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Abstract—To protect user’s privacy and system’s integrity,
mobile platforms use permission models to control accesses to
protected resources such as GPS location, Contacts, etc. The
previous major version of Android used a static permission
model, which compromised the security and privacy of apps.
Android 6 overhauled its permission model to ask permissions
at runtime which reduces the risk of permission abuse. However,
migrating to the runtime permission model requires significant
effort from the app developers.

In this paper we first present a large-scale formative study
to understand how app developers use and migrate to the new
permission model. Inspired by these findings, we designed, imple-
mented, and evaluated a tool suite that (i) recommends locations
where to insert permission requests and (ii) automatically inserts
all the permission-related code. Our empirical evaluations on a
diverse corpus of real-world apps show that our tools are highly
applicable and accurate.

I. INTRODUCTION

To protect user’s privacy and system’s integrity, mobile
platforms use permission models to control accesses to pro-
tected resources such as GPS location, Contacts, etc. Prior to
Android 6, a user had to choose whether to grant permissions
at installation time. He had only two choices: to grant all
requested permissions and to install the app, or to reject them
and to cancel installation.

This static permission model compromised the privacy and
security of apps. Would they have a choice, users would deny
one third of app requests to protected resources, citing privacy
concerns [1]. Felt et al [2] showed that about one third of apps
are over-privileged. This increases the chance that malware can
abuse granted permissions [3], [4] to perform several malicious
activities: to steal data, access fraudulent sites, allow remote
access, listen to calls and read personal text messages and
contact information.

To address these issues, Android 6, the most recent ver-
sion available, overhauled its permission model. Apps now
ask permissions as needed at runtime. Users can now make
informed decisions whether to grant permissions based on the
context in which permissions are used. This reduces the risk
of permission abuse.

However, the runtime permission model requires extra effort
from the app developers. First, app developers have to identify
code locations where they need to insert permission requests.
Then they have to insert the permission guard, i.e., code that
checks whether a method has the proper permission to execute.
In addition, developers have to requests permissions before

executing the guarded code. Moreover, developers have to
write a callback to handle the permission request result from
the user.

In this paper we first present a formative study to understand
how app developers use the new permission model. We ana-
lyzed a corpus of 1911 apps from f-droid [5], a repository of
open-source apps, alternative to Google Play. We also studied
in depth how developers migrate apps to the new permission
model. We analyzed a corpus of 71 randomly selected open-
source apps from GitHub that target Android 6. The formative
study answers the following questions:

RQ1: What is the rate of migration to Android 6.0? We
found that only 22% of all apps in f-droid were migrated to
Android 6 at the moment of writing. Among the most actively
developed apps in the last 3 months, only 75% of apps have
migrated.

RQ2: Which permissions are most used? We found that
developers used 24 kinds of permissions. We found that 33%
of apps use Android methods that require permissions.

RQ3: Is there variety among the changes developers
make when introducing permissions? We found that the
changes vary based on (i) the Android component that encap-
sulates the permission guard, (ii) whether the developer first
applied other enabling changes, and (iii) whether the developer
had to drastically change the work-flow of the app.

Inspired by these findings, we designed, implemented, and
evaluated a tool suite, DROIDPERM, that enables developers
migrate apps to the Android 6 permission model. DROIDPERM
consists of two tools. DP-DETECT recommends locations
where to insert permission requests. DP-TRANSFORM auto-
matically inserts all the permission-related code. To migrate
their app, the developers only need select the location of
the code that requires permissions, and DP-TRANSFORM will
automatically change the code. Or they can use DP-DETECT
to recommend even the location.

Manually finding the location where to insert permission
requests is non-trivial for two reasons. The protected resources
might be nested deep inside call chains that may extend into
third party code. Moreover, Android allows permission re-
quests only within Android UI components. Thus, developers
have to decide how to “bubble up” permission requests from
the place where the protected access is necessary to the place
where a request can be issued to the user.

For these reasons we designed DP-DETECT, a static anal-
ysis tool that detects locations where permission guards have
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to be inserted. DP-DETECT models the Android framework
(which is primarily event-driven) for a complete coverage
of reachable code. It also constructs precise context-sensitive
paths from Android UI components to protected resources.

Manually inserting permission-related code also requires
a significant effort. Often, before inserting the permission
requesting code, the developers need to carry enabling refac-
torings such as method and field extraction.

For these reasons we designed DP-TRANSFORM, a program
transformation tool for automatic insertion of permission re-
quests. To handle the variations we discovered in the RQ3-
part of the formative study, DP-TRANSFORM provides user-
customizable templates. The tool determines which template
to use based on the context of the transformation.

We empirically evaluated our tools to measure their accu-
racy and applicability. For DP-DETECT we used a corpus of
26 apps that are already migrated by developers to Android 6.
We ran DP-DETECT to recommend locations and evaluated
their accuracy through manual code inspection. DP-DETECT
achieves a precision of 89% and recall of 93%. Moreover, we
also evaluated the effect of context-sensitivity on the tool’s
precision and we found that context-sensitivity is required for
usable results.

For DP-TRANSFORM we used a diverse corpus of 71
apps that are already migrated to Android 6. We rolled back
the permission-related code and then used DP-TRANSFORM
to reintroduce permissions in the same locations. Then we
compare the developers’ changes with those carried out by
DP-TRANSFORM. We found that DP-TRANSFORM is appli-
cable in 84% of the cases. We found that on average, DP-
TRANSFORM saves developers from changing 62 lines of code
per permission request. DP-TRANSFORM has an accuracy of
94%.

