4

Term

Meta

1 2

Figure 5.4: Classification of ambiguities caused by joining a meta language with an

object language.

same non-terminal. Intuitively, this means there are several interpretations possible for

the same substring. A cycle occurs in derivations if and only if a non-terminal can pro-

duce itself without consuming terminal symbols. Cycles are usually meaningless: they

have no semantics. To get a correct parser for concrete meta programs without quoting,

we must resolve all cycles and ambiguities introduced by the transitions between meta

and object syntax. Figure 5.4 roughly classifies the ambiguities that may occur:

Class 1: Ambiguity in the object language itself. This is an artifact of the user-

defined syntax of the object language. Such ambiguity must be left alone, since it

is not introduced by the syntax merger. The C language is a good example, with

its overloaded use of the * operator for multiplication and pointer dereference.

Class 2: Ambiguity of the meta language itself. This is to be left alone too, since it

is not introduced by the syntax merger. Usually, the designer of the meta lan-

guage will have to solve such an issue separately.

Class 3: Ambiguity directly via syntax transitions. The Term non-terminal accepts

all sub languages of the object language: “everything is a Term”. Parts of the

object language that are nicely separated in the object grammar, are now overlaid

86

SECTION 5.2 Architecture

�

✁

✂

✄
Forest Type-check Tree Filter

iterate

iterate
Meta Tree Filter

Typed Tree

Error Message

Figure 5.5: The organization of the type-checking and disambiguation approach.

on top of each other. For example, the isolated Java code fragment i = 1 could

be a number of things including an assignment statement, or the initializer part

of a declaration.

Class 4: Object language and meta language overlap. Certain constructs in the

meta language may look like constructs in the object language. In the presence

of the syntax transitions, it may happen that meta code can also be parsed as

object code. For example, this hypothetical Java meta program constructs some

Java declarations: Declarations decls = int a; int b;. The int

b; part can be in the meta program, or in the object program.

We can decide automatically in which class an ambiguity falls. Class 1 or class

2 ambiguities only exercise productions from the object grammar or meta grammar

respectively. If the top of the alternatives in an ambiguity cluster exercise the transition

productions, it falls into class 3. The other ambiguities fall into class 4, they occur on

meta language non-terminals and exercise both the transition productions and object

language productions. Note that ambiguities may be nested. Therefore, we take a

bottom-up approach in classifying and resolving each separate ambiguity.

5.2.2 Disambiguation by type-checking

Generalized parsing algorithms do not complain about ambiguities or cycles. In case

of ambiguity they produce a “forest” of trees, which contain compact representations

of the alternative derivations. In case of cycles, parse forests simply contain back edges

to encode the cycle, parse graphs.

The construction of parse forests, instead of single trees, enables an architecture in

which the disambiguation process is merged with the type checking algorithm rather

than integrated in the parsing algorithm. The parser returns a parse forest. After this

the type-checker filters out a single type-correct tree or returns a type error. This archi-

tecture is consistent with the idea of disambiguation by filtering as described by [104].

Figure 5.5 shows the organization of the type-checking and disambiguation approach.

Type-checking is a phase in compilers where it is checked if all operators are ap-

plied to compatible operands. Traditionally, a separate type-checking phase takes an

abstract syntax tree as input and one or more symbol tables that define the types of all

declared and built-in operators. The output is either an error message, or a new abstract

syntax tree that is decorated with typing information [2]. Other approaches incorporate

type-checking in the parsing phase [1, 133] to help the parser avoid conflicts. We do

87

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

the exact opposite, the parser is kept simple while the type-checker is extended with

the ability to deal with alternative parse trees.

Type-checking forests is a natural extension of normal type-checking of trees. A

forest may have several sub-trees that correspond to different interpretations of the

same input program. Type-checking a forest is the process of selecting the single type

correct tree. If no single type correct tree is available then we deal with the following

two cases:

☎
No type correct abstract syntax tree is available; present the collection of error

messages corresponding to all alternative trees,

☎ Multiple type correct trees are available; present an error message explaining the

alternatives.

Note that resolving the ambiguities caused by syntax transitions by type-checking

is a specific case of type-inference for polymorphic functions [125]. The syntax transi-

tions can be viewed as overloaded (ad-hoc polymorphic) functions. There is one differ-

ence: the forest representation already provides the type-inference algorithm with the

set of instantiations that is locally available, instead of providing one single abstract

tree that has to be instantiated.

Regarding the feasibility of this architecture, recall that the amount of nodes in a

GLR parse forest can be bounded by a polynomial in the length of the input string

[91, 17]. This is an artifact of smart sharing techniques for parse forests produced by

generalized parsers. Maximal sub-term sharing [31] helps to lower the average amount

of nodes even more by sharing all duplicated sub-derivations that are distributed across

single and multiple derivations in a parse forest.

However, the scalability of this architecture still depends on the size of the parse

forest, and in particular the way it is traversed. A maximally shared forest may still

be traversed in an exponential fashion. Care must be taken to prevent visiting unique

nodes several times. We use memoization to make sure that each node in a forest is

visited only once.

In the following section we describe the tree filters that are needed to disambiguate

the ambiguities that occur after introducing the syntax transitions.

5.3 Disambiguation filters

We will explicitly ignore ambiguity classes 1 and 2, such that the following disam-

biguation filters do not interfere with the separate definitions of the meta language and

the object language. The should only deal with the ambiguities introduced by merging

the two languages. We will further analyze ambiguity classes 3 and 4 from Figure 5.4,

and explain how the disambiguating type-checker will either resolve these ambiguities

or produce an error message.

5.3.1 Class 3. Ambiguity directly via syntax transitions

We further specialize this class intro three parts:

88

SECTION 5.3 Disambiguation filters

Class 3.1: Cyclic derivations. These are derivations that do not produce any termi-

nals and exercise syntax transitions both to and from the meta grammar. For ex-

ample, every X has a direct cycle by applying X -> Term and Term -> X.

Class 3.2: Meaningless coercions. These are derivations that exercise the transition

productions to cast any X from the object language into another Y . Namely,

every X can be produced by any other Y now by applying Term -> X and

Y -> Term.

Class 3.2: Ambiguous quoting transitions. Several X -> Term are possible from

different Xs. The ambiguity is on the Term non-terminal. For any two non-

terminals X and Y that produce languages with a non-empty intersection, the

two productions X -> Term and Y -> Term can be ambiguous.

Class 3.3: Ambiguous anti-quoting transitions. Several Term -> X are possi-

ble, each to a different X . The ambiguity is on the object language non-terminal

X , but the cause is that the Term syntax is not specific enough to decide which

X it should be. For any two productions of the object language that produce

the same non-terminal this may happen. A -> X and B -> X together

introduce an anti-quoting ambiguity with a choice between Term -> A and

Term -> B.

In fact, classes 3.1 and 3.2 consist of degenerate cases of ambiguities that would

also exist in classes 3.2 and 3.3. We consider them as a special case because they are

easier to recognize, and therefore may be filtered with less overhead. The above four

subclasses cover all ambiguities caused directly by the transition productions. The first

two classes require no type analysis, while the last two classes will be filtered by type

checking.

Class 3.1. Dealing with cyclic derivations

The syntax transitions lead to cycles in several ways. Take for example the two cyclic

derivations displayed in Figure 5.6. Such cycles, if introduced by the syntax merger, al-

ways exercise at least one production X -> Term, and one production Term -> Y

for any X or Y .

Solution 1. The first solution is to filter out cyclic derivations from the parse for-

est. With the well known Term non-terminal as a parameter we can easily identify the

newly introduced cycles in the parse trees that exercise cyclic applications of the transi-

tion productions. A single bottom-up traversal of the parse forest that detects cycles by

marking visited paths is enough to accomplish this. With the useless cyclic derivations

removed, what remains are the useful derivations containing transitions to and from the

meta level.

We have prototyped solution 1 by extending the ASF+SDF parser with a cycle fil-

ter. Applying the prototype on existing specifications shows that for ASF+SDF such

an approach is feasible. However, the large amount of meaningless derivations that

89

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

�

✁

✂

✄

Term

Id -> Term ...

Term -> Id

Expression

Id -> Expression ...

Term -> Id

Expression -> Term

Figure 5.6: Two cyclic derivations introduced by short circuiting quoting and anti-

quoting transitions.

are removed later do slow down the average parse time of an ASF+SDF module sig-

nificantly. To quantify, for smaller grammars with ten to twenty non-terminals we

witnessed a factor of 5, while for larger grammars with much more non-terminals we

witnessed factors of 20 times slower parsing times.

Solution 2. Instead of filtering the cycles from the parse forest, we can prevent them

by filtering reductions from the parse table. This technique is based on the use of a

disambiguation construct that is described in Chapter 3. We use priorities to remove

unwanted derivations, in particular we remove the reductions that complete cycles.

The details of this application of priorities to prevent cycles are described in a tech-

nical report [154]. The key is to automatically add the following priority for every

object grammar non-terminal X : X -> Term > Term -> X. Because priorities

are used to remove reductions from the parse table, many meaningless derivations are

not tried at all at parsing time.

Discussion. Prototyping the second scheme resulted in a considerable improvement

of the parsing time. The parsing time goes back to almost the original performance.

However parse table generation time slows down significantly. So when using solution

2, we trade some compilation time efficiency for run-time efficiency. In a setting with

frequent updates to the object grammar, it may pay off to stay with solution 1. The

conclusion is that a careful selection of existing algorithms can overcome the cycle

challenge for a certain price in runtime efficiency. This price is hard to quantify ex-

actly, since it highly depends on the object grammar. However, the theoretical worst-

case upper-bound is given by the polynomial size of the parse forest generated by any

Tomita-style generalized parser.

90

SECTION 5.3 Disambiguation filters

Class 3.2. Dealing with meaningless coercions

For every pair of non-terminals X and Y of the object language that produce languages

that have a non-empty intersection, an ambiguity can be constructed by applying the

productions X -> Term and Term -> Y. Effectively, such a derivation casts an X

to an Y , which is a meaningless coercion.

These ambiguities are very similar to the cyclic derivations. They are meaningless

derivations occurring as a side-effect of the introduction of the transitions. Every direct

nesting of an unquoting and a quoting transition falls into this category. As such they

are identifiable by structure, and a simple bottom-up traversal of a parse forest will

be able to detect and remove them. No type information is necessary for this. Also,

introducing priorities to remove these derivations earlier in the parsing architecture is

applicable.

Class 3.3. Dealing with ambiguous quoting

So far, no type checking was needed to filter the ambiguities. This class however is

more interesting. The X -> Term productions allow everything in the object syntax

to be Term. If there are any two non-terminals of the object language that generate lan-

guages with a non-empty intersection, and a certain substring fits into this intersection

we will have an ambiguity. This happens for example with all injection productions:

X -> Y, since the language accepted by X is the same as the language accepted by

Y .

An ambiguity in this class consists of the choice of nesting an X , or an Y object frag-

ment into the meta program. So, either by X -> Term or by Y -> Term we transit

from the object grammar into the meta grammar. The immediate typing context is pro-

vided by the meta language. Now suppose this context enforces an X . Disambiguation

is obtained by removing all trees that do not have the X -> Term production on top.

The example in Fig. 5.7 is a forest with an ambiguity caused by the injection prob-

lem. Suppose that from a symbol table it is known that f is declared to be a function

from Expression to Identifier. This provides a type-context that selects the

transition to Expression rather than the transition to Identifier.

Class 3.4. Dealing with ambiguous anti-quoting

This is the dual of the previous class. The Term -> X productions cause that at any

part of the object language can contain a piece of meta language. We transit from the

meta grammar into the object grammar. The only pieces of meta language allowed are

produced by the Term non-terminal. The typing context is again provided by the meta

language, but now from below. Suppose the result type of the nested meta language

construct is declared X , then we filter all alternatives that do not use the Term -> X

transition.

Discussion

To implement the above four filters a recursive traversal of the forest is needed. It

applies context information on the way down and brings back type information on the

91

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

�

✁

✂

✄

Before:

Identifier

f : Term -> Term

Term

Identifier

foo

Identifier

foo

Expression

After:

Identifier

f : Expression -> Identifier

Expression

Identifier

foo

Figure 5.7: An abstract syntax forest is disambiguated by using a type declaration for

the function f.

way back. On the one hand, the more deterministic decisions can be made on the

way down, cutting off branches before they are traversed, the more efficient the type-

checking algorithm will be. On the other hand, filtering of nested ambiguities will cut

off completely infeasible branches before any analysis needs to be made on the way

back.

The above approach assumes all object program fragments are located in a typing

context. Language that do not satisfy such an assumption must use either explicit

typing for the top of a fragment, or provide a meta disambiguation rule as described

in the following. For many meta/object language combinations it is very improbable

that after the above type analyses ambiguities still remain. However, it is still possible

and we must cover this class as well. The type-checker can produce an accurate error

message for them, or apply the meta disambiguation rules that are discussed next.

5.3.2 Class 4. Object language and meta language overlap

The most common example in this class is how to separate meta variables from normal

identifiers in the object syntax (Section 5.1.2). Other examples are more complex: the

meta and object program fragments must accidentally have exactly the same syntax,

and both provide type-correct interpretations. The following example illustrates class

4. The meta language is ASF+SDF, and the object language is Java. The overlapping

language constructs are the fragment: “[]” and “=”. For ASF+SDF, the “[]” is an

92

SECTION 5.3 Disambiguation filters

empty equation tag and “=” is the equation operator, while in Java “[]” is a part of an

array declarator and “=” is the initializer part.
�

✁

✂

✄
equations

[] int[] foo = int[]

[] foo = bar

or is it:�
✁

✂
✄equations

[] int[] foo = int[][] foo = bar

The parser returns two alternative interpretations. The first has two equations, the

second only one. By using suggestive layout, and printing the ASF+SDF symbols in

boldface, we illustrate how the right-hand side of the first rule can be extended to be a

two dimensional array declarator that is initialized by bar: the combination of “"[]"“

overlapping with array declarators and ”"="“ overlapping with variable initializers

leads to the ambiguity. Both interpretations are syntactically correct and type-correct.

Note that the above example depends on a particular Java object grammar.

To solve this class of rare and hard to predict ambiguities we introduce a separate

meta disambiguation phase. By applying this phase after type-checking we ensure that

only type-correct alternatives are subject to this phase (Fig. 5.5). A number of implicit

but obvious rules will provide a full separation between meta and object language.

The rules are not universal. Each meta programming language may select different

ones applied in different orders. Still, the design space can be limited to a number of

choices:

Rule 1: Prefer declared meta identifiers over object identifiers, or vice versa.

Rule 2: Maximize or minimize the length of the path of injections and quasi-injections

from the object syntax that starts from the Term non-terminal and ends with a

production that is not an injection or a quasi-injection.

Rule 3: Maximize or minimize the number of meta language productions used in a

derivation.

Rule 4: Propose explicit quoting to the user.

Rule 1 is a generalization of the variable preference rule (Section 5.1.2). All meta

level identifiers, such as function names and variables are preferred. This rule may in-

volve counting the number of declared meta identifiers in two alternatives and choosing

the alternative with the least or most meta identifiers.

Rule 2 is needed only when the type context is not specific down to a first order

type, but does impose some constraints. This can happen in systems with polymorphic

functions. For example: a function type f: a -> a -> b maps two objects of

any type a to another object of type b. Even though the function is parameterized by

type, the first two arguments must be of the same type. Choosing the shortest path

to derive an object of type a for both arguments is then a reasonable choice for most

systems. The equations of ASF+SDF are also examples of polymorphic syntax with

some constraints: the left-hand side must have an equal type to the right-hand side.

93

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

Rule 3 expresses that object language fragments should be either as short, or as

long as possible. The more meta productions are used, the shorter object fragments

become. This takes care of our earlier example involving the "[]" and "=".

If Rule 3 fails, Rule 4 provides the final fail-safe to all ambiguities introduced by

merging the meta and object syntax.

Discussion The above rules should be tried in order. Rule 1 is a practical heuristic for

meta programming without syntactic hedges, it will fire frequently. Rule 2 is needed

when a unique type-context is not available. The other rules ensure full disambiguation

in the rare cases where syntactic overlap coincides with type correct alternatives and

Rule 1 does not apply. A warning message to the programmer in case Rule 3 fires is

preferable since this case rarely occurs and is therefore unexpected.

After the type-checking and meta disambiguation phases all ambiguities introduced

by the syntax merger have been identified. Only type-correct alternatives remain after

type-checking. This is the main “quote inference” functionality. Then, the first two

meta rules take care of further inference when necessary. The last two rules are fail-

safes for degenerate cases.

Another design decision might be to drop the heuristic rules 1, 2 and 3 and always

ask the user to explicitly disambiguate using quoting (rule 4). Using the parse forest

representation the introduction of explicit quotes can be automated after the user has

expressed her preference. The motivation for this design is that if heuristics are needed

for disambiguation, it is probably also unclear to the programmer which interpretation

is correct.

5.4 Experience

Parsing. This work has been applied to parsing ASF+SDF specifications. First the

syntax of ASF+SDF was extended to make the meta language more complex: a generic

expression language was added that can be arbitrarily nested with object language

syntax. Before there were only meta variables in ASF+SDF, now we can nest meta

language function calls at arbitrary locations into object language patterns, even with

parametric polymorphism. Then a syntax merger was developed that generates the

transitions, and priorities for filtering cycles. The generated parsers perform efficiently,

while producing large parse forests.

Type checking. Both experience with post-parsing disambiguation filters in ASF-

+SDF (Chapter 4), and the efficient implementation of type-inference algorithms for

languages as Haskell and ML suggests that our cycle removal and type-checking disam-

biguation phase can be implemented efficiently. Knowing the polynomial upper-bound

for the size of parse forests, we have implemented a type-checker that applies the basic

disambiguation rules for ASF+SDF. Since we do not have a syntax for defining type

parameters yet, we did not investigate the use of parametric polymorphism.

Furthermore, in [52] we describe a related disambiguation architecture that also

employs disambiguation by type checking. In this approach we show how such an

94

SECTION 5.5 Conclusion

architecture can remove only the need for explicitly typed quotes, not the need for

explicit quoting in general. In this work we apply the disambiguation by type checking

design pattern to Java as a meta programming language. A Java type checker is used to

disambiguate object language patterns. As reported, such an algorithm performs very

well.

5.5 Conclusion

An architecture for parsing meta programs with concrete syntax was presented. By

using implicit transitions syntactic hedges are not necessary. This might result in more

readable meta programs, but we have not substantiated this claim. Instead we offer a

“quote inference” algorithm, that allows a programmer to remove syntactic hedges if

so desired.

The technical consequences of having implicit transitions, cycles and ambiguities,

are solved in a three-tier architecture: syntax merging, parsing, and type-checking. The

syntax merger adds priorities to let meaningless derivations be filtered from the parse

table. Then the SGLR algorithm produces a forest of trees. Next, using type-inference

techniques type incorrect trees are filtered. Finally, a small set of disambiguation rules

takes care of making the final separation between meta and object language.

The resulting architecture shows strong separation of concerns. Also, it can be

applied to meta programming languages with either simple or complex type systems,

and can provide the user of such systems with clear error messages.

Future work entails a full implementation of the described architecture and inte-

grating it in the programming environment of ASF+SDF. This will provide better error

messages and will make the type-system of ASF+SDF easily extensible.

95

A Type-driven Approach to Concrete Meta Programming CHAPTER 5

96

Part III

Rewriting source code

97

C H A P T E R 6

Term Rewriting with

Traversal Functions

Term rewriting is an appealing technique for performing program analysis

and program transformation. Tree (term) traversal is frequently used but

is not supported by standard term rewriting. We extend many-sorted, first-

order term rewriting with Traversal Functions that automate tree traversal

in a simple and type safe way. Traversal functions can be bottom-up or

top-down traversals and can either traverse all nodes in a tree or can stop

the traversal at a certain depth as soon as a matching node is found. They

can either define sort preserving transformations or mappings to a fixed

sort. We give small and somewhat larger examples of Traversal Functions

and describe their operational semantics and implementation. An assess-

ment of various applications and a discussion conclude the chapter. 1

6.1 Introduction

6.1.1 Background

Program analysis and program transformation usually take the syntax tree of a pro-

gram as starting point. Operations on this tree can be expressed in many ways, ranging

from imperative or object-oriented programs, to attribute grammars and rewrite sys-

tems. One common problem that one encounters is how to express the traversal of the

tree: visit all nodes of the tree once and extract information from some nodes or make

changes to certain other nodes.

The kinds of nodes that may appear in a program’s syntax tree are determined by the

grammar of the language the program is written in. Typically, each rule in the grammar

corresponds to a node category in the syntax tree. Real-life languages are described by

grammars containing a few hundred up to over thousand grammar productions. This

immediately reveals a hurdle for writing tree traversals: a naive recursive Traversal

1This chapter was published in Transactions on Software Engineering and Methodology (TOSEM) in

2003. An extended abstract appeared in the proceedings of the Workshop on Rewriting Strategies (WRS)

2002. Both papers are co-authored by Paul Klint and Mark van den Brand.

99

Term Rewriting with Traversal Functions CHAPTER 6

Function should consider many node categories and the size of its definition will grow

accordingly. This becomes even more dramatic if we realize that the Traversal Function

will only do some real work (apart from traversing) for very few node categories.

This problem asks for a form of automation that takes care of the tree traversal itself

so that the human programmer can concentrate on the few node categories where real

work is to be done. Stated differently, we are looking for a generic way of expressing

tree traversals.

From previous experience [29, 34, 36, 101] we know that term rewriting is a con-

venient, scalable technology for expressing analysis, transformation, and renovation of

individual programs and complete software systems. The main reasons for this are:

☎ Term rewriting provides implicit tree pattern matching that makes it easy to find

patterns in program code.

☎
Programs can easily be manipulated and transformed via term rewriting.

☎
Term rewriting is rule-based, which makes it easy to combine sets of rules.

☎ Efficient implementations exist that can apply rewrite rules to millions of lines

of code in a matter minutes.

In this chapter we aim at further enhancing term rewriting for the analysis and transfor-

mation of software systems and address the question how tree traversals can be added

to the term rewriting paradigm.

One important requirement is to have a typed design of automated tree traversals,

such that terms are always well-formed. Another requirement is to have simplicity of

design and use. These are both important properties of many-sorted first-order term

rewriting that we want to preserve.

6.1.2 Plan of the Paper

In the remainder of this introduction we will discuss general issues in tree traversal

(Section 6.1.3), briefly recapitulate term rewriting (Section 6.1.4), discuss why Traver-

sal Functions are necessary in term rewriting (Section 6.1.5), explain how term rewrit-

ing can be extended (Section 6.1.6), and discuss related work (Section 6.1.7).

In Section 6.2 we present Traversal Functions in ASF+SDF [14, 67] and give

various examples. Some larger examples of Traversal Functions are presented in Sec-

tion 6.3. The operational semantics of Traversal Functions is given in Section 6.4 and

implementation issues are considered in Section 6.5. Section 6.6 describes the experi-

ence with Traversal Functions and Section 6.7 gives a discussion.

6.1.3 Issues in Tree Traversal

A simple tree traversal can have three possible goals:

(G1) Transforming the tree, e.g., replacing certain control structures that use goto’s

into structured statements that use while statements.

100

SECTION 6.1 Introduction

�

✁

✂

✄

Top-
down

Bottom-
up

f

g h

1 2 3 4

f

g h

1 2 3 4

f

g h

1 2 3 4

f

g h

1 2 3 4

Continue Break

Left-
to-

right

Right-
to-
left

Figure 6.1: The “traversal cube”: principal ways of traversing a tree.

(G2) Extracting information from the tree, e.g., counting all goto statements.

(G3) Extracting information from the tree and simultaneously transforming it, e.g.,

extracting declaration information and applying it to perform constant folding.

Of course, these simple tree traversals can be combined into more complex ones.

The goal of a traversal is achieved by visiting all tree nodes in a certain visiting

order and applying a rewrite rule to each node once.

General properties of tree traversal are shown in the “traversal cube” in figure 6.1.

On the first (vertical) axis, we distinguish the standard visiting orders top-down (order:

root, sub-trees) and bottom-up (order: sub-trees, root). Note that for binary trees (as

shown in the example) there is yet another way of visiting every node once called in-

order2 (order: one sub-tree, root, other sub-tree). In this chapter we target arbitrary tree

structures and therefore do not further consider this special case.

On the second (horizontal) axis, we distinguish traversals that break the recursion

at specific nodes and traversals that always continue until all nodes have been visited.

In the right half of figure 6.1, these breaks occur at the nodes g, 3, and 4.

On the third (depth) axis, we distinguish the direction of the traversal: visiting

nodes from left-to-right or from right-to-left.

The eight possibilities given in the traversal cube are obvious candidates for ab-

straction and automation. In this chapter we will focus on the front plane of the cube,

2In-order is called post-order in The Art of Computer Programming, Volume 1 [106], nowadays post-order

is used to indicate what is called end-order in that book.

101

Term Rewriting with Traversal Functions CHAPTER 6

i.e. left-to-right traversals since they are most prominently used in the application areas

we are interested in. An extension to the complete cube is, however, straightforward.

During a tree traversal, a rewrite rule should be applied to some or all nodes to

achieve the intended effect of the traversal. The type of the Traversal Function depends

on the type of the input nodes, which can be one of the following:

☎ The nodes are untyped. This is the case in, for instance, Lisp or Prolog. Ease of

manipulation is provided at the expense of type safety.

☎
The nodes are typed and the tree is homogeneous, i.e., all nodes have the same

type. This is the case when, for instance, C or Java are used and nodes in the

tree are represented by a single “tree-node” data type. As with untyped nodes,

homogeneous trees are manipulated easily because every combination of nodes

is well typed.

☎
The nodes are typed and the tree is heterogeneous, i.e., nodes may have different

types. This is the case when, for instance, C or Java are used and a separate data

type is introduced for representing each construct in a grammar (e.g., “declara-

tion node”, “statement node”, “if node” and so forth).

In this chapter we will focus on the traversal of typed, heterogeneous, trees. Various

aspects of traversal functions will be discussed:

☎ What is the type of their result value?

☎
What is the type of their other arguments?

☎
Does the result of the Traversal Function depend only on the current node that

is being visited or does it also use information stored in deeper nodes or even

information from a global state?

Obviously, tree traversals are heavily influenced by the type system of the program-

ming language in which they have to be expressed.

6.1.4 A Brief Recapitulation of Term Rewriting

A basic insight in term rewriting is important for understanding Traversal Functions.

Therefore we give a brief recapitulation of innermost term rewriting. For a full account

see [146].

A term is a prefix expression consisting of constants (e.g., a or 12), variables (e.g.,

X) or function applications (e.g., f(a, X, 12)). For simplicity, we will view con-

stants as nullary functions. A closed term (or ground term) is a term without variables.

A rewrite rule is a pair of terms T1 ✆ T2. Both T1 and T2 may contain variables pro-

vided that each variable in T2 also occurs in T1. A term matches another term if it

is structurally equal modulo occurrences of variables (e.g., f(a, X) matches f(a,

b) and results in a binding where X is bound to b). If a variable occurs more than

once in a term, a so-called non-left-linear pattern, the values matched by each occur-

rence are required to be equal. The bindings resulting from matching can be used for

substitution, i.e., replace the variables in a term by the values they are bound to.

102

SECTION 6.1 Introduction

Algorithm 1 An interpreter for innermost rewriting.

function match(term, term) : bindings or NO-MATCH

function substitute(term, bindings) : term

function innermost(t: term, rules : list_of[rule]) : term

begin

var children, children’ : list-of[term];

var child, reduct, t’ : term;

var fn : function-symbol;

decompose term t as fn(children);

children’ := nil;

foreach child in children

do children’ := append(children’, innermost(child, rules)) od;

t’ := compose term fn(children’);

reduct := reduce(t’, rules);

return if reduct = fail then t’ else reduct fi

end

function reduce(t : term, rules : list-of[rule]) : term

begin

var r : rule;

var left, right : term;

foreach r in rules

do decompose rule r as left -> right;

var b : bindings;

b := match(t, left);

if b != NO-MATCH then return innermost(substitute(right, b), rules) fi

od

return fail

end

Given a ground term T and a set of rewrite rules, the purpose of a rewrite rule

interpreter is to find a sub-term that can be reduced: the so-called redex. If sub-term R

of T matches with the left-hand side of a rule T1 ✆ T2, the bindings resulting from this

match can be substituted in T2 yielding T ✑
2
. R is then replaced in T by T ✑

2
and the search

for a new redex is continued. Rewriting stops when no new redex can be found and we

say that the term is then in normal form.

In accordance with the tree traversal orders described earlier, different methods for

selecting the redex may yield different results. In this chapter we limit our attention to

leftmost innermost rewriting in which the redex is searched in a left-to-right, bottom-up

fashion.

The operation of a rewrite rule interpreter is shown in more detail in Algorithm 1.

The functions match and substitute are not further defined, but have a meaning as

just sketched. We only show their signature. Terms can be composed from a top func-

tion symbol and a list of children, and they can be decomposed into their separate parts

too. For example, if fn has as value the function-name f, and children has as value

the list of terms [a,b,c], then compose term fn(children) will yield the term

f(a,b,c). Decompose works in a similar fashion and also allows more structured

103

Term Rewriting with Traversal Functions CHAPTER 6

�

✁

✂

✄

module Tree-syntax

imports Naturals

exports

sorts TREE

context-free syntax

NAT -> TREE

f(TREE, TREE) -> TREE

g(TREE, TREE) -> TREE

h(TREE, TREE) -> TREE

variables

N[0-9]* -> NAT

T[0-9]* -> TREE

Figure 6.2: SDF grammar for a simple tree language.

term patterns. For example, decompose term t into fn(child, children) will

result in the assignments fn := f; child := a, children := [b, c].

Rules are composed from a left-hand side and a right-hand side. They can also be

decomposed to obtain these distinct parts. The underlying term representation can be

either typed or untyped. The compose and decompose functionality as well as the

functions match and substitute have to take this aspect into account. We use an

append function to append an element to the end of a list.

Observe how function innermost first reduces the children of the current term

before attempting to reduce the term itself. This realizes a bottom-up traversal of the

term. Also note that if the reduction of the term fails, it returns itself as result. The

function reduce performs, if possible, one reduction step. It searches all rules for

a matching left-hand side and, if found, the bindings resulting from the successful

match are substituted in the corresponding right-hand side. This modified right-hand

side is then further reduced with innermost rewriting. In Section 6.4 we will extend

Algorithm 1 to cover Traversal Functions as well.

In the above presentation of term rewriting we have focused on the features that are

essential for an understanding of Traversal Functions. Many other features such as, for

instance, conditional rules with various forms of conditions (e.g., equality/inequality,

matching conditions), list matching and the like are left undiscussed. In an actual

implementation (Section 6.5) they have, of course, to be taken care of.

6.1.5 Why Traversal Functions in Term Rewriting?

Rewrite rules are very convenient to express transformations on trees and one may

wonder why Traversal Functions are needed at all. We will clarify this by way of sim-

ple trees containing natural numbers. Figure 6.2 displays an SDF [87] grammar for a

simple tree language. The leafs are natural numbers and the nodes are constructed with

one of the binary constructors f, g or h. Note that numbers (sort NAT) are embedded

in trees (sort TREE) due to the production NAT -> TREE. The grammar also defines

variables over natural numbers (N, N0, N1, ...) and trees (T, T0, T1, ...). Transfor-

104

SECTION 6.1 Introduction

�

✁

✂

✄

module Tree-trafo1

imports Tree-syntax

equations

[t1] f(T1, T2) = h(T1, T2)

Figure 6.3: Example equation [t1].

�

✁

✂

✄

module Tree-trafo2

imports Tree-syntax

equations

[t2] f(g(T1, T2), T3) = h(T1, h(T2, T3))

Figure 6.4: Example equation [t2].

mations on these trees can now be defined easily. For instance, if we want to replace

all occurrences of f by h, then the single equation [t1] shown in figure 6.3 suffices.

Applying this rule to the term f(f(g(1,2),3),4) leads to a normal form in two

steps (using innermost reduction):

�✁ ✂ ✄f(f(g(1,2),3),4) -> f(h(g(1,2),3),4) -> h(h(g(1,2),3),4)

Similarly, if we want to replace all sub-trees of the form f(g(T1, T2), T3) by

h(T1, h(T2, T3)), we can achieve this by the single rule [t2] shown in fig-

ure 6.4. If we apply this rule to f(f(g(1,2),3),4) we get a normal form in one

step:�✁ ✂ ✄f(f(g(1,2),3),4) -> f(h(1,h(2,3)),4)

Note, how in both cases the standard (innermost) reduction order of the rewriting sys-

tem takes care of the complete traversal of the term. This elegant approach has, how-

ever, three severe limitations:

☎ First, if we want to have the combined effect of rules [t1] and [t2], we get

unpredictable results, since the two rules interfere with each other: the combined

rewrite system is said to be non-confluent. Applying the above two rules to our

sample term f(f(g(1,2),3),4)may lead to either h(h(g(1,2),3),4)

or h(h(1,h(2,3)),4) in two steps, depending on whether [t1] or [t2]

is applied in the first reduction step. Observe, however, that an interpreter like

the one shown in Algorithm 1 will always select one rule and produce a single

result.

☎ The second problem is that rewrite rules cannot access any context information

other than the term that matches the left-hand side of the rewrite rule. Especially

for program transformation this is very restrictive.

☎ Thirdly, in ordinary (typed) term rewriting only type-preserving rewrite rules are

allowed, i.e., the type of the left-hand side of a rewrite rule has to be equal to

105

Term Rewriting with Traversal Functions CHAPTER 6

the type of the right-hand side of that rule. Sub-terms can only be replaced by

sub-terms of the same type, thus enforcing that the complete term remains well-

typed. In this way, one cannot express non-type-preserving traversals such as the

(abstract) interpretation or analysis of a term. In such cases, the original type

(e.g., integer expressions of type EXP) has to be translated into values of another

type (e.g., integers of type INT).

A common solution to the above three problems is to introduce new function sym-

bols that eliminate the interference between rules. In our example, if we introduce the

functions trafo1 and trafo2, we can explicitly control the outcome of the com-

bined transformation by the order in which we apply trafo1 and trafo2 to the

initial term. By introducing extra function symbols, we also gain the ability to pass

data around using extra parameters of these functions. Finally, the function symbols

allow to express non-type-preserving transformations by explicitly typing the function

to accept one type and yield another. This proposed change in specification style does

not yield a semantically equivalent rewriting system in general. It is used as a practical

style for specifications, for the above three reasons.

So by introducing new function symbols, three limitations of rewrite rules are

solved. The main down side of this approach is that we loose the built-in facility of

innermost rewriting to traverse the input term without an explicit effort of the program-

mer. Extra rewrite rules are needed to define the traversal of trafo1 and trafo2

over the input term, as shown in figure 6.5. Observe that equations [1] and [5] in the

figure correspond to the original equations [t1] and [t2], respectively. The other

equations are just needed to define the tree traversal. Defining the traversal rules re-

quires explicit knowledge of all productions in the grammar (in this case the definitions

of f, g and h). In this example, the number of rules per function is directly related to

the size of the Tree language. For large grammars this is clearly undesirable.

6.1.6 Extending Term Rewriting with Traversal Functions

We take a many-sorted, first-order, term rewriting language as our point of departure.

Suppose we want to traverse syntax trees of programs written in a language L, where L

is described by a grammar consisting of n grammar rules.

A typical tree traversal will then be described by m (m usually less than n) rewrite

rules, covering all possible constructors that may be encountered during a traversal of

the syntax tree. The value of m largely depends on the structure of the grammar and the

specific traversal problem. Typically, a significant subset of all constructors needs to be

traversed to get to the point of interest, resulting in tens to hundreds of rules that have

to be written for a given large grammar and some specific transformation or analysis.

The question now is: how can we avoid writing these m rewrite rules? There are

several general approaches to this problem.

