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Abstract

Three-dimensional flow visualization plays an essential role in many areas of science

and engineering, such as aero- and hydro-dynamical systems which dominate vari-

ous physical and natural phenomena. For popular methods such as the streamline

visualization to be effective, they should capture the underlying flow features while

facilitating user observation and understanding of the flow field in a clear manner.

My research mainly focuses on the analysis and visualization of flow fields using

various techniques, e.g. information-theoretic techniques and graph-based represen-

tations. Since the streamline visualization is a popular technique in flow field visual-

ization, how to select good streamlines to capture flow patterns and how to pick good

viewpoints to observe flow fields become critical. We treat streamline selection and

viewpoint selection as symmetric problems and solve them simultaneously using the

dual information channel [81]. To the best of my knowledge, this is the first attempt in

flow visualization to combine these two selection problems in a unified approach. This

work selects streamline in a view-independent manner and the selected streamlines

will not change for all viewpoints. My another work [56] uses an information-theoretic

approach to evaluate the importance of each streamline under various sample view-

points and presents a solution for view-dependent streamline selection that guarantees

coherent streamline update when the view changes gradually. When projecting 3D

xxv



streamlines to 2D images for viewing, occlusion and clutter become inevitable. To

address this challenge, we design FlowGraph [57, 58], a novel compound graph repre-

sentation that organizes field line clusters and spatiotemporal regions hierarchically

for occlusion-free and controllable visual exploration. We enable observation and ex-

ploration of the relationships among field line clusters, spatiotemporal regions and

their interconnection in the transformed space. Most viewpoint selection methods

only consider the external viewpoints outside of the flow field. This will not convey

a clear observation when the flow field is clutter on the boundary side. Therefore,

we propose a new way to explore flow fields by selecting several internal viewpoints

around the flow features inside of the flow field and then generating a B-Spline curve

path traversing these viewpoints to provide users with closeup views of the flow field

for detailed observation of hidden or occluded internal flow features [54]. This work

is also extended to deal with unsteady flow fields.

Besides flow field visualization, some other topics relevant to visualization also attract

my attention. In iGraph [31], we leverage a distributed system along with a tiled

display wall to provide users with high-resolution visual analytics of big image and text

collections in real time. Developing pedagogical visualization tools forms my other

research focus. Since most cryptography algorithms use sophisticated mathematics,

it is difficult for beginners to understand both what the algorithm does and how the

algorithm does that. Therefore, we develop a set of visualization tools to provide

users with an intuitive way to learn and understand these algorithms.
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Chapter 1

Introduction

A vector field is an assignment of a vector to each point in a subset of the Euclidean

space. If the vector at each point in the field varies over time, we call such a vector

field an unsteady vector field or time-varying vector field. Otherwise, it is a steady

vector field. A flow field is a special vector field where the vectors indicate flow

directions and magnitudes. A vector field may exhibit several special types of flow

pattern, which are called critical points. A critical point is a singularity in the vector

field when the vector at that point is zero. A critical point may be a source (where

vectors emanate from a point), sink (where vectors converge into a point), saddle

(where vectors repel each other at a point), and spiral (where vectors revolve along a

point). Figure 1.1 shows a vector field in the 2D plane and the corresponding critical

points. The red line in each image indicates a streamline in the corresponding flow
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(a) (b) (c) (d) (e)

Figure 1.1: (a) a 2D vector field. (b)-(e): a source, sink, saddle and spiral.

field.

In many scientific, engineering and medical disciplines such as climate modeling,

turbulent combustion, automobile design and vessel aneurysm diagnosis, visualizing

vector fields plays an essential role in visual interpretation and understanding of the

underlying flow features and patterns. Well-known vector field visualization tech-

niques include geometry-based methods, texture-based methods [11, 87], integration-

based methods [60] and image-based flow visualization (IBFV) [88]. Among these

techniques, visualization of streamlines and pathlines is still the most commonly used

method because they are easy to compute and can be rendered at various resolutions

with interactive rates.

A streamline is a curve tangent to a flow field everywhere. Intuitively, it is the path

that a particle will follow if released in a steady flow field [3]. Streamline visualization

is widely used to reveal underlying flow features and patterns for steady flow fields.

A pathline is the trajectory of a massless particle which is placed into a unsteady flow

field. For example, If a soft ball is dropped into a dynamic water flow whose vectors
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change over time, the ball will follow the direction of the flow at each time step and

its floating trajectory is called a pathline [3].

Effective streamline visualization can be formulated as the problem of seed placement

or streamline selection. Seed placement aims at carefully placing seeds in the do-

main to generate streamlines that capture flow features. There exist several effective

seeding strategies for 2D and 3D vector fields including image-guided [41, 49, 86]

and flow-guided [91, 100] algorithms. For 3D flow fields, seeding too many or too few

streamlines is not able to reveal flow features and patterns well either because it easily

leads to visual clutter in rendering (too many) or it conveys little information about

the flow field (too few). Not only does the number of streamlines placed matter,

their spatial relationships also influence our understanding of the flow field. Ideally,

a streamline seed placement algorithm should retain important features in the vector

field so that desired insights can be gained.

An alternative to seed placement is streamline selection. That is, we first place a

large number of seeds either randomly or uniformly in the domain to produce a

pool of streamlines. We then either automatically select representative or interesting

streamlines from the pool [15, 59] or manually sketch a pattern to match similar

streamlines for selective display [94]. Although the task is shifted from selecting good

seeds to selecting good streamlines, the goal remains the same: we aim to produce a

set of streamlines that capture flow features and patterns.
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Besides streamline selection, selecting good viewpoints is also critical for understand-

ing large and complex 3D flow fields. This is because automatically guiding the

viewers to good viewpoints improves both the speed and the efficiency of data un-

derstanding. While viewpoint selection for volume data has been extensively studied

[7, 40, 77, 92], the same issue for flow visualization remains to be thoroughly investi-

gated.

Although streamline visualization gains the popularity due to its simplicity to com-

pute using standard numerical integration and providing an its intuitiveness to un-

derstand the underlying flow field, a fundamental challenge for scaling vector field

from the simple 2D plane to a more complex 3D space still remains unsolved due

to occlusion and clutter [45, 61]. Specifically, when depicting a 3D flow field using

streamlines, it is often possible to reduce spatial occlusion (e.g., through streamline

seeding or filtering) but not eliminate it. This prevents an occlusion-free observa-

tion and comparison of the relationships among streamlines, a critical task commonly

found in many flow field applications. In order to overcome this problem and help

users observe the underlying flow patterns clearly, algorithms have been developed for

finding characteristic viewpoints under which users can capture most flow features in

a less ambiguous way. However, most existing solutions of viewpoint selection for vol-

ume and flow data are restricted to external viewpoints, excluding potentially more

effective observation with internal viewpoints.
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My work falls into several above flow visualization areas. In Chapter 3, a unified

approach to solve streamline selection and viewpoint selection in an information-

theoretic framework is introduced. Chapter 4 provides a detailed description of our

coherent view-dependent streamline selection based on an importance-driven method.

FlowGraph, a compound hierarchical graph for supporting effective 3D flow field ex-

ploration is discussed in Chapter 5. Chapter 6 introduces FlowTour, which demon-

strates a automatic guide for exploring internal flow features in detail. Its extension

is also discussed in Chapter 7. Chapter 8 and Chapter 9 introduce two of my minor

research focuses, developing pedagogical visualization tools and dealing with big data

using a distributed system and a tiled display wall, respectively.

Due to the extensive use of information theory in our work, an introduction to several

critical concepts of information theory is provided in Appendix A.
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Chapter 2

Related Work

In this section, a general review of previous work related to streamline visualiza-

tion, viewpoint and view path generation, and flow field exploration are provided.

Furthermore, related algorithms which apply information theory and graph drawing

techniques to flow visualization are also presented. The following is the organization

of this Chapter. In Section 2.1, we list several previous techniques from two major

streamline visualization areas: seed placement and streamline selection and also in-

troduce our corresponding solution and point out the differences between our solution

and previous methods. Viewpoint selection and view path generation techniques are

generally discussed in Section 2.2 along with an introduction of our FlowTour frame-

work. Section 2.3 presents a number of recent work on flow field exploration and

Section 2.4 provides a overview of previous work applying information theory into
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visualization. At the end of this section, a short description of our unified approach

by utilizing information theory to solve streamline selection and viewpoint selection

simultaneously is also presented. In the last section, several graph drawing techniques

are discussed first and followed by a brief introduction of our FlowGraph tool.

2.1 Streamline Visualization Techniques

Seed Placement: Amain focus on flow visualization is seed placement. For example,

Jobard and Lefer [41] presented an evenly-spaced seeding algorithm. They took a

greedy strategy to place seeds in the neighborhood of previously placed streamlines. A

distance threshold is used to explicitly control the density of streamlines. Liu et al. [52]

proposed another evenly-spaced streamline placement algorithm for fast, high-quality

and robust layout of flow lines. Their solution features double queues to prioritize

topological seeding and adaptive distance control to minimize discontinuities. Their

loop detection algorithm also helps address closed or spiraling streamlines. Spencer

et al. [76] also proposed an efficient algorithm to generate evenly spaced streamlines

over surfaces by performing streamline integration in the image space. Similarly, Wu

et al. [96] presented a streamline placement algorithm that produces evenly spaced

long streamlines while preserving topological features of a flow field. The flow field

is decomposed into several topological regions and in each region seeds are placed

along a seeding path. Liu and Moorhead [51] proposed an interactive view-driven
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evenly spaced streamline placement algorithm for 3D surface flows. Their algorithm

integrates streamlines in 3D space while controlling the streamlines density in the 2D

view space. They adopted an inter-frame physical-space seeding strategy based on

streamline reuse and lengthening on top of their intra-frame view-space seeding, which

not only enables coherent flow navigation but also speeds up placement generation.

Besides evenly-spaced techniques, some other placement algorithms were also pro-

posed. Verma et al. [91] argued that the goal of streamline placement is to clearly

reveal flow features such as critical points. Therefore, they proposed a flow-guided

streamline seeding algorithm that explicitly detects critical points first and then ap-

plies different seeding templates to different types of critical points for feature high-

lighting. This approach was later extended to 3D streamline seeding by Ye et al.

[100]. Mebarki et al. [62] took a farthest seeding strategy and placed the seed succes-

sively at the place that is farthest away from all previously placed streamlines (i.e.,

the center of the biggest void region in the field). Schlemmer et al. [71] presented

another seeding solution that leverages a user-specified scalar function to control the

streamline density. Streamlines are prioritized accordingly and those in the most im-

portant regions are drawn first to depict flow features. Li and Shen [49] presented

an image-based 3D streamline placement strategy that resolves visual clutter due to

streamline projection by placing seeds in the 2D image space. Li et al. [48] pro-

posed illustrative streamline placement to depict the flow patterns succinctly. This

algorithm places a new streamline only when it represents flow characteristics that
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have not been shown by previously placed streamlines. Xu et al. [98] presented an

information-theoretic approach for streamline seeding. Their approach first uses seed

templates to place streamlines near regions of high entropy (refer to Appendix A) val-

ues, then successively places more streamlines according to the conditional entropy

between the original flow field and the field reconstructed from previously placed

streamlines. Rosanwo et al. [68] proposed a greedy streamline seeding strategy based

on so-called dual streamlines that are orthogonal to the given vector field as opposed

to primal streamlines which run tangential. Since seeds for new streamlines are only

placed along the dual streamlines, their seeding space is reduced to a net of curves.

By iteratively refining the dual streamlines, their method can provide a good domain

coverage and a high degree of continuity and uniformity.

Streamline Selection: An alternative to seed placement is to either uniformly or

randomly place seeds in the field and then adjust the resulting streamlines or select

a subset of streamlines for informative visualization. Turk and Banks [86] proposed

to use an energy function to guide streamline placement. Their algorithm starts with

uniformly or randomly seeded streamlines and then follows an iterative process to

improve the visualization by taking several primitive streamline operations (move,

insert, delete, lengthen, shorten and combine) and gradually reducing the energy.

The energy is defined as the difference between a low-pass filtered version of the

streamline image and the desired visual density. Chen et al. [15] selected streamlines

from randomly-seeded candidates based on their distance, shape and orientation to
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accentuate regions of interest. Their similarity-guided approach produces streamlines

that accentuate regions of interest without explicit feature detection and extraction.

In the work of Furuya and Itoh [27], they presented a streamline selection technique

for integrated scalar and vector field visualization. They first selected and rendered

several semitransparent isosurfaces which are used to represent subsets of the given

scalar field and then generated a set of streamlines from random seeding. Next,

they evaluated each streamlines importance based on its visibility and selected the

streamlines with high importance values. The methods proposed by Marchesin et

al. [59] and Lee et al. [46] both utilized information theory to evaluate streamline

importance and were applied to view-dependent streamline selection. Marchesin et

al. [59] presented a view-dependent solution for streamline selection. They defined

the contribution of each streamline as how easily this streamline can help the user

understand the vector field and selected streamlines based on their contribution in

order to reduce visual clutter. Starting from a pool of randomly seeded streamlines,

they first removed low contribution streamlines that have small 3D entropy values or

have a large overlap with other streamlines given the view, then added new streamlines

of high contribution which cover empty areas to provide more context information

of the underlying flow field. Lee et al. [46] presented a view-dependent algorithm

that minimizes the occlusion and reveals important flow features for 3D flow fields.

They utilized Shannon’s entropy as a measure of vector complexity and derived an

entropy field from the input vector field. Using the maximal entropy projection

11



(MEP) framebuffer that stores maximal entropy values as well as the corresponding

depth values for a given viewpoint, they developed a view-dependent algorithm to

evaluate and choose streamlines guided by the MEP framebuffer.

Our Solution: Our coherent view-dependent streamline selection method falls into

the category of streamline selection. Unlike the work by Marchesin et al. [59] which

only evaluates 3D linear and angular streamline entropies, we evaluate the informa-

tion loss when 3D streamlines are projected to the 2D image plane. Our strategy is

similar to the work of Furuya and Itoh [27]. Instead of only considering a stream-

line’s projected length using entropy [27], we take into account both direction and

magnitude of the vectors along the 3D streamline and its 2D projection using mutual

information (refer to Appendix A). Moreover, we also incorporate the streamline’s

shape characteristic (refer to Appendix A) to obtain our streamline importance mea-

sure. Since our solution takes into account view changes in streamline importance

evaluation and we carefully select streamlines under each viewpoint by considering

the overlap of streamlines between the current and previous viewpoints, we are able

to produce coherent transition between viewpoints as the user rotates the flow field,

which is not achieved in the work of Marchesin et al. [59] and Lee et al. [46]. Both Xu

et al. [98] and our method uses information theory for importance evaluation. While

the evaluation of information content in Xu et al. [98] is on the flow field, we evaluate

the information content on the integrated streamlines.
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2.2 Viewpoint Selection and View Path Genera-

tion

Viewpoint Selection: Viewpoint selection is another important problem in flow

visualization as well as some other areas such as object recognition [4], 3D modeling

[23, 95] and mesh saliency [22], volume visualization [7] and cinematography [32].

Vázquez et al. [90] defined the viewpoint entropy based on the projected areas of the

polygons of the original models and selected viewpoints with high entropy values.

Takahashi et al. [77] first decomposed the whole volume into a set of feature compo-

nents and computed the locally best viewpoints for each component. The globally

best viewpoint was obtained by compromising between locally best viewpoints. Ji

and Shen [40] developed a solution to select viewpoints for time-varying data based

on a dynamic programming algorithm. Viola et al. [92] found characteristic view-

points based on an information channel (refer to Appendix A) between the model in

the scene and the viewpoint set. They measured the viewpoint mutual information

for each viewpoint and selected the characteristic viewpoints which have less mutual

information values.

View Path Generation: After finding the best viewpoints, the next critical task

is to generate a good path traversing all selected viewpoints. van Wijk and Nuij
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[89] designed a novel method to generate a path from one viewpoint to another on a

2D map, which guarantees smooth and efficient zooming and panning between two

viewpoints along the transformation. The algorithm presented by Ji and Shen [40]

suggested a method that combines static view selection with dynamic programming

to select time-varying viewpoints and produce a smooth animation. Viola et al.

[92] found a transformation path between two selected viewpoints by utilizing an

intermediate viewpoint so that the camera path changes smoothly by switching the

focus from one feature to another.

Our Solution: All methods are proposed for either 2D images or 3D and 4D volume

data sets. There is no work to explore a flow field by traversing selected viewpoints

along a predefined view path. We develop our FlowTour to provide the user a au-

tomatic guide for exploring the flow field. Furthermore, unlike the work of Viola et

al. [92] which only considers the external viewpoints outside of the volume data, our

method selected best internal viewpoints and aimed to provide the user a closeup

exploration experience for observing hidden and occluded internal flow features and

patterns. No only considering steady flow fields, we also extend our work to help the

user explore unsteady flow fields automatically using a hybrid optimization strategy.
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2.3 Flow Field Exploration Techniques

Even though many popular flow field visualization techniques are proposed to provide

a convenient observation and understanding of the flow field, visual exploration of 3D

flow fields remains quite a challenge due to occlusion and clutter of 3D streamlines.

In order to overcome this problem, a variety of solutions have been proposed. Heiberg

et al. [34] proposed to locate, identify and visualize a set of predefined structures in

3D flows using vector pattern matching. Schlemmer et al. [71] presented the idea of

invariant moments for analyzing 2D flow fields which allows extraction and visualiza-

tion of 2D flow patterns, invariant under translation, scaling and rotation. Rössl and

Theisel [69] mapped streamlines to points based on the preservation of the Hausdorff

metric in the streamline space. The image of the set of streamlines covering the vec-

tor field is a set of 2-manifolds embedding in Rn with characteristic geometry and

topology.

Other researchers investigated sketch-based interface and interaction for intuitive flow

field exploration. For example, Schroeder et al. [72] presented a sketch-based interface

for illustrative 2D vector field visualization which allows illustrators to draw directly

on top of the data. Their interface design strikes a good balance between supporting

artistic freedom and maintaining the accuracy with respect to the underlying vector

field data. Wei et al. [94] presented a user-centric approach to exploring 3D vector
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field. By providing the user the freedom to sketch 2D curves, their method can

identify and extract all similar field lines based on a pattern matching algorithm

between the user defined curves in 2D and field lines clustering in 3D. They also

explored another way that creates streamline templates hierarchically to support on-

the-fly partial streamline matching in a progressive manner. In the work of Mattausch

et al. [60], they presented several strategies to interactively explore 3D flow. Users can

interactively change appearance and density of the streamlines in order to assist their

flow exploration. Flow features like velocity and pressure are mapped to streamline

properties such as width, opacity and density. They also applied animation, depth

cueing and halo effect to streamlines.

To enable greater control of interesting flow features and patterns for detail exam-

ination, researchers also applied different focus+context techniques into flow field

exploration. For example, Mattausch et al. [60] use focus+context to avoid occlu-

sion problems in their 3D vector field exploration method. Fuhrmann and Gröller

[26] presented magic lenses and magic boxes to examine the region of interest with

greater detail by showing denser streamlines. This technique was extended to magic

volumes of varying focus regions such as cubes, prisms and spheres [60]. Laramee

et al. [44] leveraged feature-based techniques [5] to extract interesting flow regions,

such as stagnant flow, reverse-longitudinal flow and regions of high pressure gradient

as the focus and achieved focus+context rendering through interactive thresholding.

Correa et al. [16] introduced physical and optical operators to intuitively visualize the
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internal 3D flow through illustrative deformation. By cutting along flow traces, they

allowed clear observation of the internal 3D flow through optical transformation and

elastic deformation. To explore blood flow in cerebral aneurysms, Gasteiger et al. [29]

proposed an interactive 2D widget for flexible visual filtering and visualization of the

focus+context pairs (i.e., relevant hemodynamic attributes). Their widget supports

local probing and conveys changes over time for the lens region.

2.4 Information Theory in Visualization

In recent years, information theory has gained a lot of attentions and permeated

into various scientific fields, such as engineering, computer science, mathematics,

physics and art. An overview of information theory in visualization can be found

in [14, 93]. Chen and Jänicke [14] presented an information-theoretic framework

for visualization. Their work outlined the correlation between visualization and the

major applications using information theory and proved that information theory can

be a useful tool in explaining a number of phenomena in visualization. Wang and

Shen [93] complemented Chen’s work by presenting a comprehensive summary which

reviewed the key concepts in information theory and discussed the applications of

information theory in visualization. By demonstrating how information theory is

applied to measure the uncertainty quantitively, they connected data communication

and data visualization into a single framework and introduced a new direction of
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data analysis research based on information theory. Xu et al. [98] focused their work

on flow field visualization using information theory and proposed an information-

theoretic framework for streamline generation. They formulated a vector field as a

distribution of directions and measured the information content in the field based on

Shannon’s entropy. The conditional entropy is also used to indicate the amount of

information in the original data set remains hidden after streamline selection.

Information channel is another critical concept in information theory and has been

widely used in visualization recently. Viola et al. [92] used an information chan-

nel built between viewpoints and volumetric objects and evaluated viewpoints using

mutual information computed from that channel. Feixas et al. [22] proposed an

information-theoretic framework for polygonal data in which a channel from view-

points to polygons and its inverted channel were built, and mutual information of

viewpoints and polygons were defined respectively. Ruiz et al. [70] applied a similar

method to define voxel information in volume visualization. Several challenges still

exist when applying this information-theoretic framework to flow fields.

Our Solution: Unlike voxels which are fine-grained elements and polygons which

are fairly localized data items, a streamline could stretch across the entire field and

have a very complex shape. This makes it difficult to analyze the conditional proba-

bility for a streamline. In addition, there exists no inherent concept of neighbors for

streamlines because no connectivity information is given. Therefore, we contribute to
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the state of the art flow visualization by introducing a new way to evaluate streamline

information and viewpoint information based on the mutual information shared by

the 3D streamline and their 2D projection, and constructing two interrelated infor-

mation channel between a set of streamlines and a set of viewpoints. Our approach

treat streamline selection and viewpoint selection as symmetric problem and solve

them in a unified framework simultaneously.

2.5 Graph Drawing Techniques

Graph drawing is one essential topic in information visualization and has profound

impact on various fields. Battista et al. [5] presented a survey on basic graph drawing

algorithms whose goal is to produce aesthetically pleasing graphs. Tollis [83] also

provided a brief introduction to the relationship between graph drawing and informa-

tion visualization. In terms of graph layout, various strategies have been proposed,

such as force-based layout [25], spectral layout [6], tree layout [35] and circular layout

[21]. Gu and Wang [30] proposed a graph-based representation named TransGraph to

visualize hierarchical state transition relationships for time-varying data sets. They

utilized a classical force-directed layout algorithm to draw TransGraph and enabled

user interaction to connect the graph representation and the volumetric data through

brushing and linking. Xu and Shen [99] proposed a node-link graph named flow web

for 3D flow field exploration. In their flow web, a node represents a region in the
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domain and the strength of a link between two nodes indicates the number of parti-

cles traveling between the two regions. Similar graph representations have also been

employed for workload estimation in parallel and out-of-core streamline generation

[13, 66]. Since the flow web does not explicitly store information about streamline

clusters, queries such as identifying streamline bundles become a trial-and-error pro-

cess. It works for structural flow fields where a path going through a list of nodes

may indeed indicate streamline passing through the corresponding regions in order.

However, for turbulent flow fields, this may not be true anymore.