This paper makes the following contributions:

1) Problem description: To the best of our knowledge,
we are the first to study the problem of migration from
static to dynamic permissions in Android apps.

2) Formative study: This paper presents the rate of mi-
gration, the diversity of permissions, and, the variety
of changes that developers make when adding runtime
permissions.

3) Analysis: We present DP-DETECT, a static analysis
tool for recommending locations that require permission
guards.

4) Transformation: We present DP-TRANSFORM, an An-
droid Studio plugin for automatic insertion of permission
guards.

5) Empirical evaluation We measure the accuracy and ap-
plicability of DP-DETECT and DP-TRANSFORM using
a diverse corpus of real-world apps.

An earlier version of DP-TRANSFORM was demo-ed at the
Google I/O’16 developer conference. Our tools, the evaluation
corpora, and the detailed empirical results are available at:
HTTP://COPE.EECS.OREGONSTATE.EDU/DROIDPERM

II. BACKGROUND

We first present the Android 6 permission model, then an
example of inserting an Android 6 permission request.

A. Android 6 permission model

Starting from Android 6, Google adopted a fine-grained per-
mission model, requiring the apps to ask permissions at run-
time. Figure 1 shows a runtime permission request insertion.
The code is inspired from a real app, Speed of Sound [6].
In this subsection we present the typical permission guard and
request code pattern, Fig. 1b. Method guarded() invoked
on line 18 indirectly calls requestLocationUpdates
on line 37 on the left side. This second method requires
the permission ACCESS_FINE_LOCATION. We call such
methods requiring permissions sensitives. Before calling a
sensitive, the application must ensure that the respective
permission is granted, by calling the permission guard
checkSelfPermission() on line 11.

If permission is not yet granted, the app will invoke
requestPermissions() on line 14 to request the respec-
tive permissions from the user. Because this method requires
user interaction, it may only be invoked from the UI thread. It
will pop up a special screen for asking permissions. Once the
user accepts or rejects the request, Android invokes the call-
back method onRequestPermissionsResult(). De-
veloper is expected to override this method to handle permis-
sion request results. If permissions were granted, application
will usually invoke the same sensitive code, e.g. guarded()
in our case. Otherwise, it might either show a message to
the user explaining why permissions were required, or disable
functionality requiring permissions.

Not all permissions require runtime handling. Some of
them, most notably access to internet, are deemed safe. They
are granted at installation time, following pre-Android-6 per-
mission model. Permissions requiring access to private data,
such as CAMERA, CALENDAR or LOCATION, are deemed
dangerous and require runtime permission requests.

Permissions can be divided into three categories by their
target. We call permissions associated with sensitive meth-
ods, as in the example above, method-based. There are also
permissions linked with URIs that encode access to specific
UI components or resources; we call them URI-based. One
example is CALENDAR. The 3rd category are permissions
required to access files on the flash storage that are not part
of app cache; we call them storage-based. Some permissions,
CAMERA among them, can be both method- and URI-based.

B. Permission Request Insertion Example

We now illustrate a typical scenario for inserting the runtime
permission requests, the way it would be performed by DP-
TRANSFORM.

Fig. 1a shows the code before using runtime
permissions. Statement requiring permissions is
service.startTracking on line 22. However, the
execution of lines 22-25 only makes sense together, for this
reason they all have to be guarded.
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1 public class SpeedActivity extends
2 ActionBarActivity {
3 private SoundService service;
4
5
6
7
8 private void onClick(View view){
9 boolean isChecked =

10 ((CheckBox) view).isChecked();
11 ...
12
13
14
15
16
17
18
19
20
21
22 if (isChecked) {
23 service.startTracking();
24 updateStatusState(ACTIVE);
25 }}
26
27
28
29
30
31 }
32
33 public class SoundService extends Service {
34 public void startTracking() {
35 ...
36 locationManager
37 .requestLocationUpdates(...);
38 ...
39 }}

(a) before

1 public class SpeedActivity extends
2 ActionBarActivity {
3 private SoundService service;
4 private boolean isChecked;
5 private static final int
6 ACCESS_FINE_LOCATION_RCODE = 1;
7
8 private void onClick(View view){
9 isChecked = ((CheckBox) view).isChecked();

10 ...
11 if (checkSelfPermission(this,
12 Manifest.permission.ACCESS_FINE_LOCATION)
13 != PackageManager.PERMISSION_GRANTED) {
14 requestPermissions(this, new String[]{
15 Manifest.permission.ACCESS_FINE_LOCATION},
16 ACCESS_FINE_LOCATION_RCODE);
17 } else {
18 guarded();
19 }}
20
21 private void guarded() {
22 if (isChecked) {
23 service.startTracking();
24 updateStatusState(ACTIVE);
25 }}
26
27 @Override
28 public void onRequestPermissionsResult(
29 int requestCode, String[] permissions,
30 int[] grantResults) {
31 if (requestCode = ACCESS_FINE_LOCATION_RCODE) {
32 if (grantResults.length == 1 &&
33 grantResults[0] ==
34 PackageManager.PERMISSION_GRANTED) {
35 guarded();
36 } else {
37 Toast.makeText(this, "Permission Denied",
38 Toast.LENGTH_LONG).show();
39 }}}}

(b) after

Fig. 1: Relevant code inspired by the Speed of Sound app. The left-hand side (a) shows the original code, whereas the
right-hand side (b) shows the transformed code by DP-TRANSFORM.