Higher-order term rewriting. One solution is the use of higher-order term rewriting

[90, 73, 85]. This allows writing patterns in which the context of a certain language

construct can be captured by a (higher-order) variable thus eliminating the need to

106

SECTION 6.1 Introduction

�

✁

✂

✄

module Tree-trafo12

imports Tree-syntax

exports

context-free syntax

trafo1(TREE) -> TREE

trafo2(TREE) -> TREE

equations

[0] trafo1(N) = N

[1] trafo1(f(T1, T2)) = h(trafo1(T1), trafo1(T2))

[2] trafo1(g(T1, T2)) = g(trafo1(T1), trafo1(T2))

[3] trafo1(h(T1, T2)) = h(trafo1(T1), trafo1(T2))

[4] trafo2(N) = N

[5] trafo2(f(g(T1,T2),T3)) = h(trafo2(T1),

h(trafo2(T2), trafo2(T3)))

[6] trafo2(g(T1, T2)) = g(trafo2(T1), trafo2(T2))

[7] trafo2(h(T1, T2)) = h(trafo2(T1), trafo2(T2))

Figure 6.5: Definition of trafo1 and trafo2.

explicitly handle the constructs that occur in that context. We refer to [86] for a simple

example of higher-order term rewriting.

Higher-order term rewriting is a very powerful mechanism, which can be used to

avoid expressing entire tree traversals. It introduces, however, complex semantics and

implementation issues. It does not solve the non-confluence problems discussed earlier

(see Section 6.1.5). Another observation is that the traversal is done during matching,

so for every match the sub-terms might be traversed. This might be very expensive.

Generic traversal or strategy primitives One can extend the rewriting language

with a set of generic traversal or strategy primitives as basic operators that enable the

formulation of arbitrary tree traversals. Such primitives could for instance be the traver-

sal of one, some or all sub-trees of a node, or the sequential composition, choice or rep-

etition of traversals. They can be used to selectively apply a rewrite rule at a location in

the term. Generic traversal primitives separate the application of the rewrite rule from

the traversal of the tree as advocated in strategic programming. See, for instance, [160]

for a survey of strategic programming in the area of program transformations.

The expressivity provided by generic traversals is hard to handle by conventional

typing systems [158, 109]. The reason for this is that the type of a traversal primitive

is completely independent of the structures that it can traverse. In [109] a proposal is

made for a typing system for generic traversal primitives which we will further discuss

in Section 6.1.7.

Having types is relevant for static type checking, program documentation, and pro-

gram comprehension. It is also beneficial for efficient implementation and optimiza-

tion. In ordinary (typed) term rewriting only type-preserving rewrite rules are allowed,

i.e., the type of the left-hand side of a rewrite rule has to be equal to the type of the

107

Term Rewriting with Traversal Functions CHAPTER 6

Untyped Typed

Strategy primitives Stratego [159] ELAN [22]

Built-in strategies Renovation Factories [49] Traversal Functions,

TXL [59]

Table 6.1: Classification of traversal approaches.

right-hand side of that rule. Sub-terms can only be replaced by sub-terms of the same

type, thus enforcing that the complete term remains well-typed. Type-checking a first-

order many-sorted term rewriting system simply boils down to checking if both sides

of every rewrite rule yield the same type and checking if both sides are well-formed

with respect to the signature.

Traversal functions. Our approach is to allow functions to traverse a tree automat-

ically, according to a set of built-in traversal primitives. In our terminology, such

functions are called Traversal Functions. They solve the problem of the extra rules

needed for term traversal without loosing the practical abilities of functions to carry

data around and having non-sort-preserving transformations.

By extending ordinary term rewriting with Traversal Functions, the type-system

can remain the same. One can provide primitives that allow type-preserving and even

a class of non-type-preserving traversals in a type-safe manner without even changing

the type-checker of the language.

6.1.7 Related Work

Directly Related Work

We classify directly related approaches in figure 6.1 and discuss them below.

ELAN [22] is a language of many-sorted, first-order, rewrite rules extended with a

strategy language that controls the application of individual rewrite rules. Its strategy

primitives (e.g., “don’t know choice”, “don’t care choice”) allow formulating non-

deterministic computations. Currently, ELAN does not support generic tree traversals

since they are not easily fitted in with ELAN’s type system.

Stratego [159] is an untyped term rewriting language that provides user-defined

strategies. Among its strategy primitives are rewrite rules and several generic strat-

egy operators (such as, e.g., sequential composition, choice, and repetition) that allow

the definition of any tree traversal, such as top-down and bottom-up, in an abstract man-

ner. Therefore, tree traversals are first class objects that can be reused separately from

rewrite rules. Stratego provides a library with all kinds of named traversal strategies

such as, for instance, bottomup(s), topdown(s) and innermost(s).

108

SECTION 6.1 Introduction

Transformation Factories [49] are an approach in which ASF+SDF rewrite rules

are generated from syntax definitions. After the generation phase, the user instantiates

an actual transformation by providing the name of the transformation and by updating

default traversal behavior. Note that the generated rewrite rules are well-typed, but

unsafe general types have to be used to obtain reusability of the generated rewrite rules.

Transformation Factories provide two kinds of traversals: transformers and analyz-

ers. A transformer transforms the node it visits. An analyzer is the combination of a

traversal, a combination function and a default value. The generated traversal function

reduces each node to the default value, unless the user overrides it. The combination

function combines the results in an innermost manner. The simulation of higher-order

behavior again leads to very general types.

TXL [59] TXL is a typed language for transformational programming [59]. Like

ASF+SDF it permits the definition of arbitrary grammars as well as rewrite rules to

transform parsed programs. Although TXL is based on a form of term rewriting, its

terminology and notation deviate from standard term rewriting parlance. TXL has been

used in many renovation projects.

Discussion

Traversal functions emerged from our experience in writing program transformations

for real-life languages in ASF+SDF. Both Stratego and Transformation Factories offer

solutions to remedy the problems that we encountered.

Stratego extends term rewriting with traversal strategy combinators and user-

defined strategies. We are more conservative and extend first-order term rewriting only

with a fixed set of traversal primitives. One contribution of Traversal Functions is that

they provide a simple type-safe approach for tree traversals in first-order specifications.

The result is simple, can be statically type-checked in a trivial manner and can be

implemented efficiently. On the down-side, our approach does not allow adding new

traversal orders: they have to be simulated with the given, built-in, traversal orders.

See [100] for a further discussion of the relative merits of these two approaches.

Recently, in [109] another type system for tree traversals was proposed. It is based

on traversal combinators as found in Stratego. While this typing system is attractive in

many ways, it is more complicated than our approach. Two generic types are added to a

first-order type system: type-preserving (TP) and type-unifying (TU(τ)) strategies. To

mediate between these generic types and normal types an extra combinator is offered

that combines both a type-guard and a type lifting operator. Extending the type system

is not needed in our Traversal Function approach, because the tree traversal is joined

with the functional effect in a single Traversal Function. This allows the interpreter or

compiler to deal with type-safe traversal without user intervention. As is the case with

Traversal Functions, in [109] traversal types are divided into type-preserving effects

and mappings to a single type. The tupled combination is not offered.

Compared to Transformation Factories (which most directly inspired our Traversal

Functions), we provide a slightly different set of Traversal Functions and reduce the

notational overhead. More important is that we provide a fully typed approach. At

the level of the implementation, we do not generate ASF+SDF rules, but we have

109

Term Rewriting with Traversal Functions CHAPTER 6

incorporated Traversal Functions in the standard interpreter and compiler of ASF+SDF.

As a result, execution is more efficient and specifications are more readable, since users

are not confronted with generated rewrite rules.

Although developed completely independently, our approach has much in common

with TXL, which also provides type-safe term traversal. TXL rules always apply a pre-

order search over a term looking for a given pattern. For matching sub-terms a replace-

ment is performed. TXL rules are thus comparable with our top-down transformers.

A difference is that Traversal Functions perform only one pass over the term and do

not visit already transformed subtrees. TXL rules, however, also visit the transformed

subtrees. In some cases, e.g., renaming all variables in a program, special measures

are needed to avoid undesired, repeated, transformations. In TXL jargon, Traversal

Functions are all one-pass rules. Although TXL does not support accumulators, it has

a notion of global variables that can be used to collect information during a traversal.

A useful TXL feature that we do not support is the ability to skip sub-terms of certain

types during the traversal.

Other Related Work

Apart from the directly related work already mentioned, we briefly mention related

work in functional languages, object-oriented languages and attribute grammars.

Functional languages. The prototypical Traversal Function in the functional setting

are the functions map, fold and relatives. map takes a tree and a function as argument

and applies the function to each node of the tree. However, problems arise as soon as

heterogeneous trees have to be traversed. One solution to this problem are fold algebras

as described in [113]: based on a language definition Traversal Functions are generated

in Haskell. A tool generates generic folding over algebraic types. The folds can be

updated by the user. Another way of introducing generic traversals in a functional

setting is described in [112].

Object-oriented languages. The traversal of arbitrary data structures is captured by

the visitor design pattern described in [75]. Typically, a fixed traversal order is pro-

vided as framework with default behavior for each node kind. This default behavior

can be overruled for each node kind. An implementation of the visitor pattern is JJ-

Forester [108]: a tool that generates Java class structures from SDF language defini-

tions. The generated classes implement generic tree traversals that can be overridden

by the user. The technique is related to generating traversals from language definitions

as in Transformation Factories, but is tailored to and profits from the object-oriented

programming paradigm. In [163] this approach is further generalized to traversal com-

binators.

Attribute grammars. The approaches described so far provide an operational view

on tree traversals. Attribute grammars [4] provide a declarative view: they extend

a syntax tree with attributes and attribute equations that define relations between at-

tribute values. Attributes get their values by solving the attribute equations; this is

110

SECTION 6.2 Traversal Functions in ASF+SDF

achieved by one or more traversals of the tree. For attribute grammars tree traversal is

an issue for the implementation and not for the user. Attribute grammars are convenient

for expressing analysis on a tree but they have the limitation that tree transformations

cannot be easily expressed. However, higher-order attribute grammars [164] remedy

this limitation to a certain extent. A new tree can be constructed in one of the attributes

which can then be passed on as an ordinary tree to the next higher-order attribute func-

tion.

Combining attribute grammars with object orientation. JastAdd [84] is recent

work in the field of combining reference attribute grammars [83] with visitors and class

weaving. The attribute values in reference attributes may be references to other nodes

in the tree. The implicit tree traversal mechanism for attribute evaluation is combined

with the explicit traversal via visitors. This is convenient for analysis purposes but it

does not solve the problems posed by program transformations.

6.2 Traversal Functions in ASF+SDF

We want to automate tree traversal in many-sorted, first-order term rewriting. We

present Traversal Functions in the context of the language ASF+SDF [14, 67], but

our approach can be applied to any term rewriting language. No prior knowledge of

ASF+SDF is required and we will explain the language when the need arises.

ASF+SDF uses context-free syntax for defining the signature of terms. As a result,

terms can be written in arbitrary user-defined notation. This means that functions can

have free notation (e.g., move ... to ... rather than move(..., ...)) and

that the complete text of programs can be represented as well. The context-free syntax

is defined in SDF 3. Terms are used in rewrite rules defined in ASF 4. For the purpose

of this chapter, the following features of ASF are relevant:

☎ Many-sorted (typed) terms.

☎
Unconditional and conditional rules. Conditions are comparisons between two

terms which come in three flavors: equality between terms, inequality between

terms, and so-called assignment conditions that introduce new variables. In the

first two flavors, no new variables may be introduced on either side. In the last

form only one side of the condition may contain new variables, which are bound

while matching the pattern with the other side of the condition.

☎
Default rules that are tried only if all other rules fail.

☎
Terms are normalized by leftmost innermost reduction.

The idea of Traversal Functions is as follows. The programmer defines functions as

usual by providing a signature and defining rewrite rules. The signature of a Traversal

Function has to be defined as well. This is an ordinary declaration but it is explicitly

3Syntax Definition Formalism.
4Algebraic Specification Formalism.

111

Term Rewriting with Traversal Functions CHAPTER 6

labeled with the attribute traversal. We call such a labeled function a Traversal

Function since from the user’s perspective it automatically traverses a term: the rewrite

rules for term traversal do not have to be specified anymore since they are provided

automatically by the traversal attribute. The specification writer only has to give

rewrite rules for the nodes that the Traversal Function will actually visit.

The rewrite rules provided by the traversal attribute thus define the traversal

behavior while rewrite rules provided by the user define the visit behavior for nodes. If

during innermost rewriting a Traversal Function appears as outermost function symbol

of a redex, then that function will first be used to traverse the redex before further

reductions occur.

Conceptually, a Traversal Function is a shorthand for a possibly large set of rewrite

rules. For every Traversal Function a set of rewrite rules can be calculated that imple-

ments both the traversal and the actual rewriting of sub-terms. Expanding a Traversal

Function to this set of rewrite rules is a possible way of defining the semantics of

Traversal Functions, which we do not further pursue here (but see [37]).

We continue our discussion in Section 6.1.6 on how to type generic traversals. The

question is what built-in traversals we can provide in our fully typed setting. We offer

three types of Traversal Functions (Section 6.2.1) and two types of visiting strategies

(Section 6.2.2) which we now discuss in order. In Section 6.2.3 we present examples

of Traversal Functions. The merits and limitations of this approach are discussed in

Section 6.7.

6.2.1 Kinds of Traversal Functions

We distinguish three kinds of Traversal Functions, defined as follows.

Transformer A sort-preserving transformation, declared as:

f ✒ S1 ✓✕✔✖✔✕✔✗✓ Sn ✘ ✆ S1 ✡ traversal(trafo) ☛
Accumulator A mapping to a single type, declared as:

f ✒ S1 ✓ S2 ✓✕✔✖✔✕✔✖✓ Sn ✘ ✆ S2 ✡ traversal(accu) ☛
Accumulating transformer A sort preserving transformation that accumulates infor-

mation simultaneously, declared as:

f ✒ S1 ✓ S2 ✓✕✔✖✔✕✔✖✓ Sn ✘ ✆✚✙ S1 ✓ S2 ✛ ✡ traversal(accu, trafo) ☛

A Transformer will traverse its first argument. Possible extra arguments may con-

tain additional data that can be used (but not modified) during the traversal. Because

a transformer always returns the same sort, it is type-safe. A transformer is used to

transform a tree and implements goal (G1) discussed in Section 6.1.3.

An Accumulator will traverse its first argument, while the second argument keeps

the accumulated value. After each application of an accumulator, the accumulated

argument is updated. The next application of the accumulator, possibly somewhere

else in the term, will use the new value of the accumulated argument. In other words,

the accumulator acts as a global, modifiable state during the traversal.

112

SECTION 6.2 Traversal Functions in ASF+SDF

An accumulator function never changes the tree, it only changes its accumulated

argument. Furthermore, the type of the second argument has to be equal to the result

type. The end-result of an accumulator is the value of the accumulated argument. By

these restrictions, an accumulator is also type-safe for every instantiation.

An accumulator is meant to be used to extract information from a tree and imple-

ments goal (G2) discussed in Section 6.1.3.

An Accumulating Transformer is a sort preserving transformation that accumulates

information while traversing its first argument. The second argument maintains the ac-

cumulated value. The return value of an accumulating transformer is a tuple consisting

of the transformed first argument and the accumulated value.

An accumulating transformer is used to simultaneously extract information from a

tree and transform it. It implements goal (G3) discussed in Section 6.1.3.

Transformers, accumulators, and accumulating transformers may be overloaded

to obtain visitors for heterogeneous trees. Their optional extra arguments can carry

information down and their defining rewrite rules can extract information from their

children by using conditions. So we can express analysis and transformation using

non-local information rather easily.

6.2.2 Visiting Strategies

Having these three types of traversals, they must be provided with visiting strategies

(recall figure 6.1). Visiting strategies determine the order of traversal. We provide the

following two strategies for each type of traversal:

Bottom-up First recur down to the children, then try to visit the current node. The

annotation bottom-up selects this behavior.

Top-down First try to visit the current node and then traverse to the children. The

annotation top-down selects this behavior.

Without an extra attribute, these strategies define traversals that visit all nodes in a tree.

We add two attributes that select what should happen after a successful visit.

Break Stop visiting nodes on the current branch after a successful visit. The corre-

sponding annotation is break.

Continue Continue the traversal after a successful visit. The corresponding annotation

is continue.

A transformer with a bottom-up strategy resembles standard innermost rewrit-

ing; it is sort preserving and bottom-up. It is as if a small rewriting system is defined

within the context of a transformer function. The difference is that a transformer func-

tion inflicts one reduction on a node, while innermost reduction normalizes a node

completely.

To be able to break a traversal is a powerful feature. For example, it allows the

user to continue the traversal under certain conditions.

113

Term Rewriting with Traversal Functions CHAPTER 6

�

✁

✂

✄

module Tree-trafo12-trav

imports Tree-syntax

exports

context-free syntax

trafo1(TREE) -> TREE ✟ traversal(trafo,top-down,continue) ✠
trafo2(TREE) -> TREE ✟ traversal(trafo,top-down,continue) ✠

equations

[tr1’] trafo1(f(T1, T2)) = h(T1,T2)

[tr2’] trafo2(f(g(T1,T2),T3)) = h(T1,h(T2,T3))

input�
✁

✂
✄trafo1(

trafo2(f(f(g(1,2),3),4)))

output�
✁

✂
✄h(h(1,h(2,3)),4)

Figure 6.6: trafo1 and trafo2 from figure 6.5 now using top-down Traversal

Functions.

�

✁

✂

✄

module Tree-inc

imports Tree-syntax

exports

context-free syntax

inc(TREE) -> TREE ✟ traversal(trafo,bottom-up,continue) ✠
equations

[1] inc(N) = N + 1

input�
✁

✂
✄inc(f(g(f(1,2), 3),

g(g(4,5), 6)))

output�
✁

✂
✄f(g(f(2,3), 4),

g(g(5,6), 7))

Figure 6.7: Transformer inc increments each number in a tree.

6.2.3 Examples of Transformers

In the following subsections, we give some trivial examples of transformers, accumu-

lators, and accumulating transformers. All examples use the tree language introduced

earlier in figure 6.2. In Section 6.3 we show some more elaborate examples.

The trafo example from the introduction revised

Recall the definition of the transformations trafo1 and trafo2 in the introduction

(figure 6.5). They looked clumsy and cluttered the intention of the transformation com-

pletely. Figure 6.6 shows how to express the same transformations using two Traversal

Functions.

Observe how these two rules resemble the original rewrite rules. There is, how-

ever, one significant difference: these rules can only be used when the corresponding

function is actually applied to a term.

114

SECTION 6.2 Traversal Functions in ASF+SDF

�

✁

✂

✄

module Tree-incp

imports Tree-syntax

exports

context-free syntax

incp(TREE, NAT) -> TREE ✟ traversal(trafo,bottom-up,continue) ✠
equations

[1] incp(N1, N2) = N1 + N2

input�

✁

✂

✄
incp(f(g(f(1,2), 3),

g(g(4,5), 6)),

7)

output�

✁

✂

✄
f(g(f(8, 9), 10),

g(g(11,12), 13))

Figure 6.8: Transformer incp increments each number in a tree with a given value.

�

✁

✂

✄

module Tree-frepl

imports Tree-syntax

exports

context-free syntax

i(TREE, TREE) -> TREE

frepl(TREE) -> TREE ✟ traversal(trafo,bottom-up,continue) ✠
equations

[1] frepl(g(T1, T2)) = i(T1, T2)

input�
✁

✂
✄frepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

output�
✁

✂
✄f(i(f(1,2), 3),

i(i(4,5), 6))

Figure 6.9: Transformer frepl replaces all occurrences of g by i.

Increment the numbers in a tree

The specification in figure 6.7 shows the transformer inc. Its purpose is to increment

all numbers that occur in a tree. To better understand this example, we follow the

traversal and rewrite steps when applying inc to the tree f(g(1,2),3):

�

✁

✂

✄

inc(f(g(1,2),3)) ->

f(g(inc(1),2),3) ->

f(g(2,inc(2)),3) ->

f(inc(g(2,3)),3) ->

f(g(2,3),inc(3)) ->

inc(f(g(2,3),4)) ->

f(g(2,3),4)

We start by the application of inc to the outermost node, then each node is visited in a

left-to-right bottom-up fashion. If no rewrite rule is activated, the identity transforma-

tion is applied. So, in this example only naturals are transformed and the other nodes

are left unchanged.

115

Term Rewriting with Traversal Functions CHAPTER 6

�

✁

✂

✄

module Tree-frepl2

imports Tree-syntax

exports

context-free syntax

i(TREE, TREE) -> TREE

frepl2(TREE) -> TREE ✟ traversal(trafo, top-down, continue) ✠
equations

[1] frepl2(g(T1, T2)) = i(T1, T2)

input�
✁

✂
✄frepl2(f(g(f(1,2), 3),

g(g(4,5), 6)))

output�
✁

✂
✄f(i(f(1,2), 3),

i(i(4,5), 6))

Figure 6.10: Transformer frepl2 replaces all occurrences of g by i.

�

✁

✂

✄

module Tree-srepl

imports Tree-syntax

exports

context-free syntax

i(TREE, TREE) -> TREE

srepl(TREE) -> TREE ✟ traversal(trafo, top-down, break) ✠
equations

[1] srepl(g(T1, T2)) = i(T1, T2)

input�
✁

✂
✄srepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

output�
✁

✂
✄f(i(f(1,2), 3),

i(g(4,5), 6))

Figure 6.11: Transformer srepl replaces shallow occurrences of g by i.

Increment the numbers in a tree (with parameter)

The specification in figure 6.8 shows the transformer incp. Its purpose is to incre-

ment all numbers that occur in a tree with a given parameter value. Observe that

the first argument of incp is traversed and that the second argument is a value that

is carried along during the traversal. If we follow the traversal and rewrite steps for

incp(f(g(1,2),3), 7), we get:

�

✁

✂

✄

incp(f(g(1,2),3),7) ->

f(g(incp(1,7),2),3) ->

f(g(8,incp(2,7)),3) ->

f(incp(g(8,9),7),3) ->

f(g(8,9),incp(3,7)) ->

incp(f(g(8,9),10),7) ->

f(g(8,9),10)

116

SECTION 6.2 Traversal Functions in ASF+SDF

�

✁

✂

✄

module Tree-drepl

imports Tree-syntax

exports

context-free syntax

i(TREE, TREE) -> TREE

drepl(TREE) -> TREE ✟ traversal(trafo, bottom-up, break) ✠
equations

[1] drepl(g(T1, T2)) = i(T1, T2)

input�
✁

✂
✄drepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

output�
✁

✂
✄f(i(f(1,2), 3),

g(i(4,5), 6))

Figure 6.12: Transformer drepl replaces deep occurrences of g by i.

Replace function symbols

A common problem in tree manipulation is the replacement of function symbols. In

the context of our tree language we want to replace occurrences of symbol g by a new

symbol i. Replacement can be defined in many flavors. Here we only show three of

them: full replacement that replaces all occurrences of g, shallow replacement that only

replaces occurrences of g that are closest to the root of the tree, and deep replacement

that only replaces occurrences that are closest to the leafs of the tree.

Full replacement is defined in figure 6.9. We specified a bottom-up traversal that

continues traversing after a reduction. This will ensure that all nodes in the tree will be

visited. Note that in this case we could also have used a top-down strategy and get the

same result as is shown in figure 6.10.

Shallow replacement is defined in figure 6.11. In this case, traversal stops at each

outermost occurrence of g because break was given as an attribute. In this case,

the top-down strategy is essential. Observe that a top-down traversal with the break

attribute applies the Traversal Function at an applicable outermost node and does not

visit the sub-trees of that node. However, the right-hand side of a defining equation

of the Traversal Function may contain recursive applications of the Traversal Function

itself! In this way, one can traverse certain sub-trees recursively while avoiding others

explicitly.

We use the combination of a bottom-up strategy with the break attribute to define

deep replacement as shown in figure 6.12. As soon as the rewrite rule applies to a

certain node, the traversal visits no more nodes on the path from the reduced node to

the root. In this case, the bottom-up strategy is essential.

6.2.4 Examples of Accumulators

So far, we have only shown examples of transformers. In this section we will give two

examples of accumulators.

117

Term Rewriting with Traversal Functions CHAPTER 6

�

✁

✂

✄

module Tree-sum

imports Tree-syntax

exports

context-free syntax

sum(TREE, NAT) -> NAT ✟ traversal(accu,bottom-up,continue) ✠
equations

[1] sum(N1, N2) = N1 + N2

input�

✁

✂

✄
sum(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

output�

✁

✂

✄
21

Figure 6.13: Accumulator sum computes the sum of all numbers in a tree.

�

✁

✂

✄

module Tree-cnt

imports Tree-syntax

exports

context-free syntax

cnt(TREE, NAT) -> NAT ✟ traversal(accu,bottom-up,continue) ✠
equations

[1] cnt(T, N) = N + 1

input�

✁

✂

✄
cnt(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

output�

✁

✂

✄
11

Figure 6.14: Accumulator cnt counts the nodes in a tree.

Add the numbers in a tree

The first problem we want to solve is computing the sum of all numbers that occur in

a tree. The accumulator sum in figure 6.13 solves this problem. Note that in equation

[1] variable N1 represents the current node (a number), while variable N2 represents

the sum that has been accumulated so far (also a number).

Count the nodes in a tree

The second problem is to count the number of nodes that occur in a tree. The accumu-

lator cnt shown in figure 6.14 does the job.

6.2.5 Examples of Accumulating Transformers

We conclude our series of examples with one example of an accumulating transformer.

118

SECTION 6.3 Larger Examples

�

✁

✂

✄

module Tree-pos

imports Tree-syntax

exports

context-free syntax

pos(TREE, NAT) -> <TREE , NAT>

✟ traversal(accu, trafo,bottom-up,continue) ✠
equations

[1] pos(N1, N2) = <N1 * N2, N2 + 1>

input�

✁

✂

✄
pos(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

output�

✁

✂

✄
<f(g(f(0,2), 6),

g(g(12,20), 30)),

6>

Figure 6.15: Accumulating transformer pos multiplies numbers by their tree position.

Multiply by position in tree

Our last problem is to determine the position of each number in a top-down traversal

of the tree and to multiply each number by its position. This is achieved by the accu-

mulating transformer pos shown in figure 6.15. The general idea is to accumulate the

position of each number during the traversal and to use it as a multiplier to transform

numeric nodes.

6.3 Larger Examples

Now we give some less trivial applications of Traversal Functions. They all use the

small imperative language PICO whose syntax is shown in figure 6.16. The toy lan-

guage PICO was originally introduced in [14] and has been used as running example

since then. A PICO program consists of declarations followed by statements. Vari-

ables should be declared before use and can have two types: natural number and string.

There are three kinds of statements: assignment, if-statement and while-statement. In

an assignment, the types of the left-hand side and the right-hand side should be equal.

In if-statement and while-statement the condition should be of type natural. The argu-

ments of the numeric operators + and - are natural. Both arguments of the string-valued

operator are strings.

6.3.1 Type-checking

The example in figure 6.17 defines a type-checker for PICO in a style described in

[86]. The general idea is to reduce type-correct programs to the empty program and to

reduce programs containing type errors to a program that only contains the erroneous

statements. This is achieved by using the information from declarations of variables to

replace all variable occurrences by their declared type and by replacing all constants

by their implicit type. After that, all type-correct statements are removed from the

program. As a result, only type-correct programs are normalized to the empty program.

119

Term Rewriting with Traversal Functions CHAPTER 6

�

✁

✂

✄

module Pico-syntax

imports Pico-whitespace

exports

sorts PROGRAM DECLS ID-TYPE ID DECLS STAT STATS EXP

sorts NAT-CON STR-CON

lexical syntax

[a-z] [a-z0-9]* -> ID

[0-9]+ -> NAT-CON

[✌ "] ˜[✌ "]* [✌ "] -> STR-CON

context-free syntax

"begin" DECLS STATS "end" -> PROGRAM

"declare" ID-TYPES ";" -> DECLS

ID ":" TYPE -> ID-TYPE

"natural" | "string" -> TYPE

✟ ID-TYPE "," ✠ * -> ID-TYPES

ID ":=" EXP -> STAT

"if" EXP "then" STATS "else" STATS "fi" -> STAT

"while" EXP "do" STATS "od" -> STAT

✟ STAT ";" ✠ * -> STATS

ID -> EXP

NAT-CON -> EXP

STR-CON -> EXP

EXP "+" EXP -> EXP ✟ left ✠
EXP "-" EXP -> EXP ✟ left ✠
EXP "||" EXP -> EXP ✟ left ✠
"(" EXP ")" -> EXP ✟ bracket ✠

context-free priorities

EXP "||" EXP -> EXP >

EXP "-" EXP -> EXP >

EXP "+" EXP -> EXP

Figure 6.16: SDF grammar for the small imperative language PICO.

120

SECTION 6.3 Larger Examples

�

✁

✂

✄

module Pico-typecheck

imports Pico-syntax

exports

context-free syntax

type(TYPE) -> ID

replace(STATS, ID-TYPE) -> STATS

✟ traversal(trafo,bottom-up,break) ✠
replace(EXP , ID-TYPE) -> STATS

✟ traversal(trafo,bottom-up,break) ✠
equations

[0] begin declare Id-type, Decl*; Stat* end =

begin declare Decl*; replace(Stat*, Id-type) end

[1] replace(Id , Id : Type) = type(Type)

[2] replace(Nat-con, Id : Type) = type(natural)

[3] replace(Str-con, Id : Type) = type(string)

[4] type(string) || type(string) = type(string)

[5] type(natural) + type(natural) = type(natural)

[6] type(natural) - type(natural) = type(natural)

[7] Stat*1;

if type(natural) then Stat*2 else Stat*3 fi ;

Stat*4

= Stat*1; Stat*2; Stat*3; Stat*4

[8] Stat*1; while type(natural) do Stat*2 od; Stat*3

= Stat*1; Stat*2; Stat*3

[9] Stat*1; type(Type) := type(Type); Stat*2

= Stat*1; Stat*2

input�

✁

✂

✄

begin declare x : natural,

s : string;

x := 10; s := "abc";

if x then x := x + 1

else s := x + 2

fi;

y := x + 2;

end

output�

✁

✂

✄

begin

declare;

type(string) :=

type(natural);

end

Figure 6.17: A type-checker for PICO.

121

Term Rewriting with Traversal Functions CHAPTER 6

This approach is interesting from the perspective of error reporting when rewrit-

ing is augmented with origin tracking, a technique that links back sub-terms of the

normal form to sub-terms of the initial term [70]. In this way, the residuals of the type-

incorrect statements in the normal form can be traced back to their source. See [147]

for applications of this and similar techniques.

The example in figure 6.17 works as follows. First, it is necessary to accommodate

the replacement of variables by their type, in other words, we want to replace x :=

y by type(natural) := type(natural), assuming that x and y have been

declared as natural. This is achieved by extending the syntax of PICO with the

context-free syntax rule

�✁ ✂✄type(TYPE) -> ID

The actual replacement of variables by their declared type is done by the transformer

replace. It has to be declared for all sorts for which equations for replace are

defined, in this case STATS and EXP. It is a bottom-up, breaking, transformer. The

second argument of replace is an (identifier, type) pair as it appears in a variable

declaration.

Note that for more complex languages a bottom-up breaking transformer might not

be sufficient. For example, when dealing with nested scopes it is imperative that the

type-environment can be updated before going into a new scope. A top-down breaking

transformer is used in such a case which stops at the entrance of a new scope and

explicitly recurs into the scope after updating the type-environment.

In equation [0] a program containing a non-empty declaration section is replaced

by a new program with one declaration less. In the statements all occurrences of the

variable that was declared in the removed declaration are replaced by its declared type.

replace is specified in equations [1], [2] and [3]. It simply replaces identifiers,

natural constants and string constants by their type.

Next, all type correct expressions are simplified (equations [4], [5] and [6]).

Finally, type-correct statements are removed from the program (equations [7], [8]

and [9]). As a result, a type correct program will reduce to the empty program and

a type incorrect program will reduce to a simplified program that precisely contains

the incorrect statements. The example that is also given in figure 6.17 shows how the

incorrect statement s := x + 2 (both sides of an assignment should have the same

type) is reduced to type(string) := type(natural).

The traversal order could be both top-down and bottom-up, since replace only

matches leafs in [1], [2] and [3]. However, bottom-up and break make this

traversal more efficient because once a leaf has been visited none of its ancestors is

visited anymore. This example shows that Traversal Functions can be used for this style

of type-checking and that they make this approach feasible for much larger languages.

Equations [7] through [9] use associative matching (called list matching in ASF-

+SDF) to concisely express operations on lists of statements. For instance, in [8], the

list variables Stat*1 and Stat*3 represent the statements surrounding a while state-

ment and Stat*2 represents the list of statements in the body of the while statement.

On the right-hand side of the equation these three lists of statements are concatenated

thus effectively merging the body of the while statement with its surroundings.

122

SECTION 6.3 Larger Examples

�

✁

✂

✄

module Pico-usage-inference

imports Pico-syntax

exports

sorts SET SETS

context-free syntax

" ✟ " EXP* " ✠ " -> SET

"[" SET* "]" -> SETS

infer-use(PROGRAM,SETS) -> SETS

✟ traversal(accu,top-down,break) ✠
infer-use(STAT ,SETS) -> SETS

✟ traversal(accu,top-down,break) ✠
infer-use(EXP ,SETS) -> SETS

✟ traversal(accu,top-down,break) ✠
variables

"Set"[0-9]* -> SET

"Set*"[0-9]* -> SET*

"Exp*"[0-9]* -> EXP*

equations

[0] infer-use(Id := Exp, [Set*]) = [✟ Id Exp ✠ Set*]

[1] infer-use(Exp , [Set*]) = [✟ Exp ✠ Set*]

[2] ✟ Exp*1 Exp Exp*2 Exp Exp*3 ✠ = ✟ Exp*1 Exp Exp*2 Exp*3 ✠
[3] ✟ Exp*1 Exp1 + Exp2 Exp*2 ✠ = ✟ Exp*1 Exp1 Exp2 Exp*2 ✠
[4] ✟ Exp*1 Exp1 - Exp2 Exp*2 ✠ = ✟ Exp*1 Exp1 Exp2 Exp*2 ✠
[5] ✟ Exp*1 Exp1 || Exp2 Exp*3 ✠ = ✟ Exp*1 Exp1 Exp2 Exp*3 ✠
[6] [Set*1 ✟ Exp*1 Id Exp*2 ✠ Set*2

✟ Exp*3 Id Exp*4 ✠ Set*3] =

[Set*1 ✟ Exp*1 Id Exp*2 Exp*3 Exp*4 ✠ Set*2 Set*3]

input�

✁

✂

✄

infer-use(

begin declare x : natural,

y : natural,

z : natural;

x := 0;

if x then y := 1

else y := 2 fi;

z := x + 3; y := 4

end, [])

output�

✁

✂

✄

[✟ y 4 2 1 ✠✜✟ z x 3 0 ✠]

Figure 6.18: Inferring variable usage for PICO programs.

123

Term Rewriting with Traversal Functions CHAPTER 6

6.3.2 Inferring Variable Usage

The second example in figure 6.18 computes an equivalence relation for PICO variables

based on their usage in a program. This technique is known as type-inference [55] and

can be used for compiler optimization and reverse engineering. Examples are statically

inferring variable types in a dynamically typed language such as Smalltalk or in a

weakly typed language such as COBOL ([71]).

The analysis starts with the assumption that the input program is correct. Based on

their usage in the program variables are related to each other by putting them in the

same equivalence class. Finally, the equivalence classes are completed by taking their

transitive closure. Variables of the same type that are used for different purposes will

thus appear in different classes. In this way one can, for example, distinguish integer

variables used for dates and integer variables used for account numbers.

In the specification, notation is introduced for sets of expressions (SET) and sets of

such sets (SETS). The accumulator infer-type is then declared that collects iden-

tifier declarations, expressions and assignments and puts them in separate equivalence

classes represented by SETS. This is expressed by equations [0] and [1]. In [0]

an assignment statement generates a new set consisting of both sides of the assign-

ment. In [1] an expression generates a new set on its own. In equations [2] through

[5], equivalence sets are simplified by breaking down complex expressions into their

constituting operands. Finally, equation [6] computes the transitive closure of the

equivalence relation.