Our Solution: Rather than only considering field line clusters or spatial regions,

our FlowGraph integrates both field line clusters and spatial regions as nodes simul-

taneously and thus presents a more complete picture. By integrating the temporal

information in the graph, FlowGraph could also provide the user a simple way to

observe the flow pattern evolution over time. In this regard, the flow web is actually

a subgraph of the FlowGraph. FlowGraph not only provides a visual mapping that

abstracts field line clusters and spatiotemporal regions in various levels of detail, but

also serves as a navigation tool that guides flow field exploration and understanding.
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Chapter 3

A Unified Approach to Streamline

Selection and Viewpoint Selection

for 3D Flow Visualization

3.1 Overview

Give a set of streamlines, selecting good streamlines to represent flow features and

picking good viewpoints to observe flow fields are two major tasks in flow visual-

ization. To treat these two selections as symmetric problems, we present a unified

0The material contained in this chapter was previously published in IEEE Transactions on Visual-
ization and Computer Graphics 2013.
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information-theoretic framework, which solves the problems of streamline selection

and viewpoint selection simultaneously by constructing two interrelated information

channels between a set of streamlines and a set of viewpoints [81] (©2013 IEEE). Based

on the information channel from streamline to viewpoint, we define streamline infor-

mation as a measure of streamline quality to guide streamline selection. Similarly, in

the inverted channel from viewpoint to streamline, we define viewpoint information to

guide viewpoint selection for the selected streamlines. Leveraging the two channels,

we also present a unified algorithm for streamline clustering and viewpoint partition-

ing. In addition, a camera path is designed for automatic exploration of the flow

field. Our unified approach results in a rigorous and robust framework for selecting

good streamlines and viewpoints, clustering streamlines, and partitioning viewpoints,

which we demonstrate with flow fields of different characteristics. Since information

theory is introduced in Appendix A.2, please refer to that part for how we utilize it to

compute streamline importance and build the channel between a streamline set and a

viewpoint set. This work has been published in IEEE Transactions on Visualization

and Computer Graphics 2013. All figures used in the chapter are from the original

publication.
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3.2 Best Streamlines Selection

For streamline selection, we start from a pool of randomly or uniformly traced stream-

lines and select the best streamlines for display. For streamline tracing, we use the

Runge-Kutta method to integrate streamlines as long as possible until they leave the

domain or reach critical points. The “best” streamlines are those that best capture

flow features by passing through the vicinity of critical points or interesting regions.

In this section, we propose two methods to evaluate each individual streamline and

then introduce our selection process.

Our first method uses the probability distribution p(S). Since p(s|v) indicates how

interesting streamline s is from viewpoint v, p(s) gives us the summation of impor-

tance of s from all viewpoints V . If the distribution p(V ) is not uniform, p(s) can

be considered as a weighted summation, in which a more interesting viewpoint has a

higher weight.

Our second method uses the streamline information (SI). In the information channel

S → V , we define SI as

I(s;V ) =
∑

v∈V

p(v|s) log
p(v|s)

p(v)
, (3.1)
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which represents the degree of dependence between streamline s and the set of view-

points V . Intuitively, SI indicates the quality of s with respect to V . Note that I(s;V )

is the contribution of streamline s to I(S;V ), which expresses the degree of correla-

tion between the set of streamlines S and the set of viewpoints V . Low values of SI

correspond to streamlines seen by a large number of viewpoints in a balanced way.

The term “balance” indicates that the conditional probability distribution p(V |s) is

similar to p(V ). This similarity can be expressed by the Kullback-Leibler divergence

[43] between p(V |s) and p(V ), which equals zero when p(V |s) = p(V ). Conversely, a

high value of I(s;V ) means a high degree of dependence between s and V . Therefore,

streamline s that shows more information over the set of viewpoints V have a lower

value of SI.

After streamline evaluation, we sort all the streamlines S into a priority queue. If p(s)

is used, the streamlines are sorted in the decreasing order of p(s), where a streamline

with a higher value of p(s) is preferred. If SI is used, the streamlines are sorted in

the increasing order of SI, since a streamline with a lower value of SI is better.

We can now select the best streamlines according to the sorted order. Furthermore, we

check the pairwise dissimilarity between two streamlines to avoid selecting streamlines

that are very similar to each other. To measure streamline dissimilarity, we use the

mean of closest point distances as suggested by Moberts et al. [64] in DTI fiber

clustering. Our selection process starts from selecting the first streamline in the
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priority queue. Then, we check the next streamline and select it if its distance to the

first one is larger than a given distance threshold ds. At each step, we consider one

new streamline, and compute the distance between it and every streamline previously

selected. This streamline is selected if and only if the distances are all larger than

ds. The selection process stops when a given number of streamlines is selected or all

streamlines in the pool are considered.

3.3 Best Viewpoints Selection

Similar to SI, in the information channel V → S, we can define the viewpoint infor-

mation (VI) as

I(v;S) =
∑

s∈S

p(s|v) log
p(s|v)

p(s)
, (3.2)

which represents the degree of dependence between viewpoint v and the set of stream-

lines S. Note that in our scenario, the set of streamlines now is actually the set of

selected streamlines, not the original pool of streamlines. For simplicity, we still use

the notation S in this section when referring to the selected streamlines.

Similar to streamline selection, the best viewpoints can be defined either by p(v) or

VI. If we use p(v) to select the best viewpoints, we mainly consider the amount of

information about the set of streamlines S revealed by viewpoint v. As a result, the

best viewpoints are those that show more information of S than others. If we use
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VI to select best viewpoints, VI indicates the quality of viewpoint v with respect to

the set of streamlines S. Low (high) values of VI correspond to more independent

(coupled) viewpoints. Thus, viewpoints with low values of VI are considered as better

ones.

Till now, our algorithm could select very similar neighboring viewpoints as the best

viewpoints which is clearly not desirable. To avoid this, we make use of the distribu-

tion p(S|v) computed in the last step. Considering p(S|v) as a vector associated with

each viewpoint, i.e., p(S|v) =< p(s1|v), p(s2|v), . . . , p(sn|v) >, the difference between

two viewpoints can be expressed as the Euclidean distance between their correspond-

ing vectors. Thus, a viewpoint is not selected if its distance to any of the selected

viewpoints falls below a given threshold dv.

3.4 Streamline Clustering

We propose a streamline clustering algorithm using the information channels built

between S and V . The first stage of our algorithm is to find the representative

streamlines. Unlike the “best” streamlines (Section 3.2) which are evaluated indi-

vidually, the “representative” streamlines are defined as a small set of streamlines in

which the streamlines as an entirety best characterize the flow field. This is formed

by selecting the streamlines such that their merging minimizes the distance to the
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target distribution p(V ). That is, our selection algorithm should select n′ streamlines

(n′ << n) so that their merging ŝ minimizes I(ŝ;V ). Since finding an optimal so-

lution to this problem is NP-complete [70], we adopt a greedy strategy by selecting

successive streamlines to minimize I(ŝ;V ). At each merging step, we aim to maximize

the Jensen-Shannon divergence between the set of previously merged streamlines and

the new streamline to be selected.

Our solution proceeds as follows. First, we select the best streamline s1 with distri-

bution p(V |s1) corresponding to the minimum I(s;V ). Next, we select s2 such that

the mixed distribution p(s1)
p(ŝ)

p(V |s1) +
p(s2)
p(ŝ)

p(V |s2) minimizes I(ŝ;V ), where ŝ repre-

sents the merging of s1 and s2 and p(ŝ) = p(s1) + p(s2). At each step, a new mixed

distribution
p(s1)

p(ŝ)
p(V |s1) +

p(s2)

p(ŝ)
p(V |s2) + . . .+

p(si)

p(ŝ)
p(V |si), (3.3)

where p(ŝ) = p(s1) + p(s2) + . . .+ p(si), is produced until the streamline information

ratio (SIR), denoted as I(ŝ;V )/I(S;V ), is lower than a given threshold or we have

selected n′ streamlines. The SIR can be interpreted as a measure of the representa-

tiveness of the selected streamlines.

The second stage of our algorithm is to cluster other streamlines to the representatives

we have identified in the first stage. Following the data processing inequality [17],

we know that any clustering of streamlines reduces the mutual information I(S;V )

between the set of streamlines S and the set of viewpoints V . Therefore, a good
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clustering is the one that minimizes this mutual information loss. Assuming that

two streamlines s1 and s2 are merged into one cluster ŝ, the reduction of mutual

information can be described by

δI(s1; s2) = I(S;V )− I(Ŝ;V )

= p(s1)I(s1;V ) + p(s2)I(s2;V )

−p(ŝ)I(ŝ;V ), (3.4)

where Ŝ is the resulting streamline set and p(ŝ) = p(s1) + p(s2). Note that δI(s1; s2)

is small if the two streamlines have very similar distributions, i.e., p(V |s1) ≈ p(V |s2),

and it reaches zero if the two streamlines share the same distribution, i.e., p(V |s1) =

p(V |s2). At each step, we pick a streamline s and calculate δI(s; s′) for each of the

streamlines s′ in the representative set. Then, s is merged into the cluster in which

δI(s; s′) between s and its representative s′ is minimal.

We use the elbow criterion to determine the proper number of clusters. That is, we

should choose a number of clusters so that adding another cluster does not greatly

increase the percentage of variance explained (i.e., the ratio of the between-group

variance to the total variance). In practice, we run from two to ten clusters from

which we choose the appropriate number of clusters.
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3.5 Viewpoint Partitioning

Similar to streamline clustering, we can perform viewpoint partitioning in two stages.

The first stage is the selection of representative viewpoints and the second stage is

clustering other viewpoints to the representatives. The most representative view-

points are a small number of viewpoints (m′ << m) that provide the best represen-

tation of the selected streamlines. Leveraging the VI measure (Equation 3.2), our

solution for viewpoint selection is the same as the greedy solution we propose for

identifying representative streamlines (Section 3.4) with the only difference being the

swap of notations for streamline and viewpoint. The viewpoint selection process stops

when the viewpoint information ratio (VIR), denoted as I(v̂;S)/I(V ;S), is lower than

a given threshold or we have selected m′ viewpoints. Similar to the SIR, the VIR can

be interpreted as a measure of the representativeness of the selected viewpoints.

For viewpoint partitioning, we measure the difference between two viewpoints by the

reduction of mutual information, where the reduction δI(v1; v2) is defined in the same

way as δI(s1; s2) (Equation 3.4). Then, we apply the same procedure of streamline

clustering to partitioning viewpoints: at each step, a viewpoint v is merged into the

partition whose representative v′ minimizes the information loss measured by δI(v; v′).

Similarly, we use the elbow criterion to identify the proper number of partitions for

all the viewpoints.
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initial p(s) I(s;V ) REP random

Figure 3.1: Streamline selection (©2013 IEEE).

3.6 Camera Path

Given a set of best (Section 3.3) or representative (Section 3.5) viewpoints, we con-

struct a smooth camera path that goes through all selected viewpoints for automatic

flow field exploration. Our algorithm creates a graph by treating all sample view-

points as nodes and their neighboring relationships as edges. The weight of an edge

is defined as the Jensen-Shannon divergence between the two viewpoints. With this

graph, we can define the camera path by finding the shortest path among the set of

selected viewpoints using Dijkstra’s algorithm.
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Table 3.1

The ten flow data sets and their parameter values (©2013 IEEE).

initial selected rep. avg. rep. line distance view distance
data set dimension # lines # lines # lines # pts. #views threshold ds threshold dv

five critical points 51 × 51 × 51 800 140 5 112.9 3 4.1 0.2
tornado 64 × 64 × 64 500 60 7 295.2 3 5.8 0.1
two swirls 64 × 64 × 64 500 100 6 157.3 3 3.8 0.18
supernova 100 × 100 × 100 500 140 5 184.5 4 4.5 0.15
car flow 368 × 234 × 60 600 140 5 185.5 3 5.9 1.0
crayfish 322 × 162 × 119 800 100 7 208.7 3 18.7 0.15
solar plume 126 × 126 × 512 600 140 4 100.2 4 15.0 0.1
computer room 417 × 345 × 60 800 200 6 172.9 4 17.3 0.15
hurricane 500 × 500 × 100 600 140 5 341.1 3 31.6 0.15
ABC flow 1024 × 1024 × 1024 800 140 7 179.8 4 68.3 0.15

Table 3.2

The timing result for different data sets (©2013 IEEE).

task tornado crayfish hurricane

best selection P (S) 137min 185min 324min
CPU best selection I(S;V ) 165min 248min 368min

clustering 4.0sec 6.4sec 2.5sec
best selection P (S) 6.2sec 9.3sec 7.0sec

GPU best selection I(S;V ) 6.2sec 9.3sec 7.0sec
clustering 0.01sec 0.01sec 0.008sec

3.7 Results

3.7.1 Timing Performance and Parameter Choices

We experimented our approach with ten flow data sets. The five critical points data

set [100] is a synthesized flow field consisting of two spirals, two saddles and one

source. The tornado data set is from a simulation of a tornado event. The two swirls

data set is from a simulation of swirls resulting from wake vortices. The supernova
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data set is from a simulation of the explosion of stars. The car flow data set is from

a simulation of the air flow around a running car. The crayfish data set is from a

simulation of the heat flow around a cooking crayfish. The solar plume data set is

from a simulation of down-flowing solar plumes for studying the heat, momentum and

magnetic field of the sun. The computer room data set is from a simulation of air

flows inside a computer room. Finally, the hurricane data set is from a simulation of

Hurricane Isabel, a strong hurricane in the west Atlantic region in September 2003.

The ABC flow data set is from a synthesized flow simulation which consists several

saddles.

For all these data sets, the initial pool of streamlines was generated by dense place-

ment of seeds randomly. In Table 3.1, we list the parameter values used for each

data set. We used 320 viewpoints for all data sets, and determined the number of

initial streamlines based on the SIR. Normally, a larger number of initial streamlines

should be generated for a data set with a larger spatial dimension or a more com-

plicated structure. For the streamline distance threshold ds, we used the average of

all pairwise mean of closest point distances between streamlines divided by a con-

stant factor. This constant factor should not be too small, in case that the distance

becomes the dominant factor in streamline selection. It should not be too large, so

that it remains effective in reducing the occlusion. Unlike the streamline distance

threshold, the viewpoint distance threshold dv was chosen as a constant, since the

average distance between viewpoints does not vary that much for different data sets.
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best view p(v) worst view p(v) best view I(v;S) worst view I(v;S)

Figure 3.2: Viewpoint ranking of the tornado data set (©2013 IEEE).

Please refer to Table 3.1 for the actual values we used for ds and dv for each data set.

Table 3.2 shows the timing results on three benchmark data sets for both CPU and

GPU versions of our implementation, tested on a PC with an Intel Core 2 Q6600

quad-core CPU running at 2.4GHz and an nVidia GeForce GTX 465 graphics card.

3.7.2 Streamlines Selection Results

Figure 3.1 shows the comparison of streamline selection results for four different

methods: best selections based on p(s) and I(s;V ), representative (REP) selection,

and random selection. For the hurricane data set (first row, 600 streamlines with 60

selected), both selections based on p(s) and I(s;V ) yield similar results. The two

circling patterns of the velocity field are clearly visible. REP selection produces less

accentuated circling patterns due to the need to cover the domain more evenly in

order to best represent the entire field. Random selection leads to a similar result

as REP selection, but the circling pattern in the right side of the image is much less

obvious. For the car flow data set (second row, 600 streamlines with 40 selected),
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Figure 3.3: Viewpoint selection of the five critical points data set (©2013

IEEE).

both selections based on p(s) and I(s;V ) are similar and are clear winners. REP and

random selections produce undesirable results because interesting flow features are

fairly localized in the domain. Overall, we conclude that streamline selection based

on I(s;V ) achieves the most consistent results.

3.7.3 Viewpoint Selection Results

In Figure 3.2, we show the ranking of viewpoints based on p(v) and I(v;S) for the

tornado data set, together with the corresponding best and worst viewpoints. As

expected, the view sphere images indicate that neighboring viewpoints have similar

rankings and the viewpoint ranking varies gradually over the view sphere. Although

the two methods based on p(v) and I(v;S) give less similar results, the best and worst
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Figure 3.4: Streamline clustering of the two swirls data set (©2013 IEEE).

viewpoints convey the same meaning. That is, the best viewpoint corresponds to a

view which clearly reveals the swirling pattern, while the worst viewpoint corresponds

to a view where the swirling pattern is least clear. Our result is consistent with the

viewpoint evaluation work reported in [46].

Figure 3.3 shows the comparison among best viewpoint selections based on p(v) and

I(v;S), and REP viewpoint selection. For each method, we marked where the first

three choices (in red, green, and blue) are on the view sphere. (a) shows best view-

points based on p(v). (b)-(d): three best viewpoints in (a). (b) is the first view and

(d) is the third view. (e) shows best viewpoints based on I(v;S) and the first view

in (e) is the same as (b). (f) and (g) are the second and third views in (e). (h)

shows representative viewpoints. (i) and (j) are the second and third views in (h)

and the first view in (h) is the same as (b). We observe that all viewpoints selected

are good as they reveal some new information about different critical regions that are

not immediately visible from the previous selected viewpoints.
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Figure 3.5: Viewpoint partitioning of the five critical points data set (©2013

IEEE).

3.7.4 Streamline Clustering and Viewpoint Partitioning

The streamline clustering results of the two swirls data set (500 streamlines) are

shown in Figure 3.4. The blue, yellow, and pink clusters are quite distinct which

capture the internal swirls, external swirls, and outliers, respectively. The red and

green clusters are in between the blue and yellow ones. Figure 3.5 shows the result

of viewpoint partitioning with 1280 total viewpoints. Three partitions are denoted in

red, blue and yellow. We show a selected viewpoint from each partition to highlight

the distinction among the three partitions.

3.7.5 Camera Path for Visual Exploration

Figure 3.6 shows the camera paths we derived using the shortest path strategy for

three data sets . The shortest path is not based on geodesic distances, but according

to the Jensen-Shannon divergences. Representative viewpoints were used to plan
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Figure 3.6: Camera paths for the five critical points data set (left), the
solar plume data set (middle), and the supernova data set (right) (©2013

IEEE).

the camera path. Each path visits the representative viewpoints one by one. The

resulting camera path is smooth because the shortest path between any two target

viewpoints ensures that the change along the path is minimized.
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Chapter 4

Importance-based Coherent

View-dependent Streamline

Selection

4.1 Overview

As described in Chapter 3, our unified approach evaluates streamline importance

based on the global information of all sample viewpoints and therefore provides a view-

independent fashion for streamline selection. This means the final selected streamline

0The material contained in this chapter was previously published in IS&T/SPIE Conference on
Visualization and Data Analysis 2013.
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set remains the same for all viewpoints. However, since each streamline has a range

of views that show its characteristics in the least ambiguous manner, keeping selected

streamline set intact will not generate good results when the viewpoints change grad-

ually. Therefore, we also introduced an importance-driven approach to interactive 3D

streamline selection and visualization in a view-dependent manner [56]. This work

has been published in IS&T/SPIE Conference on Visualization and Data Analysis

2013. All figures used in the chapter are from the original publication.

Our goal is to perform selective streamline display which could not only reduce visual

clutter, but also well characterize view-dependent vector field features. We also aim

to maintain coherent streamlines updates between adjacent viewpoints. We derive the

view-dependent importance of a streamline by computing the amount of information

shared by the 3D streamline and its 2D projection under different viewpoints. Taking

into account the shape characteristic of the streamline under different viewpoints as

well, we obtain an importance measure that allows us to identify the intrinsic views

of the streamline. Based on this importance measure, we present solutions for both

view-independent and view-dependent streamline selection and visualization. For the

view-independent case, our solution selects a set of overall important streamlines

among all viewpoints and treats it as the globally optimal streamline set. For the

view-dependent case, our algorithm dynamically selects important streamlines on the

fly and is able to maintain coherent update of streamlines displayed by consider-

ing the relationships between local viewpoints and the global streamline set as well
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as the continuity between two adjacent viewpoints. We experiment our algorithm

with several synthesized and simulated flow fields of different characteristics. The

effectiveness of our algorithm is demonstrated through qualitative and quantitative

results and comparison with a näıve view-dependent streamline selection algorithm

that selects streamlines solely based on the information at the current viewpoint.

4.2 Algorithm Overview

Figure 4.1: The overview of the coherent importance-driven streamline
selection.

We sketch the main steps of our algorithm in Figure 4.1. Given an input 3D vector

field, we first produce a large number of randomly or uniformly seeded and traced

streamlines over the field. To favor long streamlines that better reveal the continuity

of the flow field, we integrate each streamline as long as possible until it leaves the

domain or the velocity becomes zero. This step of streamline placement can be

stopped until a target number of streamlines has been generated or the streamline

pool produced is dense enough (e.g., every voxel has been passed through by at least
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one streamline). Then we evaluate the importance for each streamline and order them

into a priority queue for every single sample viewpoint. More important streamlines

are those whose 3D information is high and in the meanwhile, whose 2D projections

correspond to their respective intrinsic views that reveal most of their 3D information.

In other words, more important streamlines are those whose 2D projections are able

to present more 3D shape information of the underlying flow field at the current

viewpoint.

With the streamlines prioritized, we are able to perform view-independent or view-

dependent streamline selection and visualization. For the view-independent scenario,

our algorithm selects best streamlines considering all sample viewpoints. Overall, the

selected streamlines are important from different viewpoints. For the view-dependent

scenario, our algorithm dynamically selects important streamlines. We leverage a

2D density map and its effective area to control the density of streamlines displayed

in the image plane. Since the view-dependent selection is based on both the global

streamline information and the continuity between local adjacent viewpoints, our

algorithm is able to maintain coherent update of streamline displayed when the view

changes gradually.
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4.3 View-dependent Streamline Importance

Given a viewpoint, we evaluate the importance of each streamline by considering

two criteria: streamline mutual information A.2.3 and streamline shape character-

istics A.2.4. The former is to measure how much information of the 3D streamline

is revealed in the 2D projection and the latter is to indicate how stereoscopic the

streamline shape is reflected under the given viewpoint. With mutual information

and shape characteristic defined above, we obtain the view-dependent importance

M(X, v) of streamline X under viewpoint v as

M(X, v) =
α(X̃, v)I(X;Xv)

∑

X∈X
α(X̃, v)I(X;Xv)

, (4.1)

where Xv denotes the 2D projection of X under v and X denotes the streamline pool.

In Figure 4.2, we show an example streamline and the variation of its importance value

with all sample viewpoints. In (a) and (b), the best and worst views are marked in

red and blue, respectively. Two views corresponding to the best and worst cases are

also given. As we can see, the best case corresponds to an intrinsic view having an

almost 45◦ angle with the streamline where much of the 3D streamline characteristics

(curvature and torsion) is revealed in the 2D projection. The worst case hides most

of the 3D information and displays the streamline in the least certain way.
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(a) (b) (c) (d)

Figure 4.2: (a) a streamline and all 100 sample views based on the spherical
partition. (b) the streamline’s importance values for all the viewpoints. (c)
the best view of the streamline. (d) the worst view of the streamline.

4.4 View-independent Streamline Selection

Our view-independent streamline selection serves as the first step for view-dependent

streamline selection. Streamlines selected in the view-independent manner will be

used to adjust the view-dependent selection results so that the selected streamlines

under each viewpoint always inherit the global “flavor”.