Guarded code is expected to be called from 2 locations
after transformation - the old location in onClick and from
onRequestPermissionsResult. To avoid duplication,
it has to be extracted to a method first. Yet the method needs
access to local variable isChecked from both invocation
contexts. Consequently it cannot be a method parameter. For
this reason, before extracting the method we will have to
extract variable isChecked to a field.

Fig. 1b shows the result of applying both refactorings and
inserting permission guard and request code. These enabling
refactorings ease the transition to runtime permissions by re-
solving scoping issues, reducing unnecessary code duplication,
and preserving the correct state of in-scope variables.

It is possible to have multiple permission requests
in one class. Yet the class can have only one
onRequestPermissionsResult implementation.
Thus, to distinguish between potential multiple requests, each
is assigned a unique code stored in a special constant field
(line 5). Creating this field is also a part of the transformation.

This example illustrates the complexity of changes that a
developer would perform when migrating to Android 6.

III. FORMATIVE STUDY OF ANDROID RUN-TIME
PERMISSIONS

To get a deep understanding on how runtime permission
guards and sensitives are used in Android apps, we conducted
a formative study on popular open-source apps. We ask three
research questions.

RQ1: What is the rate of migration to Android 6.0?

Corpus 1. For the first two research questions, we used a
corpus of 1911 apps from f-droid [5], an app repository of
open-source apps alternative to Google Play. It provides the
metadata database of all apps in a convenient XML format.
We built a tool to parse these metadata.

We found that only 22% of the total number of apps have
migrated to Android 6 at the moment of writing. A possible
reason for this is that some apps are not actively developed.
Then, we only counted the apps that had a new release in the
last 3 months; 75% of them were migrated. This shows that
migration to Android 6 is highly sought by developers.
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Type # Instances
Activity 157
Fragment 81
Service 21
Other 38

TABLE I: Android components containing permission guards
in Corpus-2

RQ2: Which permissions are most used?
Among apps in f-droid corpus, 33% use method permis-

sions, 5% use URI permissions, 45% use storage permissions
and 6% use permissions that could be either method-based
or URI-based. (App sets are not disjoint, apps using multiple
permission categories are counted for each category.)

RQ3: Is there variety among the changes developers make
when introducing permissions?

Corpus 2. For this question we used a corpus of 71
randomly selected open-source apps from GitHub, comprising
920K lines of code, that target Android 6.

To find the context of permission guards, we did a manual
inspection of the source code of each app in Android Studio.
First, we searched for usages of all known permission guard
methods. For permission guard we recorded the component
type of the top-level class in which the guard is found.

The results are displayed in Table I. The most prevalent
place where permissions are guarded is Activity, the main
UI component of Android. Following is Fragment, the
second most used UI component. These are the main contexts
in which permissions could be requested, thus the numbers are
not surprising. Inside a Service permissions can be guarded
but not requested. This cases are also fairly common. Finally,
category Other means that class in which permissions were
guarded is none of the above. This often happens when devel-
opers design custom utility classes responsible for guarding
the permissions and reuse them across the app code. Some
apps use entire custom libraries specifically for permission
guarding.

There are slight differences in the way a permission can be
requested in Activity and Fragment. Also, as we stated,
inside Service permissions can only be guarded, but not
requested. Consequently, a migration tool is most helpful when
handling all three contexts, which involves extra complexity.

We also found that 10 out of 71 apps were requesting all
the permissions in the main activity, at the application startup.
If permissions were not granted, the app would shut down.
This essentially means migration to Android 6 was faked, and
users got the same ”all or nothing” choices as with earlier OS
versions. This was a surprising find. We can only suspect that
developers avoided the extra effort of properly migrating their
apps to the new permission model.

IV. DP-DETECT: THE SENSITIVES ANALYSIS

The purpose of DP-DETECT is to help migrating apps from
Android 5 to Android 6 by recommending permission guard

insertion points. At high level our analysis consists of three
steps. First we generate an entry point for the analyzed app,
suitable for static analysis (Subsection IV-A). We then pass
it to out of the box tools, to generate a call graph and a
context-sensitive points-to analysis. These in turn are used
to infer guard insertion points (Subsection IV-B). Additional
subsections describe various other aspects of our analysis.

A. Entry Point Generation

Despite the fact that Android apps are developed in Java,
static analysis tools developed for Java cannot be applied
for Android out of the box. Primarily, because Android apps
do not have a single execution entry point. They consist
of components instantiated by Android framework, which
contain methods invoked by the framework when various user
or system-generated events occur. Such framework-invoked
methods are known as callbacks. Static analysis tools devel-
oped for Android typically use as entry point a generated
main method, that instantiates the components and invokes
the callbacks.

To generate the entry point we use FlowDroid [7] built
on top of Soot framework [8]. More precisely we use a
custom algorithm to detect callbacks, then pass the callbacks
to FlowDroid to generate the dummy main method. FlowDroid
already has an advanced callback detection algorithm. It starts
with classes configured in Android configuration files, then
iteratively adds to them all the callbacks in the reachable
code, based on a predefined set of types hosting callbacks
and call graph traversal. This algorithm is more suitable for
taint analysis, where it is desirable to link each callback to
its parent UI component. Yet our experiments showed that it
misses more than half of the callbacks, due to only a subset of
callback categories being supported. Most notably, FlowDroid
does not support Fragment, the second most important UI
component in Android after Activity.

To be useful for software developers, DP-detect requires
analysis of all the callbacks. For this reason, we used a
different callback detection method. It traverses all the classes
in the app and collects the callback methods, defined as
following.