Note that equations [2] through [6] use list matching to concisely express oper-

ations on sets. For instance, in [2] the list variables Exp*1, Exp*2 and Exp*3, are

used to match elements that surround the two occurrences of the same expression Exp.

On the right-hand side of the equation, they are used to construct a new list of expres-

sions that contains only a single occurrence of Exp. In fact, this equation defines that

SET actually defines sets! figure 6.18 also shows an example of applying infer-use

to a small program.

6.3.3 Examples of Accumulating Transformers

We leave examples of accumulating transformers to the reader. They can be found in

two directions. Either transformation with side-effects or a transformations with state.

A trivial example of the first is to generate a log file of a transformation. Log entries

are added to the accumulated argument while the traversed argument is transformed.

This functionality can sometimes be split into first generating the log file and then

doing the transformation, but that inevitably leads to code duplication and degradation

of performance.

An instance of the second scenario is a transformer that assigns a unique identifi-

cation to some language constructs. The accumulated argument is used to keep track

of the identifications that were already used. It is impossible to split this behavior into

a separate transformer and accumulator.

124

SECTION 6.4 Operational Semantics

Algorithm 2 An interpreter for transformers, Part 1.

function traverse-trafo(t : term, rules : list-of[rule]) : term

begin

var trfn : function-symbol;

var subject : term;

var args : list-of[term];

decompose term t as trfn(subject,args)

return visit(trfn, subject, args, rules);

end

function visit(trfn : function-symbol, subject : term, args : list-of[term],

rules : list-of[rule]) : term

begin

var subject’, reduct : term;

if traversal-strategy(trfn) = TOP-DOWN

then subject’ := reduce(typed-compose(trfn, subject, args), rules);

if subject’ = fail

then return visit-children(trfn, subject, args, rules)

else if traversal-continuation(trfn) = BREAK

then return subject’

else reduct := visit-children(trfn, subject’, args, rules)

return if reduct = fail then subject’ else reduct fi

fi

fi

else /* BOTTOM-UP */

subject’ := visit-children(trfn, subject, args, rules);

if subject’ = fail

then reduct = reduce(typed-compose(trfn, subject, args), rules)

else if traversal-continuation(trfn) = BREAK

then return subject’

else reduct = reduce(typed-compose(trfn, subject’,args), rules)

return if reduct = fail then subject’ else reduct fi

fi

fi

fi

end

6.4 Operational Semantics

Now we will describe an operational semantics for Traversal Functions. We assume

that we have a fully typed term representation.

This means that with every function name a first order type can be associated. For

example, a function with name f could have type f : τ1 ✢✣✔✕✔✖✔✤✢ τn ✆ τr. If n ✥ 0, f

is a constant of type f : ✆ τr. If n ✛ 0, f is either a constructor or a function with its

arguments typed by τ1 ✓✕✔✦✔✦✔✧✓ τn respectively. We will call this fully typed version of a

function name a function symbol and assume that terms only contain function symbols.

Of course, the term construction and destruction and matching functionality should be

adapted to this term representation.

Note that the typed-term representation is an operational detail of Traversal Func-

tions. It is needed to match the correct nodes while traversing a tree. However, a def-

125

Term Rewriting with Traversal Functions CHAPTER 6

Algorithm 3 An interpreter for transformers, Part 2.

function visit-children(trfn : function-symbol, subject : term,

args : list-of[term],

rules : list-of[rule]) : term

begin

var children, children’ : list-of[term];

var child, reduct : term;

var fn : id;

var success : bool;

decompose term subject as fn(children);

success := false;

foreach child in children

do reduct := visit(trfn, child, args, rules);

if reduct != fail

then children’ := append(children’, reduct);

success := true;

else children’ := append(children’, child)

fi

od;

return if success = true then compose the term fn(children’) else fail fi

end

function typed-compose(trfn : function-symbol, subject : term,

args : list-of[term]) : term

begin

var τ1, τ2, ..., τn, τsubject : type;

var rsym : function-symbol;

var fn : id;

τsubject := result-type-of(subject);

decompose function-symbol trfn as fn:τ1 ★ τ2 ★ ... ★ τn -> τ1;

rsym := compose function-symbol fn: τsubject ★ τ2 ★ ... ★ τn -> τsubject
return compose term rsym(subject, args);

end

inition of a Traversal Function can be statically type-checked (Section 6.2) to ensure

that its execution never leads to an ill-formed term.

6.4.1 Extending Innermost

We start with normal innermost rewriting as depicted earlier in Algorithm 1 (see Sec-

tion 6.1.4). The original algorithm first normalizes the children of a term and relies on

reduce to reduce the term at the outermost level.

In the modified algorithm, the call to the function reduce is replaced by a case

distinction depending on the kind of function: a normal function (i.e., not a Traver-

sal Function), a transformer, an accumulator, or an accumulating transformer. For

these cases calls are made to the respective functions reduce, traverse-trafo,

traverse-accu, or traverse-accu-trafo. Note that we describe the three

kinds of Traversal Functions here by means of three different functions. This is only

done for expository purposes (also see the discussion in Section 6.4.5).

126

SECTION 6.4 Operational Semantics

6.4.2 Transformer

The function traverse-trafo and its auxiliary functions are shown in Algor-

ithms 2 and 3. Function traverse-trafomainly decomposes the input term into a

function symbol (the Traversal Function), the subject term to be traversed and optional

arguments. It then delegates actual work to the function visit.

Function visit distinguishes two major cases: top-down and bottom-up traversal.

In both cases the break/continue behavior of the Traversal Function has to be modeled.

If an application of a Traversal Function has not failed the recursion either continues or

breaks, depending on the annotation of the Traversal Function. If the application has

failed it always continues the recursion.

We apply the Traversal Function by reusing the reduce function from the ba-

sic innermost rewriting algorithm (see Algorithm 1). It is applied either before or after

traversing the children, depending on the traversal strategy (bottom-up or or top-down).

visit depends on visit-children for recurring over all the children of the cur-

rent node. If none of the children are reduced visit-children returns fail,

otherwise it returns the list of new children.

In order to be type-safe, the type of the Traversal Function follows the type of the

term is being traversed. Its type always matches the type of the node that is currently

being visited. This behavior is encoded by the typed-compose function. Trans-

formers are type-preserving, therefore the type of the first argument and the result are

adapted to the type of the node that is currently being visited. Note that using this

algorithm this we can reuse the existing matching functionality.

The following auxiliary functions are used but not defined in these algorithms:

☎
traversal-strategy(fn : function-symbol) returns the traversal

strategy of the given function symbol fn, i.e., top-down or bottom-up.

☎
traversal-continuation(fn : function-symbol) returns the

continuation

style of the given function symbol fn, i.e., break or continue.

☎
result-type-of(t : term) returns the result type of the outermost

function symbol of the given term t.

6.4.3 Accumulator

The function traverse-accu and its auxiliary functions are shown in Algorithms 4

and 5. The definitions largely follow the same pattern as for transformers, with the

following exceptions:

☎
traverse-accu not only separates the traversed subject from the arguments

of the Traversal Function. It also identifies the second argument as the initial

value of the accumulator.

☎ Both visit and visit-children have an extra argument for the accumu-

lator.

127

Term Rewriting with Traversal Functions CHAPTER 6

☎ In typed-compose only the type of the first argument is changed while the

type of the accumulator argument remains the same.

☎ The traversal of children in function visit-children takes into account that

the accumulated value must be passed on between each child.

6.4.4 Accumulating Transformer

We do not give the details of the algorithms for the accumulating transformer since they

are essentially a fusion of the algorithms for accumulators and transformers. Since an

accumulating transformer has two input and output values (the initial term and the cur-

rent accumulator value, respectively, the transformed term and the updated accumulator

value), the types of visit, visit-children and typed-compose have to be

adjusted to manipulate a pair of terms rather than a single term.

6.4.5 Discussion

In the above presentation we have separated the three cases transformer, accumulator

and accumulating transformer. In an actual implementation, these three cases can be

implemented by a single function that uses pairs of terms (to accommodate accumulat-

ing transformers).

The algorithms become slightly more involved since the algorithms for transformer

and accumulator now have to deal with term pairs and in several places case distinctions

have to be made to cater for the specific behavior of one of the three algorithms.

6.5 Implementation Issues

The actual implementation of Traversal Functions in ASF+SDF consists of three parts:

☎ Parsing the user-defined rules of a Traversal Function (Section 6.5.1).

☎
An interpreter-based implementation of Traversal Functions (Section 6.5.2).

☎
A compilation scheme for Traversal Functions (Section 6.5.3).

6.5.1 Parsing Traversal Functions

The terms used in the rewrite rules of ASF+SDF have user-defined syntax. In order

to parse a specification, the user-defined term syntax is combined with the standard

equation syntax of ASF. This combined syntax is used to generate a parser that can

parse the specification.

In order to parse the rewrite rules of a Traversal Function we need grammar rules

that define them.

A first approach (described in [37]) was to generate the syntax for any possible

application of a Traversal Function. This collection of generated functions could be

viewed as one overloaded function. This simple approach relieved the programmer

128

SECTION 6.5 Implementation Issues

from typing in the trivial productions himself. In practice, this solution had two draw-

backs:

☎
The parse tables tended to grow by a factor equal to the number of Traversal

Functions. As a result, interactive development became unfeasible because the

parse table generation time was growing accordingly.

☎ Such generated grammars were possibly ambiguous. Disambiguating grammars

is a delicate process, for which the user needs complete control over the gram-

mar. This control is lost if generated productions can interfere with user-defined

productions.

An alternative approach that we finally adopted is to let the user specify the gram-

mar rule for each sort that is used as argument of the Traversal Function: this amounts

to rewrite rules defining the Traversal Function and applications of the Traversal Func-

tion in other rules. The amount of work for defining or changing a Traversal Function

increases by this approach, but it is still proportional to the number of node types that

are actually being visited. The parse table will now only grow proportionally to the

number of visited node types. As a result the parse table generation time is acceptable

for interactive development.

We have opted for the latter solution since we are targeting industrial size prob-

lems with Traversal Functions and solutions that work only for small examples are not

acceptable. The above considerations are only relevant for term rewriting with con-

crete syntax. Systems that have fixed term syntax can generate the complete signature

without introducing any significant overhead.

6.5.2 Interpretation of Traversal Functions

The ASF interpreter rewrites parse trees directly (instead of abstract terms). The parse

trees of rewrite rules are simply matched with the parse trees of terms during rewriting.

A reduction is done by substituting the parse tree of the right-hand side of a rule at the

location of a redex in the term.

The ASF+SDF interpreter implements the algorithms as presented in Section 6.4.

6.5.3 Compilation of Traversal Functions

In order to have better performance of rewriting systems, compiling them to C has

proved to be very beneficial. The ASF+SDF compiler [33, 30] translates rewrite rules

to C functions. The compiled specification takes a parse tree as input and produces

a parse tree as result. Internally, a more dense abstract term format is used. After

compilation, the run-time behavior of a rewriting system is as follows:

1. In a bottom-up fashion, each node in the input parse tree is visited and the cor-

responding C function is retrieved and called immediately. This retrieval is im-

plemented by way of a pre-compiled dictionary that maps function symbols to

the corresponding C function. During this step the conversion from parse tree

to abstract term takes place. The called function contains a dedicated matching

129

Term Rewriting with Traversal Functions CHAPTER 6

automaton for the left-hand sides of all rules that have the function symbol of

this node as outermost symbol. It also contains an automaton for checking the

conditions. Finally there are C function calls to other similarly compiled rewrite

rules for evaluation of the right-hand sides.

2. When an application of a C function fails, this means that this node is in normal

form. As a result, the normal form is explicitly constructed in memory. Nodes

for which no rewrite rules apply, including the constructors, have this as standard

behavior.

3. Finally, the resulting normal form in abstract term format is translated back to

parse tree format using the dictionary.

Traversal functions can be fitted in this run-time behavior in the following manner.

For every defining rewrite rule of a Traversal Function and for every call to a Traversal

Function the type of the overloaded argument and optionally the result type is turned

into a single universal type. The result is a collection of rewrite rules that all share the

same outermost Traversal Function, which can be compiled using the existing compi-

lation scheme to obtain a matching automaton for the entire Traversal Function.

Figure 6.19 clarifies this scheme using a small example. The first phase shows a

module containing a Traversal Function that visits two types A and B. This module is

parsed, type-checked and then translated to the next module (pretty-printed here for

readability). In this phase all variants of the Traversal Function are collapsed under a

single function symbol. The " " denotes the universally quantified type.

The Traversal Function in this new module is type-unsafe. In [2], the application

of the Traversal Function is guarded by the b constructor. Therefore, this rule is only

applicable to such terms of type B. The other rule [1] is not guarded by a constructor.

By turning the type of the first argument of the Traversal Function universal, this rule

now matches terms of any type, which is not faithful to the semantics of ASF+SDF.

The solution is to add a run-time type-check in cases where the first argument of a

Traversal Function is not guarded. For this we can use the dictionary that was described

above to look up the types of symbols. The new module is shown in the third pane of

figure 6.19. A condition is added to the rewrite rule, stipulating that the rule may

only succeed when the type of the first argument is equal to the expected type. The

type-of function encapsulates a lookup in the dictionary that was described above.

It takes the top symbol of the term that the variable matched and returns its type. This

module can now be compiled using the conventional compiler to obtain a type-safe

matching automaton for all defining rules of the Traversal Function.

To obtain the tree traversal behavior this automaton is now combined with calls to

a small run-time library. It contains functions that take care of actually traversing the

tree and optionally passing along the accumulated argument. The fourth pane of figure

6.19 shows the C code for the running example.

Depending on the traversal type there is a different run-time procedure. In this case

it is a transformer, so call kids trafo is used. For a transformer the function is

applied to the children, and a new node is created after the children are reduced. For

an accumulator the library procedure, call kids accu, also takes care of passing

along the accumulated value between the children. Depending on the traversal order

130

SECTION 6.5 Implementation Issues

Algorithm 4 An interpreter for accumulators, Part 1.

function traverse-accu(t : term, rules : list-of[rule]) : term

begin

var trfn : function-symbol;

var subject : term;

var args : list-of[term];

decompose term t as trfn(subject, accu, args)

return visit(trfn, subject, accu, args, rules);

end

function visit(trfn : function-symbol,

subject : term,

accu : term,

args : list-of[term],

rules : list-of[rule]) : term

begin

var reduct, accu’ : term;

if traversal-strategy(trfn) = TOP-DOWN

then accu’ := reduce(typed-compose(trfn, subject, accu, args), rules);

if accu’ = fail

then return visit-children(trfn, subject, accu, args, rules)

else if traversal-continuation(trfn) = BREAK

then return accu’

else reduct = visit-children(trfn, accu’, reduct, args, rules)

return if reduct = fail then accu’ else reduct fi

fi

fi

else /* BOTTOM-UP */

accu’ := visit-children(trfn, subject, accu, args, rules);

if accu’ = fail

then reduct := reduce(typed-compose(trfn, subject, accu, args),

rules);

else if traversal-continuation(trfn) = BREAK

then return accu’

else reduct := reduce(typed-compose(trfn, subject, accu’, args),

rules);

return if reduct = fail then accu’ else reduct fi

fi

fi

fi

end

131

Term Rewriting with Traversal Functions CHAPTER 6

Algorithm 5 An interpreter for accumulators, Part 2.

function visit-children(trfn : function-symbol,

subject : term,

accu : term,

args : list-of[term],

rules : list-of[rule]) : term

begin

var children : list-of[term];

var child, accu’, reduct : term;

var fn : id;

var success : bool;

decompose term subject as fn(children);

accu’ := accu; success := false;

foreach child in children

do reduct := visit(trfn, child, accu’, args, rules);

if reduct != fail then success = true; accu’ := reduct fi

od;

return if success = true then accu’ else fail fi

end

function typed-compose(trfn : function-symbol,

subject : term,

accu : term,

args : list-of[term]) : term

begin

var τ1, τ2, ..., τn, τsubject : type;

var rsym : function-symbol;

var fn : id;

τsubject := result-type-of(subject);

decompose function-symbol trfn as fn: τ1 ★ τ2 ★ ... ★ τn -> τ2 ;

rsym := compose function-symbol fn: τsubject ★ τ2 ★ ... ★ τn -> τ2;

return compose term rsym(subject, accu, args);

end

132

SECTION 6.5 Implementation Issues

�

✁

✂

✄

module Example

exports

context-free syntax

a -> A

b (A) -> B

example(A) -> A ✟ traversal(trafo,bottom-up,continue) ✠
example(B) -> B ✟ traversal(trafo,bottom-up,continue) ✠

variables

"VarA" -> A

equations

[1] example(VarA) = ...

[2] example(b(VarA)) = ...

�

✁

✂

✄

module Example

exports

context-free syntax

a -> A

b (A) -> B

example() -> ✟ traversal(trafo,bottom-up,continue) ✠
variables

"VarA" -> A

equations

[1] example(VarA) = ...

[2] example(b(VarA)) = ...

�

✁

✂

✄

module Example

exports

context-free syntax

a -> A

b (A) -> B

example() -> ✟ traversal(trafo,bottom-up,continue) ✠
equations

[1] type-of(VarA) = A ===> example(VarA) = ...

[2] example(b(VarA)) = ...

�

✁

✂

✄

ATerm example(ATerm arg0)

✟
ATerm tmp0 =

call kids trafo(example, arg0, NO EXTRA ARGS);

if (check symbol(tmp0, b symbol)) ✟ /* [2] */

return ...;

✠
if (term equal(get type(tmp0), type("A"))) ✟ /* [1] */

return ...;

✠
return tmp0;

✠
Figure 6.19: Selected phases in the compilation of a Traversal Function.

133

Term Rewriting with Traversal Functions CHAPTER 6

the calls to this library are simply made either before or after the generated matching

automaton. The break and continue primitives are implemented by inserting ex-

tra calls to the run-time library procedures surrounded by conditionals that check the

successful application or the failure of the Traversal Function.

6.6 Experience

Traversal functions have been applied in a variety of projects. We highlight some

representative ones.

6.6.1 COBOL Transformations

In a joint project of the Software Improvement Group (SIG), Centrum voor Wiskunde

en Informatica (CWI) and Vrije Universiteit (VU) Traversal Functions have been ap-

plied to the conversion of COBOL programs [171, 153]. This is based on earlier work

described in [143]. The purpose was to migrate VS COBOL II to COBOL/390. An

existing tool (CCCA from IBM) was used to carry out the basic, technically necessary,

conversions. However, this leaves many constructions unchanged that will obtain the

status “archaic” or “obsolete” in the next COBOL standard. In addition, compiler-

specific COBOL extensions remain in the code and several outdated run-time utilities

can be replaced by standard COBOL features.

Ten transformation rules were formalized to replace all these deprecated language

features and to achieve code improvements. Examples of rules are:

☎ Adding END-IF keywords to close IF-statements.

☎ Replace nested IF-statements with EVALUATE-statements.

☎ Replace outdated CALL utilities by standard COBOL statements.

☎ Reduce GO-TO statements: a goto-elimination algorithm that itself consists of

over 20 different transformation rules that are applied iteratively.

After formalization of these ten rules in ASF+SDF with Traversal Functions, and

applying them to a test base of 582 programs containing 440000 lines of code, the

following results were obtained:

☎
17000 END-IFs were added.

☎
4000 lines were changed in order to eliminate CALL-utilities.

☎
1000 GO-TOs have been eliminated (about 65% of all GO-TOs).

Each transformation rule is implemented by means of a Traversal Function defined

by only a few equations. Figure 6.20 shows two rewrite rules which add the missing

END-IF keywords to the COBOL conditionals.

134

SECTION 6.6 Experience

�

✁

✂

✄

module End-If-Trafo

imports Cobol

exports

context-free syntax

addEndIf(Program) -> Program

✟ traversal(trafo,continue,top-down) ✠
variables

"Stats"[0-9]* -> StatsOptIfNotClosed

"Expr"[0-9]* -> L-exp

"OptThen"[0-9]* -> OptThen

equations

[1] addEndIf(IF Expr OptThen Stats) =

IF Expr OptThen Stats END-IF

[2] addEndIf(IF Expr OptThen Stats1 ELSE Stats2) =

IF Expr OptThen Stats1 ELSE Stats2 END-IF

Figure 6.20: Definition of rules to add END-IFs.

The complete transformation took two and a half hours using the ASF interpreter.5

The compiled version of Traversal Functions was not yet ready at the time this ex-

periment was done but it would reduce the time by a factor of at least 30–40 (see

Section 6.6.3). The estimated compiled execution time would therefore be under 5

minutes. These results show that Traversal Functions can be used effectively to solve

problems of a realistic size.

6.6.2 SDF Re-factoring

In [114] a Framework for SDF Transformations (FST) is described that is intended to

support grammar recovery (i.e., the process of recovering grammars from manuals and

source code) as well as grammar re-engineering (transforming and improving gram-

mars to serve new purposes such as information extraction from legacy systems and

dialect conversions). The techniques are applied to a VS COBOL II grammar. The

experience with Traversal Functions is positive. To cite the authors:

“At the time of writing FST is described by 24 Traversal Functions with

only a few rewrite rules per function. The SDF grammar itself has about

100 relevant productions. This is a remarkable indication for the useful-

ness of the support for Traversal Functions. In worst case, we would have

to deal with about 2400 rewrite rules otherwise.”

5On a 333 MHz PC with 192 Mb of memory running Linux.

135

Term Rewriting with Traversal Functions CHAPTER 6

Grammar # of productions Interpreted Compiled Ratio

(seconds) (seconds)

SDF 200 35 0.85 42

Java 352 215 1.47 146

Action Semantics 249 212 2.00 106

COBOL 1251 1586 5.16 307

Table 6.2: Performance of the SDF checker.

6.6.3 SDF Well-formedness Checker

SDF is supported by a tool-set6 containing among others a parse table generator and

a well-formedness checker. A considerable part of the parse table generator is speci-

fied in ASF+SDF. The well-formedness checker is entirely specified in ASF+SDF and

makes extensive use of Traversal Functions. The well-formedness checker analyses a

collection of SDF modules and checks, among others, for completeness of the speci-

fication, sort declarations (missing, unused, and double), uniqueness of constructors,

and uniqueness of labels. The SDF grammar consists of about 200 production rules,

the ASF+SDF specification consists of 150 functions and 186 equations, 66 of these

functions are Traversal Functions and 67 of the equations have a Traversal Function

as the outermost function symbol in the left-hand side and can thus be considered as

”traversal” equations.

An indication of the resulting performance is shown in Table 6.2.7 It shows results

for SDF, Java, Action Semantics and COBOL. For each grammar, the number of gram-

mar rules is given as well as execution times (interpreted and compiled) for the SDF

checker. The last column gives the interpreted/compiled ration. These figures show

that Traversal Functions have a completely acceptable performance. They also show

that compilation gives a speed-up of at least a factor 40.

6.7 Discussion

Traversal functions are based on a minimalist design that tries to combine type safety

with expressive power. We will now discuss the consequences and the limitations of

this approach.

6.7.1 Declarative versus Operational Specifications

Traversal functions are expressed by annotating function declarations. Understanding

the meaning of the rules requires understanding which function is a Traversal Function

and what visiting order it uses. In pure algebraic specification, it is considered bad

practice to depend on the rewriting strategy (i.e., the operational semantics) when writ-

ing specifications. By extending the operational semantics of our rewrite system with

Traversal Functions, we effectively encourage using operational semantics. However,

6www.cwi.nl/projects/MetaEnv
7On a 333 MHz PC with 192 Mb of memory running Linux.

136

SECTION 6.7 Discussion

if term rewriting is viewed as a programming paradigm, Traversal Functions enhance

the declarative nature of specifications. That is, without Traversal Functions a simple

transformation must be coded using a lot of “operational style” rewrite rules. With

Traversal Functions, only the essential rules have to be defined. The effort for under-

standing and checking a specification decreases significantly. In [37] we show how

Traversal Functions in ASF+SDF can be translated to specifications without Traversal

Functions in a relatively straightforward manner. So, Traversal Functions can be seen

as an abbreviation mechanism.

6.7.2 Expressivity

Recall from figure 6.1 the main left-to-right visiting orders for trees: top-down and

bottom-up combined with two stop criteria: stop after first application or visit all nodes.

All of these orders can be expressed by Traversal Functions using combinations of

bottom-up, top-down, break and continue. We have opted for a solution that

precisely covers all these possible visiting orders.

One may wonder how concepts like repetition and conditional evaluation, as used

in strategic programming (see Section 6.1.7), fit in. In that case, all control structures

are moved to the strategy language and the base language (rewrite rules, functions)

remains relatively simple. In our case, we use a base language (ASF+SDF) that is

already able to express these concepts and there is no need for them to be added to the

set of traversal primitives.

6.7.3 Limited Types of Traversal Functions

Accumulators can only map sub-trees to a single sort and transformers can only do sort

preserving transformations. Is that a serious limitation?

One might argue that general non-sort-preserving transformations cannot be ex-

pressed conveniently with this restriction. Such transformations typically occur when

translating from one language to another and they will completely change the type of

every sub-term. However, in the case of full translations the advantage of any generic

traversal scheme is debatable, since translation rules have to be given for any language

construct anyway. A more interesting case are partial translations as occur when,

for instance, embedded language statements are being translated while all surround-

ing language constructs remain untouched. In this case, the number of rules will be

proportional to the number of translated constructs only and not to the total number of

grammatical constructs. Most of such partial transformations can be seen as the combi-

nation of a sort-preserving transformation for the constructs where the transformation

is not defined and a non-sort-preserving transformation for the defined parts. If the

sort-preserving part is expressed as a transformer, we have again a number of rewrite

rules proportional to the number of translated constructs. It is therefore difficult to see

how a generic non-sort-preserving traversal primitive could really make specifications

of translations more concise.

137

Term Rewriting with Traversal Functions CHAPTER 6

6.7.4 Reuse versus Type-safety

We do not separate the traversal strategy from the rewrite rules to be applied. By

doing so, we loose the potential advantage of reusing the same set of rewrite rules

under different visiting orders. However, precisely the combination of traversal strat-

egy and rewrite rules allows for a simple typing mechanism. The reason is that the

generic traversal attributes are not separate operators that need to be type-checked.

It allows us to ensure well-formedness in both type-preserving transformations and in

type-unifying computations without extending the typing mechanisms of our first-order

specification language.

6.7.5 Conclusions

We have described term rewriting with Traversal Functions as an extension of ASF-

+SDF. The advantages of our approach are:

☎ The most frequently used traversal orders are provided as built-in primitives.

☎ The approach is fully type-safe.

☎
Traversal functions can be implemented efficiently.

Traversal functions are thus a nice compromise between simplicity and expressive

power.

The main disadvantage of our approach might manifest itself when dealing with

visiting orders that go beyond our basic model of tree traversal. Two escapes would be

possible in these cases: such traversals could either be simulated as a modification of

one of the built-in strategies (by adding conditions or auxiliary functions), or one could

fall back to the tedious specification of the traversal by enumerating traversal rules for

all constructors of the grammar.

In practice, these scenario’s have not occurred and experience with Traversal Func-

tions shows that they are extremely versatile when solving real-life problems.

138

C H A P T E R 7

Rewriting with Layout

In this chapter we assert that term rewriting is an adequate and powerful

mechanism to perform source code transformations. However, an impor-

tant shortcoming of rewriting technology is that source code comments

and layout are discarded before rewriting. We propose “rewriting with

layout” to solve this problem. We present a rewriting algorithm that keeps

the layout of sub-terms that are not rewritten, and reuses the layout occur-

ring in the right-hand side of the rewrite rules. 1

7.1 Introduction

Rewriting technology has proved to be an adequate and powerful mechanism to tackle

all kinds of problems in the field of software renovation. Software renovation is to

bring existing source code up to date with new requirements. One of the techniques

applied in this field is source code transformation. Source code transformations are

transformations applied on the syntax level of programs, usually implemented using

string replacement technology.

Such transformations can also conveniently be implemented using parsing and

rewriting technology. Using these technologies is safer than using regular string re-

placement tools because they provide a firmer grip on source code syntax. The parser

constructs a tree representation of the source code, which the rewriter traverses and ma-

nipulates. The information in the tree safely guides all transformations. For example,

it allows us to ignore the particular layout of a code fragment and concentrate on its

essence, or know the difference between a normal code fragment and a code fragment

that has been commented out. We call this feature syntax safety: to be able to statically

determine that the input as well as the output source code of a transformation is defined

by a context-free grammar.

However, an important shortcoming of rewriting technology is that source code

comments and layout are lost during rewriting. Usually, the reason is that this infor-

mation is discarded completely in the tree representation. Note that no maintenance

programmer will consider using rewriting technology and as a result loose all of his

1This chapter was published in RULE 2000 [50], and coauthored by Mark van den Brand.

139

Rewriting with Layout CHAPTER 7

source code comments during a large maintenance job. It might be possible to store

comments and layout directly in the tree, but this complicates the specification of such

a source code transformation tool because every rewrite rule has to take comments and

layout explicitly into consideration. In other words, we loose the ability to ignore lay-

out. We propose rewriting with layout to solve this problem, and try to make rewriting

technology a more attractive alternative to conventional software maintenance tooling.

Throughout this chapter, the term layout will be used to indicate both formatting by

whitespace characters as well as source code comments.

We present a rewriting algorithm that conserves layout of sub-terms that are not

rewritten and reuses the layout occurring in the right-hand side of the rewrite rules. We

will analyze its run-time efficiency, in order to find out whether this approach scales to

larger applications.

Using this lightweight algorithm, a certain amount of layout could still be lost when

a rewrite rule is applied. It also does not provide the ability to utilize layout explicitly

for software renovation. It is now implicitly conserved by the rewriting algorithm,

but still out of reach from the programmer. In Chapter 8 we solve these issues by

promoting layout trees to “first class objects”, such that they can be manipulated like

any other term.

7.1.1 Source code transformations

Maintenance programmers frequently use string replacement tools to automate their

software maintenance tasks. For example, they use the regular expressions available

in scripting languages like Perl [167] to perform all kinds of syntactical transforma-

tions. Naturally, such source code transformations must be precise. Alas, regular string

matching alone is not powerful enough to recognize all kinds of syntactical structures

commonly found in programming languages. This lack of power is usually solved

by extensive programming, or the lack of precision is accepted as a caveat that some-

times introduces false positives and negatives. Some string replacement languages, like

SNOBOL [76], would provide the maintenance programmer with low level context-

free matching. But these powerful features are hardly used. It seems that practicality

does not go hand in hand with precision in this instance.

The focus of source code transformations on the one hand and general program

transformations [136] on the other hand is quite different. Source code transformations

deal with automatic syntactical transformations. They automate software maintenance

tasks, but they do not usually involve any correctness proof of the adaptations to the

source code. In contrast, general program transformations can require user interaction,

involve proving that the transformations are sound and complete, and do not have to

relate closely to the source code of a program.

As opposed to string rewriting, term rewriting technology is a different approach

to implement source code transformations. The source code is fully parsed given the

context-free grammar of the language, the term representation is transformed according

to a set of powerful rules and the result is unparsed to obtain source code again. We use

an algebraic specification formalism, ASF+SDF [67], based on term rewriting. Due to

recent improvements of its compilation techniques [33] and term representation [31],

ASF+SDF can now be applied better to industry sized problems such as described

140

SECTION 7.1 Introduction

�

✁

✂

✄

ASF+SDF

PERL (SC017, DELETE−TO−CATLG , 00530000)

//SYSUT2 DD DSN=PSSIAS8.S00.SDPAR02.DSC017, 00520000

// SPACE=(TRK,(1,1)), 00540000

// DCB=(RECFM=FB,LRECL=80) 00550000

// DISP=(NEW,CATLG,), 00530000

//SYSUT2 DD DSN=PSSIAS8.S00.SDPAR02.DSC017, 00520000

// SPACE=(TRK,(1,1)), 00540000

// DCB=(RECFM=FB,LRECL=80) 00550000

// DISP=(NEW,CATLG,), 00530000

DELETE

CATLG

Figure 7.1: Sample input and output of a source code transformation in JCL. The

DELETE keyword is be replaced by CATLG, but in a specific context.

earlier in [36]. For example, COBOL renovation factories have been implemented

and used [49]. It can be expected that software maintenance tooling can be developed

with more confidence and less effort using such rewriting technology. The benefits are

higher level implementations, and more precision.

The rewrite rules in ASF+SDF use concrete syntax. They are defined on the actual

syntax of the source language, not some abstract representation. Because the rules are

applied to structured terms instead of strings, complex syntactical structures can be

grasped by a single rule. A very important feature of rewrite rules is that they ignore

the arbitrary layout of the source code, and even source code comments. This is all in

favor of simplicity towards the programmer: the distance between source code and the

program that transform it is minimal, and he can ignore all irrelevant details.

However, some details that are ignored by default are not irrelevant at all: for ex-

ample source code comments. This rather practical issue of discarding all layout needs

to be resolved before term rewriting can fully deal with the particular requirements of

the reverse engineering and re-engineering application domains.

7.1.2 Example

The following example of a source code transformation shows the importance of con-

sidering layout while rewriting. This example is a part of a reverse engineering project

of JCL scripts2 in cooperation with a Dutch software house.

2JCL stands for Job Control Language and is mainly used in combination with COBOL programs on

IBM mainframes.

141

Rewriting with Layout CHAPTER 7

The interpretation of JCL scripts is sensitive to their particular layout, which is an

unfortunate but not uncommon language property. Note that there are numerous exam-

ples of languages that depend on layout, although each in their own manner. Examples

are COBOL, Haskell, and Python. As an adequate solution to the problem regarding

JCL, the source code transformation was performed in two steps:

1. A rewriting language, ASF+SDF, was used to reduce a JCL script to a list of

instructions that indicate precisely where to modify the script.

2. The list of instructions was interpreted by a Perl script that used regular string

replacements to implement them.

The above situation is depicted in Figure 7.1 for a specific JCL instruction. Obviously,

this effective combination of term rewriting and string replacement is neither an attrac-

tive nor a generic solution to the problem of transforming layout sensitive source code.

It would be preferable to encode the entire transformation in the rewriting language.

7.1.3 Overview

To explore the subject, we have developed an ASF+SDF interpreter that conserves

layout. Apart from the actual rewriting algorithm, there are two important prerequisites

to the idea of a layout preserving rewriter. Firstly, the parser should produce trees in

which the layout is preserved in some way. Secondly, rewriting must be performed on

a term representation that also contains all layout.

In Section 7.2 we will introduce the term format. In Section 7.3 we discuss our

layout preserving algorithm for ASF+SDF. Section 7.4 describes some benchmark fig-

ures. We compare the performance of the layout preserving rewriter with the original

ASF+SDF rewriter, and with two other interpreted rewriting systems: ELAN [24] and

Maude [58].

Finally, in Section 7.6 we draw some conclusions. Note that in this chapter related

work is not discussed. In Chapter 8, we will describe related work that was available

after the appearance of the current chapter in RULE 2000.

7.2 Term format

One of the features of rewriting technology is that it implicitly discards all layout of

the input and output. It is considered not important, so usually layout information is

simply not included in the term format. The same strategy is chosen in most language

compilers. For efficiency reasons all “irrelevant” information is discarded from abstract

syntax trees. So in rewriting it is also common practice to have a very concise tree

representation to represent terms that have to be rewritten. Typical examples of these

concise formats are REF [21] used within the ELAN system [24], and µAsf used within

the ASF+SDF compiler [33].

We have been exploring another solution: using full parse trees as term format for

rewriting. These parse trees contain all information encountered during parsing, e.g.,

142

SECTION 7.2 Term format

�

✁

✂

✄

module Booleans

syntax

Bool LAYOUT "or" LAYOUT Bool -> Bool ✟ left ✠
[\t-\n\] -> LAYOUT

"true" -> Bool

"false" -> Bool

[o][r] -> "or"

[t][r][u][e] -> "true"

[f][a][l][s][e] -> "false"

Figure 7.2: An example low-level (kernel) grammar.