After importance evaluation, all streamlines are sorted in a priority queue based on

their importance values (Equation 4.1) for each viewpoint. As the view changes,

the priority queue gets updated as well. To select streamlines in a view-independent

manner, we go over all sample viewpoints and compute the accumulated importance

value for each streamline. The final priority queue for the view-independent selection

is derived based on the average importance value of each streamline under all the

viewpoints. We add a distance check to avoid selecting redundant streamlines even

though their accumulated importance values are high. To achieve this, we compute
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the minimum distance of the current streamline under consideration to all streamlines

that have been selected. The distance between two streamlines is defined as the

Euclidean distance between their corresponding importance values under all sample

viewpoints. If this minimum distance is larger than a given distance threshold δs,

then the current streamline is selected. Otherwise, it is discarded. The creation of

streamline priority queue based on all sample viewpoints can be done during the

preprocessing (refer to Figure 4.1). At runtime, we simply select a certain number of

top-ranked streamlines that pass the distance check for the viewing.

4.5 View-dependent Selection Algorithm

Our view-dependent selection algorithm consists of five steps. First, we obtain a

global streamline set S from the view-independent selection algorithm. Second, all

the streamlines are sorted based on their importance values under a given viewpoint.

Third, we combine the top-ranked streamlines of the first and second steps and put

them into a streamline set Si. Forth, in order to consider the coherence between

current and previous viewpoints, we create a new streamline set which is the combi-

nation of streamline sets Si under the current viewpoint and Si−1 under the previous

viewpoint. Finally, we dequeue each streamline in the new set from step four and

leverage a density map to determine whether the streamline should be displayed in

the final image or not. By adjusting parameters of the density map, the user can
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easily control streamline density in the display. In the following, we describe our

view-dependent streamline selection algorithm in detail.

• Step 1: Sort the initial N streamlines in the pool based on the view-independent

selection algorithm and obtain a global set S by choosing a certain number of

top-ranked streamlines. This global streamline set is the initial reference for

view-dependent streamline selection. The number of streamlines selected in S

is chosen large enough for the rest of steps. In this work, since the number of

finally selected streamlines is usually 1/4 of the total streamline number N , we

double this value and set the size of S to N/2.

• Step 2: Given a viewpoint vi, update the priority queue for all streamlines

according to their view-dependent importance values in the descending order.

Choose the first N/2 streamlines as the initial streamline set Si under vi. The

reason for us to choose N/2 streamlines is to ensure that S and Si share the

same size.

• Step 3: Compute the overlap between S and Si and keep the common stream-

lines in Si. Then for the rest of streamlines, remove a certain number of stream-

lines from Si based on the mean of the closest point (MCP) distances [64].

Specifically, we compute the MCP distance for each streamline si in Si to all

streamlines in S and define the distance from si to S as the maximum MCP
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distance. To maintain the global streamline information under the current view-

point, we always prefer the streamlines in Si with small distance values since

they are close to S. By contrast, the streamlines in Si with large distances

to S will be discarded. Next, the same number of streamlines from S will be

added to Si based on their view-independent importance. That is, we traverse

each streamline in S according to the decreasing importance value and check

whether the streamline is shared by S and Si. If not, we add it into Si. We

keep doing this until we reach the required adding number. Now the newly

selected streamlines in Si contain both view-dependent and view-independent

characteristics. The adding or removing number is user-defined. A larger value

indicates that the new set Si is more similar to S while a smaller value means

that Si preserves more of the local information. We test several candidate val-

ues and find that 1/5 of the size of S is appropriate which well balances global

and local streamline characteristics in S.

• Step 4: In order to maintain a coherent streamline update between two adjacent

viewpoints, we compare Si under viewpoint vi with Si−1 under its previous

viewpoint vi−1. This procedure is almost the same as Step 3. First of all, we

compute the streamline overlap between Si and Si−1 and keep the common

streamlines in Si. Then for the rest of streamlines, we remove a certain number

of streamlines from Si based on their MCP distances to Si−1. Next, we add

the same number of streamlines from Si−1 to Si according to their importance
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values. Now we obtain a new Si which considers the coherence of the current

and previous viewpoints.

• Step 5: During this step, we compute the final streamline set for view-dependent

display. We propose to use a density map to keep track of which regions in

the rendered image have been covered by streamline projections and which

regions have not. We define the effective area of a density map under a specific

viewpoint as the projection area of the date set’s bounding box. This would

allow us not only to control the streamline number based on the effective area

but also to balance streamline selection by reducing visual clutter while revealing

interesting flow features and patterns. Note that we do not require the density

map to have the same resolution as the final image. A low resolution density

map can speed up its update and the subsequent streamline selection process.

We assume that each streamline projection Lp has its own influence region on

the density map. For simplicity, we use a m×m local mask for each pixel along

the projection where the actual mask size is proportional to the final image

size. Figure 4.3 shows an example with a 5 × 5 mask. The weight assigned

to each pixel in the influence region is inversely proportional to its Manhattan

distance to the central pixel. The weighted average mask is used to compute the

importance of the streamline projection to the density map. This step includes

the following sub-steps:

– Sub-step 1: Initialize the density map with an equal density value for all
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Figure 4.3: Left: the 5×5 influence region for each pixel along the stream-
line projection. Right: the density map of a hurricane data set and a zoom-in
to its middle-right region.

pixels. In the following sub-steps, a streamline L will gain some density

value from the pixels it passes through and we define the total density value

gained by L as its importance value. Compute the overall effective density

value as the summation of all pixels’ density values inside the effective

area.

– Sub-step 2: Dequeue the streamline L with the highest priority value from

Si and compute its 2D projection’s entropy value H(Lp).

– Sub-step 3: Maintain a pixel list that records each pixel along Lp in the

image plane. We also define the influence region of the pixel in the list as

a m × m local square centered at that pixel. Then for each pixel in Lp,

use a weighted average mask (the influence region) multiplied by H(Lp) to

accumulate the importance value gained by L from the density map (see

Figure 4.3). Normally, the weight for the central pixel in the mask is set to

1.0. The importance value gained by L from one pixel is bounded above

by a maximum importance threshold δi.
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– Sub-step 4: Subtract the importance values in the pixel list from the den-

sity map. Each pixel’s density value is bounded below by zero. The sum-

mation of total density value loss is defined as the final importance value

gained by streamline L from the density map. If this value is above a

given density threshold δd (i.e., L gains enough importance from the den-

sity map), L is selected. Otherwise, L is discarded.

– Sub-step 5: Go to Sub-step 2 until the total importance gained by all

selected streamlines is above a given threshold. In this work, we set this

threshold to be 2/3 of the overall effective density value. The user can

adjust this value to control the density of streamlines displayed.

With this view-dependent streamline selection algorithm outlined above, the final

streamlines set Si is determined not only by the local importance of streamlines but

also by their relationships with the global streamline set as well as the streamline

set under the previous viewpoint. The motivation for using the initial density map

with an equal value is to favor evenly-placed streamlines across the image instead of

being cluttered in any one location. This is similar to the image-guided streamline

placement algorithm introduced by Turk and Banks [86]. We assign a larger impor-

tance value to a streamline with a higher 2D projection entropy. Such a streamline, if

selected, would be less likely to be occluded by other streamlines. Setting a maximum

importance threshold for each influenced pixel is to ensure that heavily self-occluded
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Table 4.1

The threshold and timing results of eight flow data sets for
view-independent streamline selection.

average importance line
threshold initial # pts initial selected evaluation selection

data set dimension δs # lines per line # views # lines time time

five critical pts 51 × 51 × 51 40.0 500 110 360 250 11.27s 0.006s
two swirls 64 × 64 × 64 40.0 500 157 360 250 11.52s 0.008s
tornado 64 × 64 × 64 40.0 500 295 360 250 12.05s 0.008s
supernova 100 × 100 × 100 50.0 500 184 360 250 12.20s 0.008s
crayfish 322 × 162 × 119 50.0 800 209 360 400 19.12s 0.012s
solar plume 126 × 126 × 512 50.0 600 100 360 300 13.90s 0.007s
computer room 417 × 345 × 60 60.0 800 173 360 400 18.60s 0.010s
hurricane 500 × 500 × 100 60.0 600 341 360 300 14.18s 0.010s

streamlines would not get an excessively high importance value. Furthermore, the use

of effective area helps us balance the number of streamlines selected under different

viewpoints based on the projection of the volume’s bounding box.

Table 4.2

The thresholds and timing results of eight data sets for view-dependent
streamline selection.

density map timing
threshold threshold importance line

data set dimension mask δi δd evaluation selection

five critical pts 400× 400 3× 3 1.0 80.0 0.031s 0.340s
two swirls 400× 400 3× 3 1.0 80.0 0.032s 0.427s
tornado 400× 400 3× 3 1.0 100.0 0.033s 0.514s
supernova 600× 600 7× 7 1.0 120.0 0.034s 0.485s
crayfish 600× 600 7× 7 1.0 250.0 0.053s 0.897s
solar plume 800× 800 15× 15 1.0 120.0 0.039s 0.982s
computer room 800× 800 15× 15 1.0 200.0 0.052s 0.857s
hurricane 800× 800 15× 15 1.0 200.0 0.039s 1.215s
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4.6 Results

We experimented our approach with eight flow data sets which are listed in Table

4.1. In the following, we present the machine configuration and timing results, fol-

lowed by streamline selection results using our view-independent and view-dependent

algorithms.

4.6.1 Configuration and Timing

We used a hybrid CPU-GPU solution in our computation with the following hardware

configuration: Intel Core i7 quad-core CPU running at 3.20GHz, 24GB main memory,

and an nVidia GeForce GTX 580 graphics card. For the view-independent case, the

global streamline set was computed using the GPU. For the view-dependent case, all

computations were done using the CPU due to the sequential nature of streamline

selection with the use of the density map. The timing results are reported in Tables

5.1 and 4.2.
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Figure 4.4: View-independent streamline selection with the supernova data
set.

4.6.2 View-independent Selection Results

Figure 4.4 shows the results of view-independent streamline selection with the su-

pernova data set. A total of 100 streamlines are selected from the initial pool of

500 randomly seeded streamlines. The first image shows the overall streamline pool

while the rest three snapshots show the selected streamlines under three different

viewpoints. We map velocity magnitude to streamline color: blue to white to red

is for low to medium to high magnitude. Our streamline selection favors “interest-

ing” streamlines that reveal critical flow feature and patterns in a less cluttered view.

Redundant streamlines, even with high importance values, are pruned to avoid rep-

etition. However, since this view-independent selection algorithm only considers the

global information, it is possible that the results may miss some flow patterns due

to the lack of considering the view-dependent information, such as local clutter and

occlusion under some particular viewpoints.
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(a) (b) (c) (d)

Figure 4.5: View-independent vs. view-dependent streamline selection with
the five critical points data set under two different viewpoints.

4.6.3 View-dependent Selection Results

In Figure 4.5, we compare streamline selection under view-independent and view-

dependent cases with the five critical points data set. Two different viewpoints are

shown in the figure. In both cases, we can observe that one critical point (source)

near the center of the vector field is occluded in the view-independent selection results

shown in (a) and (c). By contrast, this source is clearly visible in the view-dependent

selection results shown in (b) and (d). The source is highlighted in a red circle.

Since the streamlines with high priority mainly go through local critical regions,

e.g. the source, and they gain the most importance value from the density map,

the streamlines with low priority will not obtain enough importance value to be

selected. This is the reason why the local interesting regions are less occluded by

dense streamlines. The view-independent selection, however, tends to select more

interesting streamlines in regions even though they are already pretty dense in the

projection. This is because the view-independent selection only cares the overall
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importance of the streamlines but never considers local streamline occlusion under a

given viewpoint.

Figure 4.6: Coherent streamline update of three data sets.

Figure 4.7: The statistics of the numbers of streamlines selected and shared
with the supernova data set over 360 sample viewpoints.
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4.6.4 Coherent Streamline Update between Adjacent View-

points

Figure 4.6 shows the streamline update along four consecutive viewpoints (from left

to right) with the two swirls, solar plume and tornado data sets. In order to show our

coherent streamline update effect in a more intuitive way, for the tornado data set,

we differentiated the streamlines selected from the previous viewpoint in gold and the

newly selected streamlines in blue. Clearly, the less number of blue streamlines is,

the better the current viewpoint preserves the previous viewpoint’s information and

the more coherent the view-dependent selection results are.

Figure 4.7 shows the statistics of the numbers of streamlines selected and shared with

the supernova data set. We can see that the number of streamlines shared closely

follows the trend of the number of streamlines selected. This is also confirmed by

their ratio which remains flat over all sample viewpoints. These results show that our

algorithm can guarantee coherent streamline update between consecutive viewpoints.
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Chapter 5

FlowGraph: A Graph-Based

Interface for Visual Analytics of

3D Streamlines and Pathlines

5.1 Overview

When depicting a 3D flow field using streamlines, it is often possible to reduce spatial

occlusion (e.g., through streamline seeding or filtering) but not eliminate it. This

prevents an occlusion-free observation and comparison of the relationships among

0The material contained in this chapter was previously published in IEEE Pacific Visualization
Symposium 2013 and Transactions on Visualization and Computer Graphics 2014.
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streamlines, a critical task commonly found in many flow field applications. This

challenge was echoed in recent state of the art reports on flow visualization [8, 61].

Furthermore, even though streamlines can be organized into a hierarchy to facilitate

the understanding [33, 82, 103], visual exploration could still remain a significant chal-

lenge due to the lack of capability to observe streamlines and their spatial relationships

in a controllable fashion. Pathlines are even more challenging than streamlines due

to the addition of the time dimension. In this case, we need to examine and explore

pathlines and their spatiotemporal relationships.

Therefore, we present FlowGraph, a visual representation and an interface for effective

exploration and analytics of a 3D flow field [57, 58] (©2014 IEEE). FlowGraph [57] has

been published in IEEE Pacific Visualization Symposium 2013 and its extension [58]

has been published in Transactions on Visualization and Computer Graphics 2014.

All figures used in the chapter are from the original publications. The design target of

FlowGraph is to address the intrinsic limitations of 3D occlusion and lack of control

when using the standalone field line view for field line exploration, comparison and

examination. Our solution works with both streamlines for steady flow fields and

pathlines for unsteady flow fields. In conjunction with the standard view of field

lines, FlowGraph transforms field line clusters and spatiotemporal regions into a

compound hierarchical graph representation to support effective relationship overview

and detailed exploration.
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We specifically design a set of functions that enable hierarchical exploration of field

line clusters, spatiotemporal regions and their interconnection, detailed comparison

among field line clusters in terms of their paths passing through different spatiotem-

poral regions, and close examination of spatiotemporal regions by comparing different

field line clusters passing through them. Through brushing and linking, the user can

easily make connection between the graph view and the field line view. Animation

is used to help intuitive comprehension of graph transition and path illustration. A

graph layout algorithm is realized to maintain stable graph update during the level-of-

detail exploration. We also introduce animated transition that switches between the

entire compound graph and the field line cluster or spatiotemporal region subgraph,

allowing observation of the subgraphs in a less cluttered view.

To demonstrate the effectiveness of FlowGraph, we perform several case studies on

flow field data sets of various characteristics and conduct an empirical expert eval-

uation. Our results and the feedback from the expert show that FlowGraph can

substantially augment the ability to understand and explore a flow field in different

levels of detail, providing the clarity and flexibility previously unavailable.
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(a) (b)

Figure 5.1: Illustration of L-node signature with a 2D space partitioning
example (©2014 IEEE).

5.2 FlowGraph Definition and Construction for

Steady Flow Field

We define the steady FlowGraph as a compound hierarchical graph that consists of

two kinds of nodes and three kinds of edges:

• R-nodes: A R-node represents a spatial region. We partition the volume space

hierarchically using octree and each non-leaf R-node consists of eight child R-

nodes. Each R-node maintains three lists recording the streamlines going in,

staying inside or going out of the R-node, respectively.

• L-nodes: A leaf L-node corresponds to a single streamline, and a non-leaf L-node

represents a cluster of streamlines. We organize streamlines hierarchically and

each non-leaf L-node usually consists of a different number of child L-nodes.

Each L-node maintains a R-node string which indicates the leaf-level regions
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which the L-node goes through. If the L-node is a single streamline, the string

records a sequence of the leaf-level regions it traverses in order. Otherwise,

this string records a set of the leaf-level regions traversed by all streamlines

in the L-node without ordering. We call this string the signature of the L-

node and define the size of the L-node as the size of its signature, i.e., the

number of leaf-level regions. Figure 5.1 illustrates these two kinds of L-node

signatures in a 2D scenario. The signature of the streamline in (a) is an ordered

sequence (12, 10, 9, 6, 5, 2, 1) and the signature of the streamline cluster in (b)

is an unordered set (1, 2, 3, 5, 6, 9, 10, 11, 12).

• R-R edges: A R-R edge is formed between two R-nodes at the same level of the

space hierarchy. The edge weight records the number of common streamlines

shared by these two R-nodes.

• L-L edges: A L-L edge is formed between two L-nodes at the same level of the

streamline hierarchy. The edge weight records the number of common leaf-level

regions traversed in order by these two L-nodes.

• L-R edges: A L-R edge is formed between a L-node and a R-node to show

their interconnection. The edge weight records the number of streamlines in

the L-node passing through the R-node.
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5.2.1 Space Hierarchy Construction

We form the space hierarchy by partitioning the spatial domain evenly in a top-down

manner using octree. Starting from the entire volume as a single region, we compute

the flow entropy based on the joint distribution of vector magnitudes and directions

for all vectors within. We partition each region further only if its entropy value per

voxel is larger than a given entropy threshold δe. The smallest size of a spatial region

is also given as another termination condition. This produces a spatial partition

similar to an adaptive mesh refinement (AMR) grid.

5.2.2 Streamline Similarity

To construct the streamline hierarchy, we group spatially neighboring and geometri-

cally similar streamlines in a bottom-up manner. Specifically, we define the following

two types of similarity to measure the distance between streamlines and the distance

between streamline clusters, respectively:

† Streamline similarity (for leaf level L-nodes): We consider two factors when

computing the similarity between two streamlines l1 and l2: the longest common

subsequence (LCS) of the signatures of l1 and l2 and the mean of closest region

distances (MCR) between l1 and l2. We define the distance between two regions
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as the distance of their center points. The MCR is a approximation of the mean

of the closest point distance (MCP) [64] between two streamlines. Specifically,

we treat each streamline as a point sequence which consists of the center points

of all leaf regions in the streamline’s signature. We compute the MCR of two

streamlines as the MCP between their center point sequences. Since the number

of regions for a streamline is much smaller than the number of points on the

streamline, our MCR incurs a much lower computation cost than the MCP

does. Furthermore, since the MCR is always computed by using regions at

the finest level, its accuracy is also acceptable as judged from the generated

streamline clustering results. The final similarity between two streamlines l1

and l2 is defined as

Φ(l1, l2) =
LCS(l1, l2)

max(|l1|, |l2|)
−

MCR(l1, l2)

MCRmax l

, (5.1)

where max(|l1|, |l2|) is the maximum signature size of l1 and l2, and MCRmax l

is the maximum MCR among all pairs of streamlines.

† Streamline cluster similarity (for non-leaf level L-nodes): Given two streamline

clusters c1 and c2, we consider two factors for determining their similarity. The

MCR is the first factor and we apply the same method used in calculating

streamline similarity to the two representative streamlines, one for c1 and the

other for c2. To determine the spatial overlap of c1 and c2, we define the second
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factor as the shared set (SS) of the signatures of c1 and c2. Unlike the LCS

computation which considers the order in the signature, the shared set records

all common leaf-level regions shared by the two signatures. Finally, we define

the similarity between two streamline clusters c1 and c2 as

Φ(c1, c2) =
SS(c1, c2)

max(|c1|, |c2|)
−

MCR(c1, c2)

MCRmax c

, (5.2)

where max(|c1|, |c2|) is the maximum signature size of c1 and c2, and MCRmax c

is the maximum MCR among all pairs of streamline clusters.

As we can see, these two similarity definitions are very similar. We replace LCS with

SS in the cluster similarity computation. This is because multiple traversal orders

may exist for a cluster containing more than one streamline. For the rest of the paper,

we do not distinguish these two similarity definitions explicitly and simply state them

as the similarity between two L-nodes.

5.2.3 Streamline Hierarchy Construction

With streamline similarity and streamline cluster similarity defined, we take a bottom-

up approach to group streamlines level by level to construct the streamline hierarchy.
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For each level, we pick the L-node with the longest signature size as the first rep-

resentative and put it into the representative pool. Then, for all other L-nodes, we

compute their similarity to the representative pool. We define Φ(l, p), i.e., the sim-

ilarity of one L-node to the representative pool, as the maximum similarity of this

L-node to all representatives currently in the pool, where l denotes the L-node and p

denotes the pool. By combining Φ(l, p) with the L-node signature size |l|, we define

the representative value of l as

υl =

(

1−
Φ(l, p)

max{Φ(l, p)}

)

+
|l|

max{|l|}
, (5.3)

where max{Φ(l, p)} denotes the maximum Φ(l, p), and max{|l|} denotes the maximum

L-node signature size among all representative candidates. The next representative

is the one with the maximum υl which means this L-node is not only dissimilar with

any representatives in the pool (a low value of Φ(l, p)) but also traverses a relatively

long path (a large value of |l|). Then we put the new representative into the pool and

repeat this process until we identify enough representatives for this level (the number

is usually 1/10 to 1/5 of the number of L-nodes in the lower level). Now we cluster

each of the rest of L-nodes into one of the representatives which this L-node is most

similar to. Finally, we obtain a new set of L-node clusters and make it the input

set for the clustering at the next level. We repeat the entire process until a certain
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(a) (b) (c) (d)

Figure 5.2: Force-directed layout and its adjustment based on triangulation
for the solar plume data set (©2014 IEEE).

number of streamline levels is created.

In practice, for constructing FlowGraph, it is desirable for spatial regions or streamline

clusters to have three to five levels in their respective hierarchy. This is suggested

through empirical observations of the resulting graph’s size and complexity. For the

streamline hierarchy, the actual number of levels could be larger while we only use

several levels at the topmost of the hierarchy for FlowGraph drawing. This would

allow us to draw FlowGraph in an efficient way and maintain a good balance between

clarity and complexity.

5.3 FlowGraph Drawing for Steady Flow Field

We apply the Fruchterman-Reingold algorithm, a classical force-directed graph layout

algorithm [25] to draw the compound FlowGraph in 2D. To distinguish among dif-

ferent kinds of nodes, we use nodes of different colors and shapes: orange squares for
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R-nodes and yellow circles for L-nodes. An example is shown in Figure 5.2 with the

solar plume data set. Figure 5.2 (a) shows the initial layout produced using the force-

directed graph layout algorithm. The size of each node in the graph is proportional

to the number of children within. Figure 5.2 (b) is the triangle mesh produced from

the initial node positions. Figure 5.2 (c) is the adjusted layout after two nodes are

selected and expanded for detail examination. Figure 5.2 (d) shows the underlying

triangle mesh used to maintain the topology of the graph during layout adjustment.

We also use edges of different colors and styles. In Figure 5.2, L-R edges are drawn in

gray dashed lines. For the underlying graph representation, L-L edges and L-R edges

are undirected while R-R edges are directed. Given two regions r1 and r2, we differen-

tiate between streamlines going from r1 to r2 and streamlines going from r2 to r1. For

simplicity, instead of using double directed R-R edges, we draw a single undirected

R-R edge using the summation of the numbers of streamlines passing through these

two regions. While all L-L edges and L-R edges are used for computing the layout, for

R-R edges, we only use edges that across neighboring spatial regions. This prevents

the force model from pulling two R-nodes together although they are far away in the

spatial domain. The resulting FlowGraph will better reflect the underlying structural

relationships among different R-nodes.