A method C.f() is considered callback by DroidPerm if
it either:

• Overrides a method from an Android class.
• or:

– Implements a method from an Android interface I
and

– An object of type C is passed as argument to a
method with a formal parameter of type I.

For the purpose of callback detection, Android class-
es/interfaces are all those located in packages android.
and com.google.android, with the exception of
AsyncTask. This is the only class for which we want
member methods to be analyzed in their invocation context,
rather than as independent callbacks.

This seemingly over-inclusive algorithm can have two
sources of imprecision. One is labeling as callbacks methods
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1 class CameraHandlerThread {
2 void startCamera(final int cid) {
3 Handler localHandler
4 = new Handler(this.getLooper());
5 localHandler.post(new Runnable() {
6 public void run() {
7 Camera camera = Camera.open(cid);
8 ...
9 }

10 });
11 }
12 }
13
14 class SomeActivity extends Activity {
15 void someCallback() {
16 handler.post(new Runnable() {...})
17 }
18 }

Fig. 2: App code example requiring 1-CFA context sensitivity

that are actually called by the app code and are not managed by
the system. We overcome this issue by excluding AsyncTask
from the list of classes defining callbacks and by excluding
some classes from the analysis (Subsection IV-D). No other
classes to our knowledge need special treatment. The other
source of imprecision might be including in the analysis
unused code. We leave this case for future work.

After collecting the list of callbacks, DP-detect passes it to
FlowDroid infrastructure to generate the main method.

B. Guard Insertion Point Inference

Achieving high precision in path detection requires context
sensitivity, as we will show in Section VI. To achieve this,
DP-detect uses the entry point generated in the previous step
to produce two static analysis structures. We use SPARK [9]
to construct a context-insensitive call graph, and GEOM [10]
to construct a 1-CFA context-sensitive points-to analysis. This
duality was required to combine the strenghts and to overcome
the limitations of the two tools: SPARK is context-insensitive,
while GEOM does not generate a call graph1.

The analysis then traverses the call graph from top to
bottom, separately for each callback, and collects all the paths
reaching sensitives. These paths are then compiled into a report
containing the lines of code directly inside each callback that
need to be guarded by permission checks.

DroidPerm uses a predefined, but extensible set of sensitive
definitions. It is populated from Android SDK documentation
and additional sensitives encountered during DroidPerm eval-
uation.

To have a context-sensitive traversal, we refine the context-
insensitive set of edges produced by SPARK with the context-
sensitive points-to data given by GEOM. More precisely, if a
method call a.f() in the call graph contains edges to two
implementations A.f() and B.f(), but points-to data for a
equals {B}, then we will only traverse the edge to B.f().

1GEOM actually refnes the call graph produced by SPARK, but it still
remains context-insensitive.

This is especially important to handle Java and
Android asynchronous constructs, such as Thread,
ExecutorService, Handler and AsyncTask.
Consider the example in Figure 2. Here the class
CameraHandlerThread is a simplified version of
code from [11]. The method startCamera() instantiates
an anonymous Runnable that opens the camera. The
call to Camera.open() on line 7 is a sensitive that
requires CAMERA permission. This runnable is then
scheduled to be executed on a separate thread by calling
localHandler.post() on line 5. If the application
has other callback events calling Handler.post() with
different types of Runnable, such as line 16 in the
example, then a context-insensitive call graph would reach
all these instances of Runnable from all sites calling
Handler.post(). As a result all callback events reaching
handler.post() will be flagged as requiring CAMERA
permission. Context-sensitive points-to refinement elliminates
this sort of false positives.

C. Analysis classpath crafting

The source code supplied with Android SDK for
android. and java. packages does not contain any im-
plementation. Instead, it contains just the subset of classes
visible to the user, with stub, e.g. empty implementations of
all methods. This lessens the burden on call graph generation
tools, but the resulting call graph is vastly incomplete. In
particular, SPARK will not generate any edges for a method
call a.f() if no allocation site can be inferred for values
of a. Consequently, if guard insertion inference algorithm
above would be used on Android SDK + app code alone,
almost no sensitives would be found. All classes that host non-
static sensitive methods have their allocation sites in Android
Framework.

To overcome this issue we used a crafted Android SDK
for the analysis. It retains stub implementations for most
classes, but uses full or simplified custom implementation for
a small subset. We used full implementation for code inside
java.util, to fully analyze concurrency and collection
classes. In addition we supplied our custom implementation
for key Android classes.

For example, to get the last known location, the app should
invoke a variation of this code:
LocationManager lm

= activity.getSystemService(
LocationManager.class);

Location loc
= lm.getLastKnownLocation(provider);

We modeled getSystemService() to instantiate and
return all known system services.

Another use of custom implementations was to
simplify the call flow through asynchronous construct
ExecutorService. We implemented methods like
execute(runnable) and submit(runnable) to
directly call runnable.run() rather than go through
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a longer list of internal calls. This made 1-CFA context
sensitivity enough to properly handle the context. Other
asynchronous constructs were modeled similarly.

D. The exclusion list

There are cases when we want to exclude some classes
from the analysis. In one case it is needed to avoid duplicate
analysis and unfeasible paths. It includes a few classes in
android.support. which are usually bundled with the
app bytecode; thus analysis has access to their full imple-
mentation, not just stubs. They internally invoke callback
methods on other UI components, for callbacks which are
already modeled by our main method generation, thus leading
to duplicate analysis of the same callbacks. We also exclude
methods overriding onPermissionRequestResult(),
as it is expected that inside those methods all the required
permissions were already granted.