�
✁

✂
✄true

or false

Figure 7.3: A term over the Booleans. An ASF+SDF specification of the Booleans can

be found in Figure 7.5.

layout, keywords, application of syntax production rules, disregarding none of the in-

formation that is present in the original input file. Although much of this information

is redundant for the rewriting process itself, it is of importance to the entire transfor-

mation process from input to output. In the following two sections we briefly describe

our parse trees and the generic term data type it is based on.

7.2.1 ATerm data type

Our representation of parse trees is based on a generic abstract data type called ATerm

[31]. The corresponding libraries for this ATerm format have a number of important

properties. One of the most important properties is that the ATerm library ensures a

maximal sharing of terms, each term is unique. This property results in a memory and

execution time efficient run-time behavior. Maximal sharing proofs to be especially

beneficial when applied to our parse tree format, which is rather redundant.

A striking consequence of the maximal sharing is that term equality can be imple-

mented as pointer equality. A negative effect of sharing is that the ATerm library allows

only functional manipulation of terms. This means that destructive updates on terms

can only be implemented by rebuilding the updated term from scratch. But the ATerm

library is time efficient nevertheless in the context of term rewriting (see Section 7.4).

7.2.2 Parse trees

Based on the ATerm format we are able to define a simple format to represent parse

trees [157]. A parse tree consists of applications of productions and characters. Each

application of a production is a node in the tree, and each character is a leaf.

As an example, take the grammar in Figure 7.2. This grammar defines the Booleans

with an or operator down to the character level, including the whitespace. Using this

143

Rewriting with Layout CHAPTER 7

�

✁

✂

✄

Bool LAYOUT "or" LAYOUT Bool -> Bool {left}

"true" -> Bool [\t-\n\] -> LAYOUT

[o] [r] -> "or"

[\t-\n\] -> LAYOUT "false" -> Bool

[t] [r] [u] [e] -> "true"

t r u e \n o r

[f] [a] [l] [s] [e] -> "false"

f a l s e

Figure 7.4: A graphical representation of the fully informative parse tree of the term in

Figure 7.3.

grammar, we can parse the input boolean term in Figure 7.3, to obtain the parse tree

that is depicted graphically in Figure 7.4. Three important characteristics are:

☎ The structure of the parse tree is fully defined by the original grammar.

☎ All characters of the input are present as the leafs of the parse tree.

☎ Maximal sub-term sharing (via ATerms) is used to keep such parse trees small.

Note that in practice we would use the syntax definition formalism (SDF) to de-

fine the Boolean language (e.g., Figure 7.5). The implementation of SDF takes care

of generating a corresponding character level grammar automatically. This generation

process from concise notation to character level notation is straightforward [157]. For

example, it introduces a LAYOUT? non-terminal in between every two members of a

production to indicate that LAYOUT can optionally occur. It also adds a production

for concatenating LAYOUT, namely LAYOUT LAYOUT -> LAYOUT ✡ left ☛ , and

it implements the literals (keywords) of a language by simple productions with consec-

utive characters.

7.3 Rewriting with Layout

The rewriting algorithm that is used in the ASF+SDF Meta-Environment [99, 42] op-

erate on the parse tree format described above. We will discuss an adaptation of this

algorithm that will preserve as much layout as possible. First we will briefly introduce

the reader to the semantics of our rewriting formalism ASF [14]. Then we discuss the

interpreter and the adapted interpreter in detail.

7.3.1 Rewriting terms

An example of a basic ASF+SDF specification is presented in Figure 7.5, the equations

that define the semantics of the or operator are specified. Note that the equations have

labels. These labels have no semantics. For more elaborate ASF+SDF examples we

refer to [67].

Given an ASF+SDF specification and some term to be normalized, this term can

be rewritten by interpreting the ASF equations as rewrite rules. One approach is to

144

SECTION 7.3 Rewriting with Layout

�

✁

✂

✄

module Booleans

imports Layout

exports

sorts Bool

context-free syntax

"true" -> Bool

"false" -> Bool

Bool "or" Bool -> Bool ✟ left ✠
variables

"Bool"[0-9]* -> Bool

equations

[or-1] true or Bool = true

[or-2] false or Bool = Bool

Figure 7.5: A more concise definition of boolean syntax, with equations for or-

operator

compile these equations to C functions [33]. We do this to optimize batch performance

of rewrite systems. We also provide a small interpreter that facilitates interactive de-

velopment of rewrite systems. To explore the subject of rewriting with layout, we have

chosen to extend the ASF+SDF interpreter. First we will discuss an interpreter which

ignores layout completely in both the term and the equations. Thereafter, we discuss

the extension to an interpreter that conserves layout in a specific manner.

The ASF+SDF interpreter takes as input parse trees of both the term and the set

of equations. We explicitly do not use some abstract term representation, because we

need access to all information that is present in the input. The parse trees are slightly

modified, discarding all layout nodes from the parse trees of both the equations and the

term. This is an easy and efficient method to ignore layout. The efficiency benefit is

due to the ATerm library on which the parse trees are built (Section 7.2.1). Without the

layout nodes and with maximal sharing, term equality can be decided by single pointer

comparison.

The rewriter operates on these stripped parse trees as an ordinary rewriting engine.

Based on the outermost function symbol of some sub-term the appropriate set of rewrite

rules (with the same outermost function symbol in the left-hand side) is selected. If the

left-hand side matches, variables are instantiated by this match. Then the conditions

are evaluated one-by-one using the instantiated variables. Along with the evaluation

of the conditions new variables are instantiated. If the evaluation of all conditions is

successful, the reduct is built by instantiating the variables in the right-hand side of an

equation. This reduct replaces the old sub-tree that was matched by the left-hand side

of the equation.

We have experimented with a straightforward rewriting with layout algorithm,

which proofs to be sufficient. We modified our rewriter in three ways such that it is

145

Rewriting with Layout CHAPTER 7

�

✁

✂

✄

Term

Left-hand side

t

t

Bool LAYOUT "or" LAYOUT Bool -> Bool {left}

Bool LAYOUT "or" LAYOUT Bool -> Bool {left}

"true" -> Bool [\t-\n\] -> LAYOUT

[o] [r] -> "or"

[\t-\n\] -> LAYOUT "false" -> Bool

"true" -> Bool [\t-\n\] -> LAYOUT

[o] [r] -> "or"

[\t-\n\] -> LAYOUT "Bool"[0-9]* -> Bool

[t] [r] [u] [e] -> "true"

r u e \n o r

[f] [a] [l] [s] [e] -> "false"

f a l s e

[t] [r] [u] [e] -> "true"

o r

...

r u e B o o l

Figure 7.6: Matching the parsed term in Figure 7.3 to the parsed left-hand side of rule

[or-1] in Figure 7.5. The dotted lines depict matches of layout nodes.

no longer necessary to discard the layout before rewriting:

☎
Equality is implemented modulo layout.

☎
Matching is implemented modulo layout.

☎
For construction, the layout of the right hand sides is reused.

To implement abstraction from layout, term equality can no longer be implemented

as pointer equality. An almost full traversal of both trees is now needed to decide term

equality. In Section 7.4 we will show what performance penalty is paid now that we

need to look deeper for equality modulo layout.

To implement matching modulo layout, the matching algorithm is adapted to iden-

tify two classes of nodes: normal nodes and layout nodes. We use a fixed non-terminal

(LAYOUT) to decide which nodes define layout. Normal nodes can be matched as

usual, when the productions are equal. Layout nodes are defined to always match,

completely ignoring their actual contents. This effect is illustrated by the example in

Figure 7.6. Two parse trees are matched by comparing their top node. If their pointers

identities are completely equal, we can stop early (maximal sharing). We can also stop

if the productions are unequal. If the productions are equal, the match continues re-

cursively. Variables match any subtree of the same top sort. Any two compared layout

nodes always match, which implements abstraction from layout.

Finally, the layout occurring in the right-hand side of a successful equation is just

left in the normal form. Which effectively means that it is inserted in the reduct. In this

way the specification writer can influence the layout of the constructed normal form by

formatting the right-hand side of an equation manually.

Note that a logical consequence of this approach is that no layout is conserved from

sub-terms that are matched by the left-hand side of an equation. Note that the values

of any instantiated variables (sub-terms) do conserve their original layout. So, the new

algorithm conserves layout where nothing is rewritten. Where parse trees are rewritten

layout is lost permanently, and replaced by the layout of reducts.

146

SECTION 7.3 Rewriting with Layout

�

✁

✂

✄

module BoolList

imports Booleans

exports

sorts List

context-free syntax

"[" Bool ";"* "]" -> List

variables

"Bools"[0-9]* -> ✟ Bool ";" ✠ *
equations

[set-1] [Bools1 ; Bool ; Bools2 ; Bool ; Bools3] =

[Bools1 ; Bool ; Bools2 ; Bools3]

Figure 7.7: An extension of the Boolean syntax and an equation with list variables.

7.3.2 Rewriting lists

A characteristic feature of ASF is list matching. List matching (also called associa-

tive matching) enables the specification writer to manipulate elements of a list in a

concise manner. The manipulation of the list elements is performed via so-called list

patterns, in such a list pattern the individual list elements can be addressed or sublists

can be matched via list variables. List matching may involve backtracking. However,

the backtracking is restricted to the scope of the rewrite rule in which the list pattern

occurs. The possible matches are strictly ordered to enforce deterministic and finite

behavior. ASF+SDF supports two variants of lists: lists without separators and lists

with separators. A ’*’ indicates zero or more elements and a ’+’ indicates that the list

should contain at least one element. For example: A* is a list of zero or more ele-

ments of sort A and ✡ B ";" ☛ + represents a list of at least one element of sort B. The

B elements are separated by semicolons.

The ASF+SDF specification in Figure 7.7 demonstrates the use of list matching

in an equation. This equation will remove all double occurring Bool terms from any

List. Two equal Bool elements of the list are matched anywhere in between the

sublists Bools1, Bools2 and Bools3. On the right-hand side, one of the instances

is removed.

The interpreter implements list matching by means of backtracking. Given a term

representing a list and a list pattern all possible matches are tried one after the other un-

til the first successful match and a successful evaluation of all conditions. Backtracking

takes only place if more than one list variable occurs in the list pattern.

The list matching algorithm needs some adaptation to deal with layout properly.

There are layout nodes between every consecutive element (or separator) in a list.

When constructing a sublist to instantiate a list variable these layout nodes have to

be incorporated as well.

Special care is needed when constructing a term containing a list variable. If such

list variable is instantiated with a sublist consisting of zero elements, the layout occur-

ring before and/or after this list variable must be adapted to ensure the resulting term is

147

Rewriting with Layout CHAPTER 7

�

✁

✂

✄
1

10

100

1000

10000

100000

1e+06

10 12 14 16 18 20 22 24 26

T
im

e
 (

s
)

n

Normal ASF interpreter
ASF interpreter with layout

ELAN interpreter
Maude interpreter

Figure 7.8: Timing results for the evalsym benchmark.

well formed with respect to layout again.

Suppose we want to normalize the term [true; true] given the specification

presented in Figure 7.7. The left-hand side of rule set-1 matches with this term

resulting in the following variable substitutions: Bools1 ✥ ε, Bool ✥ true, Bools2 ✥ ε,

Bool ✥ true, and Bools3 ✥ ε, where ε represents the empty list. A naive substitution

of the variables in the right-hand side of set-1 would result in: [; true ; ;].

The interpreter must dynamically check whether a list variable represents an empty list

and decide not to include the redundant separators and layout that occur immediately

after it.

Note that it is never necessary for the rewrite engine to invent new layout nodes, it

reuses either the layout from the term, or from the right-hand side of an equation. In

our example the resulting term will be [true].

7.4 Performance

How much does this rewriting with layout cost? Is this algorithm still applicable in

industrial settings? There are three issues which have a negative influence on the per-

formance:

☎ Matching and equality are more expensive because due to layout nodes the num-

ber of nodes roughly doubles in every term.

☎ The type of each node needs to be inspected to distinguish between layout nodes

and normal nodes.

148

SECTION 7.4 Performance

�

✁

✂

✄
1

10

100

1000

10000

100000

1e+06

10 12 14 16 18 20 22 24

T
im

e
 (

s
)

n

Normal ASF interpreter
ASF interpreter with layout

ELAN interpreter
Maude interpreter

Figure 7.9: Timing results for the evaltree benchmark.

☎
Equality testing is more expensive because tree traversal is needed, with com-

plexity O ✒✪✩ nodes ✘ , as opposed to testing for pointer equality which is in O ✒ 1 ✘ .
In order to get insight in the relative performance of rewriting with layout we com-

pare the time and memory usage of the classical ASF interpreter and the layout pre-

serving interpreter. Furthermore, we have run the benchmarks on interpreters of other

rule based systems, like ELAN [24] and Maude [58] as well to provide the reader with

a better context. Note that for higher execution speed both the ELAN system and the

ASF+SDF Meta-Environment also provide compilers, which we do not consider. We

have used two simple benchmarks based on the symbolic evaluation of expressions 2n

mod 17: evalsym and evaltree. These benchmarks have been used before for

the analysis of compiled rewriting systems in [33]. We reuse them for they isolate the

core rewriting algorithm from other language features. All measurements have been

performed on a 450 MHz Intel Pentium III with 256 MB of memory and a 500 MB

swap disk.

The evalsym benchmark The evalsym benchmarks computes 2n mod 17 in a

memory efficient manner. Its memory complexity is in O ✒ 1 ✘ for all bench-marked

interpreters. From this benchmark we obviously try to learn what the consequences of

rewriting with layout are for time efficiency.

The results for this benchmark are in Figure 7.8. The value of n is on the X-axis, and

time in seconds on an exponential scale on the Y-axis. The different implementations

of rewrite systems all show the same time and memory complexity behavior. Rewriting

with layout is a multiplicative factory (1 ✔ 5) slower. So, we pay a 50% time penalty for

149

Rewriting with Layout CHAPTER 7

�

✁

✂

✄
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

14 16 18 20 22 24

M
e
m

o
ry

 (
k
b
)

n

Normal ASF interpreter
ASF interpreter with layout

ELAN interpreter
Maude interpreter

Figure 7.10: Memory profiling results for the evaltree benchmark.

rewriting with layout. But this does not change the relative speed to the other systems

much. The ASF+SDF system still runs about as fast as the ELAN system.

The evaltree benchmark The evaltree algorithm generates a huge amount of

terms. Real world source code transformations usually involve enormous terms. There-

fore scaling up to large terms is an important aspect to source code transformation. So

in this benchmark we focus on the space complexity behavior of rewriting with layout.

The results for this benchmark are in Figures 7.9 and 7.10. The ASF+SDF system

uses a constant amount of memory, while the other systems show exponential growth in

memory usage. This is due to maximal sharing. Obviously, any extra memory allocated

for layout is insignificant. Again, we pay a structural 50% time penalty for reducing

with layout and the relative speed is not affected significantly.

7.5 Experience

An interpreter for rewriting with layout, as described above, has been in use for several

years as the standard ASF interpreter. As such it has been applied to a number of

industry sized COBOL renovation applications, for example as described by Veerman

[153]. In practice, it was observed that for these applications the speed of the interpreter

is acceptable. It scales to large applications, but it could be faster. There is obvious

room for improvement, for example by implementing the same algorithm in the ASF

compiler.

150

SECTION 7.6 Conclusions

On the other hand, the conservation of layout was considered nice, but certainly

not optimal. Some layout is still lost, which is unacceptable for many applications,

especially when source code comments disappear. A method for propagating layout in

a selective manner is missing.

Using the same interpreter for completely different application areas also proved

to be beneficial, since the readability of output data is far better without the need for a

pretty printer. However, for some computationally intensive applications, the overhead

for rewriting with layout is too big.

7.6 Conclusions

We have investigated the application of term rewriting to a particular application do-

main: software renovation. In particular how we can preserve and even investigate

whitespace and source code comments while using term rewriting to implement a trans-

formation.

We have investigated the conservation of layout, whitespace and source code com-

ments, during a term rewriting process. A few minimal adaptations were made to the

ASF interpreter. It has been applied with success, and appears to be 50% slower.

The resulting rewriting engine has been used in large software renovation applica-

tions. We will tackle shortcomings that these applications have identified in Chapter

8.

151

Rewriting with Layout CHAPTER 7

152

C H A P T E R 8

First Class Layout

The lightweight extension to term rewriting presented in Chapter 7 offers

layout conservation during rewriting, while the rewrite rules can still ig-

nore it. However, not 100% of the whitespace and source code comments

can be retained, and the technique does not cover software renovation ap-

plications that deal explicitly with whitespace or source code comments.

This chapter proposes extensions to ASF+SDF to make “rewriting lay-

out” possible, without sacrificing the ability to ignore it whenever that is

appropriate. We introduce two modes of operation: ignoring or utilizing

layout. A notation to compose and decompose complex lexical structures

in a syntax safe manner is also provided.

We have conducted a case study in which the correctness of source code

comments is checked against automatically extracted facts. We have a

large embedded software system written in the C programming language,

that employs a corporate comment convention for documenting the be-

havior of each function. A simple analysis of the comments automatically

measures the quality of these annotations, and pinpoints the causes of any

inconsistencies.1

8.1 Introduction

Several case studies into the application of source code transformations have revealed

that programmers, and even companies, require that the transformations are high-

fidelity [165]. This means that the exact set of different characters between the source

and target program contains only the intended changes of the transformation. Other

unwanted changes would be for example:

☎ Changes in the layout of the program, missing or added spaces and newlines,

☎
Disappearing source code comments,

☎ Normalization of complex expressions to more simple ones, e.g., removal of

unnecessary brackets.

1This chapter has not been published outside this thesis.

153

First Class Layout CHAPTER 8

Such changes are unwanted because they enlarge the difference between versions of a

program without contributing to any quality attribute: they are simply noise. Moreover,

they might violate corporate coding conventions.

Chapter 7 described the basic utility needed for high-fidelity transformations: fully

informative parse trees. This solution is now commonly used in ASF+SDF applica-

tions, e.g., [153], as well as by other source code transformation systems [169, 165, 13].

However, this is not enough. Layout and source code comments are still lost or changed

unintentionally. Much more precision is required to be able to deal with the unexpected

effects of source code transformation.

More precision for dealing with layout and source code comments is also required

for source code transformations that particularly focus on layout. In this area the layout

or comments are the objects of interest instead of the program itself. Examples of this

are literate programming tools, such as javadoc, and pretty printing tools, such as

indent and jindent. How can we add more precision to ASF+SDF regarding lay-

out to cover both high-fidelity source code transformation and layout transformation?

We list some hypothetical use cases of ASF+SDF that illustrate our intent:

☎ The layout of a program may be irrelevant for certain applications of ASF+SDF.

For example, a documentation generator that transforms a set of programs to a

call graph should completely ignore all layout.

☎ Source code comments are used as documentation, which must not be lost during

a software renovation process. For example, an upgrade project that updates

Visual Basic applications to the next version.

☎
Layout or source code comments are to be utilized explicitly during analysis and

transformation of source code. For example, when dealing with layout sensitive

languages such as Make, or Python, to exploit coding conventions (javadoc), or

to generate documentation with generated code.

☎ Whitespace can be used to analyze, produce or even mimic formatting conven-

tions. For example for authorship analysis of source code, or to implement

“pretty printing by example”, which can be found in the Eclipse IDE.

In this chapter we will add a generic notation to ASF+SDF that can handle all of the

above, and any other unforeseen applications that also deal with layout. As in the

previous chapter, we will use the term layout to denote both whitespace and source

code comments.

The goal of this work is to provide an object language independent solution for

dealing with layout in source code transformations in a convenient and precise manner.

However, to make the following more concrete we first discuss a real-world application

in the C programming language.

8.2 Case study: a corporate comment convention

We have studied a component of a large scale embedded software system written in

the C programming language. The owner of this code has consistently made use of

154

SECTION 8.2 Case study: a corporate comment convention

�

✁

✂

✄

int unflatten_type_string(

const char *type_string,

const int length,

type_description *desc,

char **remaining_type_string)

/* Input(s) : type_string

* string width a type description

* length

* length of type_string (in bytes)

* Output(s) : desc

* parse result of type_string

* remaining_type_string

* pointer to first byte not parsed

* NOTE: set parameter to NULL if

* not interested in this value

* InOut(s) : <none>

* Returns : error code

* OK: Function successful

* PARAMETER_ERR: Parameter error

* ENCODING_ERR: Error in type string

* MEMORY_ERR: Memory allocation error

* Purpose : Parse a type string into a structured

* type description

*/

✟
...

return OK;

✠

Figure 8.1: An example C function definition with its usage in comments. This function

was extracted from an industrial system. The identifiers in the code have been changed

to hide the owners identity.

a comment convention to clarify it. Each function is accompanied with a piece of

comment to explain its input and output parameters and their typical usage. Also,

many formal parameters are qualified with const to indicate that their by-reference

values are never to be changed. Figure 8.1 shows an example.

Such comments are extremely helpful for code understanding, since the usage of a

function may not be immediately clear from the declaration of the formal parameters.

This is due to the different intentions a C programmer might have when using a pointer

type for a parameter, for instance:

☎ The parameter is an output variable.

☎
The parameter is an input value (by reference).

☎
The parameter is an array of inputs.

155

First Class Layout CHAPTER 8

☎ The parameter is an array of outputs.

These intentions are not mutually exclusive, and can be made harder to understand by

the use of nested pointer types. The use of the const qualifier alleviates this problem,

since it documents that the parameter will not change, and the compiler actually asserts

this qualification. However, a parameters that does not use the const is not always an

output parameter. Another complication is that it is not always decided locally, in the

function body, which of the above intentions occurs. Pointer values may be passed on

to other functions. The comment convention immediately clarifies which of the above

is the intended interpretation of a pointer parameter.

Unlike the const qualifier, the C compiler can not check the validity of source

code comments. So, after the code has been maintained for a while, they might be

out-of-date. The same holds for other aspects of the source code, such as parameter

checking code and error handling. As the code evolves these aspects might be become

inconsistent with corporate conventions, or they may be plainly wrong. This is the dis-

advantage of idiomatic coding conventions, as opposed to using more strictly enforced

built-in language features.

As part of a larger re-engineering effort, a reverse engineering tool was applied to

the software system we discussed. This tool computes from the code, among other

things, which are the input and output parameters of each function [54]. The goal of

this project was to separate common aspects of C functions into separate modules using

aspect-oriented programming [97]. Here we will complement this fact extraction tool

by also mining the information stored in source code comments.

Formalizing the syntax of comment conventions and extracting information from

them would be a natural application of ASF+SDF. We can first define the syntax of a

convention in SDF, and then extract the necessary information using ASF. In order to

be able to write the extractor, we will need to be able to access layout explicitly. The

following sections first describe how we generalize the treatment of layout. Application

to the above case is presented in Section 8.8

8.3 Requirements of first class layout

The general idea is that layout will be parsed and rewritten like any other program

structure. However, layout is still exceptional as compared to other program structures

for two reasons. Firstly, it must be ignored when we are not interested in it. For

example, in Figure 8.1 we are interested in the comment between a functions header

and its body, but we want to ignore the particular layout of the parameters.

Secondly, an overall consideration is to have syntax safe analysis and transforma-

tion. A syntax safe program statically guarantees that both its input and output are

defined by a context-free grammar. For grammatical reasons layout is usually defined

using a lexical syntax definition. This is either for parser efficiency, or to prevent

nested comments, or for dealing with other kinds of syntactical complexities. For the

sake of simplicity lexical syntax is traditionally represented by flat lists of characters

(tokens) in source code transformation systems such as ASF+SDF and StrategoXT. In

these systems, the programmer can use arbitrary string matching and string construc-

156

SECTION 8.4 Requirements of first class layout

tion functionality to analyze or transform the tokens of a language. The result is loss

of precision and loss of static syntax safety.

The above two issues lead to the following requirements:

R1 We should provide full syntax safety and precision for dealing with layout, even if

layout is defined using lexical syntax. We could then guarantee for example that

each C comment starts with /* and ends with */.

R2 The programmer should to be able to choose between ignoring layout, and utilizing

layout. This would allow her to abstract from irrelevant details, and still allow

to focus on layout when necessary. Within a single application, ignoring and

utilizing layout may be used in concert.

R3 When ignoring layout, we want to either discard it completely for efficiency, or

preserve it with as much automation as possible. In other words, for reasonably

high-fidelity transformations, ASF+SDF may implicitly preserve layout during

a transformation that is ignored by the programmer.

R4 When utilizing layout, the programmer should be able to explicitly consume, pro-

duce, or propagate it. She can consume layout in order to analyze it, and produce

it as part of a transformation. Propagating layout, by consuming it from the in-

put and then reproducing it somewhere in the output can be used to make full

high-fidelity transformations.

Three aspects need to be tackled in order to make layout a “first class citizen” that

meets the above requirements:

Run time environment: How to represent layout in a structured and syntax safe man-

ner in the run-time environment of ASF+SDF (R1)? How to represent the dif-

ference between ignoring layout and explicit utilization of layout (R2)?

Syntax: What is the ASF+SDF notation for first class layout (R4)? How to differenti-

ate on a notational level between ignoring layout and utilizing layout (R2)?

Compilation: How to parse the new notation and how to map it to the internal repre-

sentation? How to to guarantee syntax safety all the way (R1). How to deal with

implicit layout preservation R3?

To provide a background for the following, we include an overview of the imple-

mentation of ASF+SDF in Figure 8.2. For each source code transformation both a

parser and a rewriter are generated from an ASF+SDF description. Generating the

rewriter takes an extra step through the SDF parse generator because the ASF equa-

tions use concrete syntax. There are two ways for obtaining a rewriting engine, either

directly interpreting ASF, or first compiling ASF to a dedicated rewriter. We have

included an ASF normalizer in this picture, which will be the main vehicle for imple-

menting first class layout in ASF+SDF.

We first describe fully structured lexicals, then how to deal with the difference

between ignoring and utilizing layout and finish with the changes in the type system of

ASF+SDF needed to obtain static syntax safety.

157

First Class Layout CHAPTER 8

�

✁

✂

✄

ASF+SDF

SDF SDF
Parser

ASF

ASF
Parser

SDF
Normalizer

Parser
Generator

SDF
Normalizer

Parser
Generator

Source code
Parser

Add
ASF

Syntax

Rewriting
Engine

ASF
Normalizer

ASF
Compiler

Input
 source code

Output
 source code

Source code
Unparser

Figure 8.2: The “language parametric” architecture of ASF+SDF.

�

✁

✂

✄

Boolean LAYOUT "|" LAYOUT Boolean -> Boolean

BoolCon -> Boolean <LAYOUT-VAR> -> LAYOUT [\|] -> "|" "%" ~[\%]+ "%" -> LAYOUT <Boolean-VAR> -> Boolean

"true" -> BoolCon

[t][r][u][e] -> "true"

t r u e

"$L" -> <LAYOUT-VAR>

[\$][L] -> "$L"

$ L |

[\%] -> "%"

~[\%]+

[\%] -> "%"

% %c o m m e n t

"Bool" -> <Boolean-VAR>

[B][o][o][l] -> "Bool"

B o o l

Figure 8.3: A fully structured parse tree of a string containing both a layout variable

and a source code comment.

8.4 Fully structured lexicals

To fulfill the requirements of precision and syntax safety, we propose to have to have a

fully structured representation of lexical syntax. Remember that most layout is defined

using lexical syntax in practice. This feature appears straightforward, but a number of

issues arise on both the notational level and the type-system level of ASF+SDF.

8.4.1 Run time environment

We define the syntax of layout using production rules in SDF. There is no principal dif-

ference between lexical productions, layout productions, and context-free productions

in SDF: they are all grammar productions. Except, the symbols of each context-free

production are interleaved with the LAYOUT non-terminal (See Section 7.1).

Any syntax production in SDF can be either a lexical, context-free or variable pro-

158

SECTION 8.4 Fully structured lexicals

�

✁

✂

✄

lexical syntax

"/*" (˜[*] | Star)* "*/" -> LAYOUT

[*] -> Star

[\t\n\r\] -> LAYOUT

lexical restrictions

Star -/- [\/]

context-free restrictions

LAYOUT? -/- [\t\n\r\]

lexical variables

"L"[0-9]* -> LAYOUT

"Contents"[0-9]* -> (˜[*] | Star)*

Figure 8.4: The whitespace and comment conventions of C, with meta variables.

duction, and either layout or non-layout, which amounts to six types of productions that

might occur in a parse tree. These types have no different semantics at parse time, but

might be processed differently at rewriting time. The parse trees produced by the parser

naturally contain the full structure of a program, with details down to the structure of

lexical syntax, and thus also the structure of source code comments and whitespace.

For example, Figure 8.3 contains a parse tree of %comment%, structured as a list of

characters that are not a % sign, surrounded by two % signs.

8.4.2 Syntax

We will now define a notation for the parse tree structures described above. To define

them why not use their concrete syntax? This is not feasible for syntactical reasons.

Layout syntax, or any lexical syntax in general, usually does not allow straightforward

decomposition, which will become clear by the following example.

In reality, layout definitions can be quite complex. As a running example, Figure

8.4 defines the whitespace and comment conventions of C unambiguously and accord-

ing to the ANSI standard. The lexical restriction prohibits the nesting of */ inside a

comment. It declares that Star may not be followed by a /. The context-free restric-

tion denotes a longest and first match on optional layout. Together with the production

rules, these disambiguation rules encode the ANSI C standard. We have added some

meta variables that will be used later to define patterns over this syntax.

This real world example serves to show the complex nature of layout syntax. Sim-

ply having concrete syntax as a notation for layout patterns is not the answer. Imagine

a layout variable that matches the internals of a C comment using concrete syntax:

/* Contents */. We intend to deconstruct the comment into the opening and clos-

ing braces, and the contents. It is unclear whether the spaces around Contents are to

be taken literally. Do we mean only comments that have them match this pattern, or are

they to be ignored? Do we want to match the C comment that has the word Comment

in it literally, or is Comment a meta variable? It is even possible that a language

enforces disambiguation rules that make the definition of variable syntax completely

impossible. The reason is that any “longest match” disambiguation contradicts decon-

159

First Class Layout CHAPTER 8

�

✁

✂

✄

equations

[remove-any-newlines-after-if]

if L1 layout(\n) L2 (Expression) Statement =

if L1 L2 (Expression) Statement

[break-long-comments-and-introduce-stars]

width(layout(/* Contents1 */)) > 72 == true

===

layout(/* Contents1 Contents2 */) =

layout(/* Contents1 \n star(*) Contents2) */

Figure 8.5: Example equations using prefix notation for matching and constructing

layout nodes.

struction.

This discussion is valid for any lexical syntax definition. Decomposing lexical or

layout syntax using concrete syntax is not possible in general, because lexical syntax

does not naturally decompose into mutually exclusive syntactic entities. Adding syntax

for variables to be able to write patterns even further complicates a grammar, and its

ambiguities.

If we let go of concrete syntax we can provide a less elegant, but nevertheless

simple declarative notation. Figure 8.5 shows examples of a notation that will serve

our purposes. This prefix notation with escaped characters will be syntactic sugar for

concrete syntax patterns. Each pattern written in prefix notation, corresponds to exactly

one hypothetical pattern in concrete notation. This one-to-one correspondence is the

vehicle for ensuring syntax safety, as will be become apparent in the following section.

Take for example the equations shown in Figure 8.5. For the purpose of presenta-

tion we will ignore all spaces in this example, and consider only the readable notation.

We will deal with the difference between ignoring and utilizing layout later. The first

equation in Figure 8.5 matches any C conditional that has a newline somewhere in be-

tween the if keyword and the open parenthesis, and subsequently removes this new-

line. The second equation uses list matching to split up the characters in a C comment

in two arbitrary non-empty parts. When the width of the first part can be longer than

72 characters, we introduce a newline, a space and a * in between the two parts. The

definition of the width function is not shown here.

8.4.3 Compilation

We will parse the prefix syntax that example 8.4 introduced, then translate the result-

ing parse trees to obtain parse trees that correspond to concrete layout patterns. To

remain syntax safe, care must be taken that the prefix notation is isomorphic to the

parse tree that is computed from it. If a prefix pattern does not contain any variables,

it corresponds exactly to a concrete pattern. Parsing the prefix pattern and translating

it, should yield the parse tree of the corresponding concrete sentence as if produced by

the parser. Figure 8.6 displays how we obtain this isomorphism:

160

SECTION 8.4 Fully structured lexicals

�

✁

✂

✄

grammar:
"/*"..."*/" -> LAYOUT

grammar + variables:
"$var" -> ...

user adds

variables

example:
/* hi */

defines

grammar + constructors:
layout("/*"..."*/") -> LEXCONS[[LAYOUT]]

LEXCONS[[LAYOUT]] -> LAYOUT

Add

ASF Syntax

pattern:
/*$var*/

match pattern:
layout(/* $var */)

defines

parse tree parse tree

/* */

Rewriting Engine

matches and rewrites parse trees

h i

/* $var */

ASF Normalizer

translates prefix notation to lexical trees

layout (/* $var /*)

Figure 8.6: A sketch of the introduction of prefix layout notation on the grammar level,

and the mapping back to original layout on the parse tree level.

1. The user inputs a grammar, including the definitions of lexical and layout syn-

tax. He then extends the grammar with syntax for variables that range over the

syntactic categories (non-terminals) in the grammar (Figure 8.4).

2. The Add ASF Syntax tool generates a fresh context-free production for each

lexical production, and replaces each lexical variable by a context-free variable.

The idea is to generate a context-free grammar that mimics the exact structure of

the original lexical grammar. Figure 8.7 contains an example. The tool follows

the following steps:

☎ The left-hand sides of all lexical productions L -> R are prefixed with a

name and surrounded by brackets. The result is r "(" L ")" -> R.

The name, r, is automatically generated from the original non-terminal

name, by replacing all uppercase characters by lowercase characters.
☎ All occurrences of any lexical non-terminal N are renamed by wrapping it

with a parameterized symbol to obtain LEXCONS[[N]].
☎ For every wrapped non-terminal N a production is added:

LEXCONS[[N]] -> N.
☎

For every character class C that was wrapped by LEXCONS a new produc-

tion is added: CHARACTER -> LEXCONS[[C]].
☎ The resulting productions are put in a context-free syntax section.

Note that the effect of this is that the LAYOUT will be inserted in the

left-hand sides of the generated productions.
☎ For every lexical variable that ranges over a character class C, its right-

hand side is changed to LEXVAR[[C]], and a production is added:

LEXVAR[[C]] -> CHARACTER.

161

First Class Layout CHAPTER 8

�

✁

✂

✄

context-free syntax

"layout" "(" "/*"

(LEXCONS[[˜[*]]] | LEXCONS[[Star]])*

"*/" ")" -> LEXCONS[[LAYOUT]]

"star" "(" LEXCONS[[[*]]] ")" -> LEXCONS[[Star]]

"layout" "(" LEXCONS[[[\t\n\r\]]] ")" -> LEXCONS[[LAYOUT]]

context-free syntax

CHARACTER -> LEXCONS[[˜[]]]

CHARACTER -> LEXCONS[[[*]]]

CHARACTER -> LEXCONS[[[\t\n\r\]]]

LEXCONS[[LAYOUT]] -> LAYOUT

LEXCONS[[Star]] -> Star

variables

"L"[0-9]* -> LEXCONS[[LAYOUT]]

"Contents"[0-9]* -> (LEXCONS[[˜[*]]]) | LEXCONS[[Star]])*

context-free syntax

LEXVAR[[[\t\n\r\]]] -> CHARACTER

LEXVAR[[˜[*]]] -> CHARACTER

Figure 8.7: The syntax defined in Figure 8.4 is embedded in a prefix notation, preserv-

ing all non-terminals by embedding them in the parameterized non-terminal LEXCONS.

☎ Every lexical variable that does not range over a character class, but over a

non-terminal N, is changed to range over LEXCONS[[N]]

☎ The resulting variable productions are put in a context-free variables sec-

tion.

3. The resulting syntax definition can be used to generate a parser for ASF equa-

tions that use the prefix syntax.