At runtime, the user explores the streamline hierarchy or the space hierarchy by

clicking a node in the FlowGraph to expand and examine finer detail. Therefore, we

need to adjust the layout to accommodate such level-of-detail explorations. A good
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layout should maintain a good balance between preserving the structural information

of the graph and revealing the dynamics while reducing overlap or occlusion. We

generate the initial layout for the coarsest level of the FlowGraph. To achieve stable

update, we apply a triangulation scheme [73] to this initial graph and use the result of

the triangulation to perform constrained layout adjustment. The four corners of the

drawing area are considered as pseudo-nodes in the triangulation. When a node is

expanded in the FlowGraph, its initial size is proportional to the number of children

in its next level of detail. All nodes expanded are assigned the same scaling factor.

The user can also shrink an expanded node back by clicking the empty region inside

of the expended node. The surrounding nodes which are pushed away due to the

expansion will be pulled back to their respective positions as much as possible.

Similar to the work presented in [18], we consider four kinds of forces to reposition the

nodes to reduce their overlap while maintaining the topology of the coarsest level of

FlowGraph. These forces include: a bidirectional repulsive force which pushes away

two nodes u and v from each other and is effective iff u and v overlap each other, a

unidirectional repulsive force which pushes away a node u without detail shown from

a node v with detail shown and is effective iff u is inside of v, a spring force which

offsets the two repulsive forces introduced by reducing the gap between every pair

of nodes in the graph, and an attractive force which maintains the topology of the

underlying triangle mesh by flipping a triangle back if it is flipped. Figure 5.2 shows

an example of layout adjustment during the level-of-detail exploration. As we can
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see, the expanded nodes expel other nodes outside of their regions while the global

structure of FlowGraph is still preserved. We apply this same layout adjustment

strategy recursively to nodes at different hierarchical levels.

5.4 FlowGraph Exploration and Interrogation for

Steady Flow Field

The FlowGraph contains a wealth of information that can be effectively utilized for

flow field exploration and interrogation. By simply observing the graph, we can

already obtain some helpful hints. In a single subgraph (e.g., only R-nodes with R-R

edges, or only L-nodes with L-L edges), the size and degree of nodes indicate their

importance or significance in the flow field. For instance, if the degree of a R-node is

high which means that this R-node has connection to many other R-nodes in terms

of streamlines passing through them, it is likely that either this R-node is close to the

center of the volume or this R-node contains some critical points such as a sink or

source. If the size of a L-node is large, we know that this L-node represents a large

streamline cluster. The distance between two nodes also indicates how close their

relationship is or how tight their connection is. To extract further information and

knowledge about the underlying flow field, we provide the following ways of exploring

the graph view and the streamline view.
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Figure 5.3: Hierarchical exploration of the computer room data set (©2014

IEEE).

Hierarchical Exploration: The FlowGraph organizes L-nodes and R-nodes hier-

archically. The user can select a node of interest and expand it to see its next level

of detail recursively. In a similar way, the user can further explore each of the nodes

at the higher level of detail and make connection to the spatial streamline view. We

provide the hierarchical exploration in both the compound graph and a single sub-

graph. Keyboard shortcuts are added to support convenient traversal through sibling

nodes as well as ancestor or descendent nodes.

To provide better context when exploring streamline clusters, we give the option to

show the two consecutive levels of streamline clusters in two different colors: the child

cluster in a bright color and the rest in a low saturated color. Figure 5.3 shows such

an example. The constrained layout adjustment algorithm (Section 5.3) guarantees

smooth update of the FlowGraph layout when the user explores nodes at various levels
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of the hierarchy. Similarly, we support the same strategy of hierarchical exploration in

the streamline view by allowing the user to visit streamline clusters or spatial regions

in various levels of detail.

Brushing and Linking: Brushing and linking are the standard technique to make

connection among multiple views. We dynamically connect the graph view and the

streamline view together: when the user clicks a L-node (R-node) in the graph view,

its corresponding streamline cluster (spatial region) is highlighted in the streamline

view. Conversely, the corresponding L-node (R-node) will be highlighted in the graph

view when the user selects a streamline cluster (spatial region) in the streamline view.

As an option, when a streamline cluster is selected, the corresponding spatial regions

which the cluster traverses will be highlighted in the streamline view and at the

same time, the corresponding paths passing R-nodes will also be highlighted in the

graph view. Similar hints on the corresponding streamline clusters will be provided

when a spatial region is selected. Through brushing and linking, especially combined

with hierarchical exploration, the user can quickly build up their mental connection

between the intuitive streamline view and the abstract graph view.

Filtering and Querying: Filtering and querying the graph helps reduce the com-

plexity of both the graph view and the streamline view, allowing the user to focus on

the nodes and edges of interest for detail exploration. We provide a set of queries,

including node query (by degree or weight) and edge query (by weight).
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Figure 5.4: Filtering L-R edges by weight in the FlowGraph (©2014 IEEE).

(a) (b) (c) (d)

Figure 5.5: Path comparisons for the two swirls and the solar plume data
sets (©2014 IEEE).

Figure 5.4 shows such an example for filtering L-R edges. Eleven R-nodes (in blue)

that have strong connection with the L-node of interest are highlighted. As we expect,

these R-nodes are nearby the L-node in the graph view since our force-directed layout

algorithm assigns larger attractive forces to node pairs with higher edge weights.

Path Comparison and Region Comparison: Due to the occlusion-free 2D dis-

play of the FlowGraph, we enable the user to compare streamline clusters in terms

of their paths going through different regions or compare spatial regions in terms of
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streamline clusters passing through them in a clear manner.

For path comparison, the user clicks a L-node in the graph and its corresponding

paths passing through different R-nodes are highlighted. With hierarchical explo-

ration, we allow comparing L-nodes at different levels of detail. Besides showing the

actual paths the streamline cluster passing through, we also implement an algorithm

similar to the maximum spanning tree algorithm to capture the main structure of

the streamline cluster when the paths become cluttered. In addition, we filter out

R-R edges of small weights as needed so that paths with very few streamlines passing

through can be omitted. We draw undirected edges between R-nodes where the edge

thickness indicates the strength of the path (i.e., the number of streamlines passing

through in both directions). Multiple L-nodes can be selected simultaneously for

path comparison. The paths are highlighted in the graph view and displayed in the

spatial streamline view as well when the user mouses over the corresponding L-node.

Furthermore, the user can also expend a L-node and check detail path information

in a finer level.

For region comparison, the user clicks a R-node in the graph and the L-nodes passing

through it are highlighted. Again, in conjunction with hierarchical exploration, we

allow comparing R-nodes at different levels of detail. By selecting multiple R-nodes,

the user can visually compare the streamline clusters passing through them in both

the graph view and the streamline view.
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Figure 5.5 (a) and (b) show path comparison with the two swirls data set. We can

see that the graph view is highly correlated with the streamline view: the two swirls

are well separated in the spatial domain and the corresponding L-nodes and R-nodes

form two distinct connected components. Another example of path comparison with

the solar plume data set is shown in Figure 5.5 (c) and (d). Unlike the streamline

clusters in the two swirls data set, the two streamline clusters in the solar plume

data set stretch a wide spatial range and their paths passing over many R-nodes. Six

R-nodes shared in common by the two streamline clusters are highlighted in both

views. The shared paths are blended of red and blue colors.

For region comparison, the user clicks an R-node in the graph and the L-nodes passing

through it are highlighted. Again, in conjunction with hierarchical exploration, we

allow comparing R-nodes at different levels of detail. By selecting multiple R-nodes,

the user can visually compare the streamline clusters passing through them in both

views.

Graph Transition and Path Illustration: We introduce two different animation

schemes to facilitate the understanding of the FlowGraph. The first scheme is graph

transition where we show an animated transition from the compound graph to a single

subgraph and vice versa. The motivation is to allow observation of the streamline

cluster or spatial region subgraph in a less cluttered view. In addition, compared

with the compound graph, the single subgraph layout for L-nodes (R-nodes) forms a
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Figure 5.6: The detail path of a child L-node (shown in purple) of the
tornado data set and the corresponding streamline cluster (©2014 IEEE).

better organization of node positions for observation of L-L edges (R-R edges).

The second scheme is path illustration where we show the detail path information for

one streamline or a streamline cluster. For instance, Figure 5.6 shows an example

of detail path. The directed black edges in the compound graph indicate the detail

path information of the streamline cluster selected. The user can play an animation

which indicates how the flow goes through the paths. The animation can be played

in both the compound graph and a single subgraph. For the single streamline path

animation, we also provide the function to traverse a streamline using animation in the

streamline view. This streamline visualization is synchronized with the corresponding

path animation shown in the graph view. Such an animation is very intuitive for the

user to acquire a solid understanding of the relationships between the streamline or

streamline clusters and the corresponding flow regions.
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5.5 FlowGraph Extension to Unsteady Flow Field

Due to the high-dimensional nature of unsteady flow fields, providing a visual explo-

ration tool to explicitly show the relationships between pathline clusters and their

corresponding spatiotemporal regions becomes a major challenge. To overcome this

problem, in this section we extend our FlowGraph to handle 3D unsteady flow fields.

5.5.1 FlowGraph Definition and Construction

Our FlowGraph for unsteady flow fields is also a compound hierarchical graph that

consists of two kinds of nodes (R-node and L-nodes) and three kinds of edges (R-R

edges, L-L edges and L-R edges). We modify the definitions for these nodes and edges

as follows. An R-node now represents a spatiotemporal region. We use a 4D octree

(i.e., 16-tree) to partition the unsteady flow data from both spatial and temporal

dimensions simultaneously. Each leaf R-node maintains a list recording all pathlines

going through the corresponding spatial region within a particular time interval. By

treating 3D pathlines as 4D streamlines, we construct L-nodes in the same way as

we do for 3D streamlines. Specifically, a leaf L-node represents a single pathline,

and a non-leaf L-node indicates a pathline cluster. Furthermore, each L-node records

the range of time interval for the pathline or the pathline cluster it corresponds to.
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Each L-node also keeps a signature it traverses through where the spatial regions are

replaced by the spatiotemporal regions. In terms of edges, by replacing streamlines

and spatial regions with pahtlines and spatiotemporal regions, we follow the same

definitions in the steady FlowGraph.

5.5.2 Space-Time Hierarchy Construction

Similar to the octree partition in the steady FlowGraph we obtain the space-time

hierarchy by partitioning the spatiotemporal domain evenly in a top-down manner

using 16-tree. Specifically, we treat the unsteady flow data as a 4D continuous space

which contains x, y, z and t (time) components. Starting from the entire 4D data set,

we evenly divide it along each dimension at each iteration. The partition termination

criteria is still based on the entropy value of the spatiotemporal region or the given

threshold for the smallest spatiotemporal size. Intuitively, each partitioned region

is a spatiotemporal region group which occupies a cubic volume in space and spans

across a certain time interval. In practice, over hundreds of thousands of leaf regions

could be generated. We therefore use a 4D tree data structure to store all the leaf

regions for fast access.
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(a) (b)

Figure 5.7: (a) FlowGraph for the unsteady solar plume data set. (b)
FlowGraph with the timeline bar (©2014 IEEE).

5.5.3 Pathline Hierarchy Construction

Since we treat 3D pathlines as 4D streamlines, pathline hierarchy construction follows

the same scheme in Sections 5.2.2 and 5.2.3. The difference is that similarity compu-

tation is now based on both spatial and temporal information of the corresponding

pathlines or pathline clusters. We compute the LCS between two pathline L-nodes’

signatures as usual. In terms of MCR computation, rather than only considering

spatial distance between two regions, we compute the distance based on both spatial

and temporal information by using each region’s center as a 4D point (x, y, z, t). We

also follow the same solutions used for streamlines to group pathlines level by level

for hierarchy construction and to select the representative pathline from each cluster.
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5.5.4 FlowGraph Drawing

Several new features are provided to highlight temporal information for FlowGraph

drawing. Node and edge drawing follows the same style as before. Color saturation is

used to distinguish nodes based on their time spans across the entire time sequence of

the data set. Specifically, a node with an early (later) time span is drawn in low (high)

saturation. In terms of layout computation, we still apply the Fruchterman-Reingold

algorithm where an R-R edge connects two neighboring regions based on both spatial

and temporal information. Figure 5.7 (a) shows such an example. To help the user

explore the graph at a specific time step, we provide a timeline bar to indicate the

current time step and filter out graph nodes whose time spans do not cover it by

making them semitransparent. An example is shown in Figure 5.7 (b) where the

horizontal direction of the timeline bar from left to right corresponds to early and

later time steps. The blue line shows the current time step. Semitransparent nodes

indicate the corresponding spatiotemporal regions or pathlines whose time spans do

not cover the current time step.
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Figure 5.8: The colored single path for the unsteady supernova data set
(©2014 IEEE).

(a) (b) (c) (d)

Figure 5.9: (a) pathlines going through the selected spatiotemporal region
for the unsteady solar plume data set. (b) to (d): pathline segments inside of
the region’s spatial boundary, temporal boundary, and spatial and temporal
boundaries, respectively (©2014 IEEE).

5.5.5 FlowGraph Exploration and Interrogation

Our FlowGraph for pathlines and spatiotemporal regions keeps all the exploration

and interrogation functions for streamlines and spatial regions. Furthermore, by

plugging the time information into the graph, FlowGraph conveys more information

and provides the user with more flexibility to observe and explore the unsteady flow

field. For example, since we use the entropy to determine the size of an R-node, two
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R-nodes which occupy the same spatial region but cover different time spans could

indicate the change of entropy in the same spatial region over time. For hierarchical

exploration, when the user selects a node, we also show its time span in red in

the timeline bar. We provide a time slider to help the user select a spatiotemporal

region at any specific time step. For path comparison and region comparison, when

demonstrating the path for a single pathline in the graph view, instead of drawing

the path in black, we colorize the path using the same color mapping for pathline

drawing to show the time correspondence. An example is shown in Figure 5.8. In

order to differentiate pathlines from streamlines, we use a different colormap for

pathline drawing. Yellow indicates the earliest time step and brown indicates the

latest time step. The red interval in the timeline bar indicates the time span of the

selected pathline.

Besides these existing functions for FlowGraph, we add the following new features to

handle graph exploration involving the temporal aspect:

Pathline Spatial and Temporal Filtering. We provide pathline filtering option

to allow the user to focus on the pathlines for a specific spatial region or time interval.

Basically, when the user selects a region in the pathline view, FlowGraph shows all

the pathlines passing through this region by default. However, sometimes it could be

difficult for the user to observe clearly the flow patterns inside of the selected region.

Possible reasons are that there may be too many pathlines going through the selected
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(a) (b)

Figure 5.10: (a) all the pathlets in a specific time interval for the unsteady
solar plume data set. (b) the pathlets inside of a selected spatiotemporal
region (©2014 IEEE).

region and these pathlines may also pass through some other regions and thus make

the view cluttered. To alleviate this issue, we render the portions of pathlines that

are only inside of the region by filtering out pathlines segments that are outside of the

region’s spatial or temporal boundary. Figure 5.9 shows an example of this filtering.

Pathlet Rendering and Animation. Rather than only showing the entire pathline

indicating the whole trajectory of a particle, we also draw the pathlet to show a

segment of the trajectory over a short time interval. The arrow of the pathlet indicates

the current flow direction. Figure 5.10 (a) shows the pathlets for the unsteady solar

plume data set. By utilizing pathlet rendering, our FlowGraph allows the user to

only focus on the flow patterns in some specific time interval. Moreover, using a

time slider, the user can obtain pathlet animation to indicate the evolution of flow

over time. Pathlet rendering and animation could be combined with other functions
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Table 5.1

The parameters and timing results for FlowGraph construction of eleven
data sets (©2014 IEEE).

GPU CPU graph
init. minimum entropy size

data set dimension # lines region δe field Lnodes Rnodes edges (MB)

car flow 368 × 234 × 600 600 11 × 7 × 18 0.2 0.1s 271s 0.01s 51s 25
computer room 417 × 345 × 60 800 13 × 10 × 1 0.9 0.1s 324s 0.04s 52s 36
five critical pts 51 × 51 × 51 500 1 × 1 × 1 1.0 0.1s 244s 0.02s 52s 37
hurricane 500 × 500 × 100 600 15 × 15 × 3 0.8 0.3s 231s 0.01s 51s 27
solar plume 126 × 126 × 512 600 3 × 3 × 16 1.1 0.1s 884s 0.03s 53s 30
supernova 100 × 100 × 100 500 3 × 3 × 3 0.8 0.1s 244s 0.02s 52s 24
tornado 64 × 64 × 64 500 2 × 2 × 2 1.0 0.1s 779s 0.03s 54s 24
two swirls 64 × 64 × 64 500 2 × 2 × 2 1.3 0.1s 325s 0.01s 51s 24
hurricane 500 × 500 × 100 × 48 800 15 × 15 × 3 × 1 0.8 14.8s 1540s 91.69s 281s 175
solar plume 126 × 126 × 512 × 29 600 7 × 7 × 32 × 1 0.2 3.6s 380s 20.03s 31s 122
supernova 216 × 216 × 216 × 105 500 3 × 3 × 3 × 3 0.8 12.5s 1359s 85.76s 112s 103

to provide the user with a more comprehensive understanding of the flow fields.

For example, when the user selects a region and wants to observe the corresponding

pathlines going through this region, she can first applies pathline spatial and temporal

filtering and then uses pathlets to demonstrate how the flow patterns change inside

of this region over its time span. Figure 5.10 (b) shows such an example.

5.6 Results

We experimented our approach with eight steady flow data sets and three unsteady

flow data sets which are listed in Table 5.1.

We used a hybrid CPU-GPU solution in our computation with the same hardware

configuration used in Chpater 4. The parameter setting and timing performance are

reported in Table 5.1. For all steady data sets, we randomly placed the seeds to
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Figure 5.11: Exploration of the five critical points data set (©2014 IEEE).

trace streamlines over the field. For unsteady data sets, seeds are randomly placed

at the first time step for pathline tracing. The entropy calculation was performed in

the GPU, while FlowGraph construction was performed in the CPU. At runtime, all

tasks including graph drawing, layout adjustment and user interaction in both views

are interactive.

In the following, we present three case studies on three other steady data sets to

demonstrate the capability of FlowGraph in assisting flow field exploration, path

comparison and feature identification. We also give two case studies on two unsteady

data sets to show the exploration of relationships between pathlines and spatiotem-

poral regions.

Case Study 1 — Five Critical Points Data Set. For the five critical points

data set, we experience how we can use FlowGraph to easily identify these critical
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(a) (b) (c) (d)

Figure 5.12: Exploration of the steady supernova data (©2014 IEEE).

(a) (b) (c) (d)

Figure 5.13: Exploration of the interesting flow pattern in the car flow
data set (©2014 IEEE).

points from randomly traced streamlines that densely cover the field. In the first row

of Figure 5.11, we show our exploration results that highlight three spatial regions

(shown in blue, red and brown) that contain critical points. These spatial regions

are important R-nodes in terms of centrality in the graph view. Normally, these

R-nodes are close to the center of the graph and have strong connections to other

nodes. As we can see in the streamline visualization, these three regions correspond

to a spiral, a saddle and a source from left to right, respectively. In the second row

of Figure 5.11, we identify one R-node that has strong connection with its neighbor

by filtering R-nodes based on the R-R edge weight. Its corresponding spatial region

is close to the center of the volume. The streamlines passing through this R-node
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are displayed. Since the number of streamlines displayed is fairly large, we further

explore the child nodes of this R-node. Two child R-nodes and the streamlines passing

through each of them are shown. It is clear that with the level-of-detail exploration, it

becomes convenient for the user to explore the relationships between streamlines and

spatial regions in an adaptive manner. This capability is very necessary in order to

achieve flexible control when exploring large and complex 3D flow fields where dense

streamlines are commonly exhibited throughout the entire volume.

Case Study 2 — Steady Supernova Data Set. For the supernova data set, we

first compare the paths of two streamline clusters. As shown in Figure 5.12 (a) and

(b), these two streamline clusters (shown in black and magenta) both start from the

volume boundary and get more intertwined as they get closer to the center. The

compound graph view clearly shows the two R-nodes these two streamline clusters

share in common. The highlighted path results also match the spatial arrangement

of these two clusters. The paths start from the surrounding of the graph and advance

to the center where the two clusters meet at the two spatial regions highlighted.

In Figure 5.12 (c) and (d), we switch to the spatial region subgraph and show the

snapshot of path animation of a single streamline over spatial regions. Green, red and

blue squares (graph view) and spheres (streamline view) indicate the starting, ending

and current animation points, respectively. The current animation point is marked

in blue. An R-node is further expanded to show the path information in the next

level of detail. The corresponding spatial regions are highlighted in cyan. Observe
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how close the path drawn in the 2D graph view “matches” the 3D streamline view.

In general, we find that drawing the subgraph which only consists of R-nodes and

R-R edges forms a better arrangement of node positions. This helps the user build

the connection between 2D paths and 3D streamlines between the views.

Case Study 3 — Car Flow Data Set. For the car flow data set, our goal is to

identify spatial regions and streamline clusters that capture the essential interesting

flow pattern passing through the car. In Figure 5.13, we can see that FlowGraph

exhibits an interesting layout: many L-nodes and R-nodes are pushed to the bound-

ary of the drawing region. This is due to the fact that many of the streamlines we

trace over the volume only form the straight pattern, i.e., they are simply passing by

rather than passing through the car. These streamlines and spatial regions surround

the interesting flow regions located around the center of the volume. These L-nodes

and R-nodes only have a few connections to their neighboring nodes. In contrast,

L-nodes and R-nodes around the center of the graph correspond to streamline clus-

ters and spatial regions in the center of the volume. They have more connections

to their neighboring nodes and are important nodes for our visual exploration. In

Figure 5.13 (a), we select four R-nodes of interest. Eight L-nodes that have strong

connections to the selected R-nodes are highlighted. The streamline view shown in

(b) clearly indicates the correspondence of these nodes to interesting flow regions.

In (c) and (d), we further explore three L-nodes and filter out streamline clusters at

two different levels of detail that well capture the flow pattern passing through the
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(a) (b) (c) (d)

Figure 5.14: Exploration of two spatiotemporal regions in the unsteady
supernova data set (©2014 IEEE).

(a) (b) (c) (d)

Figure 5.15: Path comparison for two pathline clusters in the unsteady
supernova data set (©2014 IEEE).

car. With the visual guidance of FlowGraph and dual interaction with the streamline

view, exploring the underlying flow field to identify features of interest becomes more

intuitive, convenient and effective.