DP-DETECT only infers guard locations for method-based
permissions. Detecting guard locations for other permission
types (e.g., URI-based or Storage-based) requirea dataflow
analysis, we leave this for future work. However, once the
guard location is known, the transformation for inserting the
permission check/request is similar for all permission types.
Thus, DP-TRANSFORM can handle all three categories of
permissions.

V. DP-TRANSFORM: PERMISSION INSERTION
TRANSFORMATIONS

DP-TRANSFORM is a tool that takes as input a code selec-
tion and a permission to be guarded for that code selection.
It then inserts permission checks, permission requests, and
permission request callback handlers. We first explain the
overall workflow of the tool, and then illustrate the code
transformations.

A. Transformation Workflow and Preconditions

We have implemented DP-TRANSFORM as a plugin in
the Android Studio IDE, which is based upon IntelliJ IDEA
IDE [12].

When DP-TRANSFORM is used standalone, the devel-
oper selects the line(s) of code in the editor that should
be guarded and chooses CONVERT TO ANDROID RUNTIME
PERMISSIONS from the refactoring menu. A listbox appears
with the list of all known permissions. If the top-level class
containing the selection is an UI component, a checkbox will
also appear, allowing the developer to insert a permission
request. The user has to select the permission, and to check
whether he wants a permission request to be inserted. If the
checkbox is not checked, only a permission guard is inserted.
DP-TRANSFORM first extracts referenced local variables and
method parameters into fields if they are declared or referenced
outside of the selected code. Then it extracts the selected
code to a method if there are more than 2 lines of code in
the selection. Finally DP-TRANSFORM inserts the permission
guard block around the selected code. If permission request
checkbox was checked, the call to requestPermissions

and implementation of onRequestPermissionsResult
are also inserted.

Fig. 1a shows a code snippet inspired from an Android
app, Speed of Sound. If the developer applies our trans-
formation on lines 22 to 25, DP-TRANSFORM will transform
the code to Fig. 1b. In a subsequent version of Speed
of Sound, the developers have done this transformation
manually. Their new code is semantically equivalent to DP-
TRANSFORM’s output.

Android Component Support: The permission guard
checkSelfPermission has several versions, all of
them requiring a Context object. Components of type
Activity and Service are derived from Context.
Inside Fragment, context can be produced by calling
getActivity().

If the developer wants to insert a permission guard in a class
that is neither of the above, he has to provide a Context
instance using his domain knowledge. DP-TRANSFORM does
not support this case.

B. Transformation Process

Extract Local Variables to Fields: If there are any variables
or method parameters referred from both the code selected
from guarding and from outside, they are extracted into
fields. For this, DP-TRANSFORM invokes EXTRACT LOCAL
VARIABLE refactoring provided by Intellij. For parameters,
they are first assigned to a new local variable, then the variable
is extracted into a field.

Extract Method: The second step of the transformation is
to extract the selected statements into a new method called
guarded(). This step is only necessary if the selected
statements span more than two lines. The goal here is to
elliminate duplication of the guarded code, as it now has to
be called from two places: the original context, now guarded,
and onRequestPermissionsResult. To perform this
step DP-TRANSFORM invokes EXTRACT METHOD refactor-
ing from Intellij.

Insert Permission Guard: In the third step DP-
TRANSFORM wraps the invocation to guarded into an if
statment that invokes checkSelfPermission in the if
clause. To do this, it uses several transformation templates, one
for each Android component supporting permission guards:
Activity, Application, Fragment, Service, and
View.

Insert Permission Request & Callback Handler Method:
The last step of the transformation is to insert the invoca-
tion of requestPermissions and the implementation of
onRequestPermissionsResult. There are two differ-
ent templates for this step, one for each supported component:
Activity and Fragment.

In addition to provided templates, developer can write his
own, in case he wants the transformation to be performed
differently. This is useful for example, when using custom
utility methods that wrap permission guard/request code.

If there are multiple request permisions in the class,
onRequestPermissionsResult will handle all of them.
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If there is already a onRequestPermissionsResult
present when this step begins, it will update it to include
a new permission request for the present transformation.
It supports differentiating between requests through either
if-else blocks or switch.

VI. EVALUATION - DP-DETECT

In our evaluation we address the following research ques-
tions:

RQ1: What is the accuracy of sensitives analysis?
RQ2: What is the effect of 1-CFA points-to analysis on

precision?

A. RQ1: What is the accuracy of sensitives analysis?
Methodology: To answer this question we selected from our

formative study corpus-2 all apps that have either Location
or Camera permissions referred in the code. We had to
restrict the analysis to these two permissions groups2 for two
reasons. First, these are the most commonly used method-
based permissions. Second, there is no complete database of
sensitive definitions available. We took as initial reference
the sensitives database supplied with Android SDK in XML
format. However, it is vastly incomplete. Our early runs of
DroidPerm were reporting zero sensitives detected for many
apps, despite permission guards being present in the code.
For such apps, we were manually searching for sensitive
definitions by reading the code documentation, and adding any
newly found sensitives to our sensitive definition list. Since
this process was time consuming, we restricted the evaluation
to two most commonly used permission groups.

The result of filtering for Camera and Location was a list of
32 apps. We then ran DroidPerm on this corpus, allocating 12
GB of heap memory to JVM. Two apps could not be analyzed
due to OutOfMemoryError. Another 4 had to be left out
because they were using URI-based Camera sensitives which
DroidPerm does not support. What remained was a final corpus
of 26 apps.