4. The counterpart of step 2. The resulting parse trees are translated to remove

all syntactic sugar that was introduced by the “Add ASF Syntax tool”. This

is done by the “ASF Normalizer” tool. It implements exactly the inverse of

the operations that have been applied in step 2, in order to obtain parse trees

over lexical productions. It throws away the LAYOUT trees, removes the prefix

name and the brackets, restores all original non-terminal names by removing

the LEXCONS and LEXVARS wrappers. Finally, it replaces parse trees over the

CHARACTER non-terminal by the actual characters these trees represent. The

resulting parse trees correspond exactly to parse trees over the original lexical

productions that occurred in the user defined syntax.

5. A normal rewriter can now be generated which matches terms that have been

parsed directly using the original grammar with the patterns that have been pro-

duced via the route described above.

An important difference with concrete syntax is that all characters will have visible

notations instead of invisible ones. This syntax is defined by the generic CHARACTER

162

SECTION 8.5 Type checking for syntax safety

�

✁

✂

✄

lexical syntax

[A-Za-z0-9\-] -> Dashed

[A-Za-z0-9_] -> Underscored

lexical variables

"Common" -> [A-Za-z0-9]

context-free syntax

translate(Dashed) -> Underscored

equations

[A] translate(dashed(Common)) = underscored(Common)

[B] translate(dashed(\-)) = underscored(_)

Figure 8.8: An example ASF+SDF specification that employs lexical constructor func-

tions and sub-typing of character classes.

non-terminal. For example, a newline will be written as \n. As a result the invisible

characters can be used again to decompose a pattern into parts, which was not possible

in the concrete syntax notation (see Section 8.6.2). The ASF normalizer tool takes care

of replacing the visible notation with the actual characters (Step 4).

In the current first order type system of ASF+SDF, fully structured lexical syntax is

very restrictive. It does not allow to transport characters from one class into the other.

For example, the first occurrence in meta variable Common in Figure 8.8 is not allowed

since its type is [A-Za-z0-9], and not [A-Za-z0-9\-]. The “Add ASF Syntax”

tool circumvents this limitation by changing the non-terminals that lexical variables

range over. If a lexical variable ranges over a character class, a new non-terminal

is introduced (see Step 2), and this non-terminal is accepted by CHARACTER. As a

result, lexical variables that range over character classes directly, are accepted at all

places where CHARACTER is accepted. Now a lexical variable can be used to transport

single characters from one place to the other regardless of the character class they

belong to. As a result, syntax safety is no longer guaranteed, but at least the structure

down the individual characters is isomorphic to the original characters. Now, we will

design a simple type system that can statically verify syntax safety for the individual

characters too.

8.5 Type checking for syntax safety

We relaxed the generated ASF+SDF grammars such that a variables ranging over char-

acter classes where accepted by every character class. This freedom must now be

slightly restricted to guarantee syntax safety.

Previous implementations of ASF+SDF, that employed flattened tokens, did not

guarantee syntax safety on the lexical level. Checking syntax safety would have re-

quired a general parsing algorithm at rewriting time to recover the structure of lexicals,

which would have introduced both an efficiency bottleneck and unwanted tangling of

parsing and rewriting functionality.

163

First Class Layout CHAPTER 8

8.5.1 Type checking

We will use a partial ordering on character classes. When a character class A is equal

to or less than another class B, we will accept variables that range over A at locations

where B occurs. Any other derivations are type incorrect. Any A that is not less than

or equal to B will not be accepted at B locations. Since character classes can be repre-

sented by sets of characters, we can use the subset relation to define the partial ordering:

A ✫ B ✬ chars ✒ A ✘✮✭ chars ✒ B ✘ , where chars ✒ C ✘ produces the set of characters that a

character class C represents. In other words, A is a subtype of B when all characters of

A are in B.

Now, the example in Figure 8.8 is type correct, since [A-Za-z0-9] is a subset of

both [A-Za-z0-9\-] and [A-Za-z0-9_]. The sub-typing on character classes

ensures syntax safety, and still allows for carrying characters from one class to another.

When translating between character classes, the programmer will have to be just precise

enough to satisfy the sub-typing relation.

This type checking can be done by the ASF normalizer. For all characters and

variables that range over character classes, the above sub typing relation should be

checked. Any violation should be reported as an error. It detects character class vi-

olations in closed patterns, and check sub typing violations for variables that range

over character classes. Since the structure of the lexical trees is specific down to the

character level, only very localized and efficient character class inclusion checks are

necessary.

8.5.2 Matching

The matching algorithm must also take the sub-typing relation into account. It should

guarantee, at rewriting time, that never a character is bound to a variable that ranges

over a class that does not contain the character. For the example in Figure 8.8, this

means that equation [A] should not match with translate(-), because - is not in

the [A-Za-z0-9] class that Common ranges over.

We implement this test by automatically introducing a condition for every character

class variable. The condition will dynamically check the if a character is an element

of the character class. This is another feature of the ASF normalizer. If all equations

guarantee that all variable bindings are correct in this above manner, then all ASF+SDF

programs can be statically guaranteed to be syntax safe.

8.6 Ignoring layout

After dealing with structured lexicals and syntax safety, our second requirement is to

be able to distinguish between ignoring layout and utilizing layout.

8.6.1 Run time environment

For ignoring layout during term rewriting, but preserving it anyhow, the solution is to

automatically introduce meta variables in the parse trees of matching and constructing

164

SECTION 8.6 Ignoring layout

�

✁

✂

✄

context-free syntax

"_" "_" -> MyNonTerminal ✟ layout-bracket ✠
variables

"Exp" -> Expression

"Stat"[0-9]* -> Statement

lexical variables

"L"[0-9]* -> LAYOUT

equations

[A] if (!Exp) Stat1 else Stat2 =

if (Exp) Stat2 else Stat1

[B] if (!Exp) L1 Stat1 L2 else L3 Stat2 =

if (Exp) L3 Stat2 L2 else L1 Stat1

[C] if (Exp) layout(\n) Stat =

if (Exp) layout(\) Stat

[D] _ layout(\t) _ = _ layout(\) layout(\) _

Figure 8.9: Examples of differentiating between ignoring and utilizing layout.

patterns. The previous solution (Chapter 7) extended the matching machinery to know

the difference between layout and normal parse trees. This is not necessary anymore.

We will have meta variables at the points where the programmer indicated to ignore

layout.

These layout variables can be either introduced automatically, or put there by the

programmer. She can now utilize layout like any other information, consuming it by

matching layout trees and producing it by constructing layout trees. Propagating layout

is done by matching layout variables, and using them to construct new source code

patterns. Ignoring layout is taken care of by automatically introduced variables.

Note that equality testing modulo layout is still done by the procedure used in Chap-

ter 7. This algorithm still knows about the difference between layout parse trees and

other parse trees. What remains to be designed is a notation that corresponds to the

above described representation, and a compiler to map this notation to the representa-

tion.

8.6.2 Syntax

In order to distinguish between layout that must be ignored from layout that is to be

matched or constructed, we must introduce a syntactic notation. This notation will be

used to separate the interesting locations of layout from the uninteresting ones. We

propose to use the following rules for separating ignored layout from utilized layout,

which are demonstrated in Figure 8.9:

☎ Layout in concrete syntax is to be ignored. For example, equation [A] contains

only spaces. It swaps the branches of any negated C conditional regardless of

165

First Class Layout CHAPTER 8

what layout it has.

☎
Meta variables ranging over layout will not be ignored. For example, equation

[B] mimics [A] and also transports some of the layout. Note that the spaces

around each layout variable are ignored, L1 matches all layout between the clos-

ing bracket and the statement body.

☎
Layout expressed using lexical constructors will not be ignored. For example,

equation [C]matches only on C conditionals that have a single newline between

the closing bracket and the statement body. Any other layout of the conditional

is ignored.

☎ Layout wrapped by layout-bracket productions will not be ignored. A production

with the layout-bracket attribute can be used to express equations directly

over layout without any context. For example, equation [D] will rewrite all tabs

to two spaces.

The first rule allows for backward compatibility. It is also a convenient and minimal

notation when not interested in layout. The second and third rules are for convenience,

since a user that uses lexical constructors or uses layout variables is implicitly interested

in it. The fourth rule is necessary for completeness. If the above three implicit con-

venience rules do not apply, the user can always introduce an explicit notation for not

ignoring layout. She does this by defining a production with the layout-bracket

attribute, and using this notation to identify layout of interest.

8.6.3 Compilation

The compilation of the above notation is straightforward and will be located in the ASF

normalizer. All patterns in a specification can be divided into either matching patterns,

or constructing patterns. For example, the left-hand side of an equation is a matching

pattern, while the right-hand side is a constructing pattern.

☎
In all matching patterns, all layout trees that contain only concrete syntax, and

no layout variables, lexical constructors, or layout brackets, will be replaced by

a fresh variable ranging over LAYOUT.

☎
Similarly, in all constructing patterns we will replace layout trees that contain

only concrete syntax by a default parse tree of a space. Or, for higher fidelity,

we can reuse layout variables introduced in matching patterns using any kind of

heuristics.

☎
Matching and constructing patterns that contain layout variables, layout prefix

notation, or layout brackets will remain. Any layout in between any of those

classes of trees is removed.

☎
Applications of layout bracket production are removed from the parse trees be-

fore rewriting. Any “bracketed” tree is replaced by the child of the bracketed

tree. This is analogous to normal bracket productions for expression grammars

[32].

166

SECTION 8.8 Summary

To summarize, we generate fresh meta variables where the layout is ignored by the

programmer, and use the layout patterns that the programmer specified otherwise.

8.7 Summary

This concludes the description of first-class layout. Firstly, lexical syntax is now fully

structured in ASF+SDF. We introduced a prefix notation for constructing and decon-

structing lexical trees. To obtain full syntax safety, the type system and matching al-

gorithms of ASF+SDF were extended to accept sub typing between character classes.

Secondly, the difference between ignoring and utilizing layout is now made explicit by

the programmer, using layout variables, lexical constructors or layout brackets. The

key design decision was to make all information that is present in parse trees available

to the programmer, on demand. We can now apply standard term rewriting idioms for

analyzing the C source code of our case study.

8.8 Case study revisited

As described in Section 8.2, we have a medium sized C system to analyze. Each func-

tion should document its input and output parameters using comments. A prototype

tool for extracting the input and output parameters for each function from the actual

code is available [54]. It recognizes an output parameter if somewhere in the (inter-

procedural) control-flow of a function a new value could be stored at the address that

the parameter points to. The other parameters default to input parameters according to

the tool. There are three questions we would like to see answered by this case study:

Q1 Can we effectively extract information from the comments using lexical construc-

tor functions in ASF+SDF?

Q2 Are the source code comments in this particular system up-to-date with respect to

coding conventions and the actual state of the code?

Q3 Is the automated extraction of input and output parameters from the source code

correct?

8.8.1 Extracting information from the comments

We first defined an SDF definition of the comment convention. By inspecting a number

of example functions we reverse engineered the syntax. It is depicted in Figure 8.10.

In this definition we add an alternative grammar for comments, generated by the non-

terminal IO-Comment, that is more precise than the general C comment. Because

this more specialized grammar obviously overlaps with general C comments, we use

the SDF attribute ✡ prefer ☛ to choose for the more specialized comment whenever

possible (see Chapter 3).

An ASF specification will now accumulate the following information, using a

traversal function (see Chapter 6):

167

First Class Layout CHAPTER 8

☎ Which functions have IO-Comments between their header and their body,

which have comments not recognized as IO-Comments, and which have no

comment at all (Figure 8.11).

☎ If an IO-Comment is found between a function, lists of input, output and in/out

parameters.

The division into three classes of functions allows us to evaluate the quality of the

syntax definition for IO-Comments. When many functions are commented, but the

comments can not be recognized as IO-Comments the definition must be too precise.

We went through a number of grammar adaptations before the number of unrecognized

comments dropped below 1% of the total number of functions. We then adapted the

comments that were left unrecognized manually to enforce that they obey the layout

convention. Figure 8.11 shows how the extraction is implemented. The traversal func-

tion divide-functions visits all C function definitions. Each equation matches

a class of functions. The first matches functions that have IO-Comments between

the declarator and the functions body. The second equation matches functions that

have normal comments at the same location. The last equation stores the remaining

functions. The three equations each update a store that contains three sets of function

names.

Then we mined the IO-Comment trees for more specific information. By travers-

ing the trees and using pattern matching we extracted more basic facts. For example,

an input parameter can be identified by using the lexical constructor function for the

Inputs and Params non-terminals we defined (Figure 8.10). We applied the same

traversal scheme used before to divide functions into classes, to divide the parameters

of each function into three classes.

8.8.2 Comparing the comments with extracted facts

We show both the information extracted by the ASF+SDF specification, and the data

from the aforementioned reverse engineering tool in Table 8.1. The “Commented”

column displays information that was extracted from the source code comments, while

the “Coded” column displays information that was extracted from the actual code. The

upper part of the table summarizes the basic facts that have been extracted. It appears

that 45% of the parameters in the studied component have been commented.

We have obtained two independent sources of the same information. The oppor-

tunity arises to check the comments that have been put in manually, with the data that

was extracted from the source code. The comments might be wrong, as well as the

reverse engineering tool, or our comment extractor. By comparing the two sets of data,

a relatively small number of inconsistencies will appear that need to be checked and

fixed manually.

168

SECTION 8.8 Case study revisited

�

✁

✂

✄

lexical syntax

IO-Comment -> LAYOUT ✟ prefer ✠
lexical syntax

"/*" ✟ WS "*" ✠ * Definition+ "*/" -> IO-Comment

Inputs -> Definition

Outputs -> Definition

InOuts -> Definition

Returns -> Definition

Purpose -> Definition

Notes -> Definition

"Input(s)" WS ":" WS Params -> Inputs

"Output(s)" WS ":" WS Params -> Outputs

"InOut(s)" WS ":" WS Params -> InOuts

"Returns" WS ":" Description -> Returns

"Purpose" WS ":" Description -> Purpose

"Notes" WS ":" Description -> Notes

Param Line ([\]*[\t][\t] Param Line)* -> Params

Param ✟ WS "*" ✠ * -> Params

[A-Za-z_][A-Za-z0-9_]* -> Param

"<none>" -> Param

WS "*" [\t][\t][\t] Description -> Line

(Word | WS)* "*" -> Line

[\t\ \n]+ -> WS

˜[*\ \t\n]+ -> Word

[*] -> Star

Star -> Part

Word -> Part

WS -> Part

Part+ -> Description

lexical restrictions

Part -/- [\/]

Word -/- ˜[*\t\ \n]

WS -/- [\t\]

Figure 8.10: Syntax definition of a comment convention. An IO-Comment consists

of a list of definitions. Each definition starts with a certain keyword, and then a list of

parameters with a description. The syntax uses tab characters to separate which words

are parameters and which are words describing a parameter.

169

First Class Layout CHAPTER 8

�

✁

✂

✄

context-free syntax

Specifier* Declarator Declaration*

" ✟ " Declaration* Statement* " ✠ " -> FunctionDefinition

equations

[store-recognized-io-comments]

divide-functions(

Specifiers Declarator

L1 layout(IO-Comment) L2

✟ Decls Stats ✠ ,
Store)

=

store-elem(RecognizedComments,get-id(Declarator),Store)

[store-not-recognized-comments]

divide-functions(

Specifiers Declarator

L1 layout(Comment) L2

✟ Decls Stats ✠ ,
Store)

=

store-elem(UnRecognizedComments,get-id(Declarator),Store)

[default-store-uncommented-functions]

divide-functions(

Specifiers Declarator ✟ Decls Stats ✠ ,
Store)

=

store-elem(NotCommented,get-id(Declarator),Store)

Figure 8.11: The grammar production that defines C function definitions, and a func-

tion divide-functions, that divides all function into three classes: properly com-

mented, commented, and not commented. The store-elem function, which is not

shown here, stores elements in named sets. get-id retrieves the name of a function from

a declarator.

170

SECTION 8.8 Case study revisited

�

✁

✂

✄

Basic facts Commented Coded Ratio (%)

Lines of code — 20994 —

Functions 92 173 53%

. Void functions 18 21 85%

. Compared functions 74 152 49%

Input parameters 124 304 41%

Output parameters 95 190 50%

All parameters 219 494 45%

Raw inconsistencies Number Ratio (%) of basic facts

Not coded inputs 21 17% commented inputs

Not commented inputs 5 2% coded inputs

Not coded outputs 6 6% commented outputs

Not commented outputs 25 12% coded outputs

Raw summary Number Ratio (%) of basic facts

Inconsistencies 57 25% commented parameters

Inconsistent parameters 33 14% commented parameters

Inconsistent functions 24 32% commented funcs

Refined inconsistencies Number Ratio (%) of raw inconsistencies

Commented inputs as outputs 3 60% not commented inputs

Code has added inputs 2 40% not commented inputs

Commented outputs as inputs 21 84% not commented outputs

Code has added outputs 4 16% not commented outputs

Commented inputs as outputs 3 50% not coded outputs

Code has less outputs 3 50% not coded outputs

Com. outputs as inputs 21 100% not coded inputs

Code has less inputs 0 0% not coded inputs

Refined summary Number Ratio (%) of raw inconsistencies

Input versus output params 24 73% inconsistent parameters

. per function 20 83% inconsistent funcs

Added or removed params 9 27% inconsistent parameters

. per function 3 15% inconsistent funcs

Functions with both issues 1 2% inconsistent funcs

Table 8.1: Automatically extracted and correlated facts from the code and comments

of a large software system show that possibly 32% of the functions have comments that

are inconsistent. For 73% of the wrongly commented parameters the cause is that they

swapped role from input to output or vice versa. The other 27% can be attributed to

evolution of either the code or the comments.

171

First Class Layout CHAPTER 8

We use a relational calculator to compute the differences between the two data sets

[101]. The second part of Table 8.1 summarizes the differences between commented

and coded facts. For example, we have 21 parameters commented as input parameters,

that do not appear to be input parameters according to the extracted facts from the

code. In total, there are 57 of such inconsistencies caused by 33 parameters used by 24

different functions.

The above information does not give a clue about the cause of these inconsistencies.

A further analysis using relational calculus offers some insight. The last part of Table

8.1 summarizes the results. The first block denotes what happened to parameters that

appear to be coded, but not commented. The second block denotes parameters that

are coded, but not commented. The final block summarizes the measurements per

parameter and per function. By intersecting the different sets we compute that 24 of

the parameters have been assigned the wrong role in the comments. They either should

have been outputs and are said to be inputs (21), or vice versa (3). The other errors (9)

are due to newly added, renamed or removed parameters which was not reflected in the

comments.

We first assumed that if both the comments and the source code agree on the role of

a parameter, they are correct. This absolves us from checking 219 ✏ 33 ✥ 186 param-

eters. Then, we checked the inconsistencies manually by browsing the source code.

We have checked all 24 parameters that were reported inconsistent. More than half of

these errors lead to a single cause in the system: one very big recursive function. The

comments declare several input parameters which are not guaranteed by all execution

paths of this function not be output parameters. It is very hard to check manually why

this is the case. Every function that calls this complex function, and passes a pointer

parameter, inherits this complexity.

There were some relatively easy to understand errors too. For example, parameter

names that have been removed, added or changed without updating the comments.

One interesting case is a utility function that is called with a boolean flag to guide

the control-flow. If the flag is set to false, the function is guaranteed not the use a

certain parameter as output. This is something the reverse engineering tool does not

take into account. The use of a boolean flag to guide control flow can indicate that the

programmer could also have split the function into several separate functions.

Note that we did not arrive immediately at the results of Table 8.1. First we had

twice as much inconsistencies. We started at the top of the list to check them manually,

and concluded that some of the extracted facts were wrong. We removed some minor

bugs from the extraction tool, and arrived at the current results in six cycles. All incon-

sistencies have now been checked manually. Considering that we spent about an hour

on 24 out of 494 parameters, we have saved about 20 hours of highly error-prone labor

by automating the process.

The conclusion is that the quality of the comments is surprisingly high in this soft-

ware system. Although the comments have never been validated before, still most

of the parameters have been commented correctly (100% ✏ 14% ✥ 86%). Many of

the functions that have comments are correct (100% ✏ 32% ✥ 68%), and these com-

ments aid enormously in code understanding. Moreover, they have aided in improving

the reverse engineering tool that we used to compute facts from the code. From this

case study we learn that neither information from source code comments, nor auto-

172

SECTION 8.9 Discussion

matically extracted “facts” from source code can be trusted. Still, they can both be

valuable sources of information: instead of having to check 219 parameters, we have

now checked only 33 and automated the rest of the checking process.

8.8.3 Case study summary

The answer to Q1, can we efficiently extract information from the source code com-

ments using ASF+SDF, can be answered positively. The larger effort was in defining

the syntax of the convention. The extraction using traversal and lexical constructors

functions was trivial after that. The comments are not up-to-date with respect to the

source code, namely 32% is wrong. This answers the second question, Q2. The auto-

mated extraction tool went through a number of improvements, which is an answer to

Q3.

8.9 Discussion

ASF+SDF language design

Contrary to the lightweight experiments described in Chapter 7, in this chapter we have

rigorously changed the ASF+SDF language and its implementation. In my opinion, this

was necessary for obtaining a conceptually clean result. We can now add the following

properties to the description of ASF+SDF:

☎
All structure and type information defined in SDF is used and available in ASF,

including the full structure of lexical syntax, whitespace and source code com-

ments.

☎
All ASF+SDF specifications are guaranteed to be fully syntax safe.

However, the syntax safety notion is not strong enough. We defined it to be: the in-

put and output of an ASF term rewriting engine conforms to an SDF syntax definition.

In particular syntax definitions in SDF are modular and can thus be combined to form

complex constellations. The syntax safety concept does not separate input from output

languages. The notion of completeness of a transformation with respect to a certain

domain and range language seems important, and requires further investigation.

Another issue is the limitation of a single well known non-terminal for layout:

LAYOUT. This implies that languages that are combined in a modular fashion must

share this non-terminal. ASF+SDF should allow several layout non-terminals, such

that languages can be composed without unnecessary clashes. For our case study we

had to change the layout definition of the fact data structure from an otherwise reusable

library module, only to prevent ambiguities with the C language conventions.

ASF+SDF normalization

The introduction of an ASF normalizer in the architecture offers possibilities for chang-

ing ASF programs before they are compiled or executed in a back-end neutral fashion.

173

First Class Layout CHAPTER 8

For example, it removes the syntactic sugar of constructor functions, and adds equation

conditions to check character class inclusion.

Other instrumentation of ASF term rewriting systems can be easily plugged in at

this point. For example, origin tracking [70] can be implemented by adding conditions.

Origin tracking techniques could also be applied to automate implicit propagation of

layout nodes from the left-hand side to the right-hand side of equations.

Related work

Fully informative parse trees, or extended abstract syntax trees are currently the most

popular vehicle for high-fidelity transformations [165, 169, 107, 13]. Some systems

take the approach of source code markup [123, 142, 165]. With these techniques syntax

trees are not the principle vehicle for storing information, but rather the source code

itself. We will shortly describe related approaches. A general observation is that static

syntax safety is a feature that seems to be unique to ASF+SDF.

A common idiom in the TXL language is to store intermediate analysis results in

the source text directly using markup [123]. Parsing may be used to obtain the markup,

but syntax trees are not used as the vehicle for transporting the resulting information.

The close relation to the original source text that is remained by this design choice also

offers the opportunity for high-fidelity transformations. The concept of source code

factors is important. Factors are special kind of markup designed to directly log origin

information of past transformations into the source code. For example, C preprocessor

expansion can be stored using source code factors, such that later the original code from

before macro expansion can be recovered. The techniques explained in this chapter can

be applied to systems that use source code markup, to make them syntax safe, and to

let the programmer ignore factors that he is not interested in.

Scaffolding [142] is a method that combines source code markup with the parse

tree approach. A grammar is extended with syntactical constructs for markup. That

allows the programmer to separate analysis and transformation stages within a com-

plex re-engineering application that still operates on parse trees. Layout information

is an example of information that could be stored in a scaffold. The fully informative

parse trees that we use might be seen as abstract syntax trees implicitly scaffolded with

layout information. As opposed to normal scaffolds, which are not hidden from the

programmer’s view.

Lämmel [107] describes how tree annotations can be used to store scaffolds with-

out exposing this information directly to the structure of the abstract syntax tree. We

do not employ annotations for storing layout because there is no principal difference

between characters in layout trees from characters in other trees. This unification sim-

plifies our term rewriting back-ends significantly. ASF+SDF does provide an interface

for storing annotations on parse trees, but this is not used for layout. Rather for lo-

cally storing intermediate results of analyses. Lämmel proposes rigorous separation

of concerns by removing the annotation propagation aspect from the matching and

constructing patterns to separate declarations of annotation propagation rules. Aspect

oriented term rewriting [103, 94] may provide an alternative solution for separating

high-fidelity aspects from the functional effect of transformation.

In [165] the authors describe how high-fidelity C++ transformation systems can be

174

SECTION 8.10 Conclusions

generated from high-level descriptions in the YATL language. This system effectively

uses the fully informative parse trees, scaffolds, and source factors that were described

earlier. In a first stage the source code is marked up, in a second stage this marked up

code is fully parsed and then transformed. The YATL language is compiled to Stratego

programs that transform the parse trees of marked up code. This compiler takes a

number of big steps towards high-fidelity C++ transformations. For example, it deals

with the C preprocessor problems, automatically propagates layout and source code

comments during transformations, and learns how to pretty print newly introduced

code from the surrounding code fragments. We do not provide such automation, but

rather the possibility for declarative access to the layout information in a language

independent manner. We consider heuristics for automated propagation of layout an

orthogonal issue that may be dealt with in the future by the ASF normalizer. Also,

conservative pretty printing [64] is outside the scope of the functionality provided by

this chapter. Our functionality regarding layout is language independent, fully typed

and syntax safe. As such ASF+SDF may provide a syntax safe back-end for the YATL

language.

The CobolX system [169] uses a Stratego language feature called overlays to let the

user abstract from layout details, while still having an abstract syntax tree that contains

layout nodes underneath. Overlays are an extension of signatures. As a result, the two

modes of operation with CobolX are either full exposure to the complex parse trees,

or full abstraction from all details. We provide an interface for arbitrary ignoring or

utilizing layout nodes in any position.

One exceptional approach for high-fidelity transformations is taken by the authors

of the Haskell refactoring tool HaRe [122]. HaRe reuses an existing front-end for the

Haskell language that produces abstract syntax trees with a lot of type information, but

not the information needed for high-fidelity transformations. To solve this problem, an

API was designed for transforming Haskell abstract syntax trees that, as a side-effect,

also transforms the token stream of the original program.

8.10 Conclusions

The complexity of high-fidelity transformation is witnessed by the research effort that

has now been spent on it. It is not only a trivial matter that is only investigated to

have industrial partners adopt long standing source code transformation techniques.

In this chapter we have taken a few steps towards a better support of high-fidelity

transformations by fulfilling two requirements: syntax safety and full accessibility to

syntactical information about the source code.

We have introduced “first class layout”, offering the programmer expressive nota-

tion for matching, construction, and ignoring layout. The resulting language allows

language independent and syntax safe analysis and transformations of layout. All the

other features that are normally available in term rewriting can be applied to layout.

We have applied “first class layout” to extract facts from source code comments in

the C language, to conclude that their quality was high, but not 100% correct. Appar-

ently, source code comments can be used to test reverse engineering tools, by providing

an alternate independent source of the same information.

175

First Class Layout CHAPTER 8

176

C H A P T E R 9

A Generator of Efficient

Strongly Typed Abstract

Syntax Trees in Java

Abstract syntax trees are a very common data structure in language related

tools. For example compilers, interpreters, documentation generators, and

syntax-directed editors use them extensively to extract, transform, store

and produce information that is key to their functionality.

We present a Java back-end for ApiGen, a tool that generates implemen-

tations of abstract syntax trees. The generated code is characterized by

strong typing combined with a generic interface and maximal sub-term

sharing for memory efficiency and fast equality checking. The goal of this

tool is to obtain safe and more efficient programming interfaces for ab-

stract syntax trees.

The contribution of this work is the combination of generating a strongly

typed data-structure with maximal sub-term sharing in Java. Practical

experience shows that this approach is beneficial for extremely large as

well as smaller data types. 1

9.1 Introduction

The technique described in this chapter aims at supporting the engineering of Java tools

that process tree-like data structures. We target for example compilers, program ana-

lyzers, program transformers and structured document processors. A very important

data structure in the above applications is a tree that represents the program or docu-

ment to be analyzed and transformed. The design, implementation and use of such a

tree data structure is usually not trivial.

A Java source code transformation tool is a good example. The parser should return

an abstract syntax tree (AST) that contains enough information such that a transforma-

tion can be expressed in a concise manner. The AST is preferably strongly typed to

1This chapter was published in a special issue on Language definitions and tool generation in IEE Pro-

ceedings – Software in 2005. It is co-authored by Mark van den Brand and Pierre-Etienne Moreau.

177

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

distinguish between the separate aspects of the language. This allows the compiler to

statically detect programming errors in the tool as much as possible. A certain amount

of redundancy can be expected in such a fully informative representation. To be able

to make this manageable in terms of memory usage the programmer must take care in

designing his AST data structure in an efficient manner.

ApiGen [62] is a tool that generates automatically implementations of abstract syn-

tax trees in C. It takes a concise definition of an abstract data type and generates C

code for abstract syntax trees that is strongly typed and uses maximal sub-term sharing

for memory efficiency and fast equality checking. The key idea of ApiGen is that a

full-featured and optimized implementation of an AST data structure can be generated

automatically, and with a very understandable and type-safe interface.

We have extended the ApiGen tool to generate AST classes for Java. The strongly

typed nature of Java gives added functionality as compared to C. For example, using

inheritance we can offer a generic interface that is still type-safe. There are trade-

offs that govern an efficient and practical design. The problem is how to implement

maximal sub-term sharing for a highly heterogeneous data type in an efficient and

type-safe manner, and at the same time provide a generic programming interface. In

this chapter we demonstrate the design of the generated code, and that this approach

leads to practical and efficient ASTs in Java. Note that we do not intend to discuss the

design of the code generator, this is outside the scope of this chapter.

9.1.1 Overview

We continue the introduction with our major case study, and descriptions of maximal

sub-term sharing and the process of generating code from data type definitions. Related

work is discussed here too. The core of this chapter is divided over the following

sections:

Section 9.2: Two-tier interface of the generated AST classes.

Section 9.3: Generic first tier, the ATerm data structure.

Section 9.4: A factory for maximal sub-term sharing: SharedObjectFactory.

Section 9.5: Generated second tier, the AST classes.

Figure 9.5 on page 184 summarizes the above sections and can be used as an illustra-

tion to each of them. In Section 9.6 we validate our design in terms of efficiency by

benchmarking. In Section 9.7 we describe results of case-studies and applications of

ApiGen, before we conclude in Section 9.8.

9.1.2 Case-study: the JTom compiler

As a case-study for our work, we introduce JTom [127]. It is a pattern matching com-

piler, that adds the match construct to C, Java and Eiffel. The construct is translated

to normal instructions in the host language, such that a normal compiler can be used

to complete the compilation process. The general layout of the compiler is shown in

Figure 9.1. The specifics of compiling the match construct are outside the scope of this

178

SECTION 9.1 Introduction

�

✁

✂

✄

C, Java or Eiffel + TOM

Untyped AST

Parsing

Typed AST

Type-checking

Target AST

Compilation

C, Java or Eiffel

Generation

Figure 9.1: General layout of the JTom compiler.

chapter. It is only relevant to know that ASTs are used extensively in the design of the

JTom compiler, so it promises to be a good case-study for ApiGen.

9.1.3 Maximal sub-term sharing

In the fields of functional programming and term rewriting the technique of maxi-

mal sub-term sharing, which is frequently called hash-consing, has proved its bene-

fits [77, 33], however not in all cases [5]. The run-time systems of these paradigms

also manipulate tree-shaped data structures. The nature of their computational mecha-

nisms usually lead to significant redundancy in object creation.

Maximal sub-term sharing ensures that only one instance of any sub-term exists in

memory. If the same node is constructed twice, a pointer to the previously constructed

node is returned. The effect is that in many cases the memory requirements of term

rewriting systems and functional programs diminish significantly. Another beneficial

consequence is that equality of sub-terms is reduced to pointer equality: no traversal of

the tree is needed. If the data or the computational process introduce a certain amount

of redundancy, then maximal sub-term sharing pays off significantly. These claims

have been substantiated in the literature and in several implementations of program-

ming languages, e.g., [77].

Our contribution adds maximal sub-term sharing as a tool in the kit of the Java

programmer. It is not hidden anymore inside the run-time systems of functional pro-

gramming languages. We apply it to big data structures using a code generator for

heterogeneously typed abstract syntax trees. These two properties make our work dif-

ferent from other systems that use maximal sub-term sharing.

9.1.4 Generating code from data type definitions

A data type definition describes in a concise manner exactly how a tree-like data struc-

ture should be constructed. It contains types, and constructors. Constructors define the

alternatives for a certain type by their name and the names and types of their children.

An example of such a definition is in Figure 9.2. Well-known formalisms for data type

definitions are for example XML DTD and Schemas [81], and ASDL [168].

179

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

�

✁

✂

✄

datatype Expressions

Bool ::= true

| false

| eq(lhs:Expr, rhs:Expr)

Expr ::= id(value:str)

| nat(value:int)

| add(lhs:Expr, rhs:Expr)

| mul(lhs:Expr, rhs:Expr)

Figure 9.2: An example data type definition for an expression language.

As witnessed by the existence of numerous code generators, e.g., [62, 108, 168,

78, 151], such concise descriptions can be used to generate implementations of tree

data structures in any programming language. An important aspect is that if the target

language has a strong enough typing mechanism, the types of the data type definition

can be reflected somehow in the generated code.

Note that a heterogeneously typed AST representation of a language is important.

An AST format for a medium-sized to big language contains several kinds of nodes.

Each node should have an interface that is made specific for the kind of node. This

allows for static well-formedness checking by the Java compiler, preventing the most

trivial programming errors. It also leads to code on a higher level of abstraction.

As an example, suppose an AST of a Pascal program is modeled using a single

class Node that just has an array of references to other Nodes. The Java code will

only implicitly reflect the structure of a Pascal program, it is hidden in the dynamic

structure of the Nodes. With a fully typed representation, different node types such as

declarations, statements and expressions would be easily identifiable in the Java code.

The classes of an AST can be instrumented with all kinds of practical features such

as serialization, the Visitor design pattern and annotations. Annotations are the ability

to decorate AST nodes with other objects. The more features offered by the AST

format, the more beneficial a generative approach for implementing the data structure

will be.

9.1.5 Related work

The following systems are closely related to the functionality of ApiGen:

ASDL [168, 82] is targeted at making compiler design a less tedious and error prone

activity. It was designed to support tools in different programming languages working

on the same intermediate program representation. For example, there are implementa-

tions for C, C++, Java, Standard ML, and Haskell.

ApiGen for C [62] is a predecessor of ApiGen for Java, but written by different

authors. One of the important features is a connection with a parser generator. A

syntax definition is translated to a data type definition which defines the parse trees

180

SECTION 9.2 Generated interface

that a parser produces. ApiGen can then generate code that can read in parse trees

and manipulate them directly. In fact, our instantiation of ApiGen also supports this

automatically, because we use the same data type definition language.

The implementation of maximal sub-term sharing in ApiGen for C is based on

type-unsafe casting. The internal representation of every generated type is just a shared

ATerm, i.e. typedef ATerm Bool;. In Java, we implemented a more type-safe

approach, which also allows more specialization and optimization.

JJForester [108] is a code generator for Java that generates Java code directly from

syntax definitions. It generates approximately the same interfaces (Composite design

pattern) as we do. Unlike JJForester, ApiGen does not depend on any particular parser

generator. By introducing an intermediate data type definition language, any syntax

definition that can be translated to this language can be used as a front-end to ApiGen.

JJForester was the first generator to support JJTraveler [112] as an implementation

of the Visitor design pattern. We have copied this functionality in ApiGen directly

because of the powerful features JJTraveler offers (see also Section 9.5). Note that

JJForester does not generate an implementation that supports maximal sharing.