Case Study 4 — Unsteady Supernova Data Set. For the unsteady supernova

data set, we first utilize the relationships between R-nodes and L-nodes combined

with pathlet animation to detect one sink at the core of the supernova. In Figure

5.14 (a) and (c), we highlight two R-nodes (shown in blue and red) which occupy the

same spatial region but cover different time spans. The L-nodes connecting to them

are also shown in the same color. Two L-nodes are expanded to provide pathline
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cluster observation at finer levels of detail. We can see that the blue R-node from the

early time span has more connections to the L-nodes than the red R-node from the

later time span. This implies that with the time passing by, some pathline clusters

which go through one region in the early time steps may no longer be inside of that

region later on. One possible answer to this phenomenon is that there is a sink inside

of the region. With the help of our pathlet animation, we can verify the correctness

of this assumption. In Figure 5.14 (b), we show all the pathlets going through the

blue R-node in (a). The colormap shown in Figure 5.8 is used to indicates the time

steps of the pathlets. Some pathlets are outside of the blue region because we only

show one time step of the animation. Each of these pathlets should go through the

region at some specific time step. We can see that most of the pathlets are moving

toward the center of the volume. In Figure 5.14 (d), the spatiotemporal region of

the red R-node in (c) is shown. It represents the same spatial region in (b) but

covers later time steps. The corresponding pathlets going through this region are

also shown. It is clear that many of the pathlets disappear at this time step. Based

on this observation, we confirm that there is a sink in the center of the supernova

where most of the pathlets are trapped.

Figure 5.15 (a) shows the two selected L-nodes and their corresponding paths in

blue and purple, respectively. Five R-nodes shared in common are marked with 1

to 5. The clusters (pathlets) and their corresponding paths are shown in the same

color. Figure 5.15 (b) to (d) show the moving of the pathlets from two clusters as
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(a) (b) (c) (d)

Figure 5.16: Path comparison for three pathline clusters in the unsteady
hurricane data set (©2014 IEEE).

the time evolves. The shared R-nodes are also highlighted in both views with their

correspondence labeled by number. From the figure, we can see that the flow actually

follows a circular pattern around the center of the volume according to the order of

the labeled spatiotemporal regions (i.e., from 1 to 5). Note that regions 3 and 4 are

the same spatial region but cover different time spans.

Case Study 5 — Unsteady Hurricane Data Set. For the unsteady hurricane

data set, we increase the number of nodes in the initial graph for detailed exploration

by starting the layout from a finer level of node hierarchy. With the help of Flow-

Graph, we demonstrate how the trajectory of the hurricane center is detected. Figure

5.16 (a) shows path comparison for three L-nodes (shown in green, cyan and red) in

the compound graph and the corresponding pathlines of the selected L-nodes. The
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R-nodes shared by the three paths are also highlighted in both views. Figure 5.16

(b), (c) and (d) show the R-node subgraph layouts for three selected time steps, re-

spectively. The timeline in the timeline bar indicates the current time step. R-nodes

whose time spans do not cover the current time step are drawn semitransparently for

clear observation. The shared regions in the current time step are also highlighted

in the pathline view. One interesting finding is that R-nodes in the subgraph are

grouped into four well-isolated clusters. Actually, these four clusters form the four

horizontal layers along the z dimension of the data set. This indicates that the flows

of hurricane almost only move along the xy plane and there is little exchange of flows

vertically. In the corresponding three snapshots of pathlet animation, the shared

R-nodes are highlighted as the black spatiotemporal regions. We can see that the

pathlets follow the hurricane center. With the evolution of time, the trajectory of

hurricane follows the order of the shared regions from the lower-right corner of the

volume to the upper-left corner.

5.7 Empirical Expert Evaluation

To evaluate the effectiveness of FlowGraph from a practical aspect, we collaborated

with a domain expert in biofluids and biomedical engineering, Professor Jingfeng

Jiang. Professor Jiang’s research focus is on transforming raw biomedical imaging

data into useful clinical parameters, such as blood flow characteristics. The evaluation
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consists of two major stages. In the first stage, we demonstrated the functions of

FlowGraph with several steady and unsteady flow data sets and helped him get used

to user interface and interactions of the program. In the second stage, we provided

several other flow data sets for the expert to freely explore by himself. For each

data set, we set one or two tasks (such as finding critical points, comparing paths or

regions, or identifying flow patterns) for him to fulfill with the help of FlowGraph

functions. The following is a summary of the feedback.

In general, FlowGraph is a useful and novel tool to explore flow field. It is very

helpful in terms of finding the critical patterns within the regions of interest. For

simple data sets, the correlation between the graph view and the field line view works

well and the connectivity between nodes can show the flow direction clearly. For

complex flow fields, adding visual aids will help the user quickly grasp the graph.

The node and edge filtering function allows the user to reduce the number of node

connections which is crucial for locating important nodes in a complex graph. For

unsteady flow field exploration, the spatial constraint of pathlines enables the user

to visualize self-contained particles by the spatial regions. The temporal constraint

of pathlines helps the user easily separate slow particles from fast particles if all of

them are released from the same position.

FlowGraph may be directly applied to visualization of cardiovascular flows. The

technique will probably work well with the heart and aneurysms. Particularly, the
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Raynolds number of the physiological flow in the heart is large so that the flow is highly

disturbed. Therefore, using streamline and pathline clustering and visualization may

help the user track hierarchical structures of the flow. The other potential application

is to track diffusion flows—another important application in biomedical engineering.

FlowGraph for unsteady flow fields provides the time-resolved information. This can

help the user observe the correlation between the particle moving and its residence

time, which is relevant to large protein accumulation and subsequent biological effects,

e.g., clotting and inflammatory responses. Path comparison will help the user study

flow mixing. More specifically, if each cluster represents a source of incoming flow,

flow paths can visualize how the mixing of flow takes place. Drug delivery will be a

good application for this function.
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Chapter 6

FlowTour: An Automatic Guide

for Exploring Internal Flow

Features

6.1 Motivation and Goals

Flow field exploration provides a convenient way for the user to observe and under-

stand the underlying flow flied patterns and features. In the previous chapters, we

introduced several approaches to assisting the user to explore flow fields, such as

0The material contained in this chapter was previously published in IEEE Pacific Visualization
Symposium 2014.
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Figure 6.1: The overview of our three-stage algorithm (©2014 IEEE).

streamline selection, viewpoint selection and graph-based representation. In terms of

viewpoint selection, most of such techniques only focus on external viewpoints which

are normally selected from the volume’s bounding sphere and look at the center of

the volume, just like described in Chapter 3 and Chapter 4. This will not convey a

clear observation when the flow field is clutter on the boundary side and prevent the

user from detecting flow patterns.

In this chapter, we define the internal viewpoint as the viewpoints inside of the flow

field and introduce our FlowTour [54] (©2014 IEEE), a novel framework that provides

an automatic guide for exploring internal flow features. This work has been pub-

lished in IEEE Pacific Visualization Symposium 2014. All figures used in the chapter

are from the original publication. Our algorithm encompasses feature identification,

streamline placement, viewpoint selection and tour generation into a single and uni-

fied framework. Since our viewpoint selection places its focus on internal viewpoints,

the final tour going through multiple critical regions is similar to a roller coaster tour

in an amusement park which flies through the scene. In this way, we give the user

closeup views of the flow field for detailed observation of hidden or occluded internal

flow features and patterns.
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6.2 Approach Overview

The framework of our algorithm is shown in Figure 6.1. There are three major stages:

critical region identification and skeleton-based seeding, viewpoint creation and qual-

ity evaluation, and viewpoint selection and tour generation. Each stage consists of

several substeps. At the first stage, given an input 3D flow field, we compute its

entropy field and identify critical regions which correspond well to interesting flow

features and patterns such as the vicinities of critical points. We detect large critical

regions for the flow field and compute an isosurface and a skeleton for each of them.

A skeleton-based seeding algorithm is carried out to purposefully generate a set of

streamlines for the subsequent viewpoint evaluation and tour design.

At the second stage, the isosurfaces of critical regions are first converted into a triangle

mesh to obtain their surface connectivity information. Then we simplify the mesh

and initialize vertices on the simplified mesh as candidate viewpoints associated with

the critical regions. A series of offset viewpoints with different zooming levels is

computed for each viewpoint to construct a viewpoint set. We evaluate the quality

of viewpoint by considering how much information of the streamlines seeded from

the corresponding critical region could be revealed. We also consider foreground

streamline occlusion and background streamline noise in the evaluation.
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(a) (b) (c) (d) (e)

Figure 6.2: (a) the entropy field of the five critical points data set. (b) the
critical regions identified from the entropy field. (c) and (d): skeleton points
and lines extracted from critical regions, respectively. (e) the streamlines
seeded along the skeletons (©2014 IEEE).

At the last stage, we select one viewpoint with the highest quality value as the

representative for each viewpoint set. We then pick several best viewpoints from

all the representative viewpoints for the corresponding critical region. There are

two criteria for selecting the best viewpoints. First, their quality should be high.

Second, the distance between any two best viewpoints should be sufficiently large.

The final view path is constructed by interpolating a cubic B-spline curve traversing all

viewpoints. For all critical regions in the field, a global B-spline curve path traversing

all these regions is generated by picking the one that has the minimal cost of traversal.

6.3 Critical Region Identification and Skeleton-

based Seeding

Entropy Field Computation: Refer to Appendix A.2.2 for the computation of the

entropy field for a flow field. Figure 6.2 (a) shows the entropy field for the five critical
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points data set.

Critical Region Detection: With the entropy field derived, we define critical

regions in the volume as local neighborhoods in which all the voxels’ entropy values

are greater than a given threshold. Intuitively, a critical region is a sub-volume in the

flow field which contains rich information compared with the remaining non-critical

ones.

• Region size computation: Since the shape of a critical region may not be regu-

lar, its size also varies dramatically. In our algorithm, we do not consider the

regions with small volume size and they are filtered out from the critical region

set R. In order to compute the size of a critical region, we apply a region grow-

ing algorithm which approximates the region’s volume at the voxel level. The

algorithm works as follows: we first randomly pick one voxel inside of the flow

field and check if its entropy value is greater than the given threshold δe. If it is

false, we pick another one. Otherwise, this voxel must be in one critical region

and we mark it with a volume ID. We start growing the region from this voxel

by checking all its neighboring voxels and push the voxels with their entropy

values greater than δe into a queue. Next, we dequeue one voxel from the queue

and apply the region growing process to this voxel until the queue is empty.

The size of the critical region is defined as the number of marked voxels. We

apply the same process until we compute the sizes for all critical regions. An
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example is shown in Figure 6.2 (b).

• Region skeleton extraction: In order to identify the shape pattern for each

region r in R, we extract its skeleton by adopting a volume thinning algorithm

developed by Gagvani and Silver [28]. The basic idea of this method is to

compute the distance transform which is the distance from the internal voxel

of the region to the boundary voxel. Skeleton points are those whose distance

transform values are larger than a given thinness parameter δt, as shown in

Figure 6.2 (c). Furthermore, by applying a minimum spanning tree (MST)

algorithm to the skeleton points, we can eventually connect all skeleton points

to form a tree-structured skeleton line, as shown in Figure 6.2 (d). Next, we

identify two endpoints on the skeleton which have the longest Euclidean distance

and define the major direction of the skeleton as a vector starting from one

endpoint of the skeleton with lower y value to the other one. Skeleton extracting

plays an important role in our algorithm since it not only indicates the shape

pattern but also provides a central curve to focus on for all viewpoints associated

with the critical region. As a matter of fact, the look-at centers of viewpoints

for a critical region will always be positioned on its skeleton.

Skeleton-based Seeding: We adopt a skeleton-based seeding strategy by always

dropping seeds along the skeleton of each critical region. In this way, we guarantee

that all critical regions are well covered by streamlines. This strategy also helps reduce
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(a) (b) (c)

Figure 6.3: (a) the isosurfaces constructed for the five critical points data
set. (b) the simplified triangle meshes constructed from the isosurfaces in
(a). (c) all viewpoints generated on the simplified mesh surface (©2014 IEEE).

redundant streamlines in uninteresting regions. Figure 6.2 (e) shows one example of

the streamlines generated using skeleton-based seeding.

6.4 Viewpoint Creation and Quality Evaluation

Isosurface Construction: In volume visualization, isosurfaces are usually used to

represent surfaces inside of a volume whose scalar value equals a given threshold,

which is called the isovalue. We leverage the isosurface to indicate the shape and

location of each critical region and define the isovalue as the given entropy threshold δe

(Section 6.3). To obtain the isosurface, we use the classical marching cube algorithm

[53]. Figure 6.3 (a) shows an example of the constructed isosurfaces. Similar to

entropy field computation, for a large input data set which cannot be loaded int the

memory once, we leverage CUDA to extract the isosurfaces block by block using
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GPUs. We also utilize a k-d tree data structure to store all the resulting triangles

for fast access. The marching cube algorithm only produces isolated triangles and no

geometric connectivity information is readily available for use. Therefore, we convert

the isosurfaces into triangle meshes.

However, since the isosurface construction is processed in the voxel level, there may

be more than thousands of vertices in each mesh. To reduce the number of vertices to

a manageable level, we apply a mesh decimation algorithm based on edge collapse in-

troduced by Hoppe [36]. A decimation factor δs is provided to the user for controlling

the simplification level of the final mesh. For our application, it is desirable to keep

the final number of vertices on the simplified mesh surface to a few hundred. Figure

6.3 (b) shows an example of the simplified meshes. In our work, mesh conversion and

decimation is performed using the open source OpenMesh library [2].

Viewpoint Creation: Given the critical region set R obtained in the first stage,

our algorithm creates a list of viewpoints. First of all, by locating the viewpoints at

the vertices on the simplified mesh surface, we obtain a set of viewpoints S. For each

viewpoint in S, we compute its look-at center and up direction based on the region

skeleton. For the look-at center, we compute the distance between the viewpoint

location and the corresponding skeleton line. The point on the skeleton line closest

to the viewpoint location is the look-at center for this viewpoint. This treatment

guarantees that our viewpoint always focuses on the portion of critical region closest
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(a) (b) (c) (d) (e)

Figure 6.4: (a) the best viewpoints for one critical region of the five critical
points data set. (b) the corresponding offset surface where color mapping
indicates viewpoint quality. (c) the straight view path by connecting selected
viewpoints in (a). (d) the B-spline curve path generated from (c). (e) the
final global B-spline curve path traversing all critical regions (©2014 IEEE).

to it. The look-at direction l is determined as the vector from the viewpoint location

to the look-at center. To compute the up direction, we utilize the skeleton’s major

direction as a guidance. Specifically, we define the local skeleton direction d at the

look-at center as the vector along the skeleton which starts from the look-at center

and points toward the skeleton’s major direction. We then project d onto a plane

perpendicular to l. The final up direction is the projected vector on the plane. In

Figure 6.3 (c), we show all the viewpoints generated at the vertices on different

surfaces. The corresponding look-at and up directions are also displayed in red and

blue.

Once we finish computing each viewpoint v in S, we also generate several offset

viewpoints associated with v by offsetting v along the opposite direction of its look-at

direction l for some levels. Offset viewpoints share the same look-at center and up

direction with v and their locations are simply pushed away from v. Intuitively, each

offset viewpoint of v is a zoom-out view. We define the offset viewpoints along with v
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as a viewpoint set V . For each viewpoint in V , we evaluate its quality and then select

the viewpoint with the highest quality as the representative of V . This procedure is

applied to all viewpoint sets on the mesh surface. We then connect the representatives

by following the original mesh connectivity information to form a new offset surface.

Figure 6.4 (b) shows such an example.

Viewpoint Quality Evaluation: For each critical region r, we evaluate the quality

of viewpoints associated with it based on the amount of information revealed from

streamlines seeded from its skeleton. We also consider foreground streamline occlusion

and background streamline noise as penalties to avoid visual clutter and distraction.

Specifically, we utilize the mutual information I(X;Y ) between 3D streamline X and

its 2D projection Y as the measure of information revealed (Appendix A).

By utilizing the streamline mutual information, we compute the final viewpoint quality

for a viewpoint v as follows

Q(v) = Sfocus − (Pfore + Pback), (6.1)

where Sfocus, Pfore, Pback are focus region score, foreground occlusion penalty and back-

ground noise penalty, respectively. Sfocus indicates how much information revealed by

the streamlines seeded from the corresponding critical region is preserved under v.

Since our viewpoints are mostly located inside of the flow field, it is inevitable that

some streamlines seeded from other critical regions will block our view when we look
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at the critical region r in focus from a given viewpoint v. Additionally, for stream-

lines behind r, they would potentially distract our attention by adding some “noise”

in the final image. We quantize these two effects by defining Pfore and Pback and select

viewpoints with low values from these two terms. We compute these two terms in a

single phase. First, we transform the standard OpenGL view projection plane with

dimension of 2 × 2 to a predefined n × n projection plane P. We then record the

minimum Z value for each pixel in P covered by streamline segments computed in

Sfocus. For pixels not covered, we set an infinitesimal value for them. Next, for each

streamline s seeded out of r, we check the Z value for every point along s inside of

the viewing frustum and compare it with the Z value of the corresponding pixel in

P. If the new value is larger than the one in P, we set that value to P and mark the

point as an occlusion or noise point. If the point is between the viewpoint v and our

critical region r in focus, it is an occlusion point. If it is at the back of r, it is a noise

point. Pfore and Pback are obtained as the summation of the MI values of these two

kinds of points, respectively.

6.5 Viewpoint Selection and Tour Generation

Best Viewpoints Selection: At the end of viewpoint creation step, we construct

a new offset surface by connecting all representative viewpoints from each viewpoint

set V . Next, we sort all these representatives by their quality and pick the final
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best viewpoints with the highest values. However, if we take the quality value as the

only criterion for best viewpoints selection, neighboring viewpoints with similar high

values will be selected together. To avoid this, we define the distance between two

viewpoints and leverage this measurement to keep any two selected best viewpoints

different enough from each other. In Figure 6.4 (a) and (b), we depict how the best

viewpoints are arranged in space and on an offset surface, respectively.

Tour Path Generation:

• Straight path generation: From a set of best viewpoints selected, we form

a path traversing all of them using line segments. In order to guarantee that

the path follows the skeleton’s shape pattern, we utilize the skeleton’s major

direction as a guidance for path generation. Specifically, we pick the viewpoint

whose center is closest to one end of the skeleton’s major direction as the starting

point of the view path and set it as a pivot viewpoint vp. We then connect the

viewpoint v whose look-at center is closest to the current vp’s look-at center

(i.e., dc(vp, v) is the smallest) and set it as the new vp. To avoid the zig-zag

path shape, we force the angle formed by every three consecutive viewpoints

along the path to be larger than a given threshold δα. Figure 6.4 (c) shows an

example of the straight path for the five critical points data set. One drawback

of using the straight-line as the view path is that in some cases, line segments

may intersect with the skeleton (i.e., the view path will get fairly close to the
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flow feature). To avoid this, we replace the straight-line with a B-spline curve to

“push” the path away from the skeleton when they are too close to each other.

• B-spline curve path generation: In order to guarantee that the view path

could always keep some distance away from the corresponding critical region’s

skeleton, we add one intermediate viewpoint between each pair of adjacent

viewpoints along the straight path. Essentially, for each line segment along

the straight path, we compute one intermediate viewpoint which always keeps

some distance from the skeleton. Let the point on the line segment be pl and

the point on the skeleton be ps. We push pl away from the skeleton along the

direction of vector −−→pspl for some distance ∆d, where ∆d is inversely proportional

to the shortest distance between the segment and the skeleton (dl,s). Formally,

we define ∆d = C/dl,s where C is a parameter to control the inverse proportion

weight between ∆d and dl,s. In this work, we use 0.5 for all data sets. Intuitively,

pl is far away from the skeleton if its corresponding line segment is close to the

skeleton. After creating all intermediate viewpoints, a B-spline curve path which

traverses all viewpoints including intermediate ones is interpolated. Figure 6.4

(d) shows an example of the final curve path. In order to maintain a smooth

animation when we move viewpoints along the path, we also interpolate several

viewpoints between each two adjacent best viewpoints with equal arc length.

• From single region to multiple regions: The preceding algorithm operates

on a single region. If there are more than one critical regions in the field, a global
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B-spline curve path traversing all these regions is generated. To achieve this, we

first compute and sort the best viewpoints for each critical region as we describe

in the straight path generation phase. Next, we order all the regions and define

the cost of traversal between two regions. By utilizing this measurement, we

construct the final global path which could traverse all the best viewpoints in a

smooth and efficient way. Specifically, we define the cost of traversal C(r1, r2)

from region r1 to r2 by considering two factors: the distance D(r1, r2) between

the positions of the last viewpoint of r1 and the first viewpoint of r2, and the

angle A(r1, r2) between the look-at directions of these two end viewpoints.

That is,

C(r1, r2) = D(r1, r2) ∗ A(r1, r2), (6.2)

where both distance and angle are normalized by their corresponding maximum

values. Intuitively, we connect two regions if their end viewpoints are spatially

close to each other and their angle change is small. The cost of the global path

is obtained by adding up the costs of traversal for all the pairs of critical regions

traversed in order. We compute the costs for all possible region orderings, i.e.,

for each critical region. From all these orderings, we select the final global

path as the one with the smallest cost value. Finally, a global B-spline curve is

interpolated by considering all the viewpoints on the global path as data points.

Figure 6.4 (e) shows an example of the global path.
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Table 6.1

The parameter settings for seven flow data sets (©2014 IEEE).

entropy thickness decimation distance angle
data set dimension δe δt δs δd δα

five critical pts 51× 51× 51 2.845 0.7 0.320 10.0 π/4
two swirls 64× 64× 64 2.930 0.7 0.328 10.0 π/4
tornado 64× 64× 64 2.098 0.7 0.328 10.0 π/6
supernova 200× 200× 200 2.459 0.9 0.335 15.0 π/3
solar plume 126× 126× 512 2.939 0.9 0.335 12.0 π/3
ABC flow 64× 64× 64 2.306 0.7 0.320 10.0 π/4
electron 64× 64× 64 2.092 0.7 0.320 10.0 π/4

6.6 Viewpoint Traversal and Path Animation

Given the final global B-spline tour path, we traverse all viewpoints by moving the

camera along the path. Whenever there is an abrupt change of viewing angles be-

tween two adjacent viewpoints, we interpolate intermediate viewpoints for a smooth

transition. We render streamlines as tubes. To help the user focus on the currently

traversed region, we render the streamlines seeded from the current focus region with

a large tube radius and all other streamlines with a small tube radius. When the

camera focus changes from one critical region to another, an animated transition

indicating the changes of streamline thickness is shown. In the user study, we also

provide the user with the freedom to change the animation speed, pause the anima-

tion, or play the animation in reverse order so that they can observe critical regions

in a more flexible manner.
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Table 6.2

The timing results for seven flow data sets. A ∗ denotes out-of-core
processing in the GPU using CUDA (©2014 IEEE).

entropy critical initial viewpoint #best viewpoints/ viewpoint tour
data set field region #lines isosurface mesh creation #total viewpoints evaluation path

five critical pts 0.47s 0.12s 800 0.085s 0.14s 0.02s 27/175 106.07s 0.08s
two swirls 0.51s 0.16s 500 0.16s 0.40s 0.03s 25/239 218.29s 0.07s
tornado 0.54s 0.22s 400 0.17s 0.18s 0.03s 12/244 98.95s 0.02s
supernova 7.89s∗ 570.83s 400 3.95s∗ 4.33s 0.14s 10/766 266.47s 0.01s
solar plume 8.25s∗ 494.91s 400 4.07s∗ 7.75s 0.13s 15/751 381.42s 0.02s
ABC flow 0.61s 0.13s 1000 0.17s 0.15s 0.01s 12/157 65.09s 0.09s
electron 0.56s 0.06s 450 0.16s 0.06s 0.01s 7/68 10.75s 0.01s

6.7 Results

6.7.1 Configurations

We implemented FlowTour on a CPU-GPU hybrid platform with the same hardware

configuration used in Chapter 4. Entropy field computation, isosurface extraction,

and viewpoint quality evaluation were implemented in the GPU using CUDA and

all other computations were implemented in the CPU. Since we changed streamline

thickness frequently, we utilized the vertex buffer object (VBO) to render streamlines

and used the GPU to process their geometry changes in order to provide smooth

streamline update. The timing results and parameter settings for the seven data sets

we used are reported in Tables 7.2 and 7.1. All stages of processing can be finished

within 15 minutes for each data set.
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(a) (b)

Figure 6.5: (a) skeleton-based seeding. (b) random seeding (©2014 IEEE).