To evaluate precision and recall, we counted for each app
(a) true positives - the number of correctly detected callbacks
requiring permissions, (b) false positives - the number of re-
ported callbacks from which paths to sensitives are unfeasible,
and (c) false negatives - the number of missed callbacks that
can reach sensitives. Evaluation of each app included two
steps: review of logs produced by DroidPerm, and, by need,
inspection of the source code in Android Studio.

DroidPerm logs complete paths from every callback to every
sensitive it can reach. In addition, for each virtual method
invocation in the path, we log (a) the number of edges coming
out of that method invocation and (b) points-to values for
invocation target variable. If points-to set has more than one
value, we manually inspect the code in Android Studio. This
pre-screening for points-to imprecision allowed a precise eval-
uation while avoiding time consuming manual inspection for
every single path. If we encounter permission guards linked to

2Location is actually a permission group containing 2 permissions:
ACCESS COARSE LOCATION and ACCESS FINE LOCATION.

App name SLOC
Run
time
(s)

Valid
False
Pos

False
Neg

Forecastie 2062 25 1 - -
FreifunkACA 2340 26 1 - -
GPS2SMS 3004 36 5 - -
GPSLogger 10860 320 3 - -
Grelp 3631 97 4 - -
HetSys 6097 21 2 - -
MDApp 12728 250 2 - -
MoneyPit 6044 46 1 - -
Nethunter 9128 51 1 - -
Omni-Notes 13563 380 4 2 -
OSMDroid 20422 22 7 - -
PictureTrack 7067 23 1 - -
Satstat 8858 47 5 - -
SpeedOfSound 1774 31 1 - -
Traccar 1228 5 3 - -
Tracker 519 23 1 - -
Vlillechecker 4151 59 1 - 1
Web-Opac-App 32233 450 1 - -
GpuImage 7808 16 2 - -
Bitcoin-wallet 18549 2200 2 - -
Dlib 1582 30 2 5 -
FPlayAndroid 32888 23 1 - -
Open-Keychain 63476 2550 - - 2
OpenFoodFacts 6285 520 2 - -
OTP Auth 1316 110 - - 1
Vector 25931 280 2 - -
Total 303544 7600 55 7 4

Fig. 3: Accuracy evaluation for sensitives analysis.

a particular callback, we consider all sensitives with matching
permissions in that callback to be reachable. However, if the
guard seems to be reachable from multiple callbacks, we do
not make any further assumptions about the sensitives. Instead,
we inspect the calls having multiple points-to values, to make
sure the edge selected by DroidPerm is indeed feasible. If the
edge is not feasible, we count the callback as false positive.

To help evaluating recall, DroidPerm includes one more
feature, undetected sensitives analysis. Here the whole app
classpath is traversed, without using the call graph. Whenever
a call to a sensitive is encountered that is neither in the
exclusion list nor reached by the analysis, it is logged as
potentially undetected sensitive.

We manually inspected each potentially undetected sensitive
in Android Studio, by searching recursively all the code that
could reach them. If potentially undetected sensitives are
reachable from callbacks, we consider those callbacks false
negatives.

Results: Figure 3 shows the analysis results for our cor-
pus. DroidPerm found 62 callbacks requiring permissions, of
which 7 were determined to be false positives during follow-
up inspection. Another 4 callbacks with sensitives were not
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detected. This leads to a precision of 89% and recall of 93%.

The corpus of apps cumulates more that 300K source lines
of code (SLOC). Analysis time per app varied greatly from
a few seconds to 40 minutes. Except 2 apps that took the
longest time, analysis time was under 9 minutes, and generally
unrelated to the project size. Our metrics did not count the size
of the included libraries, which has a bigger contribution to
total execution time than the app code.

Whenever we encountered incorrectly detected or unde-
tected callbacks with sensitives, we investigated the reason. In
the 2 apps where DP-detect reported false positives, the reason
was a long path passing through code of a 3rd party library.
Such cases could be filtered out by more precise, n-CFA
context sensitivity. Notably, none of the false positives were
caused by our overly-optimistic definition of what constitutes
a callback (Section IV-A), confirming that it was good enough
for DP-detect.

Our undetected sensitives analysis reported unused sensi-
tives for 6 apps. However, follow-up investigation found that
only 4 instances in 3 apps can be reached from callbacks.
In the remaining cases sensitives were either part of un-
used features of 3rd party libraries, or, in one case, unused
app code. Instances of valid but undetected sensitives were
caused by call graph incompleteness. For app Omni-Notes root
cause was empty implementation of Android SDK method
Context.findViewById(), responsible for instantiating
UI components of type View. A more precise modeling of
Android would likely help detecting this sensitive. For other
2 apps, the sensitive call was deep inside a 3rd party library,
we could not determine where exactly the missing edge in the
call graph was.

Another finding of our evaluation were four
apps where developers were unnecessarily guarding
code that did not involve sensitives. The method
LocationManager.removeUpdates() is called
to stop receiving location change updates. It requires
Location permissions according to both Android Javadoc and
xml permission definitions. Yet its logic suggests it might be
called after Location permissions were denied or revoked. We
investigated how developers guard this sensitive in the source
code. Out of 18 apps using Location, 8 had callbacks where
removeUpdates() was the only sensitive for Location.
Out of them only half were either guarding for permission
before or catching the possible SecurityException.
Suspecting a common bug in many apps, we executed one
of them, making sure that removeUpdates() was called
without Location permissions being granted. To our surprise,
no security exception was thrown. This method turned out
to not be a sensitive. Consequently, in the four apps that
were guarding for Location before removeUpdates(), the
guard was unnecessary. It was an unnecessary effort spent by
the developers facing incorrect documentation. We reported
the issue to Google.