Pizza [131] adds algebraic data types to Java. An algebraic data type is also a data

type definition. Pizza adds much more features to Java that do not relate to the topic of

this chapter. In that sense, ApiGen targets a more focused problem domain and can be

used as a more lightweight approach. Also, Pizza does not support maximal sub-term

sharing.

Java Tree Builder [134] and JastAdd [84] are also highly related tools. They gen-

erate implementations of abstract syntax trees in combination with syntax definitions.

The generated classes also directly support the Visitor design pattern.

All and all, the idea of generating source code from data type definitions is a well-

known technique in the compiler construction community. We have extended that idea

and constructed a generator that optimizes the generated code on memory efficiency

without loosing speed. Our generated code is characterized by strong typing combined

with a generic interface and maximal sub-term sharing.

9.2 Generated interface

Our intent is to generate class hierarchies from input descriptions such as shown in

Figure 9.2. We propose a class hierarchy in two layers. The upper layer describes

generic functionality that all tree constructors should have. This upper layer could be

a simple interface definition, but better even a class that actually implements common

functionality. There are two benefits of having this abstract layer:

1. It allows for reusable generic algorithms to be written in a type-safe manner.

2. It prevents code duplication in the generated code.

181

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

�

✁

✂

✄

public abstract class Bool extends ATermAppl ✟ ... ✠
package bool;

public class True extends Bool ✟ ... ✠
public class False extends Bool ✟ ... ✠
public class Eq extends Bool ✟ ... ✠

public abstract class Expr extends ATermAppl ✟ ... ✠
package expr;

public class Id extends Expr ✟ ... ✠
public class Nat extends Expr ✟ ... ✠
public class Add extends Expr ✟ ... ✠
public class Mul extends Expr ✟ ... ✠

Figure 9.3: The generated Composite design sub-types a generic tree class

ATermAppl.

The second layer is generated from the data type definition at hand. Figure 9.3

depicts the class hierarchy that is generated from the definition show in the introduction

(Figure 9.2). The Composite design pattern is used [75]. Every type is represented by

an abstract class and every constructor of that type inherits from this abstract class. The

type classes specialize some generic tree model ATermAppl which will be explained

in Section 9.3. The constructor classes specialize the type classes again with even more

specific functionality.

The interface of the generated classes uses as much information from the data type

definition as possible. We generate an identification predicate for every constructor as

well as setters and getters for every argument of a constructor. We also generate a so-

called possession predicate for every argument of a constructor to be able to determine

if a certain object has a certain argument.

Figure 9.4 shows a part of the implementation of the Bool abstract class and the Eq

constructor as an example. The abstract type Bool supports all functionality provided

by its subclasses. This allows the programmer to abstract from the constructor type

whenever possible. Note that because this code is generated, we do not really introduce

a fragile base class problem here. We assume that every change in the implementation

of the AST classes inevitably leads to regeneration of the entire class hierarchy.

The class for the Eq constructor has been put into a package named bool. For

every type, a package is generated that contains the classes of its constructors. Con-

sequently, the same constructor name can be reused for a different type in a data type

definition.

9.3 Generic interface

We reuse an existing and well-known implementation of maximally shared trees: the

ATerm library. It serves as the base implementation of the generated data structures.

By doing so we hope to minimize the number of generated lines of code, profit from

182

SECTION 9.3 Generic interface

�

✁

✂

✄

public abstract class Bool extends ATermAppl ✟
public boolean isTrue() ✟ return false; ✠
public boolean isFalse() ✟ return false; ✠
public boolean isEq() ✟ return false; ✠
public boolean hasLhs() ✟ return false; ✠
public boolean hasRhs() ✟ return false; ✠
public Expr getLhs() ✟ throw new GetException(...); ✠
public Expr getRhs() ✟ throw new GetException(...); ✠
public Bool setLhs(Expr lhs) ✟ throw new SetException(...); ✠
public Bool setRhs(Expr rhs) ✟ throw new SetException(...); ✠

✠
package bool;

public class Eq extends Bool ✟
public boolean isEq() ✟ return true; ✠
public boolean hasLhs() ✟ return true; ✠
public boolean hasRhs() ✟ return true; ✠
public Expr getLhs() ✟ return (Expr) getArgument(0); ✠
public Expr getRhs() ✟ return (Expr) getArgument(1); ✠
public Bool setLhs(Expr e) ✟ return (Bool) setArgument(e,0); ✠
public Bool setRhs(Expr e) ✟ return (Bool) setArgument(e,1); ✠

✠

Figure 9.4: The generated predicates setters and getters for the Bool type and the Eq

constructor.

183

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

from the SharedObject interface
A constructor overrides all methods

The ATerm types

the SharedObject interface
implements all methods from

is called by all
make methods

The build method

The prototype
is initialized and
then given to
the build method

SharedObjectFactory

build(SharedObject prototype) : SharedObject

Bucket[] table

Generic Sharing Generic Trees Generated API

hashCode() : int

SharedObject

equivalent(ShardObject peer) : boolean.

ATermFactory

ATermAppl protoAppl;

ATermList protoList;

ATermInt protoInt;

ATermReal protoReal;

ATermPlaceholder protoPh;

ATermAppl makeAppl(...

ATermInt makeInt(...

ATermReal makeReal(...

ATermPlaceholder makeP...

ATermList makeList(...

ExpressionsFactory

Bool_Eq protoBool_Eq;

Bool_Eq makeBool_Eq(...

Bool_True makeBool_True();

Bool_False makeBool_False();

Expr_Id makeExpr_Id(...

Expr_Nat makeExpr_Nat(...

Expr_Mul makeExpr_Mul(...

Expr_Add makeExpr_Add(...

Bool_True protoBool_True;

Bool_False protoBool_False;

Expr_Id protoExpr_Id;

Expr_Add protoExpr_Add;

Expr_Nat protoExpr_Nat;

Expr_Mul protoExpr_Mul;

ATerm

duplicate() : SharedObject.

ATermAppl

hashCode() : int

getName() : String

setArgument(ATerm arg)...

getArgument(int nr) : ATerm

duplicate() : SharedObject

equivalent(SharedObject p...

initialize(String name, ATerm ...

Bool

Bool_Eq

isEq() : boolean

hasLhs() : boolean

hasRhs() : boolean

getLhs() : Expr

getRhs() : Expr

setLhs(Expr lhs) : Bool

setRhs(Expr rhs) : Bool

equivalent(Shared..

duplicate() : SharedObject

initialize(Bool lhs, Bool rhs) : void

hashCode() : int

A

isEq() : boolean

hasLhs() : boolean

hasRhs() : boolean

getLhs() : Expr

getRhs() : Expr

setLhs(Expr lhs) : Bool

setRhs(Expr rhs) : Bool

isFalse() : boolean

isTrue() : boolean

Build uses all methods
of the SharedObject interface

Uses super initialize

A

getAnnotation(ATerm label...
toString() : String
...

setAnnotation(ATerm a)...

Figure 9.5: A diagram of the complete ApiGen architecture.

184

SECTION 9.4 Maximal sub-term sharing in Java

�

✁

✂

✄

public abstract class ATerm ✟
...

public ATerm setAnnotation(ATerm label, ATerm anno);

public ATerm getAnnotation(ATerm label);

✠
public class ATermAppl extends ATerm ✟
...

public String getName();

public ATermList getArguments();

public ATerm getArgument(int i);

public ATermAppl setArgument(ATerm arg, int i);

✠

Figure 9.6: A significant part of the public methods of ATerm and ATermAppl.

the efficiency of the existing implementation and effortlessly support the ATerm ex-

change formats. It also immediately provides the generic programming interface for

developing reusable algorithms.

The ATerm data structure implements maximal sub-term sharing. However, this

implementation can not be reused for the generated tier by using inheritance. Why this

can not be done will become apparent in the next section.

The ATerm library offers five types of AST nodes: function application, lists, in-

tegers, reals and placeholders. In this presentation we concentrate on function appli-

cation, implemented in the class ATermAppl. The abstract superclass ATerm imple-

ments basic functionality for all term types. Most importantly, every ATerm can be

decorated with so-called annotations. We refer to [31] for further details concerning

ATerms.

The first version of our case-study, JTom, was written without the help of ApiGen.

ATerms were used as a mono-typed implementation of all AST nodes. There were

about 160 different kinds of AST nodes in the JTom compiler. This initial version was

written quickly, but after extending the language with more features the maintainability

of the compiler deteriorated. Adding new features became harder with the growing

number of constructors. By not using strict typing mechanisms of Java there was little

static checking of the AST nodes. Obviously, this can lead to long debugging sessions

in order to find trivial errors.

9.4 Maximal sub-term sharing in Java

Before we can continue discussing the generated classes, we must first pick a design

for implementing maximal sub-term sharing. The key feature of our generator is that it

generates strongly typed implementations of ASTs. To implement maximal sub-term

sharing for all of these types we should generate a factory that can build objects of the

correct types.

185

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

9.4.1 The Factory design pattern

The implementation of maximal sub-term sharing is always based on an administration

of existing objects. In object-oriented programming a well-known design pattern can

be used to encapsulate such an administration: a Factory [75].

The efficient implementation of this Factory is a key factor of success for maximal

sharing. The most frequent operation is obviously looking up a certain object in the

administration. Hash-consing [5] is a technique that optimizes exactly this. For each

object created, or about to be created, a hash code is computed. This hash code is used

as an index in a hash table where the references to the actual objects with that hash code

are stored. In Java, the use of so-called weak references in the hash table is essential to

ensure that unused objects can be garbage collected by the virtual machine.

The ATerm library contains a specialized factory for creating maximally shared

ATerms: the ATermFactory.

9.4.2 Shared Object Factory

The design of the original ATermFactory does not allow extension with new types of

shared objects. In order to deal with any type of objects a more abstract factory that can

create any type of objects must be constructed. By refactoring the ATermFactory

we extracted a more generic component called the SharedObjectFactory. This

class implements hash consing for maximal sharing, nothing more. It can be used

to implement maximal sharing for any kind of objects. The design patterns used are

AbstractFactory and Prototype. An implementation of this factory is sketched in Fig-

ure 9.7.

A prototype is an object that is allocated once, and used in different situations many

times until it is necessary to allocate another instance, for which a prototype offers a

method to duplicate itself. The Prototype design allows a Factory to abstract from the

type of object it is building [75] because the actual construction is delegated to the

prototype. In our case, Prototype is also motivated by efficiency considerations. One

prototype object can be reused many times, without the need for object allocation, and

when duplication is necessary the object has all private fields available to implement

the copying of references and values as efficiently as possible.

The SharedObject interface contains a duplicate method2, an

equivalent method to implement equivalence, and a hashCode method

which returns a hash code (Figure 9.7). The Prototype design pattern also has an

initialize method that has different arguments for every type of shared-object. So it

can not be included in a Java interface. This method is used to update the fields of the

prototype instance each time just before it is given to the build method.

For a sound implementation we must assume the following properties of any im-

plementation of the SharedObject interface:

☎
duplicate always returns an exact clone of the object, with the exact same

type.

2We do not use the clone() method from Object because our duplicate method should return a

SharedObject, not an Object.

186

SECTION 9.5 Maximal sub-term sharing in Java

�

✁

✂

✄

public interface SharedObject ✟
int hashCode();

SharedObject duplicate();

boolean equivalent(SharedObject peer);

// void initialize(...); (changes with each type)

✠
public class SharedObjectFactory ✟
...

public SharedObject build(SharedObject prototype) ✟
Bucket bucket = getHashBucket(prototype.hashCode());

while (bucket.hasNext()) ✟
SharedObject found = bucket.next();

if (prototype.equivalent(found)) ✟
return found;

✠
✠
SharedObject fresh = prototype.duplicate();

bucket.add(fresh);

return fresh;

✠
✠

Figure 9.7: A sketch of the essential functionality of SharedObjectFactory.

☎
equivalent implements an equivalence relation, and particularly makes sure

that two objects of different types are never equivalent.

☎
hashCode always returns the same hash code for equal objects.

Any deviation from the above will most probably lead to class cast exceptions at run-

time. The following guidelines are important for implementing the SharedObject

interface efficiently:

☎
Memorize the hashCode in a private field.

☎
duplicate needs only a shallow cloning, because once a SharedObject is cre-

ated it will never change.

☎ Analogously, equivalent can be implemented in a shallow manner. All fields

that are SharedObject just need to have equal references.

☎ The implementation of the initialize method is pivotal for efficiency. It

should not allocate any new objects. Focus on copying the field references in the

most direct way possible.

Using the SharedObjectFactory as a base implementation, the ATermFac-

tory is now extensible with new types of terms by constructing new implementations

of the SharedObject interface, and adding their corresponding prototype objects.

The next step is to generate such extensions automatically from a data type definition.

187

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

�

✁

✂

✄

package bool;

public class Eq extends Bool implements SharedObject ✟
...

public SharedObject duplicate() ✟
Eq.clone = new Eq();

clone.initialize(lhs, rhs);

return clone;

✠
public boolean equivalent(SharedObject peer) ✟
return (peer instanceof Eq) && super.equivalent(peer);

✠
protected void initialize(Bool lhs, Bool rhs) ✟
super.initialize("Bool_Eq", new ATerm[] ✟ lhs, rhs ✠);

✠
✠

Figure 9.8: The implementation of the SharedObject interface for the Eq construc-

tor.

9.5 The generated implementation

The complete ApiGen architecture including the generated API for our running exam-

ple is depicted in Figure 9.5. Two main tasks must be fulfilled by the code generator:

☎ Generating the Composite design for each type in the definition, by extending

ATermAppl, and implementing the SharedObject interface differently for

each class.

☎ Extending the ATermFactory with a new private prototype, and a new make

method for each constructor in the definition.

9.5.1 ATerm extension

Figure 9.8 shows how the generic ATermAppl class is extended to implement an Eq

constructor of type Bool. It is essential that it overrides all methods of ATermAppl

of the SharedObject interface, except the computation of the hash code. This reuse

is beneficial since computing the hash code is perhaps the most complex operation.

Remember how every ATermAppl has a name and some arguments (Figure 9.6).

We model the Eq node of type Bool by instantiating an ATermApplwith name called

“Bool Eq”. The two arguments of the operator can naturally be stored as the arguments

of the ATermAppl. This is how a generic tree representation is reused to implement

a specific type of node.

9.5.2 Extending the factory

The specialized make methods are essential in order to let the user be able to ab-

stract from the ATerm layer. An example generated make method is shown in Fig-

188

SECTION 9.5 The generated implementation

�

✁

✂

✄

class ExpressionFactory extends ATermFactory ✟
private bool.Eq protoBool_Eq;

public ExpressionFactory() ✟
protoBoolEq = new bool.Eq();

✠
public bool.Eq makeBool_Eq(Expr lhs, Expr rhs) ✟
protoBool_Eq.initialize(lhs, rhs);

return (bool.Eq) build(protoBool_Eq);

✠
✠

Figure 9.9: Extending the factory with a new constructor Eq.

ure 9.9. After initializing a prototype that was allocated once in the constructor

method, the build method from SharedObjectFactory is called. The down-

cast to bool.Eq is safe only because build is guaranteed to return an object of

the same type. This guarantee is provided by the restrictions we have imposed on the

implementation of any SharedObject.

Note that due to the initialize method, the already tight coupling between

factory and constructor class is intensified. This method has a different signature for

each constructor class, and the factory must know about it precisely. This again moti-

vates the generation of such factories, preventing manual co-evolution between these

classes.

9.5.3 Specializing the ATermAppl interface

Recall the interface of ATermAppl from Figure 9.6. There are some type-unsafe

methods in this class that need to be dealt with in the generated sub-classes. We do

want to reuse these methods because they offer a generic interface for dealing with

ASTs. However, in order to implement type-safety and clear error messaging they

must be specialized.

For example, in the generated Bool Eq class we override setArgument as

shown in Figure 9.10. The code checks for arguments that do not exist and the

type validity of each argument number. The type of the arguments can be differ-

ent, but in the Bool Eq example both arguments have type Expr. Analogously,

getArgument should be overridden to provide more specific error messages than

the generic method can. If called incorrectly, the generic methods would lead to a

ClassCastException at a later time. The specialized implementations can throw

more meaningful exceptions immediately when the methods are called.

Apart from type-safety considerations, there is also some opportunity for optimiza-

tion by specialization. As a simple but effective optimization, we specialize the hash-

Function method of ATermAppl because now we know the number of arguments

of the constructor. The hashCode method is a very frequently called method, so sav-

ing a loop test at run-time can cause significant speed-ups. For a typical benchmark

that focuses on many object creations the gain is around 10%.

189

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

�

✁

✂

✄

public ATermAppl setArgument(ATerm arg, int i) ✟
switch (i) ✟
case 0: if (arg instanceof Expr) ✟

return factory.makeBool_Eq((Expr) arg,

(Expr) getArgument(1));

✠ else ✟
throw new IllegalArgumentException("...");

✠
case 1: ...

default: throw new IllegalArgumentException("..." + i);

✠
✠

Figure 9.10: The generic ATermAppl implementation must be specialized to obtain

type-safety.

A more intrinsic optimization of hashCode analyzes the types of the children

for every argument to see whether the chance of father and child having the same

hashCode is rather big. If that chance is high and we have deeply nested structures,

then a lookup in the hash table could easily degenerate to a linear search.

So, if a constructor is recursive, we slightly specialize the hashCode to prevent

hashing collisions. We make the recursive arguments more significant in the hash code

computation than other arguments. Note that this is not a direct optimization in speed,

but it indirectly makes the hash-table lookup an order of magnitude faster for these

special cases.

This optimization makes most sense in the application areas of symbolic computa-

tion, automated proof systems, and model checking. In these areas one can find such

deeply nested recursive structures representing for example lists, natural numbers or

propositional formulas.

9.5.4 Extra generated functionality

In the introduction we mentioned the benefits of generating implementations. One

of them is the ability of weaving in all kinds of practical features that are otherwise

cumbersome to implement.

Serialization. The ATerm library offers serialization of ATerms as strings and as a

shared textual representation. So, by inheritance this functionality is open to the user

of the generated classes. However, objects of type ATermAppl are constructed by

the ATermFactory while reading in the serialized term. From this generic ATerm

representation a typed representation must be constructed. We generate a specialized

top-down recursive binding algorithm in every factory. It parses a serialized ATerm,

and builds the corresponding object hierarchy, but only if it fits the defined data type.

190

SECTION 9.6 Performance measurements

The Visitor design pattern is the preferred way of implementing traversal over ob-

ject structures. Every class implements a certain interface (e.g., Visitable) allow-

ing a Visitor to be applied to all nodes in a certain traversal order. This design

pattern prevents the pollution of every class with a new method for one particular as-

pect of a compilation process, the entire aspect can be separated out in a Visitor

class. JJTraveler [163] extends the Visitor design pattern by generalizing the visiting

order. We generate the implementation of the Visitable interface in every gener-

ated constructor class and some convenience classes to support generic tree traversal

with JJTraveler.

Pattern matching is an algorithmic aspect of tree processing tools. Without a pattern

matching tool, a programmer usually constructs a sequence of nested if or switch

statements to discriminate between a number of patterns. Pattern matching can be

automated using a pattern language and a corresponding interpreter or a compiler that

generates the nested if and switch statements automatically.

As mentioned in the introduction, our largest case study JTom [127] is such a

pattern matching compiler. One key feature of JTom is that it can be instantiated for

any data structure. As an added feature, ApiGen can instantiate the JTom compiler

such that the programmer can use our generated data structures, and match complex

patterns in a type-safe and declarative manner.

9.6 Performance measurements

Maximal sub-term sharing does not always pay off, since its success is governed by

several trade-offs and overheads [5]. We have run benchmarks, which have been used

earlier in [33], for validating our design in terms of efficiency. We consider both run-

time efficiency and memory usage of the generated classes important issues. To be able

to analyze the effect of some design decisions we try to answer the following questions:

1. How does maximal sub-term sharing affect performance and memory usage?

2. Does having a generic SharedObjectFactory introduce an overhead?

3. What is the effect of the generated layer on the performance?

4. Do the specializations of hash functions have any effect on performance?

9.6.1 Benchmarks

We have considered three benchmarks which are based on the normalization of ex-

pressions 2n mod 17, with 18 ✙ n ✙ 20, where the natural numbers involved are Peano

integers. These benchmarks have been first presented in [33]. They are characterized

by a large number of transformations on large numbers of AST nodes. Their simplicity

allows them to be easily implemented in different kinds of languages using different

kinds of data structures.

191

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

Benchmarks (1) (2) (2) (4) (5)

(in seconds) New

ATerms

without

sharing

Old

ATerms

with

sharing

New

ATerm

with

sharing

ApiGen

without

hash

functions

ApiGen

with hash

functions

evalsym(18) 7.2 5.8 6.9 5.7 5.7

evalsym(19) 14.3 11.4 13.8 11.5 11.3

evalsym(20) 28.7 22.7 27.7 22.9 22.5

evalexp(18) 11.8 6.7 7.4 7.1 7.1

evalexp(19) 23.2 13.7 14.8 14.4 14.0

evalexp(20) 46.5 27.5 29.4 28.6 27.8

evaltree(18) 16.0 6.7 7.8 4.8 4.8

evaltree(19) 30.8 13.4 15.6 9.7 9.5

evaltree(20) - 26.6 31.1 19.4 19.0

Table 9.1: The evalsym, evalexp, and evaltree benchmarks for five different

implementations of AST classes in Java. We obtained these figure by running our

benchmarks on a Pentium III laptop with 512Mb, running WindowsXP.

☎ The evalsym benchmark is CPU intensive, but does not use a lot of object

allocation. For this benchmark, the use of maximal sub-term sharing does not

improve the memory usage, but does not slow down the efficiency either.

☎ The evalexp benchmark uses a lot of object allocation.

☎ The evaltree benchmark also uses a lot of object allocation, but with a lower

amount of redundancy. Even now, the use of maximal sub-term sharing allows us

to keep the memory usage at an acceptable level without reducing the run-time

efficiency.

In Table 9.1 the rows show that three benchmarks are run for three different sizes

of input. The columns compare five implementations of these three benchmarks. All

benchmarks were written in Java.

Column 1: for this experiment, we use modified implementations of the Shared-

ObjectFactory and the ATerm library where the maximal sub-term sharing

mechanism has been deactivated. This experiment is used to measure the impact

of maximal sharing.

Column 2: for this experiment, we use a previous implementation of the ATerm-

Factory with a specialized version of maximal sub-term sharing (i.e. not us-

ing the SharedObjectFactory). This experiment is used to measure the

efficiency cost of introducing the reusable SharedObjectFactory.

Column 3: this corresponds to the current version of the ATerm library, where maxi-

mal sharing is provided by the SharedObjectFactory. This experiment is

192

SECTION 9.6 Performance measurements

used as a reference to compare with the generated strongly typed classes.

Column 4: for this experiment, we use a modified version of ApiGen where spe-

cialized hash functions are not generated. This experiment is used to see if the

generation of specialized hash functions has any effect on performance.

Column 5: for this experiment, we use the version of ApiGen presented in this chap-

ter, where specialized hash functions are generated.

In a previous comparison between several rewrite systems [33], the interest of using

maximal sub-term sharing was clearly established. In this chapter, we demonstrate

that maximal sub-term sharing can be equally beneficial in a Java environment. More

importantly, our results show that the performance of maximal sub-term sharing can be

improved when each term is also strongly typed and specialized:

☎
Column 1 indicates that the approach without maximal sharing leads to the slow-

est implementation.

As mentioned previously, the evalsym benchmark does not use a lot of object

allocation. In this case, the improvement is due to the fact that equality between

nodes reduces to pointer equality.

On the other side, the evalexp and the evaltree benchmarks use a lot of

object allocation. Columns 2, 3, 4 and 5 clearly show that maximal sharing is

highly interesting in this case. The last result given in Column 1 indicates that

for bigger examples (n ✯ 20), the computation can not be completed with 512Mb

of memory.

To conclude this first analysis, the results certify, in the Java setting, the previous

results on maximal sub-term sharing from [33].

☎ When comparing Column 2 and Column 3, the ATermFactorywith and with-

out the SharedObjectFactory, we notice that the previous version of the

ATermFactory was faster than the current one, but not significantly. This is

the slowdown we expected from introducing the SharedObjectFactory.

☎
The difference between the untyped ATerm library (Column 3) and generated

classes (Column 4) shows that by specializing the AST nodes into different types

we gain efficiency.

☎ Introducing specialized hash functions (from Column 4 to 5) we can see that

the generation of specialized hash functions improves the efficiency a little bit.

However, this improves the efficiency just enough to make the benchmarks run

more efficiently than a program which use the original implementation of the

ATerm library (Column 2). The negative effect of introducing a more generic and

maintainable architecture has been totally negated by the effects of specialization

using types.

The effects on memory usage are depicted in Figures 9.11, 9.12 and 9.13. The figures

show that without redundancy the overhead of maximal sub-term sharing is constant.

193

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

 250

 300

 350

 400

 450

 500

li
v
in

g
 n

o
d
es

evalsym without sharing

evalsym with sharing

Figure 9.11: A comparison of the memory usage of the evalsym benchmark with and

without maximal sub-term sharing.

This can be expected because the administration of existing objects allocates some

space. However, in the presence of some redundancy maximal sub-term sharing can

save an order of magnitude of memory.

9.6.2 Quantitative results in the JTom compiler

It is also interesting to have an idea of performance and memory usage in a more

realistic application. The effect of maximal sub-term sharing in the JTom compiler

is shown in Figure 9.14. There is a significant improvement with respect to memory

usage. These measurements have been obtained by replacing the generated factory

temporarily by a factory that does not implement maximal sub-term sharing. We also

had to replace the implementation of the equality operator by a new implementation

that traverses the complete ASTs to determine the equality of two trees.

While measuring the run-time performance of the compiler we measured signifi-

cant differences between the versions with and without maximal sub-term sharing, but

these results need to be interpreted carefully. The design of the compiler has been in-

fluenced by the use of maximal sub-term sharing. In particular, it allows us to forget

about the size of the AST while designing the compiler. We can store all relevant infor-

mation inside the ASTs without compromising memory consumption limitations. Our

experiences indicate that in general maximal sub-term sharing allows a compiler de-

signer to concentrate on the clarity of his data and algorithms rather than on efficiency

considerations.

The effect of introducing the generated layer of types in the JTom compiler could

not be measured effectively. The reason is that the current version is no longer compa-

rable (in terms of functionality) with the previous version based on the untyped ATerm

library. The details of the compilation changed too much. Although the functionality

has changed a lot, we did not observe any performance penalty.

194

SECTION 9.7 Experience

10
2

10
3

10
4

10
5

10
6

li
v
in

g
 n

o
d
es

evalexp without sharing

evalexp with sharing

Figure 9.12: A comparison of the memory usage of the evalexp benchmark with and

without maximal sub-term sharing.

9.6.3 Benchmarking conclusions

To summarize the above:

☎ A heterogeneously typed representation of AST nodes is faster than a mono-

typed representation, because more information is statically available.

☎ Specializing hash-functions improves the efficiency a little bit in most cases, and

enormously for some deeply recursive data structures where the hash-function

would have degenerated to a constant otherwise.

☎
The design of SharedObjectFactory based on AbstractFactory and Proto-

type introduces an insignificant overhead as compared to generating a completely

specialized less abstract Factory.

We conclude that compared to untyped ASTs that implement maximal sub-term

sharing we have gained a lot of functionality and type-safety without introducing an

efficiency bottleneck. Compared to a non-sharing implementation of AST classes one

can expect significant improvements in memory consumption, in the presence of re-

dundant object creation.

9.7 Experience

ApiGen for Java was used to implement several Java tools that process tree-like data

structures. The following are the two largest applications:

☎ The GUI of an integrated development environment.

☎ The JTom compiler.

195

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

10
2

10
3

10
4

10
5

10
6

5.0x10
5

1.0x10
6

1.5x10
6

2.0x10
6

2.5x10
6

3.0x10
6

3.5x10
6

li
v
in

g
 n

o
d
es

allocated nodes

evaltree without sharing

evaltree with sharing

Figure 9.13: A comparison of the memory usage of the evaltree benchmarks with and

without maximal sub-term sharing.

9.7.1 The GUI of an integrated development environment

The ASF+SDF Meta-Environment [28] is an IDE which supports the development of

ASF+SDF specifications. The GUI is written in Java with Swing. It is completely

separated from the underlying language components, and communicates only via seri-

alization of objects that are generated using ApiGen APIs.

Three data structures are involved. An error data structure is used to for displaying

and manipulating error messages that are produced by different components in the IDE.

A configuration format is used to store and change configuration parameters such as

menu definitions, colors, etc. The largest structure is a graph format, which is used for

visualizing all kinds of system and user-defined data.

ApiGen for Java is used to generate the APIs of these three data structures. The

graph API consists of 14 types with 49 constructors that have a total of 73 children

(Figure 9.15). ApiGen generates 64 classes (14 + 49 + a factory), adding up 7133

lines of code. The amount of hand-written code that uses Swing to display the data

structure is 1171 lines. It actually uses only 32 out of 73 generated getters, 1 setter out

of 73, 4 possession predicates, 10 identity predicates, and 4 generated make methods

of this generated API. Note that all 73 make methods are used by the factory for the de-

serialization algorithm which is called by the GUI once. The graph data is especially

redundant at the leaf level, where every edge definition refers to two node names that

can be shared. Also, node attributes are atomic values that are shared in significant

amounts.

The error and configuration data types are much smaller, and so is the user-code

that implements functionality on them. Almost all generated getters are used in their

application, half of the predicates, no setters and no make methods. The reason is that

the GUI is mainly a consumer of data, not a producer. The data is produced by tools

written in C or ASF+SDF, that use the C APIs which have been generated from the

same data type definitions. So, these ApiGen definitions effectively serve as contracts

196

SECTION 9.7 Experience

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

0.0x10
0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

3.5x10
5

li
v
in

g
 n

o
d
es

allocated nodes

compilation of jtom without sharing

compilation of jtom with sharing

Figure 9.14: Impact of maximal sub-term sharing on the JTom compiler.

✰

✱

✲

✳

datatype Tree

Graph ::= graph(nodes:NodeList,

edges:EdgeList,

attributes:AttributeList)

Node ::= node(id:NodeId, attributes:AttributeList)

Edge ::= edge(from:NodeId,to:NodeId,attributes:AttributeList)

Attribute ::= bounding-box(first:Point,second:Point)

| color(color:Color)

| curve-points(points:Polygon)

| ...

Figure 9.15: A part of the data type definition for graphs, which is 55 LOC in total.

between producers and consumers of data.

9.7.2 JTom based on ApiGen

The ASTs used in JTom have 165 different constructors. We defined a data type for

these constructors and generated a typed representation using ApiGen.

There are 30 types in this definition, e.g., Symbol, Type, Name, Term, Declaration,

Expression, Instruction. By using these class names in the Java code it has become

more easily visible in which part of the compiler architecture they belong. For exam-

ple, the “Instructions” are only introduced in the back-end, while you will find much

references to “Declaration” in the front-end of the compiler. As a result, the code has

become more self documenting. Also, by reverse engineering the AST constructors to

a typed definition, we found a few minor flaws in the compiler and we clarified some

197

Strongly Typed Abstract Syntax Trees in Java CHAPTER 9

hard parts of the code.

ApiGen generates 32.544 lines of Java code for this data type. Obviously, the

automation ApiGen offers is beneficial in terms of cost price in this case. Implementing

such an optimized and typed representation of this type of AST would not only be hard,

but also a boring and expensive job. Of the generated code 100% of the getters, make

functions and identity predicates are used in the compiler. None of the possession

predicates and setters are used. Note that application of class pruning tools such as

JAX [148] would help to reduce the byte-code size by removing the code for the setters

and the possession predicates.

The JTom compiler contains a number of generic algorithms for term traversal

and origin tracking. These algorithms already used the ATerm interface, but now they

are checked statically and dynamically for type errors. The generated specializations

enforce that all ASTs that are constructed are well formed with respect to the original

data type definition.

9.8 Conclusions

We presented a powerful approach, ApiGen for Java, to generate classes for ASTs

based on abstract data type descriptions. These classes have a two-tier interface. The

generic ATerm layer allows reusability, the specific generated layer introduces type-

safety and meaningful method names.

We conclude that compared to mono-typed ASTs that implement maximal sub-term

sharing we have gained a lot of functionality and type-safety, and improved efficiency.

Secondly, compared to a non-sharing implementation of AST classes one can expect

significant improvements in memory consumption, in the presence of redundant object

creation.

To be able to offer maximal sub-term sharing in Java we have introduced a reusable

SharedObjectFactory. Based on the AbstractFactory and Prototype design pat-

terns, it allows us to generate strongly typed maximally shared class hierarchies with

little effort. The class can be reused in different contexts that require object sharing.

The generated classes are instrumented with practical features such as a generic

programming layer, serialization, the Visitor design pattern, and pattern matching. We

demonstrated their use by discussing the JTom compiler, and some other smaller ex-

amples.

198

Part IV

199

C H A P T E R 10

Conclusions

In this chapter we zoom out and return to the general subject of analysis

and transformation of source code. We first revisit the research questions

from the introduction. We then summarize the software that was developed

in the context of this thesis. We conclude with a reflective note on the main

topic of this thesis.

10.1 Research questions

Table 10.1 repeats the research questions that were formulated in Chapter 1. For each

question we summarize the conclusions, make some recommendations, and identify

directions for further improvement.

10.1.1 How can disambiguations of context-free grammars be

defined and implemented effectively?

Conclusions

Starting from the theme “disambiguation is a separate concern”, we have obtained two

answers to this question:

☎ For certain grammatical idioms we can provide declarative disambiguation rules.

The less information these rules need, the earlier they can be implemented in the

parsing architecture, and the faster the resulting parsers are (Chapter 3).

☎
A completely general and feasible approach is to filter parse forests, provided

they are compactly represented and traversed without revisiting (Chapter 4).

Furthermore, based on ample experience with the design of disambiguation filters, we

formulate the following recommendations:

☎
There is no solution to be found in the search for a meaningful generic and lan-

guage independent filter of a parse forest. Filters based on counting arguments,

such as the multi-set filter [157], or the infamous injection count (shortest deriva-

tion) filter are low fidelity heuristics. Such filters, although they reduce the parse

201

Conclusions CHAPTER 10

�

✁

✂

✄

Research questions Chapter Publication

1 How can disambiguations of context-free gram-

mars be defined and implemented effectively?

3, 4 [46, 40]

2 How to improve the conciseness of meta pro-

grams?

5, 6 [39, 38]

3 How to improve the fidelity of meta programs? 7,8 [50]

4 How to improve the interaction of meta programs

with their environment?

2, 9 [45, 44]

Table 10.1: Research questions in this thesis.

forest, lower the fidelity of the entire parsing architecture. This observation is

based on countless examples provided by users of early versions of ASF+SDF

where a disambiguation would filter the “wrong” derivation.

☎
Scannerless parsing needs specific disambiguation filters that are applied early

in the parsing architecture to obtain feasible scannerless parser implementations.

☎
Term rewriting serves nicely as a method for implementing disambiguation fil-

ters.

☎
It is not always necessary to resolve ambiguity at all, as long as the entire analysis

and transformation pipeline can deal with the parse forest representation.

Future work

Static analysis. The major drawback of generalized parsing as opposed to determin-

istic parsing technology is the lack of static guarantees: a generated parser may or

may not produce multiple trees. Although ambiguity of context-free grammars is un-

decidable in general, we suspect that many ambiguities are easy to find automatically.

To make SGLR parsing acceptable to a wider audience, tools could be developed that

recognize frequently occurring patterns of unnecessary ambiguity.

Filter design. Disambiguation filters may be hard to design. Syntactic ambiguity

borders the syntactic and semantic domains of programming language implementa-

tions. It is an artifact of context-free grammars, but filtering is always governed by

language semantics considerations. For example, the priority of the multiplication over

the addition operator of C does not change the syntax of the language, but it has severe

implications for the interpretation of any C expression. This gap between syntax and

semantic must be bridged by the designer of any disambiguation filter.