6.7.2 Skeleton-based Seeding vs. Random Seeding

In Figure 6.5, we compare our skeleton-based streamline seeding with random seeding.

Clearly, our method conveys more information of the original flow field than random

seeding since most of the streamlines in our method are located around the critical

regions (highlighted with circles in Figure 6.5 (a)) which are the most interesting

areas of the flow field. Furthermore, unlike random seeding which places streamlines

arbitrarily in the field, our method also reduces streamline occlusion since we never

put seeds in uninteresting regions. This would help the user observe flow field patterns

in a less ambiguous way.
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Figure 6.6: Screenshots of our internal view exploration for the solar plume
data set (©2014 IEEE).

6.7.3 Tour Path Exploration

Figure 6.6 shows the final B-spline tour path and six screenshots along the internal

view exploration for the solar plume data set. As we see in Figure 6.6 (a), the curve

tour provides a smooth traversing path which effectively covers most features of the

flow field. Figure 6.6 (c) depicts the major flow pattern, i.e., the head of the solar

plume, which provides the user with a good overall view of the flow field. This was

made possible with our offset viewpoints which make sure that the viewpoints are

not too close to the scene. Figure 6.6 (b) shows the zoom-in effect of the head of the

solar plume. The “flower”-like pattern is clearly depicted and the velocity variation

around the core of the head is also nicely revealed. In Figure 6.6 (d), some small

spiral patterns inside of the head of the solar plume are shown. Since there are many

streamlines around this region, it is difficult for the user to observe such features from

external views. In Figure 6.6 (e) and Figure 6.6 (f), some detailed patterns such as
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Screenshots of the internal view exploration for the five critical
points data set (©2014 IEEE).

small spirals around the straight lines in the middle portion of the flow field are also

clearly captured from two different viewpoints. Instead of always forcing the user to

look at the flow field from outside, our tour path can also take the user to the “kernel”

of the flow field and provide an expressive traversal experience which is not available

using external view exploration. Figure 6.6 (g) gives such an example. The user can

now clearly observe the flow patterns of the internal hollow shaft by “standing” right

inside of it.

In Figure 6.7, we show the results of our internal view exploration for the five critical

points data set. The five critical points are clearly shown (two spirals in (a) and (b),
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two saddles in (c) and (d), and a source in (e)). Furthermore, our tour also captures

the connection between the source and a spiral as shown in (f). Since this connection

is in the center of the flow field and is occluded by many surrounding streamlines, it

is more difficult to detect such a connection if we only use external views.

6.8 User Study

We conducted a user study to evaluate the effectiveness of the approach we have

achieved by cooperating with James Walker, a PhD student and his advisor Dr.

Kuhl. We used a design of 2 conditions (external tour vs. internal tour) ×2 tasks

(answering questions and identifying critical regions). Totally 21 new users were

recruited to participate in the actual experiments: twenty of them were undergraduate

or graduate students, and one professor from the computer science department. All

experiments were conducted in our graphics and visualization laboratory using two

standard desktop PCs with the same configuration. For each experimental session,

users were shown seven flow field data sets (one for practice and six for evaluation).

For each data set, users were first shown a tour of external views of the flow field,

followed by a tour of internal views. After each tour, the users were asked several

multiple-choice questions about features in the flow field, and were then asked to

identify as many critical points as they could find within a set time limit. The

questions asked were the same for both tours. After completing both tours of external
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and internal views for a given data set, users were asked to give a written response

whether they felt that certain questions were easier to answer with external or internal

views. We hypothesized that some fine details of the flow fields, especially internal

features, would be correctly identified with higher probability using internal views.

6.8.1 Experimental Procedure

For external or internal views, the user was shown an animation of the complete path

through the data set. The speed of the animation could be adjusted using a slider

if the user felt it was too fast or slow. After the animation, the user was presented

with several questions and then asked to identify critical regions in the data set. The

user had a limited time to perform these tasks. While performing these tasks, the

user could revisit any part of the tour path using a slider. This functionality was

useful for answering the questions and required to identify critical regions. After

completing both tours of external and internal views, the user answered one final

question requiring a written response before moving on to the next data set.

Users completed all seven data sets in one sitting. The entire experiment took ap-

proximately 90 minutes for most users, including initial paperwork, briefing, and the

post-experiment questionnaire. The questionnaire asked the user to rate the com-

parative effectiveness of tours using internal and external views in several categories,
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(a) (b)

Figure 6.8: (a) average proportion of correct answers of multiple-choice
questions. (b) average proportion of critical regions identified correctly
(©2014 IEEE).

and also asked for subjective feedback and suggestions for improvement regarding the

experiment and the program’s user interface.

6.8.2 Results and Discussion

We present the results from this study in four aspects: answer correct rate on multiple-

choice questions, proportion of critical regions correctly identified, user responses to

subjective questions, and differences when users are separated by expertise. We used

two hypothesis tests to analyze statistical significance between the two conditions,

ANOVA (ANalysis Of VAriance) and the Friedman non-parametric repeated measures

test, with a standard significance level α = 0.05. The two tests are applied to all four

aspects and the null hypothesis Ho for all tests is meaninternal = meanexternal for each

aspect. Here meaninternal and meanexternal are the mean values for internal group and

external group, respectively.
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Table 6.3

Average subjective user scores of external vs. internal views (©2014 IEEE).

External views Internal views

Easy to find features 3.429 3.762
Fun/enjoyable to use 3.810 3.524
Understood flow fields well 3.714 3.762

Multiple-choice questions: The results are given in Figure 6.8 (a). Users per-

formed better with external views in the supernova and tornado data sets, with the

Friedman test yielding p-values of 0.0002747 and 0.02014, respectively. Users per-

formed better with internal views in the five critical points and two swirls data sets.

For the two swirls data set, the Friedman test yielded a p-value of 0.000532. The five

critical points data set is the only case where the ANOVA and Friedman tests did

not agree on statistical significance with a significance level α = 0.05 (the ANOVA

yielded a p-value of 0.0488 and Friedman yielded a p-value of 0.1083).

Critical regions identification: The analysis was done by comparing how many

critical regions the user correctly identified compared with the total number of critical

regions presented in the data set, such that a value of 1.0 means the user found

every critical region. The results are given in Figure 6.8 (b). The solar plume and

tornado sets were excluded from this analysis. Users successfully identified more

critical regions with internal views in the five critical points and supernova data sets.

The Friedman test yielded p-values of 0.03481 and 0.00006334, respectively. Neither

electron nor two swirls exhibited statistical significance.
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Subjective responses: In the post-experiment questionnaire, users were asked to

rate various aspects of the external vs. internal views on a scale from 1 (strongly

disagree) to 5 (strongly agree). The average responses are given in Table 6.3. No

statistically significant differences were observed between any of the scores.

Effects of user expertise: To further analyze the data, we divided users into two

groups: users who self-identified as having no or low familiarity with flow fields, and

users who self-identified as being experts with flow fields. We then performed the same

analyses described above to see if there were any major differences between experts

and non-expert groups. In most cases, the results were the same. However, we identi-

fied two important exceptions. First, expert users exhibited a statistically significant

difference in their subjective preference between external and internal views. Expert

users preferred internal views for finding flow features with a p-value of 0.03524. Sec-

ond, expert users showed greater resilience to the difference in views when answering

questions about the tornado data set. Overall, users performed better with external

views in this data set, but that is not the case with expert users. Expert users showed

no statistically significant difference in their performance answering questions on the

tornado data set between the external and internal conditions.

Discussion:

Based on a comprehensive statistical analysis, we found that for certain data sets, the

internal flow tour exposes internal details which are not visible using external views
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alone. With an internal tour, users are able to better discern complex internal details

and find critical regions which are obscured from outside the flow field. However,

internal exploration is not always appropriate, depending on the data set. For very

simple data sets, or data sets which have discernible external patterns but exhibit only

chaotic turbulence on the inside, the usefulness of internal views is limited. Even in

these cases, however, internal views may still be necessary to identify internal hidden

critical regions.

Lastly, we discovered that expert users preferred the internal view for finding flow

features. Additionally, expert users performed better than non-experts when using

the internal view to answer questions about the tornado data set. These findings

suggest that expertise with flow fields is helpful for users to fully realize the benefits

of using the internal flow tour.
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Chapter 7

Moving with the Flow: An

Automatic Tour of Unsteady Flow

Fields

7.1 Overview

FlowTour described in Chapter 6 provides an effective way to help the user explore

internal flow features automatically. However, it only considers three-dimensional

0The material contained in this chapter has been submitted to Transactions on Visualization and
Computer Graphics 2015.
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steady flow fields, leaving the design of an automatic tour for exploring three-

dimensional unsteady flow field unsolved.

Unlike a steady flow field where the traced streamlines are steady over time, pathlines

or pathlets traced over an unsteady flow field move or change over time. This poses

several unique challenges which call for a new solution for designing an automatic tour

for an unsteady flow field. First, for a steady flow field, we only need to place seeds

once to generate streamlines which capture critical flow regions. For an unsteady

flow field, we need to carefully place seeds over time to capture different critical flow

regions at different time steps. Using pathlet animation, we also need to make sure

that the density of pathlet is appropriate and varies smoothly over space and time.

Therefore, new seeds need to be placed in subsequent time steps to highlight new

critical regions. We also need to place additional seeds to account for disappearing

pathlines which go beyond the domain boundary. Second, in the tour animation, since

all streamlines remain unchanged, the shifting from one region of focus to another

can be solved straightforwardly by simply considering how smooth the transition will

be. For an unsteady flow field, we assume that the animation follows the order from

the first time step of the data to the last time step. Since all pathlets change along

the animation, we need to solve the issue of dynamic shifting of focus as the critical

regions may merge or split over time. To address this issue, we need to first identify the

correspondence among critical regions over time, then determine an optimal traversal

order of these critical regions. Third, placing cameras along the tour should take
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into account the size, orientation and life span of each critical region of focus so that

the tour would highlight different critical regions at the right time and for a right

duration. Only by doing so can we produce a tour path that is informative, i.e.,

capturing important time-dependent features along the tour to gain a comprehensive

understanding of the underlying unsteady flow field.

In this chapter, we present a new framework that designs an automatic guide for

exploring internal flow features for unsteady flow fields. This solution encompasses

feature identification, pathlet placement, region traversal order determination, view-

point selection and tour generation into a single framework. In particular, we propose

a new optimal solution for determining the critical region traversal order that inte-

grates energy minimization and dynamic programming tehniques. Specifically, we

first define a traversal score (Section 7.4.2) for each critical region at each time step

then form the optimization problem to be maximizing the overall traversal score along

the final tour path. This step is critically important as it pretty much determines the

outline of the tour path, leaving path details to be solved in the subsequent steps. A

user study is performed to show the effectiveness of our solution and confirm the ben-

efits of including internal viewpoints in the tour design. This work will be submitted

to IEEE Transactions on Visualization and Computer Graphics 2015 soon.
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7.2 Algorithm Overview

Our algorithm consists of three stages: critical region identification (Section 7.3),

region traversal order determination (Section 7.4), and viewpoint creation and tour

generation (Section 7.5). At the first stage, we detect critical regions at each time

step and construct their temporal correspondence. We also extract the skeleton from

each region for skeleton-based seeding. At the second stage, we design a solution

that integrates energy minimization and dynamic programming to obtain the optimal

traversal order for critical regions. This stage is the most important one in our

algorithm as the region traversal order essentially outlines the “tour” in the high

level. Once the order of traversal is determined, we create sample viewpoints along

each focal region at the third stage. We then select best viewpoints based on their

quality to generate the actual tour path.
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7.3 Critical Region Identification

7.3.1 Critical Region Detection

Given the input unsteady flow field, we adopt a 4D moving window (5 × 5 × 5 × 5)

centered at each voxel and calculate its entropy value by evaluating the variation of

vector directions in each local window. After calculating the entropy values for all

voxels in the flow field, an entropy field is produced. Since computing the entropy

value of one voxel is independent of another, we implement entropy computation

using CUDA in the GPU. We extracted critical regions at each time step based on the

entropy field. For each time step, the same extraction procedure used in Section 6.3 is

applied. To speed up the computation, we implement critical region detection using

CUDA in the GPU. Specifically, each GPU thread takes the responsibility for one

voxel in the volume. Each thread checks if the entropy value for the corresponding

voxel is larger than a given isovalue treshold δe (Section 6.4). If yes, the voxel is

marked as a critical voxel. At the same time, the boundary critical voxel is also

marked if at least one of its neighboring voxels is not critical. Each critical voxel is

then assigned a unique ID. Next, for a critical voxel v with ID vID, we check each of

its neighboring critical voxel’s ID nID and set nID = vID if nID > vID. This is applied

to all critical voxels in parallel. After one round, some voxels’ IDs are changed to
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7.1: (a) to (c): the critical regions detected for three consecutive
time steps of the supernova data set. (d) to (f): the corresponding volume
thinning results of (a) to (c), respectively. (g) to (i): extracted skeletons of
(a) to (c).

smaller values. We iteratively apply this operation for multiple rounds until there

is no ID change for any voxel. At this moment, all voxels with the same ID form

a critical region. Figure 7.1 (a) to (c) show the critical regions detected for three

consecutive time steps. Different colors indicate different regions.

7.3.2 Temporal Correspondence Computation

For an unsteady flow field, it is common for a critical region at a time step to span sev-

eral time steps and overlap with other regions at neighboring time steps. To identify

such temporal correspondences, we detect all matching regions between consecutive

time steps by computing their overlap rates [75]. Two regions are matched when their

overlap rate is larger than a given region volume overlap rate threshold δo. In this

way, we construct an overlap table for every pair of neighboring time steps t and t+1

indicating the matching relations among critical regions. There are five cases:

† Continuation. If region r at t has overlap with only one region r′ at t+ 1, then

r′ is a continuation of r.
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Figure 7.2: The temporal correspondence of critical regions extracted from
the hurricane data set.

† Bifurcation. If region r at t has overlap with more than one region at t + 1,

then r is bifurcated into those regions at t+ 1.

† Amalgamation. If region r′ at t+1 has overlap with more than one region at t,

then those regions at t are amalgamated into r′.

† Dissipation. If region r at t overlaps with no region at t+1, then r is dissipated

at t+ 1.

† Creation. If region r′ at t+ 1 overlaps with no region at t, then r′ is created at

t+ 1.

Based on those overlap tables, we further apply the feature tracking algorithm devel-

oped by Silver and Wang [74] to build the temporal correspondence among critical

regions. Figure 7.2 shows an example of the temporal correspondence of critical re-

gions. The horizontal axis represents time step. Each red line represents the life span

of one critical region. From Figure 7.1 (a) to (c), we observe three cases: continuation

(e.g., the light blue region from (a) to (b)), bifurcation (e.g., the purple region in (a)

to the yellow, red and blue regions in (b)), and amalgamation (e.g., the yellow and

light blue regions in (b) to the green region in (c)).
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7.3.3 Region Skeleton Extraction

In order to identify the shape of each critical region detected, we construct its skeleton

by applying the same algorithm described in Section 6.3. In practice, for a critical

region which continues for several time steps, we extract its 3D skeleton at each time

step separately.

7.3.4 Skeleton-based Seeding

In order to trace pathlines, we apply a skeleton-based seeding strategy by evenly

placing seeds along the skeletons extracted from critical regions. Our goal is to make

sure that each focal region at every time step has enough pathlets to represent it for

clear highlighting, and in the meanwhile, the entire flow field has approximately the

same numbers of pathlets for each time step. To achieve this, we place two types of

seed: region seeds and random seeds. First, we place region seeds along the skeleton

of each focal region detected at every time step and ensure that the number of seeds

for each region is proportional to its size. To ensure that the traced pathlets will

capture each region of focus, we start to trace region seeds a few time steps earlier

than the time step when the region starts to be focused on. For random seeds, we

keep track of the number of pathlets in each time step. The number of pathlets could

128



be less as the time evolves since pathlets may go out of the domain boundary or get

absorbed around the vicinity of a point (like a sink in a steady flow field). If the

number is less than a given threshold, we add some more seeds randomly to ensure

the same number of pathlets for each time step.

7.4 Region Traversal Order Determination

In general, we may have multiple critical regions at a single time step and a critical

region may continue for multiple time steps. Our goal is to produce a “smooth”

traversal of “good” critical regions along the time sequence, conveying the most in-

formation about the underlying unsteady flow field. Assuming that we have a total

of n regions and m time steps and we select a single critical region to focus on for

each time step, the search space for determining the region traversal order is bounded

by O(nm). The worst case happens when each region occupies all the time steps.

Obviously, the brute-force method has an exponential time complexity and is not

practical. A straightforward greedy algorithm which always picks the “best” region

for each time step could be applied. However, the greedy method does not guaran-

tee a globally optimal result. Moreover, temporal correspondence among regions is

not considered. Therefore, we present a novel method which integrates energy mini-

mization and dynamic programming to obtain the optimal traversal order for critical

regions.

129



7.4.1 Overview of Method

We define Ir,t as the traversal score of region r at time step t. The range of Ir,t

is [0, 1]. Since the computation of Ir,t requires multiple criteria, we define several

constraints accordingly and use a linear system to find the optimal solution for this

value (Section 7.4.2). Intuitively, a larger (smaller) value of Ir,t indicates that r has

a higher (lower) chance of being selected as the focus at t. We then divide the entire

time sequence into multiple time windows and compute a local traversal order for each

time window separately. Specifically, for a time window w, we minimize an energy

function to compute the optimal scores for critical regions in w and then apply a

dynamic programming algorithm to determine the region traversal order within w.

To incorporate region temporal correspondence into score computation, the resulting

traversal order for w will be feed as the input for score computation in the next time

window w + 1. After all the time windows have been processed, we apply the same

dynamic programming algorithm over all the region scores to identify the globally

optimal traversal order for the entire time sequence.

There is a significant difference between traditional minimization methods and our

method. Traditionally, energy functions are formulated with a set of initial state

values. Then, a linear system is utilized to solve for the optimal solution. In our

method, the traversal result from the current time window highly depends on the
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result from the previous time windows. That is, selecting the current focal region

should consider the regions picked before in order to provide a smooth and efficient

traversal experience. As such, rather than solving the linear system in a single pass as

usual, we adopt a hybrid approach which applies energy minimization and dynamic

programming iteratively across different time windows to obtain the final optimization

result.

7.4.2 Optimal Region Score Computation

To formulate the energy function for optimal region score computation, we define

the following two types of constraints: static constraints and dynamic constraints.

The static constraints consider the intrinsic properties of critical regions while the

dynamic constraints incorporate the influence of the preceding region traversal order

on the current region traversal order being determined.

7.4.2.1 Intrinsic Properties

Before we introduce the static constraints, we first define the following intrinsic prop-

erties of critical regions:

† Size (Sr,t). This term indicates the volume size of critical region r at time step
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t. The larger the size, the more important the region. Therefore, region score

Ir,t should be proportional to Sr,t.

† Average entropy (Er,t). This term computes the average entropy value over all

the grid points inside of region r at time step t. Intuitively, the value of Er,t

indicates the amount of information contained in r at t. Therefore, Ir,t should

be proportional to Er,t.

† Coefficient of variation (Vr,t). We use this term to measure the normalized

dispersion of the entropy value distribution inside of region r at time step t. Vr,t

is computed as follows

Vr,t =
δE(r, t)

µE(r, t)
, (7.1)

where δE(r, t) and µE(r, t) are the standard deviation and mean of entropy

values inside of r at t, respectively. We prefer to focus on the region with

higher Vr,t since such a region contains richer information about the underlying

flow features. Thus, Ir,t should be proportional to Vr,t.

† Skeleton complexity (Cr,t). Since a region skeleton represents the overall shape

of the corresponding region, its complexity should also be considered when com-

puting the region’s score. A high value of Cr,t indicates that the corresponding

region has a complicated shape pattern and would be interesting to focus on.

Region score Ir,t should be proportional to Cr,t. We consider two factors for
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Figure 7.3: Four branches shown in different colors for a region’s skeleton.

Cr,t: one is shape complexity and the other is quantity complexity. For shape

complexity Cs,t, we define it as follows

Cs,t =
∑

b∈B(r,t)

∑

i,j∈b di,j − dbmax

dbmax

, (7.2)

where B(r, t) is the set of branches in the skeleton of r at t, b is a branch in

B(r, t), di,j is the distance between two consecutive skeleton points i and j, and

dbmax is the largest distance among all points in b. Since our skeleton is a tree

structure, we can compute all the branches of a skeleton by applying the depth-

first-search (DFS) algorithm. As we visit skeleton points along the tree until we

reach a leaf, the traversal path formed by those points visited defines a branch.

Then we pop out visited skeleton points one by one and in the meantime,

continue to traverse unvisited points, if any, to identify other branches. In

Figure 7.3, abcde, df , cg and bhi are branches of this skeleton. In addition, if

we apply Equation 7.2 to branch cg, the shape complexity is zero because it is a

straight branch. However, the shape complexity of abcde is non-zero due to its

non-straight pattern. Quantity complexity Cq,t records the number of branches
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in a skeleton. For the example given in Figure 7.3, Cq,t = 4. Intuitively, more

branches may potentially lead to a higher complexity. For both Cs,t and Cq,t, we

normalize them by dividing their corresponding maximum value at time step t,

then Cr,t is defined as follows

Cr,t = αCs,t + (1− α)Cq,t, (7.3)

where α ∈ [0, 1], and Cs,t and Cq,t are the normalized values. Normally, we con-

sider shape complexity to be more important than quantity complexity. There-

fore, we set α > 0.5.

† Time span (Tr). This term indicates the time span that region r is alive. If

Tr is small, r will be alive for only a few time steps. In order to capture this

short-lived region, we should assign a higher region score Ir,t to r so that it

gets a chance to be focused on during its time span. Therefore, Ir,t should be

inversely proportional to Tr. However, if r with short time span has parents

or children and these parents or children regions are long-lived, then even if we

miss r, we can still capture similar flow features by focusing on its parents or

children. Therefore, Tr should be only applied to regions with no parents or

children.
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7.4.2.2 Static Constraints

With the intrinsic properties defined above, we obtain the first static constraint:

Intrinsic property constraint (Oτ ). We introduce this constraint to enforce that

region scores should be as close to the maximum value of 1 as possible according to

their intrinsic properties. We first combine all intrinsic properties for a region into a

single term Pr,t

Pr,t =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λSSr,t + λEEr,t + λV Vr,t + λCCr,t + λT
1
Tr
, r is alive at t

0, otherwise

(7.4)

where λS, λE, λV , λC and λT are the weights for Sr,t, Er,t, Vr,t, Cr,t and Tr, respectively.

In this paper, we set the first four weights to 1.0 and λT to 2.0 for all data sets. With

Pr,t, we define the following energy term

Oτ = Σr∈R,t∈WPr,t‖Ir,t − 1.0‖2, (7.5)

where R is the set of all critical regions and W is the set of time steps in time window

w. Note that if region r is not alive at time step t, its initial score Ir,t will be set to 0.