Detailed evaluation results can be found on: [13].

B. RQ2: What is the effect of 1-CFA points-to refinement
on precision?

Methodology: To answer this question we ran DroidPerm
with GEOM points-to refinement disabled and compared the
results with those of fully enabled DroidPerm. We’ll refer to
the two configurations as 0-CFA and 1-CFA.

Results: In 6 out of 26 apps 0-CFA reported additional
paths. Since 1-CFA is expected to be decidedly more precise
than 0-CFA, and our RQ1 evaluation did not show any
indications that we might miss paths due to issues with 1-
CFA, we consider all the extra paths to be false positives. The
number of additional paths was highly nonuniform, ranged
from 1-3 for 3 apps to 40-300 for the other 3. In total, 413
more paths were detected, leading to a precision of 0-CFA
across the whole corpus of just 12%. This proves that 1-CFA
points-to analysis was a necessary feature to make DroidPerm
usable.

VII. EVALUATION - DP-TRANSFORM

To empirically evaluate whether DP-TRANSFORM is useful,
we answer the following evaluation questions.

RQ1: Applicability: How applicable are the transforma-
tions?

RQ2: Effort: How much programmer effort is saved by
DP-TRANSFORM?

RQ3: Accuracy: How accurate is DP-TRANSFORM
when performing a transformation?

A. Experimental Setup

To answer these questions, we apply DP-TRANSFORM
on the 71 open-source Android projects in Corpus-2 from
Sect. III. The apps in this corpus have been migrated to
Android 6 and represent a variety of different types of apps,
including categories such as Communication, Education, En-
tertainment, Finance, Shopping, and Tools on Google Play
[14].

Using apps already migrated to Android 6 allows us to
use permission code introduced by developers as oracle for
our transformations. Each app is first reverted to a version
immediately prior to Android 6 migration.

During reversion process we found that 5 apps in the corpus
do not have version history prior to Android 6. We dropped
them from the corpus, reducing it to 66 apps.

Using the version after migrating to Android 6 as an
oracle, we applied DP-TRANSFORM on the prior version to
every location for which the app developers introduced a
checkSelfPermission() block.

In certain cases in which the commits for particular
app were not fine-grained enough to allow for reversing
just the introduction of permission checks, we manually
reverted the introduction of checkSelfPermission(),
onRequestPermissionsResult(), and any related
field, method, or local variable refactorings within the im-
mediate vicinity. These reversions were done based on the
developer changes indicated in the version history for each
particular app.
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Open-Keychain 63,476 1 1 0 0 17 1 0 1 1 1
ExoPlayer 46,282 1 1 0 0 153 0 0 0 1 1
SeriesGuide 42,520 3 0 3 0 69 0 0 0 3 1
Andstatus 42,175 2 2 0 0 36 0 0 0 2 0
Xabber 38,031 5 3 2 0 100 1 0 2 5 1
Conversations 36,283 7 0 5 2 858 0 0 0 5 0
FPlayAndroid 32,888 3 0 2 1 22 0 0 0 2 0
Web-Opac-App 32,233 2 1 1 0 73 1 1 0 2 1
RedReader 27,775 1 0 1 0 230 0 1 0 1 0
Kore 26,042 4 1 3 0 85 0 0 0 4 0
...
(71 apps total)
Totals 916,650 144 49 63 32 5,479 25 18 15 113 48

Fig. 4: Applicability & Effort evaluations for transformations.

We recorded several metrics for each transformation. Ta-
ble 4 shows the result of applying DP-TRANSFORM on the
permission locations in our corpus of 66 apps. We simplify
the table to show the top ten largest apps, based upon lines of
code (SLOC), but provide the full results on [13].

B. RQ1: Applicability: How applicable are the transforma-
tions?

Methodology: To measure applicability, we counted how
many instances are in a supported Android component and
thus DP-TRANSFORM could apply a suitable transformation
template. We also analyzed the reasons why DP-TRANSFORM
cannot change the remaining instances.

Results: We applied DP-TRANSFORM on 144 locations in
the 66 apps. Columns 4, 5, and 6 show the number of instances
that passed (112), conditionally passed with minor alterations
(63), or failed (32) to be in one of the supported components.

We counted the following cases as conditionally passed:
(1) in some cases when permissions are not granted, the
developer inserted return statement to skip executing the
remaining of the method; since this change require domain
knowledge about the logic of the code, we have inserted
a similar return statement. (2) inserting a Context into
checkSelfPermission when the parent class has access
to a Context in a non-standard way (e.g. parent class
accepts a Context within its constructor), and (3) permission
utility classes/methods were created by developer to handle
permissions.

DP-TRANSFORM failed to properly transform 32 permis-
sion locations. We examined each location and categorized
them as following: (1) the parent class does not imple-
ment or derive from any Android components (in this case,
DP-TRANSFORM cannot determine which template to ap-
ply). (2) multiple permissions are handled within a single

checkSelfPermission permission guard instance (this
is simply engineering work and can be easily added in a
future release of our tool). (3) the app uses of 3rd-party
permission library (e.g., EasyPermissions [15], Dexter [16], or
Nammu [17]) which has a drastically different behavior than
the standard one. Since DP-TRANSFORM does not have this
domain knowledge, it cannot make use of these libraries.