We noticed this gap when ambiguity clusters appeared in parse forests at “unex-

pected locations”, higher in derivation trees and not at all localized near the cause of

the ambiguity. We may document a number of disambiguation filter design patterns

to help guide the programmer bridge this gap. On the other hand, more automation

offered by ASF+SDF for defining disambiguation filters may be designed.

202

SECTION 10.1 Research questions

More generic disambiguation notions. More grammatical idioms may be identified

that give rise to declarative disambiguation filters. For example, the current set of

disambiguation constructs in SDF is not powerful enough to deal with instances of the

offside rule [115]. This is such a frequently occurring design pattern in programming

languages, that a generic disambiguation notation may be designed to facilitate the

definition of languages with an offside rule.

10.1.2 How to improve the conciseness of meta programs?

Regarding the conciseness of meta programs we identified three aspects (Chapter 1):

☎ Traversal of parse trees,

☎
Managing context information,

☎ Expressing reusable functions.

Firstly, traversal functions have been added to ASF+SDF to deal with the traversal as-

pect (Chapter 6). Secondly, with a minor extension of ASF the programmer now has

the ability to store and retrieve parse tree annotations to deal with the context infor-

mation aspect. Finally, we have investigated how the type system of ASF+SDF can

be extended to allow parametric polymorphism, such that reusable functions are more

easily expressible (Chapter 5).

Conclusions

We can draw the following conclusions:

☎ By using function attributes, a language may offer generic tree traversal primi-

tives without introducing the need for higher order functions as a programming

language feature. Limiting the types of traversal to “transformers” and/or “accu-

mulators” is key to obtain a sound type system.

☎ Traversal functions significantly improve the conciseness of source code analy-

ses and transformations. Instead of having to write programs that grow with the

size of a language, many transformations can be programmed in a few lines.

☎
Traversal functions can be implemented efficiently. Unnecessarily visiting nodes

that a manual traversal might have skipped does not impose a noticeable bottle-

neck.

☎
The lightweight extension to ASF+SDF of parse tree annotations helps to sepa-

rate data and control flow.

Informally, we note that traversal functions also support the distribution of context

information. The reason is that a traversal may carry non-local information up and

down a tree effortlessly. Another advantage is that the fidelity of transformations is

generally higher when traversal functions are used. The reason is that no unnecessary

node visits are made that may have unwanted side-effects.

203

Conclusions CHAPTER 10

Future work

Notation. The chosen notation for traversal functions is cumbersome. While a traver-

sal function is in fact polymorphic in its first argument, we must repeat its definition

for every type it applies to. The reason is that we are limited to the first order type

system of ASF+SDF, as described in Chapter 5. In fact Chapter 5 provides us with a

solution to introduce type parameters and disambiguate the application of polymorphic

functions using type checking. It is worthwhile investigating whether we can reduce

the notational overhead of traversal functions by applying this solution.

Traversal orders. The chosen set of traversal orders that are provided by the traversal

attributes have remained a topic of discussion. The main missing orders are right-to-

left visiting, and fixed point application at a certain level in a tree. However, these

concepts naturally fit into the already existing scheme. Fixed point is an alternative

to break and continue, and right-to-left is very similar to the bottom-up and top-down

primitives. Although no such feature has been requested yet, we might consider adding

them, since there is no practical coding idiom to simulate their behavior.

Data threading. Although traversal functions and parse tree annotations alleviate

the context information issue, they do not solve the amount of explicit threading of

parameters through function applications. Especially transformations that map source

code to collections of facts appear to suffer from repetitive code when they pass around

environments of already accumulated facts. In a procedural or object-oriented language

this would be solved by global or field variables, but in a pure term rewriting formalism

this is not feasible. We may apply solutions that have been found in the functional

programming arena to this problem, such as “implicit parameters” [121].

Type checker. Based on the result in Chapter 5 we can define a type system for ASF-

+SDF that does allow parametric polymorphic functions. The idea is to limit polymor-

phic behavior to prefix function syntax. Improvements we expect from deploying such

a type system are:

☎
Less distance between function definition and function declaration,

☎ Less syntactic overhead for defining traversal functions,

☎ The ability to provide generic functions without explicit binding of type param-

eters,

☎
The ability of ASF+SDF to provide more precise error messages.

10.1.3 How to improve the fidelity of meta programs?

Conclusions

☎ A prerequisite for high-fidelity is high-resolution of both the data structures that

represent source code, and the algorithms that operate on them (Chapter 8).

204

SECTION 10.1 Research questions

�

✁

✂

✄
Strings

Generalized
Parsing

Trees
Term

Rewriting

Generic Pretty
Printing

Relations
Relation
Calculus

Figure 10.1: Four technologies in the Meta-Environment.

☎ Parse trees of source code with characters as leafs are a maximally high-

resolution data structure. When the parse trees contain all characters of the orig-

inal source code, including keywords, whitespace and source code comments,

then they are also high-fidelity (Chapter 7).

☎ Such fully informative parse trees can be processed in an efficient manner to

facilitate industrial sized transformation projects (Chapter 7).

☎ “First class layout” makes it possible to automatically process source code com-

ments in order to obtain valuable information about a sofware system (Chap-

ter 8).

Future work

Preprocessing. Several solutions have been proposed that improve the resolution and

fidelity of transformation systems when they are applied to preprocessed languages

such as C and C++ [165, 123]. Since the C preprocessor is reused for other languages

than C, the question remains whether a high-fidelity language independent architecture

can be constructed that deals with the problems introduced by the C preprocessor, or

possibly with any preprocessor. One particular question is if fully informative parse

trees can be reused as a central data structure in such an architecture.

Compilation. All experiments carried out with respect to high-fidelity have been

done using the ASF interpreter. A straightforward adaptation of the ASF compiler

would make this functionality available for compiled specifications. The question is

whether interesting optimizations are possible. The implementation of parse tree equal-

ity is an obvious candidate for optimization. For example, parse trees that are con-

structed after reading in the source code, and never appear inside the resulting source

code, need not to be treated as high-fidelity parse trees. Such a static analysis may

dramatically improve the run-time behavior of high-fidelity meta programs.

10.1.4 How to improve the interaction of meta programs with their

environment?

Conclusions

We have studied the basic prerequisites for such interaction: data integration and co-

ordination. We have presented a generic architecture for hosting meta programming

205

Conclusions CHAPTER 10

tools in, and a Java code generation tool to obtain typed interfaces. We now have the

following recommendations:

☎ By the use of API generation, we enforce a typed contract between two com-

ponents that share certain data. This is an essential feature for managing the

evolution of a complex component based systems.

☎
Although it comes with an initial investment, explicitly allowing heterogeneity of

programming languages in a single system ensures both the openness to foreign

tools, and the continuity of the system itself. The main benefit is that we can

incrementally refit components without changing their interface to the rest of the

system.

Future work

Java back-end for ASF+SDF. We have written a prototype Java back-end for ASF-

+SDF, using ApiGen for Java and the TOM system [127]. A full implementation of an

ApiGen based back-end should improve on the previous implementations of the com-

piler in terms of interaction. The idea is that the code ApiGen generates is optimized

toward human readability. A compiler back-end using such APIs would also generate

readable code, such that compiled ASF+SDF programs can be used as libraries directly

instead of commandline tools.

Pretty printing. Figure 10.1 repeats the architecture of the ASF+SDF Meta-Envir-

onment from the introduction. In this thesis we have studied the parsing and term

rewriting components, and how they interact. The pretty printing and relational cal-

culus components have remained untouched. Recently, advancements have been made

on the interaction between rewriting and pretty printing [41]. However, that connection

needs to be restudied with high-fidelity as a requirement.

Relational calculus. The other bridge that needs studying is the connection between

term rewriting and relational calculus. As a first important step, we have standardized

the location abstraction between ASF and RScript. However, the current collaboration

between the two tiers is still done using files and a collection of commandline tools. A

tighter, type safe connection, with fewer overhead for the meta programmer must be

designed. The main problem to overcome is the snapshot/update problem, for which it

seems reasonable to obtain inspiration from the database community.

Connections to other formalisms. Finally, the standardization and interaction of

the data structures within the ASF+SDF Meta-Environment is not enough. In order to

harvest data and algorithms from other foreign tools, a number of import/export filters

need to be constructed. For example, grammars written in Yacc [92] can be imported

to SDF. Also, the relations used in RScript may be exported to GXL [170], or any other

standardized data format such that other fact analysis tooling can be easily applied. The

design of such import/export filters should not be underestimated, since the semantics

of each formalism may be unclear and thus offer only a weak foundation for a sound

translation.

206

SECTION 10.3 Discussion: meta programming paradigms

10.2 Discussion: meta programming paradigms

In this thesis we have put term rewriting as a central paradigm for analysis and trans-

formation of source code. We have concluded that the language constructs it provides,

together with the constructs we have added, are a valid collection of features that are

well suited for tackling the meta programming application domain.

A different philosophy is to start from a more globally accepted programming

paradigm, such as object-oriented programming. The method is to carry selected fea-

tures of term rewriting and functional programming over to this paradigm. Instances of

such features are algebraic data types (Chapter 9), generic traversal (JJTraveler [112]),

pattern matching (JTom [127]), and concrete syntax (JavaBorg [53]).

The first philosophy is beneficial because it reuses many language features that are

readily available, the second philosophy is beneficial because of the ease of integration

with other software. The point is that not the paradigm as a whole, but rather some par-

ticular features it offers make it apt in the meta programming domain. These features

may be implemented as native language constructs, as library interfaces, or as prepro-

cessors. From the perspective of meta programming, it is more fundamental to know

the domain specific language constructs that are needed, than to know the preferred

choice of programming paradigm to host them in.

10.3 Software

The empirically oriented research projects in software engineering often lead to the de-

velopment of substantial amounts of software. This software is not always easily iden-

tifiable in scientific publications. Such software sometimes has more one than goal:

Firstly, it is created by the researcher to test and validate new solutions to research

questions. Secondly, to provide these solutions to a broader audience, as immediately

usable tools. Thirdly, some research software serves as an infrastructure, or laboratory,

for other research. The ASF+SDF Meta-Environment, including the software devel-

oped in the context of this thesis, has all the above goals.

We will, briefly, list the results of the design, implementation and maintenance

effort that was carried out in the context of this thesis. This description mentions fea-

tures and design only. Figures in terms of code volume or time spent are not provided,

since such measures are not only hard to obtain, but their interpretation is also highly

controversial.
These are the three categories we concentrated on:

Meta-Environment: generic or cross cutting functionality,

SDF: parsing and disambiguation data structures and algorithms,

ASF: analysis and transformation data structures and algorithms.

207

Conclusions CHAPTER 10

ErrorsGraphs

Parsing

Config Locations

ATerm

Common Formatting

SDF

Parse TreesParse Tables

Box ASF RScript

Rewriting

Relations

Relation Calculus

Figure 10.2: Three layers, and five columns of data structures in the Meta-Environ-

ment.

10.3.1 Meta-Environment

A number of tasks have been carried out that improve the separation of concerns, while

maintaining consistency and uniformity in the design of the Meta-Environment. Note

that the results in this section are obtained by close teamwork of several people within

the Generic Language Technology project.

Build environment. We have separated the system into separate source code pack-

ages, that can be build, tested and deployed individually. The packages have explicit

dependencies and are recombined for convenience at deployment time [65]. We stan-

dardized on the use of GNU tools: autoconf, automake, libtool, gmake, gcc. A daily

build system was deployed to ensure continuous quality assurance. One of the benefi-

cial results of the above exercises is that several institutes and companies now eclecti-

cally download and reuse slices of the ASF+SDF Meta-Environment (Chapter 2).

Stratification of data structures. Using ApiGen to generate data structures (Chap-

ter 9), we have reimplemented all data structures in the Meta-Environment and divided

them over three conceptual layers and five topical columns (Figure 10.2). The design

is stratified such that each column is consistently designed and implemented. Note

that each layer was designed to hide the lower layer in a completely type safe inter-

face. After refactoring all of the existing code, the readability and maintainability of

the algorithms that use these data structures was improved radically [62]. Note that

the relational calculus column, and the formatting column are depicted here only for

completeness.

Generic IDE. We have migrated the Meta-Environment from a hard coded ASF-

+SDF IDE to a generic programming environment (Chapter 2). The ToolBus is always

used as a generic platform for heterogeneous distributed programming. On top of that

platform we now offer a set of generic programming environment tools, which we spe-

cialize and bind much later to obtain the ASF+SDF Meta-Environment. This means

that a number of important functionalities have been refactored to be either completely

anonymous or highly parameterized. We created generic tools for file I/O, in-memory

storage (state management), (structure) editing, error management and visualization,

locations as a general abstraction for referencing to areas in files, configuration man-

agement, including configurable menus and button bars, visualization of graphs (in-

208

SECTION 10.3 Software

cluding import structures). Finally we integrated TIDE [132], an existing generic de-

bugging platform into the Meta-Environment.

10.3.2 SDF

More specific to the subject of this thesis we have adapted the implementation of SDF.

This work was supervised by and done together with with Mark van den Brand.

Redesign of SGLR filters. For backward compatibility with the original ASF+SDF

Meta-Environment (Chapter 1), SGLR contained several heuristics based disambigua-

tion filters that were aimed at optimizing the rapid development of language descrip-

tions. We intensively studied the characteristic behavior of these filters and then

switched them off, since their heuristic nature severely lowers the fidelity of the parsing

architecture.

The implementation of the remaining filters was redesigned. An extreme separation

of the disambiguation filters from the parsing algorithm proved to be beneficial for

both clarity of code and efficiency. Due to the nondeterministic nature of scannerless

generalized parsing it appears to be better to wait for the final parse forest and filter it,

than to filter partial parse forests that later not survive anyway (Chapter 3).

Parse forests. We have experimented with different encodings of parse forests as

maximally shared ATerms. Note that the parse forests data structure cross cuts several

topical columns in the design of ASF+SDF (Figure 10.2), so a change in this for-

mat means updating many components. The design trade-off is: high-resolution (fully

informative) versus low memory footprint. We decided on an ATerm representation

containing full derivation trees down the character level. We do flatten the applications

of productions that produce lists to plain ATerm lists (Chapter 7 and Chapter 8). The

reason is that in ASF list concatenation is an associative operator, thus all elements are

on the same level from a semantics point of view.

Position information. We added a separate tool that annotates parse trees with posi-

tion information. Each annotated sub-tree now has a unique identity. For the annotation

we use the location abstraction discussed before that is standardized across the Meta-

Environment.

Annotating all sub-trees with their location is an enabling feature for a lot of func-

tionality in the Meta-Environment:

☎ Unique identity of source code artifacts is a primary requirement in source code

analyses, cross-linking, and visualization,

☎
A generic syntax highlighting tool traverses any parse tree and creates a mapping

of locations to categories of font parameters. This can be given as input to any

editor that can manipulate font attributes by position information (e.g., Emacs,

GVim, JEdit),

☎ Easy production of error and warning messages that contain references to the

causes of an error.

209

Conclusions CHAPTER 10

☎ Origin tracking, to be able to find the original code that seeded the existence

of new code after a source code transformation, is trivially implemented by for-

warding position annotations during term rewriting.

Visualization. We developed a parse forest visualization tool by mapping parse trees

to the generic graph representation data structure. This tool aides enormously in the

analysis of ambiguity, and the design of disambiguation filters.

10.3.3 ASF

Apart from improving the architecture of the ASF implementation, we have extended

and adapted ASF in several ways. The goals were to test and validate several research

projects, service the application area of meta programming and to improve the general

flexibility of ASF+SDF. This has been a mostly personal project, supervised by Paul

Klint and Mark van den Brand.

Architecture. The goal is to improve the decomposition of tools and algorithms

needed to parse and finally compile or interpret ASF specifications. The implemen-

tation of ASF as a separate formalism from SDF is somewhat controversial because

of the close cooperation. In the original system and the first versions of the renovated

Meta-Environment, there was a completely tight coupling on the implementation level

between ASF and SDF. We separated the implementation of ASF as a collection of

independent components. In particular we introduced the ASF normalizer tool, which

manipulates ASF specifications in a back-end neutral fashion (Chapters 8).

Renovation. We have renovated the implementation of the ASF compiler and the

ASF interpreter. The goals were to make the implementation of the ASF compiler

independent of the SDF formalism, to improve the flexibility of the ASF interpreter

to facilitate easy experimentation with new language features (Chapters 4, 6, 7, 8),

and finally to be able to handle the new parse tree format necessary for high-fidelity

transformations (Chapters 7, 8).

Optimization. We have improved the efficiency of compiled ASF specifications by

introducing optimizations for recursive functions, and list matching. Recursive appli-

cations of functions on lists are a very common coding idiom in ASF. The introduction

of these optimizations have led to an average 15% performance gain.

New features. Thirdly, we have added a number of features and language constructs

to ASF. Among those are syntax and semantics for unit testing ASF programs, a new

syntax and semantics for conditions that raises their intentionality, the implementation

of “rewriting with layout” (Chapter 7), traversal functions (Chapter 6), the addressabil-

ity of ambiguity clusters (Chapter 4) and “first class layout” (Chapter 8).

210

SECTION 10.3 Software

Built-in architecture. An important change in the design of ASF was the addition

of an architecture for built-in functions. Before, ASF was a completely pure lan-

guage, now it has a fixed set of co-routines that can be called from any ASF program.

This design has solved several bottlenecks in the application to the meta programming

paradigm. For example, reading in several input source code files and producing several

output source code files is not an issue any more. The following fixed set of built-ins

have been added:

☎ Setting and getting of parse tree annotations, including position information in

terms of locations,

☎ Calling parsing and unparsing during rewriting,

☎
Posix functionality: file I/O, pipes and other system calls,

☎
Reflection: lifting user-defined syntax to the parse tree level, and back,

☎ Debugging: a generic interface between ASF and the TIDE generic debugging

system, which can be used to rapidly implement interactive debuggers for do-

main specific languages [26].

211

Conclusions

212

Bibliography

[1] A. Aasa, K. Petersson, and D. Synek. Concrete syntax for data objects in func-

tional languages. In Proceedings of the 1988 ACM conference on LISP and

functional programming, pages 96–105. ACM Press, 1988.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques and

Tools. Addison-Wesley, 1986.

[3] R. op den Akker, B. Melichar, and J. Tarhio. Attribute Evaluation and Parsing.

In H. Alblas and B. Melichar, editors, International Summer School on Attribute

Grammars, Applications and Systems, volume 545 of LNCS, pages 187–214.

Springer-Verlag, 1991.

[4] H. Alblas. Introduction to attribute grammars. In H. Alblas and B. Melichar,

editors, International Summer School on Attribute Grammars, Applications and

Systems, volume 545 of Lecture Notes in Computer Science, pages 1–15, Berlin

Heidelberg New York, 1991. Springer Verlag.

[5] A.W. Appel and M.J.R. Gonçalves. Hash-consing garbage collection. Techni-

cal Report CS-TR-412-93, Princeton University, Computer Science Department,

1993.

[6] B.R.T. Arnold, A. van Deursen, and M. Res. An algebraic specification of a

language for describing financial products. In M. Wirsing, editor, ICSE-17

Workshop on Formal Methods Application in Software Engineering, pages 6–

13, April 1995.

[7] J. Aycock. Why Bison is becoming extinct. ACM Crossroads, Xrds-7.5, 2002.

[8] J. Aycock and R.N. Horspool. Faster generalized LR parsing. In S. Jähnichen,

editor, CC’99, volume 1575 of LNCS, pages 32–46. Springer-Verlag, 1999.

[9] J. Aycock and R.N. Horspool. Directly-executable earley parsing. In R. Wil-

helm, editor, CC’01, volume 2027 of LNCS, pages 299–243, Genova, Italy,

2001. Springer-Verlag.

[10] J. Aycock and R.N. Horspool. Schrödinger’s token. Software, Practice & Expe-

rience, 31:803–814, 2001.

213

Conclusions

[11] J. W. Backus, J. H. Wegstein, A. van Wijngaarden, M. Woodger, F. L. Bauer,

J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson, and

B. Vauquois. Report on the algorithm language ALGOL 60. Communications

of the ACM, 3(5):299–314, May 1960.

[12] J. C. M. Baeten and W. P. Weijland. Process algebra. Cambridge University

Press, 1990.

[13] I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program transformations for

practical scalable software evolution. In ICSE ’04: Proceedings of the 26th

International Conference on Software Engineering, pages 625–634. IEEE Com-

puter Society, 2004.

[14] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM

Press/Addison-Wesley, 1989.

[15] J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordination

architecture. Science of Computer Programming, 31(2-3):205–229, July 1998.

[16] M. Bezem, J.W. Klop, and R. de Vrijer, editors. Term Rewriting Systems. Cam-

bridge University Press, 2003.

[17] S. Billot and B. Lang. The structure of shared forests in ambiguous parsing.

In Proceedings of the 27th annual meeting on Association for Computational

Linguistics, pages 143–151, Morristown, NJ, USA, 1989. Association for Com-

putational Linguistics.

[18] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C.

van de Pol. µCRL: A toolset for analysing algebraic specifications. In G. Berry,

H. Comon, and A. Finkel, editors, CAV 2001, volume 2102 of LNCS, pages

250–254. Springer-Verlag, 2001.

[19] F. Bonsu. Graphic generation language: Automatic code generation from de-

sign. Master’s thesis, Universiteit van Amsterdam, 1995.

[20] P. Borovanský. Le controle de la réécriture : étude et implantation d’un formal-

isme de stratégies. PhD thesis, Université Henri Poincaré, October 1998.

[21] P. Borovanský, S. Jamoussi, P.-E. Moreau, and Ch. Ringeissen. Handling ELAN

Rewrite Programs via an Exchange Format. In Proc. of [98], 1998.

[22] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An

overview of ELAN. In Claude Kirchner and Hélène Kirchner, editors, Interna-

tional Workshop on Rewriting Logic and its Applications, volume 15 of Elec-

tronic Notes in Theoretical Computer Science. Elsevier, 1998.

[23] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An

overview of ELAN. In Claude Kirchner and Hélène Kirchner, editors, WRLA,

volume 15 of ENTCS. Elsevier Sciences, 1998.

214

Software

[24] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN:

A logical framework based on computational systems. In J. Meseguer, editor,

1st Intl. Workshop on Rewriting Logic and its Applications, Electronic Notes in

Theoretical Computer Science. Elsevier Sciences, 1996.

[25] M.G.J. van den Brand. Pregmatic: A Generator for Incremental Programming

Environments. PhD thesis, Katholieke Universiteit Nijmegen, 1992.

[26] M.G.J. van den Brand, B. Cornelissen, P.A. Olivier, and J.J Vinju. TIDE: a

generic debugging framework. In J. Boyland and G. Hedin, editors, Language

Design Tools and Applications, June 2005.

[27] M.G.J van den Brand and M. de Jonge. Pretty-printing within the ASF+SDF

Meta-Environment: a generic approach. Technical Report SEN-R9904, CWI,

1999.

[28] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,

T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,

and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Lan-

guage Development Environment. In R. Wilhelm, editor, CC’01, volume 2027

of LNCS, pages 365–370. Springer-Verlag, 2001.

[29] M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E.A. van der

Meulen. Industrial applications of ASF+SDF. In M. Wirsing and M. Nivat,

editors, Algebraic Methodology and Software Technology (AMAST ’96), volume

1101 of LNCS, pages 9–18. Springer-Verlag, 1996.

[30] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling language

definitions: The ASF+SDF compiler. ACM Transactions on Programming Lan-

guages and Systems, 24(4):334–368, 2002.

[31] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient Anno-

tated Terms. Software, Practice & Experience, 30(3):259–291, 2000.

[32] M.G.J. van den Brand and P. Klint. ASF+SDF User Manual Release 1.5, 2004.

http://www.cwi.nl/projects/MetaEnv.

[33] M.G.J. van den Brand, P. Klint, and P. A. Olivier. Compilation and memory

management for ASF+SDF. In S. Jähnichen, editor, Compiler Construction

(CC ’99), volume 1575 of Lecture Notes in Computer Science, pages 198–213.

Springer-Verlag, 1999.

[34] M.G.J. van den Brand, P. Klint, and C. Verhoef. Core technologies for system

renovation. In K.G. Jeffery, J. Král, and M. Bartos̆ek, editors, SOFSEM’96:

Theory and Practice of Informatics, volume 1175 of LNCS, pages 235–255.

Springer-Verlag, 1996.

[35] M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering and sys-

tem renovation: an annotated bibliography. ACM Software Engineering Notes,

22(1):42–57, January 1997.

215

Conclusions

[36] M.G.J. van den Brand, P. Klint, and C. Verhoef. Term rewriting for sale. In

C. Kirchner and H. Kirchner, editors, Second International Workshop on Rewrit-

ing Logic and its Applications, WRLA 98, 1998.

[37] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewriting with traversal

functions. Technical Report SEN-R0121, Centrum voor Wiskunde en Informat-

ica, 2001.

[38] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term Rewriting with Type-safe

Traversal Functions. In B. Gramlich and S. Lucas, editors, Second International

Workshop on Reduction Strategies in Rewriting and Programming (WRS 2002),

volume 70 of Electronic Notes in Theoretical Computer Science. Elsevier Sci-

ence Publishers, 2002.

[39] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewriting with traver-

sal functions. ACM Transactions on Software Engineering and Methodology

(TOSEM), 12(2):152–190, 2003.

[40] M.G.J. van den Brand, S. Klusener, L. Moonen, and J.J. Vinju. Generalized

Parsing and Term Rewriting - Semantics Directed Disambiguation. In Barret

Bryant and João Saraiva, editors, Third Workshop on Language Descriptions

Tools and Applications, volume 82 of Electronic Notes in Theoretical Computer

Science. Elsevier, 2003.

[41] M.G.J. van den Brand, A.T. Kooiker, N.P. Veerman, and J.J. Vinju. Context-

sensitive formatting – extended abstract. In International Conference on Soft-

ware Maintenance, 2005. accepted for publication.

[42] M.G.J. van den Brand, T. Kuipers, L. Moonen, and P. Olivier. Design and im-

plementation of a new ASF+SDF meta-environment. In M.P.A. Sellink, editor,

Proceedings of the Second International Workshop on the Theory and Practice

of Algebraic Specifications (ASF+SDF’97), Workshops in Computing, Amster-

dam, 1997. Springer/British Computer Society.

[43] M.G.J. van den Brand, P.-E. Moreau, and C. Ringeissen. The ELAN envi-

ronment: a rewriting logic environment based on ASF+SDF technology. In

M.G.J van den Brand and R. Lämmel, editors, Proceedings of the 2st Interna-

tional Workshop on Language Descriptions, Tools and Applications, volume 65,

Grenoble (France), April 2002. Electronic Notes in Theoretical Computer Sci-

ence.

[44] M.G.J. van den Brand, P.-E. Moreau, and J.J. Vinju. Environments for Term

Rewriting Engines for Free! In R. Nieuwenhuis, editor, Proceedings of the 14th

International Conference on Rewriting Techniques and Applications (RTA’03),

volume 2706 of LNCS, pages 424–435. Springer-Verlag, 2003.

[45] M.G.J. van den Brand, P.-E. Moreau, and J.J. Vinju. A generator of effi-

cient strongly typed abstract syntax trees in Java. IEE Proceedings - Software,

152,2:70–78, April 2005.

216

Software

[46] M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambigua-

tion Filters for Scannerless Generalized LR Parsers. In R. Nigel Horspool, ed-

itor, Compiler Construction (CC’02), volume 2304 of LNCS, pages 143–158.

Springer-Verlag, 2002.

[47] M.G.J. van den Brand, A. Sellink, and C. Verhoef. Generation of components

for software renovation factories from context-free grammars. In WCRE ’97:

Proceedings of the Fourth Working Conference on Reverse Engineering (WCRE

’97), page 144, Washington, DC, USA, 1997. IEEE Computer Society.

[48] M.G.J. van den Brand, A. Sellink, and C. Verhoef. Control flow normalization

for COBOL/CICS legacy system. In CSMR, pages 11–20, 1998.

[49] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation of compo-

nents for software renovation factories from context-free grammars. Science of

Computer Programming, 36:209–266, 2000.

[50] M.G.J. van den Brand and J.J. Vinju. Rewriting with layout. In Claude Kirchner

and Nachum Dershowitz, editors, Proceedings of RULE2000, 2000.

[51] M.G.J. van den Brand and E. Visser. Generation of formatters for context-free

languages. ACM Transactions on Software Engineering and Methodology, 5:1–

41, 1996.

[52] M. Bravenboer, R. Vermaas, J.J. Vinju, and E. Visser. Generalized type-based

disambiguation of meta programs with concrete object syntax. In Generative

Programming and Component Engineering (GPCE), 2005. to appear.

[53] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific

language embedding and assimilation without restrictions. In D. C. Schmidt,

editor, Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented

Programing, Systems, Languages, and Applications (OOPSLA’04), pages 365–

383, Vancouver, Canada, October 2004. ACM Press.

[54] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating idiomatic crosscutting

concerns. In Proceedings of the International Conference on Software Mainte-

nance (ICSM’05). IEEE Computer Society, 2005. to appear.

[55] L. Cardelli. Type systems. In Handbook of Computer Science and Engineering.

CRC Press, 1997.

[56] H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In A. Middeldorp,

editor, RTA’01, volume 2051 of LNCS, pages 77–92. Springer-Verlag, 2001.

[57] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F.

Quesada. Maude: Specification and programming in rewriting logic. Theoretical

Computer Science, 2001.

217

Conclusions

[58] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In

J. Meseguer, editor, 1st Intl. Workshop on Rewriting Logic and its Applications,

volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier Sci-

ences, 1996.

[59] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping

system for programming language dialects. Computer Languages, 16(1):97–

107, 1991.

[60] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Tools,

and Applications. Addison-Wesley, 2000.

[61] C. J. Date. An Introduction to Database Systems. Addison-Wesley Longman

Publishing Co., Inc., sixth edition, 1994.

[62] H. A. de Jong and P. A. Olivier. Generation of abstract programming interfaces

from syntax definitions. Journal of Logic and Algebraic Programming, 59(1-

2):35–61, 2004.

[63] M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray, and

L. Scott, editors, Proceedings of the 2nd International Symposium on Construct-

ing Software Engineering Tools (CoSET2000). University of Wollongong, Aus-

tralia, 2000.

[64] M. de Jonge. Pretty-printing for software reengineering. In Proceedings: In-

ternational Conference on Software Maintenance (ICSM 2002), pages 550–559.

IEEE Computer Society Press, October 2002.

[65] M. de Jonge. Source tree composition. In C. Gacek, editor, Proceedings: Sev-

enth International Conference on Software Reuse, volume 2319 of LNCS, pages

17–32. Springer-Verlag, April 2002.

[66] M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transformation

tools. In M. G. J. van den Brand and D. Parigot, editors, Workshop on Language

Descriptions, Tools and Applications (LDTA’01), volume 44 of Electronic Notes

in Theoretical Computer Science. Elsevier Science Publishers, 2001.

[67] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping, vol-

ume 5 of AMAST Series in Computing. World Scientific, 1996.

[68] A. van Deursen and P. Klint. Little languages: Little maintenance? Journal of

Software Maintenance, 10:75–92, 1998.

[69] A. van Deursen and P. Klint. Domain-specific language design requires feature

descriptions. Journal of Computing and Information Technology, 10(1):1–17,

2002.

[70] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic

Computation, 15:523–545, 1993.

218

Software

[71] A. van Deursen and L. Moonen. Type inference for COBOL systems. In I. Bax-

ter, A. Quilici, and C. Verhoef, editors, Proc. 5th Working Conf. on Reverse

Engineering, pages 220–230. IEEE Computer Society, 1998.

[72] K.-G. Doh and P.D. Mosses. Composing programming languages by combining

action-semantics modules. In M.G.J. van den Brand and D. Parigot, editors,

Electronic Notes in Theoretical Computer Science, volume 44, 2001.

[73] A. Felty. A logic programming approach to implementing higher-order term

rewriting. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Ex-

tensions of Logic Programming (ELP ’91), volume 596 of Lecture Notes in Ar-

tifial Intelligence, pages 135–158. Springer-Verlag, 1992.

[74] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: improv-

ing the design of existing code. Addison-Wesley, 1999.

[75] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[76] J.F. Gimpel. Algorithms in SNOBOL4. John Wiley & Sons, 1976.

[77] J. Goubault. HimML: Standard ML with fast sets and maps. In ACM SIGPLAN

Workshop on Standard ML and its Applications, June 94.

[78] J. Grosch. Ast – a generator for abstract syntax trees. Technical Report 15,

GMD Karlsruhe, 1992.

[79] Object Management Group. MDA – Model Driven Architecture.

http://www.omg.org/mda.

[80] Object Management Group. UML – Unified Modelling Language.

http://www.uml.org.

[81] XML Schema Working Group. W3C XML Schema. Available at:

http://www.w3c.org/XML/Schema.

[82] D.R. Hanson. Early Experience with ASDL in lcc. Software - Practice and

Experience, 29(3):417–435, 1999.

[83] G. Hedin. Incremental Semantic Analysis. PhD thesis, Lund University, 1992.

[84] G. Hedin and E. Magnusson. JastAdd - a Java-based system for implementing

frontends. In M.G.J. van den Brand and D. Parigot, editors, Proc. LDTA’01,

volume 44-2 of Electronic Notes in Theoretical Computer Science. Elsevier Sci-

ence, 2001.

[85] J. Heering. Implementing higher-order algebraic specifications. In D. Miller,

editor, Proceedings of the Workshop on the λProlog Programming Language,

pages 141–157. University of Pennsylvania, Philadelphia, 1992. Published as

Technical Report MS-CIS-92-86.

219

Conclusions

[86] J. Heering. Second-order term rewriting specification of static semantics: An ex-

ercise. In A. van Deursen, J. Heering, and P. Klint, editors, Language Prototyp-

ing, volume 5 of AMAST Series in Computing, pages 295–305. World Scientific,

1996.

[87] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition for-

malism SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

[88] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers. IEEE

Transactions on Software Engineering, 16(12):1344–1350, 1990.

[89] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Program-

ming Language Haskell. A Non-strict Purely Functional Language (Version 1.2).

ACM SIGPLAN Notices, 27(5), May 1992.

[90] G. Huet and B. Lang. Proving and applying program transformations expressed

with second-order patterns. Acta Informatica, 11:31–55, 1978.

[91] M. Johnson. The computational complexity of glr parsing. In M. Tomita, editor,

Generalized LR Parsing, pages 35–42. Kluwer, Boston, 1991.

[92] S. C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-32,

AT & T Bell Laboratories, Murray Hill, N.J., 1975.

[93] M. de Jonge and J. Visser. Grammars as contracts. In Greg Butler and Stan Jarz-

abek, editors, Generative and Component-Based Software Engineering, Second

International Symposion, GCSE 2000, volume 2177 of LNCS, pages 85–99, Er-

furt, Germany, 2001. Springer-Verlag.

[94] K. T. Kalleberg and E. Visser. Combining aspect-oriented and strategic pro-

gramming. In H. Cirstea and N. Marti-Oliet, editors, RULE 2005, 2005. to

appear.

[95] D. Kapur and H. Zhang. An overview of Rewrite Rule Laboratory (RRL). J.

Computer and Mathematics with Applications, 29(2):91–114, 1995.

[96] U. Kastens, P. Pfahler, and M. T. Jung. The eli system. In CC ’98: Proceedings

of the 7th International Conference on Compiler Construction, pages 294–297,

London, UK, 1998. Springer-Verlag.

[97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and

J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, edi-

tors, Proceedings European Conference on Object-Oriented Programming, vol-

ume 1241, pages 220–242, Berlin, Heidelberg, and New York, 1997. Springer-

Verlag.

[98] C. Kirchner and H. Kirchner, editors. Second Intl. Workshop on Rewriting Logic

and its Applications, Electronic Notes in Theoretical Computer Science, Pont-

à-Mousson (France), September 1998. Elsevier.

220

Software

[99] P. Klint. A meta-environment for generating programming environments. ACM

Transactions on Software Engineering and Methodology, 2:176–201, 1993.