135



Summation constraint (Oσ). This constraint is used to keep the summation of all

the scores Ir,t in the range of [0, 1] as much as possible. To achieve this, we set the

summation of scores for the regions at the same time step to 1. If the score is less

than 0, we will set it to 0 to avoid negative scores. We define this energy term as

follows

Oσ = Σt∈W‖Σr∈RIr,t − 1.0‖2, (7.6)

Again, if r is not alive at t, its initial score will be set to 0.

7.4.2.3 Normalized Traversal Frequency

The dynamic constraints rely on the preceding region traversal order. Therefore,

we introduce how to compute Lf (r, w) which records the frequency that region r

has been traversed before the current time window w. Since for each time window,

we will apply a dynamic programming algorithm to find the order of traversal after

we compute the optimal scores Ir,t, we can easily obtain Lf (r, w) by counting the

frequency that r has been visited in the previous time windows. We also define Lb as

the maximum number of time windows we will backtrack from w. This term is used

to control the temporal history length we would consider for r. Ideally, a good Lb
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should keep the tracking in a reasonable time span (e.g., not too long or too short).

Sometimes, r may last less than Lb during the backtracking. In this case, we will

consider the traversal history of r’s ancestors when computing Lf (r, w). Using the

above two terms, we define the normalized traversal frequency F (r, w) of region r for

time window w as

F (r, w) =
Lf (r, w)

Lb

. (7.7)

7.4.2.4 Dynamic Constraints

With F (r, w), we now define several dynamic constraints:

Traversal frequency constraint (Oν). If region r has been traversed for multiple

time steps in the previous time windows, its score in the current time window w

should be decreased so that other regions could have a chance to be selected as the

focus. To achieve this, we attempt to minimize the following energy term

Oν = Σr∈R,t∈W

1

F (r, w)
‖Ir,t − 1.0‖2. (7.8)
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Temporal correspondence constraint (Oη). This constraint considers the influ-

ence of previously focused regions on their temporal corresponding regions. When

region r has been visited for multiple time steps, its children which share similar spa-

tial locations with r in neighboring time steps should have lower scores. Contrarily, in

order to maintain a smooth traversal order, the siblings of r should get higher scores

since they are less likely to be similar to r but have temporal relations with r. For

example, they will merge in the later time step or they come from the same parent.

Considering these two cases, we define the following energy term

Oη =Σr∈R,t∈WΣc∈C(r)
1

F (r, w)
‖Ic,t − 1.0‖2+

Σr∈R,t∈WΣs∈S(r)F (r, w)‖Is,t − 1.0‖2, (7.9)

where C(r) and S(r) are the sets of r’s children and siblings, respectively.

Spatial constraint (Oξ). When region r has been traversed for multiple time steps,

its own score will decrease in the subsequent time steps. Meanwhile, we want other

regions which have no temporal correspondence with r to have more chance of being

selected as the focus. Therefore, we introduce this spatial constraint to increase the

scores of such regions based on their spatial distances to r. We formulate the following
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energy term

Oξ = Σr∈R,t∈WΣk∈K(r)
F (r, w)

Dr,k

‖Ik,t − 1.0‖2, (7.10)

where K(r) is the set of regions which have no temporal correspondence with r, Dr,k

is the distance between the skeletons of r and k at t. In this work, we use the mean

of the closest point distances [64] as the distance measure. Intuitively, region k will

have a higher score if Dr,k is smaller.

7.4.2.5 Energy Function

Based on the above constraints, we formulate the final energy function as follows

O = γτOτ + γσOσ + γνOν + γηOη + γξOξ, (7.11)

where γτ , γσ, γν , γη and γξ are the weights for these constraints, respectively. In this

paper, we set γη to 2.0 and the rest of weights to 1.0 for all data sets. To find the

optimal solution, we convert the energy function into a linear system and leverage a

GPU implementation of the concurrent number cruncher (CNC) sparse solver [10] to
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solve the system.

7.4.3 Traversal Order Determination

After region scores are computed for a time window w, we utilize a dynamic program-

ming algorithm to find the optimal traversal order Ω(w) within the time window.

Ω(w) should focus on one region at a time step and the overall region scores along

Ω(w) should be maximized. To achieve this, we define Ĭr,t as the maximum traversal

score from region r at t to some region at the last time step of w and introduce the

following recursive equation

Ĭr,t = max
k∈R

(Ir,t + Ĭk,t+1), (7.12)

where R is the set of all regions. This equation indicates that the maximum traversal

score from region r at t to some region at the last time step of w is equal to the

sum of the score Ir,t and the maximum traversal score from region k at t+1 to some

region at the last time step of w. In this case, region k will be the focal region at

t + 1 and be put in the array Ar,t, which records the traversal order starting from r

at t. For each region, we compute its Ĭr,t0 where t0 is the first time step of w and pick

Ar,t0 with the largest Ĭr,t0 as the optimal traversal order Ω(w). We apply the same
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Figure 7.4: The shifting of the focal region (shown in red) for three con-
secutive time steps of the hurricane data set.

algorithm to find the final traversal order for the entire time sequence when all region

scores Ir,t are obtained. In Figure 7.4, we show some snapshots of the region traversal

order determined using our optimization method where the red region denotes the

focal region at each time step.

7.5 Viewpoint Creation and Tour Generation

For the focal region at each time step, we first create a list of viewpoints based on

the isosurface generated from the region. Then we select several best viewpoints to

provide the user with closeup views of the respective flow pattern for clear observation.

If one critical region spans more than one time step, we also consider the location

of viewpoints so that the same portion of the region will not be repetitively focused

on across multiple time steps. After best viewpoints are picked for all focal regions,

a view path traversing all these viewpoints according to the time order is generated.

Our goal is to give a smooth and efficient way of exploring the unsteady flow field.
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(a) (b) (c)

Figure 7.5: (a) the isosurface constructed from a critical region of the
supernova data set. (b) the simplified mesh constructed from the isosurface.
(c) all viewpoints generated on the simplified mesh surface.

7.5.1 Isosurface Construction

We leverage the same strategy describe in FlowTour which utilizes isosurfaces to rep-

resent critical regions and creates the list of viewpoints. Specifically, for the focal

region rt at time step t, we use the marching cube algorithm [53] to extract the cor-

responding isosurface st based on the entropy threshold δe (Section 7.3). Figure 7.5

(a) shows an example of the constructed isosurface. To obtain the vertex connectiv-

ity information of st, we convert the isosurface into a triangle mesh mt. Since our

viewpoints are obtained from the vertices on mt, a mesh decimation algorithm [36] is

applied to reduce the number of vertices to a manageable level and a new simplified

mesh m′
t is obtained. A decimation factor δs is provided for the user to control the

level of simplification. This process is applied to the focal region at each time step.

Figure 7.5 (b) shows an example of the simplified mesh.
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7.5.2 Viewpoint Creation

Given the simplified meshm′
t, our algorithm creates a list of viewpoints based on each

vertex onm′
t. For each vertex, we first generate a viewpoint v at the vertex’s location.

The look-at center of v is the point on the skeleton of region rt closest to v. There

are two ways to compute the up direction. A simple way is to fix the up direction to a

predefined direction (such as the positive y direction of the volume) while another way

is to utilize the skeleton’s major direction as the guidance. Specifically, we define the

local skeleton direction d at the look-at center as the vector along the skeleton which

starts from the look-at center and points toward the skeleton’s major direction. We

then project d onto a plane perpendicular to the look-at direction l and the final up

direction is the projected vector on the plane. However, if the flow pattern changes

frequently, this method will cause the up direction to vary dramatically. In this case,

using a fixed up direction provides a more stable exploration experience. In Figure

7.5 (c), we show all the viewpoints generated at the vertices on the simplified mesh

surface. The corresponding look-at directions and up directions are also displayed.

In order to consider the zoom level from the viewpoint v to critical region rt, we

generate a set of offset viewpoints V associated with v. The position of each offset

viewpoint is pushed away from v along the opposite direction of its look-at direction

l for some distance and it shares the same look-at center and the up direction of v.
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In the next step, we will evaluate the quality of each viewpoint in V and pick one

best viewpoint as the representative for V.

7.5.3 Viewpoint Quality Evaluation

Given a viewpoint v associated with critical region rt, we define its quality based

on the entropy value of the 2D projection of the pathlets seeded from rt. We also

consider the foreground occlusion and background noise as penalty to reduce visual

clutter and distraction. Specifically, we compute the viewpoint quality as follows

Q(v) = λ1Sfocus − (λ2Pfore + λ3Pback), (7.13)

where Sfocus, Pfore and Pback are the focal region score, foreground occlusion penalty,

and background noise penalty, respectively. λ1, λ2, and λ3 are the corresponding coef-

ficients. By setting different values to these coefficients, we ensure that the viewpoint

quality Q(v) is always non-negative. In this paper, we set λ1 to 1.0 for all data sets

and the rest of coefficients to a value less than 1.0.

† Focal region score (Sfocus). This term indicates the information revealed by the

pathlets seeded from the focal region’s skeleton. To compute this value, we
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first perform the viewing frustum culling operation on each pathlet from the

focal region and check if it is inside of the viewing frustum. For all the pathlets

inside, we compute the entropy value for their 2D projections based on the flow

direction and set this value to Sfocus.

† Foreground occlusion/background noise penalty (Pfore, Pback). These two terms

measure the influence of pathlets seeded from non-focal regions on the current

viewpoint. To compute these two values, we first check if the pathlets are inside

of the viewing frustum. If true, we then transform the standard OpenGL view

projection plane into a predefined n × n plane and check the depth values of

these pathlet projections on the plane to determine whether they are foreground

occlusion or background noise pathlets. The value of n is user specified. A larger

n will generate a higher resolution projection plane and produce more accurate

results, but it is more time consuming than a lower value of n. Pfore and Pback

are obtained as the entropy values of their 2D projections for these two kinds

of pathlet, respectively.

For a critical region which spans m time steps (m > 1), we assign viewpoints to

focus on different portions of the region at each occupied time step so that the user

could observe the flow patterns in a more balanced way. To achieve this, we divide

the major axis of the focal region’s skeleton into m segments where each segment

corresponds to one occupied time step. Then we compute the final viewpoint score

according to their distance to the segments. Specifically, for a viewpoint v, we find
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one segment g which is closest to v and set g as the segment associated with v.

Then at each of the m occupied time steps, there will be one active segment and

all the viewpoints associated with this segment will obtain their final score as Q(v)

while other viewpoints get the score of zero. As in the next step, we will pick best

viewpoints for each time step based on their score and we can guarantee that only

viewpoints within the current active segment would be considered.

7.5.4 Best Viewpoint Selection

By evaluating the viewpoint quality, we first identify the representative viewpoint

for each viewpoint set V as the one with the highest score in the set. Then we sort

all representatives based on their quality scores and pick the final best viewpoints

with the highest scores. In order to avoid similar viewpoints to be selected, any

two selected best viewpoints should satisfy either one of the following two criteria:

First, the angle between their look-at directions is greater than a given threshold δα.

Second, the distance between their look-at centers is greater than a given threshold

δd.
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(a) (b) (c) (d)

Figure 7.6: (a) the entire tour path along the solar plume data set. (b) to
(d): three path segments along three different focal regions.

Figure 7.7: Left to right: the tour path segments in order along the same
focal region of the solar plume data set.

7.5.5 Tour Path Generation and Animation

After we identify best viewpoints for the focal region at each time step, we need to

generate a spatiotemporal view path traversing all these viewpoints in a smooth and

efficient manner. To achieve this, we first order the best viewpoints for a focal region

r according to the direction of the skeleton’s major axis to obtain a local traversal

order Dr. Since the temporal order for all focal regions is already determined by

the linear system (Section 7.4), we only need to connect the viewpoints between
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two temporally adjacent regions to obtain the final traversal order for all the best

viewpoints. Specifically, for the focal region r1 at the first time step, we use its local

traversal order Dr1 as the final traversal order for this region. Then for the next

focal region r2 along the temporal sequence, we compute the distance between the

last viewpoint vlast of r1 and the two end viewpoints of the local order of r2 and

pick the one closer to vlast as the starting viewpoint for r2. So the final order for

r2 will be either Dr2 or its reverse order. We repeat this process until we connect

all the focal regions and get the global viewpoint traversal order. Finally, we utilize

a cubic B-spline curve to connect all these viewpoints to obtain the spatiotemporal

view path. In Figures 7.6 and 7.7, we show examples of the entire path generated, the

path segments along different focal regions, and the path segments along the same

focal region.

For different unsteady flow fields, since the numbers of time steps vary greatly (from

tens to hundreds) and the speeds of flow also vary significantly, we decide to keep

the current viewpoint stay put for a certain duration when flying through each best

viewpoint in the tour animation. This would allow the user to better observe pathlet

movements at fixed viewpoints. The transition between two best viewpoints is dy-

namic, i.e., the viewpoint is changing while pathlets are moving. As the background

information, we render pathlines that are alive at the current time step as thin tubes.

A larger tube radius is used for pathlines traced from the focal region to differentiate

pathlines traced from non-focal regions. We overlay pathlets as arrows to show their
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Table 7.1

The parameter settings for the three flow data sets.

#best viewpoints/ entropy overlap win size decimator angle distance
data set dimension #total viewpoints δe δo Lb δs δα δd

supernova 108 × 108 × 108 × 105 105/4575 4.0 0.1 5 0.330 π/6 20.0
hurricane 100 × 100 × 20 × 48 48/2676 3.5 0.1 4 0.330 π/6 15.0
solar plume 63 × 63 × 256 × 28 56/2615 4.0 0.1 4 0.330 π/6 20.0

Table 7.2

The timing results for the three unsteady flow data sets (A ∗ denotes
out-of-core processing).

entropy region region skeleton traversal viewpoint viewpoint tour path
data set comp. detection corresp. extraction order creation evaluation generation

supernova 225.7s∗ 31.8s 124.8s 109.7s 2.6s 0.4s 500.1s 0.1s
hurricane 21.7s 4.2s 3.7s 3.4s 0.7s 0.1s 273.8s 0.02s
solar plume 63.7s 9.6s 37.9s 387.6s 3.7s 0.5s 248.7s 0.1s

movements along the corresponding pathlines. Again, tube radius is larger for focal

pathlets than non-focal pathlets. When the camera focus changes from one focal re-

gion to another, an animated transition is shown, indicating the changes of pathline

and pathlet thickness.

7.6 Results and Discussion

7.6.1 Timing and Parameters

We performed our experiments with the same hardware configuration used in Chap-

ter 4. Entropy field computation, critical region detection, and viewpoint quality

evaluation were implemented in the GPU using CUDA. All other computations were

performed in the CPU. Since we use pathlet animation to show the movements of the
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underlying flow patterns, pathlet positions need to be updated in each frame. Fur-

thermore, for better observation of the changes of the focal region over time, we also

increase (decrease) the radii of the pathlets and pathlines from the current (previ-

ous) focal region. In order to guarantee smooth update of the changes of pathlets and

pathlines, we utilized the vertex buffer object (VBO) to render pathlets and pathlines

and used the GPU to process their geometry changes on the fly. The timing results

and parameter settings used for the three flow data sets are reported in Tables 7.2

and 7.1, respectively.

7.6.2 Case Studies

We presented three case studies on three different unsteady flow data sets to demon-

strate the effectiveness of our framework in helping the user explore internal flow

features and patterns.

† Case Study 1 — Supernova

The simulation produced 105 time steps revealing how the dusts collapsed back

into the center of the star after the supernova explosion. Since the flow near

the supernova’s core is heavily turbulent, it is difficult for the user to observe

detail patterns around the core due to the occlusion and clutter among path-

lets. Therefore, we designed an automatic view path to explore the data set in

the hope that our method can provide the user with more information on the
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(a) (b) (c) (d)

Figure 7.8: (a) to (d): four snapshots of the visualization of the supernova
data set along our automatic tour path.

internal flow patterns. In Figure 7.8, we show four snapshots along with our

view path. From (a), we see the overall pattern of the supernova at an early

time step. It is clear that all pathlets go straightly inward and then become

turbulent near the supernova’s core. The thicker pathlets indicate that they

are from the current focal region. We also display the corresponding pathlines

to help the user better follow the flow trajectories. In (b), a sink-like point

which absorbs all pathlets is clearly observed. From (c), we observe that some

pathlets are repelled from the supernova’s core and then form a semi-spherical

surface around the core. This feature is difficult to catch since it is not always

present throughout the time series. Furthermore, it is also hidden inside of the

turbulent flow, and therefore not visible if the viewpoints are placed outside of

the volume. Using our method, we not only clearly observe such an interesting

flow pattern in a closed-up view but also detect the changes of velocity. In (d),

it is clear that the velocity changes from high (blue) to low (yellow) as the flow

is repelled from the core.

† Case Study 2 — Hurricane
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Figure 7.9: (a) the automatic tour path for the hurricane data set. (b) to
(e): four snapshots of the visualization along the path.

The simulation produced 48 time steps which demonstrate how the hurricane

moved from the Atlantic Ocean to the east coast of Florida. Since the data set

is quite flat (100 × 100 × 20), the user would easily get disoriented if the tour

goes across the volume frequently along the z direction. Therefore, we add one

more constraint that the final view path should not cross through the volume

more than once in the z direction during any given animation time interval. In

Figure 7.9 (a), we show the entire tour path. We find that the most portion of

the path is on the two sides of the volume and the path only traverses across

the volume a few times. In (b), the global pattern of the hurricane is clearly

shown. We see that the hurricane’s center lies in one corner of the volume with

the corresponding pathlets moving out. Figure 7.9 (c) shows the hurricane’s

center from below. We observe the spiral pattern and the velocity difference
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(a) (b) (c) (d) (e)

Figure 7.10: (a) to (e): five snapshots of the visualization of the solar
plume data set along our automatic tour path.

between the center flow (slower) and the surrounding flow (faster). From (d),

we find out that the surrounding flow around the hurricane’s center is bifurcated

into two opposite directions (highlighted in the ellipses). The velocity change

could also be discerned via pathline color. Besides, the pathlines depict the

moving trajectory of the hurricane’s center: from one corner of the volume to

another along the diagonal direction (highlighted in the dashed line). In (e),

the snapshot shows three small spirals with slower speed (highlighted in the

ellipses) at the boundary of the volume which only last for a few time steps.

These patterns could be easily missed if the view path does not focus on them

at the right time.

† Case Study 3 — Solar Plume

This data set consists of 28 time steps which demonstrate the heat flow emitting

from the surface of the sun. Figure 7.10 shows five snapshots of the visualization

along our automatic tour path. Refer to Figure 7.6 (a) for the overall view path

generated by our algorithm. Since the tail of the solar plume only contains

straight flow lines and most interesting patterns are around the head of the
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solar plume, our view path is almost around the head portion so that the user

can gain a clear observation of these important flow features. In (a), an overview

of the flow pattern around the head region is captured. Two big swirls with

slower speed along with the central flow with higher speed are clearly shown.

(b) focuses on the central flow patterns around the head. (c) gives us a glance

on how the straight-line flow becomes turbulent in the middle portion of the

plume. From (d), we observe a spiral band pattern with slower speed in the

middle portion of the plume. Our view tour also provides the user with an

expressive traversal experience to observe the internal “kernel” flow patterns by

“standing” inside of the volume, which is shown in (e). The straight flow lines

moving to the head and the hollow shaft pattern are clearly visible.

7.7 User Study

We conducted a user study to evaluate the effectiveness of our method. We used a

design of 2 conditions (our view tour and random view tour) ×2 tasks (answer ques-

tions and identify critical regions). To be fair, the random view tour has the same

number of viewpoints, and almost the same path length and total view angle change

as our view tour. We recruited seven users for each condition. All users are gradu-

ate students from different departments (computer science, mechanical engineering,

physics) of the same university. For each experimental session, a user was shown
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three flow field data sets.

7.7.1 Random View Tour

For the random view tour, we first generate a set of viewpoints whose positions are

randomly picked both inside and outside of the volume. For external viewpoints, we

keep them not too far away from the volume’s center to ensure clear observation of the

flow field. The look-at center of each viewpoint is also randomly created. However,

we constrain their positions to be inside of the volume so that the viewpoints could

still focus on the flow field rather than any empty space outside. Next, we connect all

these viewpoints in a way such that both the Euclidean distance between viewpoints

and the angle change along the path could be minimized. Finally, we interpolate a

B-spline curve passing all viewpoints to create the tour path. If the total length or

the angle change of the random view tour is much different from our method, we will

regenerate the path by replacing some viewpoints.

7.7.2 Experimental Procedure

First, the user was shown an animation of the complete tour of the data set without

stop or pause. The speed of the animation could be adjusted if desired. Second, the

user was asked to answer several multiple-choice questions about the flow field and
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to identify critical regions. They had a limited time to perform these tasks. The

user could revisit any part of the tour using a slider or replay the animation. This

function was useful for answering questions and was required for identifying critical

regions. Finally, the user was asked to answer several post-experimental questions

about subjective feedback and suggestions for improvement regarding the experiment

and the program’s user interface.

User should complete all three data sets in one sitting. The entire experiment took

approximately an hour for each user, including the initial paperwork, briefing, and

post-experiment questionnaire.

7.7.3 Results and Discussion

We present the results of this study in the following aspects: user correctness on

multiple-choice questions, ratings of subjective questions, the proportion of critical

regions correctly identified, and the post-experiment feedbacks. We used Student’s

t-test to analyze statistical significance between the conditions with a standard signif-

icance level α = 0.05. Though many people oppose to use the t-test on small samples

(seven in our case), many articles [12, 20] suggested that there are no principle ob-

jections to use a t-test for an small sample size.

Multiple-choice questions. Each data set was analyzed individually by comparing
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(a) (b)

Figure 7.11: (a) the average proportion of correct answers of multiple-
choice questions for each data set. (b) the average number of critical regions
detected for each data set.

users’ average proportion of correct answers by the two methods. The average cor-

rectness rates of all users for the two methods are given in Figure 7.11 (a). A t-test

shows that our method performed better than the random one on the hurricane and

solar plume data sets and the difference is statistically significant with p = 0.000002

and p = 0.045, respectively. For the supernova data set, although our method also

received higher average correctness rate than the random method (0.63 vs. 0.54), the

difference is not statistically significant.

Subjective questions. There are two subjective questions for each data set asking

the effectiveness of finding critical regions and identifying global flow patterns. We

quantized the answers by setting 1.0 for “Strongly Agree”, 0.75 for “Agree”, 0.5 for

“Neutral”, 0.25 for “Disagree”, and 0.0 for “Strongly Disagree”. For the hurricane

data set, our method gets much higher average ratings (0.93 vs. 0.64 and 0.79 vs. 0.61)

than the random one for both questions. But only the first question has significant
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difference with p = 0.03944. Our method also receives a higher ratings than the

random one for the solar plume data set with average ratings 0.75 vs. 0.57 and 0.68

vs. 0.61 though no significant difference is shown. For the supernova data set, both

methods received similar scores.

Critical regions identification. The average number of critical regions detected

for both methods are given in Figure 7.11 (b). The supernova data set gets the same

result (1.0) for both groups. This indicates that every user in both groups identifies

one critical region. Actually, this is not surprising since this data set only contains

this enormous critical region which is easily identifiable.