C. RQ2: Effort: How much programmer effort is saved by
DP-TRANSFORM?

Methodology: As a proxy for measuring the transformation
effort, we recorded the number of method extractions, local
variable extractions, parameter reference extractions, check
block insertions, callback method insertions, and callback
method augmentations that were necessary for both app de-
velopers and DP-TRANSFORM to execute. We also counted
the number of lines of code changed.

Results: For permission locations that passed or condition-
ally passed, we include the total number of source lines of code
modified during the transformation of permission locations
within each app (column 7 in Fig. 4). On average, each
transformation changes 61.74 SLOC.

We also record the number of methods extracted (column
8), local variables extracted to fields (column 9), method
parameters extracted to a field (column 10), permission checks
inserted (column 11), and permission request callback handler
methods inserted (column 12). In total, 25 method extractions
were required to reduce both the number of variables and
the number of lines of code duplicated. In total, 18 local
variables had to be extracted to class fields in order maintain
access to a single variable across multiple scopes (permission
check block and permission request callback handler method).
In total, 15 method parameters required creating a new local
variable that references the parameter. Then DP-TRANSFORM
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extracted it to a class field to maintain access and scope.
In total, 113 permission checks had to be inserted to deter-
mine whether permission has been granted prior to calling a
sensitive, and providing a call to requestPermissions
if not granted. In total, 48 permission request callback
handler methods had to either be inserted or an existing
onRequestPermissionsResult method needed to be
modified to include a new block to handle an additional
permission request.

D. RQ3: Accuracy: How accurate is DP-TRANSFORM
when performing a transformation?

Methodology: To verify the accuracy, we manually in-
spected that code that DP-TRANSFORM transformed code is
semantically equivalent to the transformations of the developer
oracle. We also executed the transformed code in the Android
Virtual Device (AVD) included with Android Studio IDE, and
through the Android Support plugin [18] for IntelliJ IDEA
IDE.

Results: We analyzed each of the 112 permission locations
that either passed or conditionally passed, and found that
6 locations were not semantically equivalent to the code
from the developer oracle. In 3 of the cases, the developer
extended functionality and behavior with additional code
inside of the block guarded by checkSelfPermission.
In the other 3 cases, the developer inserted a call to
shouldShowRequestPermissionRationale to deter-
mine whether to display a UI element to the user with
rationale for requesting a permission. The extension of
functionality and behavior, including the introduction of
shouldShowRequestPermissionRationale, require
a deep domain knowledge and understanding the logic of
the app. Therefore, without such domain knowledge, DP-
TRANSFORM has an accuracy of 94.64%.

VIII. RELATED WORK

A. Tools for static analysis of permissions

The most comprehensive effort of mining permission spec-
ifications to date in PScout [19]. Similarly to DP-DETECT
it constructs a call graph and performs reachability traversal.
The analyzed code is, unlike DP-DETECT, that of Android
framework, and the code it tries to detect is that for Android
internal permission requests. We investigated the possibility
to use PScout result as permissions database, but chose to
use Android SDK metadata in the end. The reasons were
that PScout does not support Android 6, and we found the
produced specifications to contain a significant number of false
positives.

A closely related project to DP-DETECT is revDroid [20],
a tool and empirical study that analyzes whether Android 6
apps continue to run without crashing when permissions are
revoked. Similar to DP-DETECT it uses Soot and FlowDroid
under the hood. Curiously, revDroid uses PScout as sensi-
tives database. However, this tool does not customize entry
point generation. Nor does it use context-sensitive points-
to refinement. Thus we suspect the call graph they use,

and consequently the results, are both less precise and less
complete.

B. Android evolution

We based our initial understanding of the landscape of API
usage in Android on the work of McDonnell et al. [21], which
found that API changes quickly outpace app developers. We
found similar trends in our formative study, which confirms
the need for tools.

The recent work of Karim et al. [22] aimed to solve a related
problem: to locate and determine which permissions sensitive
APIs are being called most often by developers. In contrast,
we focus on solving the problem of finding sensitive locations
and introducing permissions guards.

C. Refactoring tools for Android

Some researchers provided tooling support for the static
permissions model found in Android 5 and earlier. Jeon et.
al [23] introduced a finer-grained permissions model that
enhances the standard permissions model found in Android 5.
This work does not handle the dynamic and transitive nature of
permissions found in Android 6’s runtime permissions model,
thus it is different than our current work.

Our group has previously automated several refactor-
ings [24], [25] for helping developers convert synchronous,
blocking code, into asynchronous code that improves respon-
siveness. Our current work has a very different scope and uses
different techniques.

IX. CONCLUSIONS

A static permission model that asks users to grant per-
missions at install time spells trouble. Malware can easily
abuse the user-granted permissions to compromises the privacy
and security of apps. To solve these problems, Android 6
overhauled its permission model to use runtime permissions.
However, app developers have to pay a high maintenance
premium for it.

Our large scale formative study of a corpus of real-world
apps that developers migrated to the Android revealed surpris-
ing findings. First, app developers still do not have a consistent
way to insert permissions, resulting in a proliferation of
techniques, of which some are even dubious. This points to
a great need for tools like our DP-TRANSFORM to transform
the code consistently and correctly.

Second, app developers insert permission guards in Android
components that were not natively designed for permission
requests. This points to a need for tools like our DP-DETECT
that recommends locations where users can be interrupted and
asked to grant permissions.

Third, the sheer number of third party libraries built just
to handle permissions indicates that app developers find the
Android 6 API for permissions is not intuitive. This again
points to the need for tools like ours. We hope that our paper
serves as a call to action for other researchers to work on
these important problems that ultimately affect 3 billion end
users [26].
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