[100] P. Klint. Is strategic programming a viable paradigm? In B. Gramlich and S. Lu-

cas, editors, Workshop on Reduction Strategies in Rewriting and Programming

(WRS’01), volume 57/2 of Electronic Notes in Theoretical Computer Science.

Elsevier Science Publishers, 2001.

[101] P. Klint. How understanding and restructuring differ from compiling—a rewrit-

ing perspective. In Proceedings of the 11th International Workshop on Program

Comprehension (IWPC03), pages 2–12. IEEE Computer Society, 2003.

[102] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for

grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

[103] P. Klint, T. van der Storm, and J.J. Vinju. Term rewriting meets aspect-oriented

programming. Technical Report SEN-E0421, CWI, 2004.

[104] P. Klint and E. Visser. Using filters for the disambiguation of context-free gram-

mars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on

Parsing Theory, pages 1–20, Milano, Italy, 1994. Tech. Rep. 126–1994, Dipar-

timento di Scienze dell’Informazione, Università di Milano.

[105] J.W. Klop. Term rewriting systems. In D. Gabbay, S.Abramski, and T. Maibaum,

editors, Handbook of Logic and Computer Science, volume 1. Oxford University

Press, 1992.

[106] D.E. Knuth. The Art of Computer Programming, Volume 1. Addison-Wesley,

1968.

[107] J. Kort and R. Lämmel. Parse-Tree Annotations Meet Re-Engineering Concerns.

In Proc. Source Code Analysis and Manipulation (SCAM’03). IEEE Computer

Society Press, September 2003. 10 pages.

[108] T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. In M.G.J.

van den Brand and D. Parigot, editors, Electronic Notes in Theoretical Computer

Science, volume 44. Elsevier Science Publishers, 2001. Proc. of Workshop on

Language Descriptions, Tools and Applications (LDTA).

[109] R. Lämmel. Typed generic traversal with term rewriting strategies. Journal of

Logic and Algebraic Programming, 54:1–64, 2003.

[110] R. Lämmel and C. Verhoef. Semi-Automatic Grammar Recovery. Software—

Practice & Experience, 31(15):1395–1438, December 2001.

[111] R. Lämmel and C. Verhoef. VS COBOL II grammar1, 2001.

[112] R. Lämmel and J. Visser. Typed combinators for generic traversal. In

PADL 2002: Practical Aspects of Declarative Languages, volume 2257 of Lec-

ture Notes in Computer Science (LNCS). Springer, 2002.

1http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/

221

Conclusions

[113] R. Lämmel, J. Visser, and J. Kort. Dealing with large bananas. In Johan Jeuring,

editor, Workshop on Generic Programming, Ponte de Lima, July 2000. Pub-

lished as Technical Report UU-CS-2000-19, Department of Information and

Computing Sciences, Universiteit Utrecht.

[114] R. Lämmel and G. Wachsmuth. Transformation of SDF syntax definitions in

the ASF+SDF Meta-Environment. In M.G.J. van den Brand and D. Parigot, ed-

itors, Proc. LDTA’01, volume 44-2 of Electronic Notes in Theoretical Computer

Science. Elsevier Science, 2001.

[115] P.J. Landin. The next 700 programming languages. In CACM, volume 9, pages

157–165, March 1966.

[116] B. Lang. Deterministic techniques for efficient non-deterministic parsers. In

J. Loeckx, editor, Proceedings of the Second Colloquium on Automata, Lan-

guages and Programming, volume 14 of LNCS, pages 255–269. Springer-

Verlag, 1974.

[117] S.B. Lassen, P.D. Mosses, and D.A. Watt. An introduction to AN-2, the proposed

new version of Action Notation. In Proc. 3rd International Workshop on Action

Semantics, volume NS-00-6 of Notes Series, pages 19–36. BRICS, 2000.

[118] B. M. Leavenworth. Syntax macros and extended translation. Commun. ACM,

9(11):790–793, 1966.

[119] M. M. Lehman and F. N. Parr. Program evolution and its impact on software

engineering. In Proceedings of the 2nd international conference on Software

engineering, pages 350–357. IEEE Computer Society Press, 1976.

[120] M. E. Lesk and E. Schmidt. LEX — A lexical analyzer generator. Bell Labora-

tories, 1986. UNIX Programmer’s Supplementary Documents, Volume 1 (PS1).

[121] J. Lewis, M. Shields, E. Meijer, and J. Launchbury. Implicit parameters:

Dynamic scoping with static types. In Proceedings of the 27th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 108–118, Jan 2000.

[122] H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe, and its API.

In J. Boyland and G. Hedin, editors, Fifth workshop on language descriptions

tools and applications (LDTA), April 2005.

[123] A.J. Malton, K.A. Schneider, J.R. Cordy, T.R. Dean, D. Cousineau, and

J. Reynolds. Processing software source text in automated design recovery and

transformation. In IWPC ’01: Proceedings of the Ninth International Work-

shop on Program Comprehension (IWPC’01), page 127, Washington, DC, USA,

2001. IEEE Computer Society.

[124] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin. LISP

1.5 Programmer’s Manual. The MIT Press, Cambridge, Mass., 1966.

222

Software

[125] R. Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17:348–375, 1978.

[126] L. Moonen. Generating robust parsers using island grammars. In Proceedings of

the 8th Working Conference on Reverse Engineering, pages 13–22. IEEE Com-

puter Society Press, 2001.

[127] P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for

Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler

Construction, Warsaw (Poland), volume 2622 of LNCS, pages 61–76. Springer-

Verlag, May 2003.

[128] P.D. Mosses. Action semantics and ASF+SDF: System demonstration. In Lan-

guage Design Tools and Applications, volume 65-3 of ENTCS, 2002.

[129] P.D. Mosses and J. Iversen. Constructive action semantics for core ML. In

P. Klint, editor, Special issue on Language definitions and tool generation, vol-

ume 152,2, pages 79–98. IEE Proceedings - Software, April 2005.

[130] R. Nozohoor-Farshi. Handling of ill-designed grammars in tomita’s parsing al-

gorithm. In Proceedings of the International Parsing Workshop, pages 182–192,

1989.

[131] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In

Proceedings of the 24th ACM Symposium on Principles of Programming Lan-

guages (POPL’97), pages 146–159. ACM Press, New York (NY), USA, 1997.

[132] P. A. Olivier. A Framework for Debugging Heterogeneous Applications. PhD

thesis, 2000.

[133] J. Paakki. Attribute grammar paradigms: a high-level methodology in language

implementation. ACM Comput. Surv., 27(2):196–255, 1995.

[134] J. Palsberg, K. Tao, and W. Wang. Java tree builder. Available at

http://www.cs.purdue.edu/jtb. Purdue University, Indiana, U.S.A.

[135] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL ✒ k ✘ parser generator.

Software – Practice & Experience, 7(25):789–810, 1995.

[136] H.A. Partsch. Specification and Transformation of Programs - a Formal Ap-

proach to Software Development. Springer-Verlag, 1990.

[137] J. van de Pol. JITty: a Rewriter with Strategy Annotations. In S. Tison, editor,

Rewriting Techniques and Applications, volume 2378 of LNCS, pages 367–370.

Springer-Verlag, 2002.

[138] J. Rekers. Parser Generation for Interactive Environments. PhD thesis, Univer-

sity of Amsterdam, 1992.

[139] D.J. Salomon and G.V. Cormack. Scannerless NSLR(1) parsing of programming

languages. SIGPLAN Notices, 24(7):170–178, 1989.

223

Conclusions

[140] D.J. Salomon and G.V. Cormack. The disambiguation and scannerless parsing

of complete character-level grammars for programming languages. Technical

Report 95/06, Dept. of Computer Science, University of Manitoba, 1995.

[141] E. Scott, A. Johnstone, and S.S. Hussain. Tomita-Style Generalised LR Parsers.

Technical Report TR-00-12, Royal Holloway, University of London, Computer

Science Dept., 2000.

[142] A. Sellink and C. Verhoef. Scaffolding for software renovation. In Proceedings

of the Conference on Software Maintenance and Reengineering, page 161. IEEE

Computer Society, 2000.

[143] M.P.A. Sellink, H. Sneed, and C. Verhoef. Restructuring of COBOL/CICS

legacy systems. In Proceedings of Conference on Maintenance and Reengi-

neering (CSMR’99), pages 72–82, Amsterdam, March 1999.

[144] M.P.A. Sellink and C. Verhoef. Native patterns. In M.R. Blaha, A. Quilici, and

C. Verhoef, editors, Proceedings of the Fifth Working Conference on Reverse

Engineering, pages 89–103. IEEE Computer Society Press, 1998.

[145] A. A. Terekhov and C. Verhoef. The realities of language conversions. IEEE

Software, 17(6):111–124, 2000.

[146] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.

[147] F. Tip and T.B. Dinesh. A slicing-based approach for locating type errors.

ACM Transactions on Software Engineering and Methodology, 10:5–55, Jan-

uary 2001.

[148] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter. Practical extraction

techniques for java. ACM Trans. Program. Lang. Syst., 24(6):625–666, 2002.

[149] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-

tical Systems. Kluwer Academic Publishers, 1985.

[150] D.A. Turner. SASL Language Manual. University of Kent, Canterbury, 1979.

[151] C. van Reeuwijk. Rapid and Robust Compiler Construction Using Template-

Based Metacompilation. In G. Hedin, editor, 12th Conference on Compiler Con-

struction, Warsaw (Poland), volume 2622 of LNCS, pages 247–261. Springer-

Verlag, May 2003.

[152] J. van Wijngaarden and E. Visser. Program transformation mechanics. a clas-

sification of mechanisms for program transformation with a survey of existing

transformation systems. Technical Report UU-CS-2003-048, Institute of Infor-

mation and Computing Sciences, Utrecht University., May 2003.

224

Software

[153] N.P. Veerman. Revitalizing modifiability of legacy assets. In M.G.J. van den

Brand, G. Canfora, and T. Gymóthy, editors, 7th European Conference on Soft-

ware Maintenance and Reengineering, pages 19–29. IEEE Computer Society

Press, 2003.

[154] J.J. Vinju. A type driven approach to concrete meta programming. Technical

Report SEN-E0507, CWI, 2005.

[155] J.J. Vinju. Type-driven automatic quotation of concrete object code in meta

programs. In Rapid Integration of Software Engineering techniques, Lecture

Notes in Computer Science. Springer-Verlag, September 2005. to appear.

[156] E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Pro-

gramming Research Group, University of Amsterdam, 1997.

[157] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University

of Amsterdam, 1997.

[158] E. Visser. Language independent traversals for program transformation. In

J. Jeuring, editor, Workshop on Generic Programming, pages 86–104, Ponte de

Lima, July 2000. Published as Technical Report UU-CS-2000-19, Department

of Information and Computing Sciences, Universiteit Utrecht.

[159] E. Visser. Stratego: A language for program transformation based on rewriting

strategies. System description of Stratego 0.5. In A. Middeldorp, editor, RTA’01,

volume 2051 of LNCS, pages 357–361. Springer-Verlag, 2001.

[160] E. Visser. A survey of strategies in program transformation systems. In B. Gram-

lich and S. Lucas, editors, Workshop on Reduction Strategies in Rewriting and

Programming (WRS’01), volume 57/2 of Electronic Notes in Theoretical Com-

puter Science. Elsevier Science Publishers, 2001.

[161] E. Visser. Meta-programming with concrete object syntax. In D. Batory

and C. Consel, editors, Generative Programming and Component Engineering

(GPCE’02), volume 2487 of LNCS. Springer-Verlag, 2002.

[162] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,

and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific

Program Generation, volume 3016 of Lecture Notes in Computer Science, pages

216–238. Spinger-Verlag, June 2004.

[163] J. Visser. Visitor combination and traversal control. ACM SIGPLAN Notices,

36(11):270–282, November 2001. OOPSLA 2001 Conference Proceedings:

Object-Oriented Programming Systems, Languages, and Applications.

[164] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars.

SIGPLAN Notices, 24(7):131–145, 1989. Proceedings of the ACM SIGPLAN

’89 Conference on Programming Language Design and Implementation.

225

Conclusions

[165] D.G. Waddington and Bin Yoa. High-fidelity C/C++ code transformation. In

J. Boyland and G. Hedin, editors, Fifth workshop on language descriptions tools

and applications (LDTA), April 2005.

[166] T.A. Wagner and S.L. Graham. Incremental analysis of real programming lan-

guages. In Proceedings of the 1997 ACM SIGPLAN conference on Programming

language design and implementation, pages 31–43. ACM Press, 1997.

[167] L. Wall. Practical Extraction and Report Language. O’ Reilly.

http://www.perl.com/pub/doc/manual/html/pod/perl.html.

[168] D.C. Wang, A.W. Appel, J.L. Korn, and C.S. Serra. The Zephyr Abstract Syntax

Description Language. In Proceedings of the Conference on Domain-Specific

Languages, pages 213–227, 1997.

[169] H. Westra. Configurable transformations for high-quality automatic program

improvement. CobolX: a case study. Master’s thesis, Utrecht University, Febru-

ary 2002.

[170] A. Winter, B. Kullbach, and V. Riediger. An overview of the gxl graph exchange

language. In Revised Lectures on Software Visualization, International Seminar,

pages 324–336, London, UK, 2002. Springer-Verlag.

[171] H. Zaadnoordijk. Source code transformations using the new ASF+SDF meta-

environment. Master’s thesis, University of Amsterdam, Programming Research

Group, 2001.

[172] D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ programs

with Meta-AspectJ. In Gabor Karsai and Eelco Visser, editors, Generative Pro-

gramming and Component Engineering: Third International Conference, GPCE

2004, volume 3286 of Lecture Notes in Computer Science, pages 1–19, Vancou-

ver, Canada, October 2004. Springer.

226

C H A P T E R 11

Samenvatting

De titel van dit proefschrift is “Analysis and Transformation of Source

Code by Parsing and Rewriting”, ofwel “Het analyseren en aanpassen

van broncode met behulp van ontleden en termherschrijven”.

Er is een grote hoeveelheid broncode van computerprogramma’s die aan-

gepast moet worden aan voortdurend veranderende eisen en omstandig-

heden. Het is voor bedrijven vaak aantrekkelijker om aanpassingen aan te

brengen doen in de broncode waarin al veel geld is geı̈nvesteerd dan om

helemaal opnieuw te beginnen. Om de kosten van dergelijke aanpassingen

te verlagen, kan men proberen het analyseren en aanpassen van broncode

te automatiseren met behulp van de computer zelf. Dit vormt het centrale

thema van mijn onderzoek.

Het gereedschap dat ik hiervoor gebruik is de programmeertaal

ASF+SDF. De algemene vraag is in hoeverre deze taal inderdaad geschikt

is voor het uitvoeren van analyses en aanpassingen in broncode. Het re-

sultaat van dit onderzoek is een nieuwe versie van ASF+SDF waarin een

aantal functionele aspecten en kwaliteitsaspecten zijn verbeterd. Ten eer-

ste is het probleem van ambiguı̈teit in contextvrije grammatica’s aange-

pakt. Ten tweede kunnen analyse en aanpassing beknopter worden ge-

definieerd door de introductie van zogenaamde Traversal Functions. Ten

derde is de precisie verbeterd, door nu alle aspecten van broncode te kun-

nen analyseren en aanpassen inclusief het commentaar in broncode. Ten

vierde zijn de mogelijkheden tot samenwerken met andere softwarecompo-

nenten uitgebreid.

11.1 Inleiding

De bovengenoemde automatisering van taken van programmeurs gaat met behulp van

“metaprogrammeren”. Dit is het schrijven van broncode die andere broncode mani-

puleert. Het creëren van metaprogramma’s is absoluut geen sinecure. Dat komt niet

alleen door de technische problemen die daarbij overwonnen moeten worden. Vooral

de grote hoeveelheid details die in ogenschouw moet worden genomen om de kwali-

teit van het eindproduct, het analyserapport of de aangepaste broncode, te waarborgen

227

Samenvatting CHAPTER 11

is daar debet aan. Bovendien is het essentieel dat de investering in het ontwikkelen

van dergelijke metaprogramma’s opweegt tegen de kosten van het gewoon met de hand

uitvoeren van de gewenste taken.

Zonder verder in te gaan op een kosten- en batenanalyse, probeer ik in dit proef-

schrift het proces van het ontwikkelen van nieuwe metaprogramma’s te stroomlijnen

door gereedschappen daarvoor te ontwikkelen of aan te passen. Deze gereedschappen

worden steeds beoordeeld op hun effectiviteit en vooral ook op de kwaliteit van het

eindproduct waaraan ze bijdragen. De onderzoeksmethode is empirisch:

☎
Stel een nieuwe eis of tekortkoming vast,

☎ Ontwikkel een nieuw gereedschap of pas een bestaand gereedschap aan,

☎ Gebruik het nieuwe gereedschap om een taak te automatiseren en voer die taak

vervolgens uit op een (industriële) verzameling broncode,

☎ Beoordeel het resultaat op bepaalde kwaliteitsaspecten en vergelijk de aanpak

met concurrerende of anderszins gerelateerde technieken,

☎
Formuleer een conclusie.

Het basisgereedschap is al aanwezig. Ik gebruik de programmeertaal ASF+SDF.

Deze taal leent zich, in principe, voor het ontleden en vervolgens analyseren of aan-

passen van broncode. In een aantal industriële projecten is ASF+SDF toegepast om

metaprogramma’s te construeren. Er zijn echter een aantal haken en ogen die de toe-

pasbaarheid beperken. De reden hiervoor is dat ASF+SDF oorspronkelijk niet ontwor-

pen was met het doel om broncode in bestaande talen te analyseren of aan te passen

maar juist om te experimenteren met nieuwe programmeertalen. Deze verschuiving in

het toepassingsgebied leidt onvermijdelijk tot een ander eisenpakket.

ASF+SDF bevat twee geavanceerde functies die gebruikt kunnen worden bij het

analyseren en aanpassen van broncode: ontleden en termherschrijven. Het doel van het

ontleden van broncode is om te achterhalen wat de structuur ervan is, net zoals dat het

doel is bij het ontleden van Nederlandse zinnen. Het ontleden is vaak de eerste stap bij

het systematisch onderzoeken van de betekenis van broncode.

Het tweede gereedschap dat ASF+SDF aanbiedt is termherschrijven. Dat is een

techniek waarmee gestructureerde informatie kan worden gemanipuleerd. Een term is

een structuur die getekend kan worden als een boom. Het herschrijven gebeurt door

middel van het herkennen van patronen in een dergelijke boom, en die door andere

patronen te vervangen. De structuur die het resultaat is van ontleden kan gezien worden

als een term. Zo kan termherschrijven gebruikt worden om broncode te manipuleren,

namelijk door de bijbehorende structuren te herschrijven.

Tenslotte wordt ASF+SDF ondersteund door een interactieve omgeving: de Meta-

Environment. Onder de Meta-Environment verstaan we de user-interface en andere

software componenten die het ontwikkelen en gebruiken van ASF+SDF programma’s

ondersteunen.

228

SECTION 11.2 Onderzoeksvragen

�

✁

✂

✄

Onderzoeksvragen Hoofdstuk Publicatie

1 Hoe kan men de disambiguatie van contextvrije

talen op effectieve wijze definiëren en imple-

menteren?

3, 4 [46, 40]

2 Hoe kunnen metaprogramma’s beknopter wor-

den geformuleerd?

5, 6 [39, 38]

3 Hoe kan de precisie van metaprogramma’s ver-

beterd worden?

7,8 [50]

4 Hoe kan de samenwerking tussen metaprogram-

ma’s en hun omgeving verbeterd worden?

2, 9 [45, 44]

Tabel 11.1: Onderzoeksvragen in dit proefschrift.

11.2 Onderzoeksvragen

In tabel 11.1 staan de onderzoeksvragen opgesomd met verwijzingen naar de relevante

hoofdstukken en bijbehorende publicaties. Ik ga kort in op elke onderzoeksvraag.

Hoe kan men de disambiguatie van contextvrije talen op effectieve wijze defi-

niëren en implementeren? Hoe groter de uitdrukkingskracht van een programmeer-

taal is, des te lastiger het is om een éénduidige betekenis te achterhalen tijdens het

ontleden van broncode. Er ontbreekt allerlei achtergrondinformatie die nodig is om

te kunnen kiezen. In dat geval levert ASF+SDF meerdere structuren af, omdat geen

éénduidige keuze gemaakt kan worden. We spreken in dit geval van ambiguı̈teit. De

vraag is op welke manier we de missende achtergrondinformatie effectief kunnen for-

maliseren, opdat we ASF+SDF wel een éénduidige en bovendien correcte keuze kun-

nen laten maken.

Op verschillende manieren probeer ik in dit proefschrift het concept van disambi-

guatiefilters toe te passen. Een dergelijk filter is een manier om achtergrondinformatie

te kunnen gebruiken bij de keuze tussen verschillende structuren. Bij elk filter kun

je de vraag stellen waar de informatie vandaan komt (de formalisering van bepaalde

feiten) en vervolgens hoe die informatie tot een correct en efficiënt filter leidt (de im-

plementatie). Voor verschillende klassen van ambiguı̈teiten worden in dit proefschrift

verschillende methodes voorgesteld en met succes toegepast.

Hoe kunnen metaprogramma’s beknopter worden geformuleerd? De begrippen

“context informatie” en “volgorde van het uitvoeren van berekeningen” komen niet

direct tot uiting in termherschrijfsystemen. Juist bij metaprogramma’s zijn context

informatie en de precieze controle van de volgorde bij het uitvoeren van aanpassingen

belangrijk. Het verspreiden van belangrijke informatie naar de punten in het ASF+SDF

programma waar deze nodig is, moet daarom gesimuleerd worden. Ook de controle op

de volgorde van toepassing van herschrijfregels moet gesimuleerd worden. Hierdoor

worden ASF+SDF programma’s soms onnodig ingewikkeld en onnodig lang. Ik stel

229

Samenvatting CHAPTER 11

een nieuw taalconcept voor dat “Traversal Functions” heet, waarmee beide proble-

men kunnen worden aangepakt. Traversal Functions automatiseren het doorlopen van

ingewikkelde boomstructuren in allerlei verschillende volgordes, en kunnen daarbij

gemakkelijk contextinformatie propageren.

Hoe kan de precisie van metaprogramma’s verbeterd worden? Tijdens het uit-

voeren van ASF+SDF programma’s verdwijnt sommige informatie uit de originele

broncode. De reden is dat het oplossend vermogen niet groot genoeg is en daardoor laat

ook de precisie te wensen over. In ASF+SDF is het namelijk niet mogelijk om com-

mentaar, dat secundair aan het programma in de broncode aanwezig is, te bewaren of

überhaupt aan te spreken tijdens het termherschrijven. Dat commentaar is meestal be-

doeld voor de lezer van de broncode om ingewikkelde formuleringen toe te lichten. Het

verlies van dergelijke documentatie zou desastreus kunnen zijn voor het voortbestaan

van de broncode. In dit proefschrift worden oplossingen aangedragen om commentaar

tijdens analyses en aanpassingen aan te spreken en te behouden.

Communiceren met de buitenwereld. Een van de vele uitdagingen in de ICT is nog

steeds het combineren van verschillende technieken en het op elkaar aansluiten van

verschillende systemen. Zo ook kan de ASF+SDF taal zelf maar moeizaam samen-

werken met andere systemen. Op twee manieren probeer ik hiervoor een oplossing te

bieden. Ten eerste probeer ik de taal ASF+SDF onafhankelijk te maken van de Meta-

Environment opdat zowel de Meta-Environment als ASF+SDF los van elkaar en in

meerdere omstandigheden toepasbaar zijn (zie hoofdstuk 2). Ten tweede heb ik ge-

werkt aan een efficiënte communicatielijn richting de populaire programmeertaal Java

(zie hoofdstuk 9).

11.3 Conclusie

Dit proefschrift bevat onderzoeksresultaten ten behoeve van het automatiseren van ta-

ken van programmeurs. Het resultaat is een bundel praktisch toepasbare gereedschap-

pen. Ondanks het feit dat ASF+SDF is gebruikt als “laboratorium” voor dit onderzoek,

zijn de lessen die geleerd zijn toepasbaar in andere systemen voor metaprogrammeren.

De methode die gebruikt is, is gebaseerd op het praktisch toepassen en evalue-

ren van die nieuwe ontwikkelde technieken. Mede daardoor heeft de software van de

ASF+SDF Meta-Environment gedurende het onderzoek een behoorlijke ontwikkeling

doorgemaakt. Mijn bijdrage daaraan staat beschreven in sectie 10.3.

Alhoewel metaprogrammeren nog steeds een specialisme is, verwacht ik dat de

beschikbaarheid van praktisch en precies gereedschap metaprogrammeren voor een

breder publiek van programmeurs en softwarebedrijven toegankelijk zal maken.

230

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Alge-

bra. Faculty of Mathematics and Computing Sci-

ence, TUE. 1996-01

A.M. Geerling. Transformational Development of

Data-Parallel Algorithms. Faculty of Mathematics

and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:

Models, Methods, and Implementation. Faculty of

Mathematics and Computer Science, KUN. 1996-

03

M.G.A. Verhoeven. Parallel Local Search. Fac-

ulty of Mathematics and Computing Science, TUE.

1996-04

M.H.G.K. Kesseler. The Implementation of Func-

tional Languages on Parallel Machines with Dis-

trib. Memory. Faculty of Mathematics and Com-

puter Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-

Time Systems. Faculty of Mathematics and Com-

puting Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchronization,

and Fault-Tolerance. Faculty of Mathematics and

Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Program

Construction. Faculty of Mathematics and Comput-

ing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its

Denotational Dual. Faculty of Mathematics and

Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits.

Faculty of Mathematics and Computing Science,

TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifica-

tion Formalism. Faculty of Mechanical Engineer-

ing, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda

Calculus and its Relation to Type Inference. Fac-

ulty of Mathematics and Computing Science, TUE.

1996-12

D.R. Dams. Abstract Interpretation and Partition

Refinement for Model Checking. Faculty of Mathe-

matics and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Seman-

tics. Faculty of Mathematics and Computer Sci-

ence, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small

Treewidth. Faculty of Mathematics and Computer

Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations

in Context. Faculty of Computer Science, UT.

1997-02

P.F. Hoogendijk. A Generic Theory of Data Types.

Faculty of Mathematics and Computing Science,

TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in

Logic and Mathematics. Faculty of Mathematics

and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit

Substitution. Faculty of Mathematics and Comput-

ing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.

Faculty of Mathematics and Computing Science,

TUE. 1997-06

F.A.M. van den Beuken. A Functional Approach

to Syntax and Typing. Faculty of Mathematics and

Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.

Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event

Simulator for Systems Engineering. Faculty of Me-

chanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for

Multiprocessor Computation. Faculty of Mathe-

matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-

Power 80C51 Microcontroller. Faculty of Mathe-

matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with

Petri Nets and Process Algebra. Faculty of Mathe-

matics and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and

Subtyping – A Relational Model. Faculty of Mathe-

matics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-

based Parsing. Faculty of Computer Science, UT.

1999-02

J.P.L. Segers. Algorithms for the Simulation of Sur-

face Processes. Faculty of Mathematics and Com-

puting Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolution-

ary Search. Faculty of Mathematics and Natural

Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study on In-

decisiveness in Sample Selection. Faculty of Math-

ematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in Real-

Time Distributed Databases. Faculty of Mathemat-

ics and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax

and Semantics. Faculty of Mathematics and Com-

puting Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiabil-

ity problems. Faculty of Mathematics and Comput-

ing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols

with Formal Methods. Faculty of Computer Sci-

ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for Timed

and Stochastic Systems. Faculty of Computer Sci-

ence, UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid

Systems. Faculty of Mechanical Engineering, TUE.

1999-11

J. Zwanenburg. Object-Oriented Concepts and

Proof Rules. Faculty of Mathematics and Comput-

ing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Pre-

diction System. Faculty of Mathematics and Natural

Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of

Attribute Grammars. Faculty of Mathematics and

Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel

Program Construction. Faculty of Mathematics and

Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in

the Dutch Republic. Faculty of Mathematics and

Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-

proach to the verification of distributed algorithms.

Faculty of Mathematics and Computer Science,

UU. 2000-02

W. Mallon. Theories and Tools for the Design of

Delay-Insensitive Communicating Processes. Fac-

ulty of Mathematics and Natural Sciences, RUG.

2000-03

W.O.D. Griffioen. Studies in Computer Aided Ver-

ification of Protocols. Faculty of Science, KUN.

2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad

Editor. Faculty of Mathematics and Computing

Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Pack-

aging Plant. Faculty of Mechanical Engineering,

TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-

rect Programs. Faculty of Mathematics and Com-

puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Hetero-

geneous Applications. Faculty of Natural Sciences,

Mathematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Lan-

guage. Faculty of Mathematics and Natural Sci-

ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search Dis-

covering and Representing Search Space Structure.

Faculty of Mathematics and Natural Sciences, UL.

2001-01

R. Ahn. Agents, Objects and Events a compu-

tational approach to knowledge, observation and

communication. Faculty of Mathematics and Com-

puting Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in

higher order logic using PVS and Isabelle. Faculty

of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes

through Structured Reflection. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and

semantics. Faculty of Sciences, Division of Mathe-

matics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualiza-

tion. Faculty of Natural Sciences, Mathematics and

Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing

of Event Sequences. Faculty of Mathematics and

Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.

Faculty of Mathematics and Natural Sciences, UL.

2001-08

M.H. Lamers. Neural Networks for Analysis of

Data in Environmental Epidemiology: A Case-

study into Acute Effects of Air Pollution Episodes.

Faculty of Mathematics and Natural Sciences, UL.

2001-09

T.C. Ruys. Towards Effective Model Checking.

Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-

rency control and recovery protocols. Faculty of

Mathematics and Computing Science, TU/e. 2001-

11

M.D. Oostdijk. Generation and presentation of

formal mathematical documents. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A sim-

ulation approach using χ. Faculty of Mechanical

Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction

techniques for model checking. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent

Data Analysis: theoretical and experimental as-

pects. Faculty of Mathematics and Natural Sci-

ences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification and

Analysis of Industrial Systems. Faculty of Mathe-

matics and Computer Science and Faculty of Me-

chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy

Software Systems. Faculty of Natural Sciences,

Mathematics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Alge-

bra. Faculty of Natural Sciences, Mathematics, and

Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:

Algorithms and Complexity. Faculty of Mathemat-

ics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of

Probabilistic, Real-time and Parametric Systems.

Faculty of Science, Mathematics and Computer Sci-

ence, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.

Faculty of Mathematics and Natural Sciences, UL.

2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and

Cost-Optimality in Model Checking of Timed and

Hybrid Systems. Faculty of Science, Mathematics

and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing.

Faculty of Mathematics and Natural Sciences, UL.

2002-09

D. Tauritz. Adaptive Information Filtering: Con-

cepts and Algorithms. Faculty of Mathematics and

Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Pro-

cess Algebra. Faculty of Natural Sciences, Mathe-

matics, and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Se-

mantical Models. Faculty of Sciences, Division of

Mathematics and Computer Science, VUA. 2002-

12

L. Moonen. Exploring Software Systems. Faculty

of Natural Sciences, Mathematics, and Computer

Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Compu-

tation to Constraint Satisfaction and Data Mining.

Faculty of Mathematics and Natural Sciences, UL.

2002-14

S. Andova. Probabilistic Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/e.

2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of

Mathematics and Computer Science, TU/e. 2002-

16

J.J.D. Aerts. Random Redundant Storage for Video

on Demand. Faculty of Mathematics and Computer

Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-

niques for component composition and construc-

tion. Faculty of Natural Sciences, Mathematics, and

Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed

Source Code Representations. Faculty of Natu-

ral Sciences, Mathematics, and Computer Science,

UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of

Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in

Process Algebras with Data and Timing. Faculty of

Mathematics and Computer Science, TU/e. 2003-

05

S.V. Nedea. Analysis and Simulations of Catalytic

Reactions. Faculty of Mathematics and Computer

Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary

Storage. Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annota-

tion – CoMPAs. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of

Object-based Software: a Foundational Approach.

Faculty of Electrical Engineering, Mathematics &

Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Ap-

proach to the Modeling of Collaboration Between

System Components. Faculty of Mathematics and

Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Ap-

proach to Software Components. Faculty of Mathe-

matics and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the

Differencing Method. Faculty of Mathematics and

Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and

Their Use in Interactive Theorem Proving. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-02

P. Frisco. Theory of Molecular Computing – Splic-

ing and Membrane systems. Faculty of Mathemat-

ics and Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of

Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for

Home Environments. Faculty of Mathematics and

Computer Science and Faculty of Industrial Design,

TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Prob-

abilistic Specification Formats. Faculty of Sciences,

Division of Mathematics and Computer Science,

VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a

Type-Theoretical Formalization and Applications.

Faculty of Science, Mathematics and Computer Sci-

ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargain-

ing Games: An Evolutionary Investigation of Fun-

damentals, Strategies, and Business Applications.

Faculty of Technology Management, TU/e. 2004-

08

N. Goga. Control and Selection Techniques for the

Automated Testing of Reactive Systems. Faculty of

Mathematics and Computer Science, TU/e. 2004-

09

M. Niqui. Formalising Exact Arithmetic: Rep-

resentations, Algorithms and Proofs. Faculty of

Science, Mathematics and Computer Science, RU.

2004-10

A. Löh. Exploring Generic Haskell. Faculty of

Mathematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms

for Car Navigation. Faculty of Mathematics and

Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Process-

ing Using Conditionally Guaranteed Budgets. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-13

J. Pang. Formal Verification of Distributed Sys-

tems. Faculty of Sciences, Division of Mathematics

and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Eco-

nomics. Faculty of Technology Management, TU/e.

2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation

Using a Single Base Station. Faculty of Mathemat-

ics and Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Ver-

ified Distribution. Faculty of Sciences, Division of

Mathematics and Computer Science, VUA. 2004-

17

M.M. Schrage. Proxima - A Presentation-oriented

Editor for Structured Documents. Faculty of Math-

ematics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Pre-

diction of Quality Attributes for Component-Based

Software Architectures. Faculty of Mathematics and

Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine

Control by Predictive-Reactive Scheduling. Faculty

of Mechanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for Mul-

tithreaded Java -Theory and Tool Support- . Faculty

of Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in

Bone Tissue. Faculty of Biomedical Engineering,

TU/e. 2005-02

C.N. Chong. Experiments in Rights Control - Ex-

pression and Enforcement. Faculty of Electrical En-

gineering, Mathematics & Computer Science, UT.

2005-03

H. Gao. Design and Verification of Lock-free Par-

allel Algorithms. Faculty of Mathematics and Com-

puting Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of

Internet Applications. Faculty of Mathematics and

Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architecting -

A Systematic Approach to Developing Future-Proof

System Architectures. Faculty of Mathematics and

Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques

in Security and Fault-Tolerance. Faculty of Elec-

trical Engineering, Mathematics & Computer Sci-

ence, UT. 2005-07

I. Kurtev. Adaptability of Model Transformations.

Faculty of Electrical Engineering, Mathematics &

Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -

Lower Bounds and Network Reliability. Faculty of

Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equality

Logic with Uninterpreted Functions. Faculty of

Mathematics and Computer Science, TU/e. 2005-

10

A.M.L. Liekens. Evolution of Finite Populations

in Dynamic Environments. Faculty of Biomedical

Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Pro-

gramming: Classification and Symbolic Regres-

sion. Faculty of Mathematics and Natural Sciences,

UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages.

Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hy-

brid Systems using Simulation Relations. Faculty of

Science, Mathematics and Computer Science, RU.

2005-14

M.R. Mousavi. Structuring Structural Operational

Semantics. Faculty of Mathematics and Computer

Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabilis-

tic Systems. Faculty of Mathematics and Computer

Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of

pi-Calculus Processes with Replication. Faculty of

Mathematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers. Fac-

ulty of Natural Sciences, Mathematics, and Com-

puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of Source

Code by Parsing and Rewriting. Faculty of Natu-

ral Sciences, Mathematics, and Computer Science,

UvA. 2005-19