The average number of detected critical regions is 3.00 vs. 1.57 for the hurricane data

set and 5.43 vs. 3.29 for the solar plume data set. Furthermore, the performance

difference for plume is significant with p = 0.04 where the same conclusion cannot

be made for the hurricane because its p value (0.05005) is only slightly above the

significant level (0.05).

Post-experiment feedbacks. We received the following major user comments from

the post-experiment questionnaire. First, for both our and random methods, most

users suggested that the camera may stay longer at each of the selected viewpoints to

allow better observation and less visual jumping. Second, the background pathlines

should be thinner for reducing distraction. Third, some users also suggested to provide

a global view of the data set before the experiment since the tour path may focus on
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the internal detailed patterns rather than the global shape of the flow field. Users

also had some different feedbacks for the two methods. For the random method,

users gave the neutral rating for detecting flow features. One of them claimed that

the look-at direction sometimes provided an unreasonable view of sight for observing

the flow field. By contrast, most users agreed that the tour generated by our method

could easily help them find critical regions. For other questions, such as animation

speed and pathlet size, both groups were satisfied with the current configurations.

Discussion: Based on the statistical analysis above, we have the following con-

clusions. For the multiple-choice questions, users in general performed better with

our method than the random method. This indicates that our view tour indeed pro-

vides the user with more information about the underlying flow field. For subjective

questions, most users agreed that our method better help them detect critical regions

and identify the global flow patterns than the random method for the hurricane and

solar plume data sets, though the latter one did not have a significant difference. The

supernova data set received almost the same rating for both tours due to a simple

flow feature which could be easily observed with either method. In terms of identify-

ing critical regions, users performed much better with our method over the random

method except for the supernova data set which only contains a single obvious sink-

like point at the center. From the post-experiment feedbacks, except for suggestions

on animation and interfaces, most users gave positive feedbacks on our method over

the random one.
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In summary, our view tour indeed helps the user identify and observe internal flow

patterns in unsteady flow fields, especially for hidden or occluded features that only

exist for a short period of time. Therefore, our view tour could complement the

traditional overview tour to provide the user with a more comprehensive exploration

experience for large and complex flow fields.
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Chapter 8

Pedagogical Visualization Tools for

Cryptography Algorithms

8.1 Overview

Though flow field visualization is my major research focus, other topics relevant to

visualization also attract my attention. Designing pedagogical tools for cryptography

algorithms is just one of these attractions.

Nowadays, data privacy and system security is a major concern in database, computer

0The material contained in this chapter has been accepted for publication in Conference on Inno-
vation & Technology in Computer Science Education 2014.
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network, electronic communication, etc. and cryptography has been used to address

the security problems for centuries. Many cryptography algorithms have been pro-

posed based on various encryption/decryption schemes. However, since most of such

algorithms use a lot of sophisticated mathematics, it becomes a challenge for new

learners to gain clear pictures about the overall algorithms. In order to overcome this

problem, we developed a set of visualization tools to provide users with an intuitive

way to learn and understand these algorithms. I am involved in the development of

six visualization tools, namely:DESvisual [78], ECvisual [79], RSAvisual [80], SHAvisual

[55], AESvisual, VIGvisual ,which are designed to demonstrate the workflows of the

Data Encryption Standard Algorithm, Elliptic Curve based ciphers, the RSA Algo-

rithm, the Secure Hash Algorithm, the Advanced Encryption Standard Algorithm

and the Vigenère Cipher, respectively. All of these works except AESvisual which will

be submitted soon have been published in top conferences and journals. This Chapter

discusses two of these projects, SHAvisual and AESvisual, which are developed by the

author in detail. Before this, a brief introduction to other projects is given in this

section.

DES and DESvisual: The Data Encryption Standard (DES ) is a encryption algo-

rithm for electronic data and gained its popularity in early 1970s. It was developed

by IBM and published in 1977. DES is now considered to be insecure due to its

56-bit small key size and has been hacked frequently. Though DES is proved insecure

and has been abandoned by many applications, the main algorithm is still worth of
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studying since it provides a basic framework for many advanced algorithms. In order

to provides an intuitive way for the students to learn the DES cipher algorithm, we

developed DESvisual: a visualization tool for the DES cipher [78]. Our DESvisual not

only helps learners understand the DES but also provides instructors with a visual-

ization tool to teach and demonstrate the algorithm in class. Specifically, our system

depicts the primitive operations required by DES with a small-size message (8 or 16

bits) and allows the user to trace through the encryption performed by the system.

Furthermore, with a practice mode, the user can study the encryption and decryption

step by step and verify the answers in an intuitive way.

Elliptic Curve Cryptography and ECvisual: Elliptic curve cryptography (ECC )

is a public-key cryptography approach based on the algebraic structure of elliptic

curves [42, 63]. For a public-key cipher, the encryption key is public and differs from

the decryption key which is kept secret. We developed our ECvisual: a visualization

tool for elliptic curve based ciphers [79] to allow the user to visualize the properties of

elliptic curves over the real field and also the operations of elliptic curve based ciphers

over a finite field of prime order. Furthermore, various useful functions are provided,

such as performing arithmetic operations over a finite field, doing encryption and

decryption, and converting plaintext to a point on an elliptic curve. ECvisual also

provides a practice mode and allows the user to go over each step and verify their

answers. This helps the user understand the primitive operations and how they are

used in an elliptic curve cipher.
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RSA and RSAvisual: The same as elliptic curve cryptography, RSA is a public-

key cryptosystem and being widely used in data transmission. RSA stands for Ron

Rivest, Adi Shamir and Leonard Adleman, who first publicly described the algorithm

in 1977 at MIT. The RSAvisual: a visualization tool for the RSA cipher is designed

to help learners understand how the RSA algorithm operates, including encryption,

decryption, use of the Extended Euclidean algorithm to calculate the private key, and

Fermat and Pollard p− 1 factorization.

Vigenère Cipher and VIGvisual: The Vigenère cipher first appeared in the book

“Traicté des Chiffres” written by Blaise de Vigenère in 1585. It is a cipher using a

series of different Caesar ciphers based on the letters of a keyword. VIGvisual is also

designed to visualize the algorithm step by step and facilitate the self-study. It allows

the user to animate the Vigenère cipher with cipher tools, all of which are available

for the user to practice encryption and decryption with error checking. Furthermore,

VIGvisual also helps the user learn how to break the Vigenère cipher. Specifically,

VIGvisual uses Kasiski’s method and the Index of Coincidence method for keyword

length estimation, and the χ2 method with frequency graphs for keyword recovery,

respectively.
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8.2 Motivation and Goals

The development of SHAvisual and AESvisual was supported by the National Science

Foundation. SHAvisual and AESvisual are designed to be used in classroom and also

for self-study for learners to explore the corresponding cryptography algorithms on

their own. Specifically, SHAvisual [55] is a visualization tool for demonstrating an

advanced SHA algorithm, SHA-512, which is a member of a family of cryptographic

hash functions published by the National Institute of Standards and Technology in

the early 1990’s. This work has been accepted in Conference on Innovation & Tech-

nology in Computer Science Education 2014 as a poster. The Advanced Encryption

Standard (AES) is based upon Rijndael, which was developed by two Belgian cryp-

tographers, Joan Daemen and Vincent Rijmen in 1998 [19]. It has been a federal

government standard since 2002 and is now used widely. AESvisual is a visualization

tool designed for the AES cipher. It demonstrates all the major steps of AES encryp-

tion and decryption along with an overview page to illustrate the global workflow of

the algorithm.

SHAvisual and AESvisual have the demo and practice modes. The demo mode visual-

izes the major algorithm components step by step and the practice mode allows the

user to compute the output of each operation and check for the correctness instantly.

The demo modes provides instructors with greater flexibility in selecting a lecture
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pace for the detailed materials and the study report system helps instructors evaluate

the teaching and learning effectiveness. The SHAvisual also provides a full mode to

let the user perform full version SHA-512 encryption.

8.3 SHAvisual: A Visualization Tool for SHA-512

Cryptographic Algorithm

8.3.1 System Overview

SHAvisual consists of three major components: Demo mode, Practice mode and Full

mode. A separate global view window is available to show the overall algorithm

pipeline and also highlight the current procedure in red. Specifically, the Demo mode

provides a simplified SHA-512 visualization and is useful for the instructor to demon-

strate important operations in the classroom. The Practice mode is designed for stu-

dents to learn the detailed computations step by step and perform self-study. Further,

we also provide a test report system to help instructors verify the learning effective-

ness. The Full mode is a full version of the SHA-512 cipher. It takes a plaintext as

input and generates the encrypted digest message with major intermediate results

shown. Both the Demo mode and Practice mode have multiple subpages and the user

may access different subpages by clicking their tab names. Buttons are also provided
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to switch between subpages. The Full mode only uses one subpage to demonstrate all

the computations. SHAvisual always starts from the Demo mode by default.

8.3.1.1 The Demo mode

The goal of the Demo mode is help the user to understand the SHA-512 algorithm

in an intuitive way. To achieve this, it uses shorter length messages and single round

so that the user can focus on the essential computations rather than repetitive oper-

ations. The Demo mode has five subpages: Message Generation, Workflow Overview,

Words Generation, Compression Function and Round Detail. In the following, we will

describe each of the subpages in detail:

Message Generation. This subpage demonstrates how to obtain the Augmented Mes-

sage by expanding the Original Message (plaintext) to the length of a multiple of 256

(1024 originally) bits (Figure 8.1). The user clicks the Random Message button to

generate a new random plaintext and the corresponding augmented message will be

shown in the bottom. Green, blue and red colors indicate the plaintext, padding

field and length field, respectively, of the augmented message. To save space , both

messages are shown in hexadecimal. By clicking the Augmented Message, the user

will be guided to the Workflow Overview subpage.

Workflow Overview. This subpage offers a general SHA-512 algorithm overview as
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Figure 8.1: Message Generation of Demo mode.

shown in Figure 8.2. It illustrates how the final Message Digest is generated using an

initial value and the blocks derived from the augmented message. The Initial Value is a

128-bit (512-bit originally) constant defined by the SHA-512 algorithm and used as an

input for the first compression function. Each Block is a 256-bit (1024-bit originally)

segment of the augmented message and extended to 80 16-bit (64-bit originally) words

in the Words Generation stage. The user clicks the Block numbers or the Compression

Function button to proceed to the Words Generation or Compression Function subpage.

Words Generation. This subpage demonstrates how the last 64 (in red) out of 80

16-bit (64-bit originally) words are generated from the corresponding block (Figure

8.3), where the first 16 words (in black) are taken from the block. By sliding the

row of words horizontally in the upper portion of the page, the user may pick any

word (in blue) of the last 64 words to check its generation procedure. Four words

used for computation are shown in the middle. The two RotShift buttons are used
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Figure 8.2: Workflow Overview of Demo mode.

to check the detailed operations of the generation. Figure 8.4 shows the snapshot of

the corresponding window. Each word is then used in one round (80 totally) of the

corresponding Compression Function.

Figure 8.3: Words Generation of Demo mode.

Compression Function. This subpage visualizes the pipeline of the Compression Func-

tion as shown in Figure 8.5. The input words A-H are either from the previous
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Figure 8.4: Operations of Words Generation.

compression function or from the initial value in the Workflow Overview (for the first

compression function). The output is used for the next compression function or forms

the final message digest (for the last compression function). Figure 8.2 shows the rela-

tionship among different compression functions. Word0 is from the Words Generation

while Key0 is one of the 80 16-bit (64-bit originally) constants defined by the al-

gorithm. They will be used in round 0. Eighty similar rounds are needed for the

original compression function with one word and one key for each round. For a clear

demonstration, we only provide one round in the Demo mode. The user clicks the

Round0 button to see round details in the Round Detail subpage.

Round Detail. This subpage shows the computations in a round. A snapshot of the

subpage is shown in Figure 8.6. The Round box in the upper half of this page shows

the mapping between the input (A-H) and output of the corresponding round. The

lower portion demonstrates the computation of the two new words X and Y in the

output. Input A-H, Word0 and Key0 are taken from the corresponding Compression

Function. The user may click theMajority, Rotation and Condition buttons in theMixer

boxes to check the details of computation.
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Figure 8.5: Compression Function of Demo mode.

Figure 8.6: Round Detail of Demo mode.

8.3.1.2 The Practice mode

Figure 8.7 shows the snapshot of the Practice mode. We follow the same structure

used in the Demo mode so that the user can practice each operation in the same

manner demonstrated in the Demo mode. However, all results in this mode are
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hidden and a correct answer is required to advance to the next step. To start the

process, the user may press the Start Practice button. A dialogue window will pop up

to briefly describe the current question. The user should enter an answer and click

the Check Ans button. SHAvisual will then verify the input and display “Correct!” if

the answer is correct and “Wrong! Try it again!” otherwise. The user should enter

a new answer if the current one is wrong. A Show Ans button is provided to show

the correct answer and let the user skip the current question. We also provide a

simple hexadecimal-binary converter to assist the user’s computation. A Completion

Report window (Figure 8.8) will be shown after the user finishes all questions. The

report records the answer to each question using “Correct”, “Wrong” or “Show Ans”

according to the user’s action. This report may be sent to the instructor to check the

student completion rate and evaluate the learning effectiveness.

Figure 8.7: Practice mode of SHAvisual.
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Figure 8.8: Completion report of Practice mode.

8.3.1.3 The Full mode

The Full mode provides a full version SHA-512 cipher (Figure 8.9) to encrypt a given

input string. We offer the user the freedom to enter an input string or click the

Random button to generate a random one. The Clear button allows the user to

clear the input and reset the computations. By clicking the Confirm button, the

encryption is performed and the final encrypted message digest along with important

intermediate results will be shown when the process is finished.

Figure 8.9: Full mode of SHAvisual.
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8.3.2 Evaluation

We conducted a survey to evaluate the effectiveness of SHAvisual. The tool was

released to students one week before the survey. The survey consists of two major

components, 12 questions listed in Table 8.1 and 11 write-in comments. The first nine

questions (Q1-Q9) evaluate the effectiveness of SHAvisual (EEQ) and the other three

(Q10-Q12) investigate the use of SHAvisual (UIQ). The EEQ questions all have the

same set of choices: 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, and 5:strongly

agree. The choices for Q10 are 1:less than 5 mins, 2:5-10 mins, 3:10-15 mins, 4:15-30

mins, 5:over 30 mins. The choices for Q11 are 1:only once, 2:1-3 times, 3:3-5 times,

4:5-10 times, 5:over 10 times. The choices for Q12 are 1:less than 5 mins, 2:5-15 mins,

3:15-30 mins, 4:30-60 mins, 5:over 1 hour. We collected 24 valid survey forms from

two disciplines: 19 in computer science and software engineering (CS) and five in

computer engineering (CpE).

8.3.2.1 General Discussion

Table 8.2 shows the mean (µ) and standard deviation (σ) for each question. For EEQ

(effectiveness evaluation questions), the highest score of 4.2 was given to Q8, which

indicates that students highly agreed that SHAvisual helped them understand the SHA
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Table 8.1

Survey Questions.

ID Question

Q1 Demo mode helped me better understand the work flow
of the SHA cipher

Q2 Demo mode was helpful for my self-study

Q3 Practice mode helped me remember SHA encryption

Q4 Full mode helped me understand how the SHA cipher
encrypts a full-length message

Q5 Full mode provided me a simple tool to do SHA encryption

Q6 Global view helped me locate the current demonstrated
operation

Q7 Using SHAvisual I was able to identify the parts of
the SHA cipher that I did not understand before

Q8 I was able to better understand the SHA algorithm
with SHAvisual

Q9 The SHA software enhanced the course

Q10 How long did it take to understand SHA Algorithm
with SHAvisual

Q11 How often did you use SHAvisual

Q12 How long did you use SHAvisual totally

algorithm better. Q1, Q3 and Q7 all received the same high score of 4.0, suggesting

that both the Demo mode and Practice mode had positive impact on student learning.

Except for Q6, other questions were rated in the range from 3.5 to 3.9, which is still

above the neutral rating (3.0). Q6 received the lowest score of 3.3, suggesting that the

global view sightly helped students identify the relation between the current operation

and the overall algorithm. Therefore, we conclude that although the rating of EEQ

varied among questions with standard deviations in a small range from 0.7 to 0.9, the

general trend was positive.

In terms of UIQ (usage investigation questions), Q12 got a very high average (4.6),

indicating that students used the software for nearly an hour. The average of Q10
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Table 8.2

Mean µ and Standard Deviation σ.

Q1 Q2 Q3 Q4 Q5 Q6

µ 4.0 3.8 4.0 3.5 3.6 3.3

σ 0.8 0.8 0.9 0.8 0.8 0.8

Q7 Q8 Q9 Q10 Q11 Q12

µ 4.0 4.2 3.9 3.7 2.3 4.6

σ 0.8 0.8 0.7 1.1 1.1 0.7

was 3.7, which means that the majority of the students took less than 15 minutes to

understand the SHA algorithm. However, most students only used the tool a few times

as indicated by the average 2.3 of Q11. Both the standard deviations of Q10 and Q11

were slightly larger than 1.1. Table 8.3 lists the distributions of answers for UIQ. For

Q10, around 33% of all students took 10 to 15 minutes to understand the algorithm

with the tool while another 33% took more than 30 minutes. The distribution of

Q11 indicates that more than 90% of all students used the tool less than five times.

Q12 suggests that more than two-third of the students (67%) used the tool for over

an hour while a quarter of them used it 30 minutes to one hour. We also applied

the Spearman rank test to further investigate the correlations among UIQ. The null

hypothesis is that there is no correlation under the level of significance α = 0.05.

Based on the results, only Q10 and Q12 had a significant positive correlation with

the p-value being 0.002. This is not surprising since the students who took more time

to understand the SHA algorithm with the tool may also spend longer time on the

tool.
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Table 8.3

Usage Answer Distributions.

Choice1 Choice2 Choice3 Choice4 Choice5

Q10 0.00 0.17 0.33 0.17 0.33

Q11 0.21 0.42 0.29 0.00 0.08

Q12 0.00 0.00 0.08 0.25 0.67

8.3.2.2 Further Statistical Analysis

We also investigated whether the use of SHAvisual (Q10-Q12) would have an impact

on student evaluation for the EEQ questions (Q1-Q9). To this end, student reactions

are divided into two groups based on Table 8.4based on questions Q10 to Q12. The

null hypothesis for this study is: the time spent on understanding the SHA algorithm

(Q10), the number of times using this tool (Q11) and the total time spent on this

tool (Q12) have no impact on student reactions on the EEQ questions. The level of

significance is α = 0.05.

Table 8.4

Student Reactions Grouping.

Group1 Group2

Q10 ≤ 15 mins (12, 50%) > 15 mins (12, 50%)

Q11 ≤ 3 times (15, 62%) > 3 times (9, 38%)

Q12 ≤ 1 hour (8, 33%) > 1 hour (16, 67%)

Table 8.5 shows the p-values of our ANOVA (ANalysis Of VAriance) study. The

two smallest p-values are 0.054 from the Q6-Q10 pair and 0.006 from the Q5 -Q12

pair. Since all other p-values are larger than the chosen α = 0.05, the null hypothesis
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cannot be rejected. Therefore, we have strong evidence showing that the student

reactions, except for the indicated two cases, were not affected by the time spent

on understanding the SHA algorithm (Q10), the number of times they used the tool

(Q11), and the time spent on using the tool (Q12).

Table 8.5

ANOVA p-values for Three Groupings.

Grouping
Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Q10 0.807 0.628 0.488 0.611 1.000 0.054 1.000 0.603 0.219

Q11 0.485 0.803 0.859 0.794 0.353 0.839 0.600 0.789 0.639

Q12 0.676 0.864 0.871 0.097 0.006 0.348 0.096 0.191 0.831

Q6 asked students if the global view helped them locate the current demonstrated

operation. The p-value of the two groups based on Q10 for Q6 is 0.054, which is

barely larger than the chosen level of significance 0.05. Therefore, statistically we

cannot reject the null hypothesis. In other words, the two groups which took no more

than and over 15 minutes to understand the SHA algorithm (µ = 3.6 and µ = 3.0),

respectively, had no significant difference response to Q6. Q5 asked students if the

full mode offered a simple tool to perform SHA encryption. Grouping based on Q12

showed a p-value 0.006, which is smaller than the chosen level of significance α = 0.05

and, hence, the null hypothesis is rejected. This means that the group of using the

tool for more than one hour (µ = 3.9) had a significant different response to this

question from the group of using the tool for no more than one hour (µ = 3.0).

This ANOVA analysis treated each question individually. To address the possible
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dependence among the nine EEQ questions, we also conducted a MANONA (Mul-

tivariate ANOVA) analysis by considering all nine questions simultaneously. Wilk’s

lambda test suggested that we cannot reject the null hypothesis (i.e., no group dif-

ferences) under the chosen level of significance α = 0.05. Based on these findings,

we conclude that student reactions are generally independent of the time they spent

on understanding the SHA algorithm, and the time (and the number of times) they

spent on using the software.

8.3.2.3 Student Comments

We also gathered the student comments of the 11 write-in questions regarding the

future improvement. Particularly, we focused on the following issues: whether the

restrictions of small-size messages and the single round demonstration had an impact,

whether the Words Generation module is useful, whether the Compression Function

module needs improvement, whether the Round/Mixer module is good enough, the

evaluation of Demo, Practice and Full modes, and software installation issues.

Based on the student comments, we found that the restrictions of the small-size

messages and single round demonstration did not affect their learning of the SHA

algorithm. Students said “It gave good insight to blocks”, “A larger message size

would have make it more confusing”, “Concepts are the same even if the size is

small”, and “It was focused and made the inner workings of the round clearer”. One
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student also suggested that defining a minimum message size would be useful while

another student thought that a second round may be helpful although the idea was

already clear after the first round.

The feedbacks of the Word Generation module were nearly all positive with comments

like: “Word pattern was pretty well shown, which enhanced my learning” and “The

fact that it was visually laid out was helpful”. We also received some suggestions, such

as using a bubble dialog to show detailed explanation. The Compression Function and

Round/Mixer modules followed the same trend. The majority of students felt these

modules were helpful by pointing out that “The mode was illustrative” and “That

would have been extremely confusing as just a formula and the visual aspect helped”.

One student mentioned that the Compression Function module was a little confusing

due to a “deep nesting” structure; however, this student also agreed that this was the

nature of the algorithm.

For the Practice mode, students agreed that it was effective and indicated “I liked

that you are able to step through the process”, “Clearly marked + Straightforward”,

“Well laid out and easy to follow”, “Most effective component”, and “It helped me

understand SHA”. We also received some improvement suggestions, such as adding

a “hint” button to provide a brief reminder and building more connections between

input and output windows.

The Full mode received fewer comments since most students never used it. This is not
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surprising because SHAvisual was released right before the evaluation and students

were required to use only the Demo and Practice modes as homework. Thus, there

was limited time for students to have a more comprehensive use of the tool. However,

we still saw some positive comments, for example: “It was neat to be able to use the

‘real deal’”.

Compared with blackboard work, students nearly all agreed that the Demo mode

was more useful for them to learn the SHA algorithm. Typical comments were “I

was able to use it on my own later to reinforce what I learned in class”, “I like the

more dynamic nature”, “It definitely helped following a program rather than using

the blackboard. Visualization would make it even better” , “It was easier to see how

items connected with each other”, “The best part was that it really enforced where the

data came from and what was done to it”, and “The structure of the algorithm is

very nested and the demo gave a good overview and let you see details of each piece”.

Therefore, we believe that SHAvisual indeed provided students with an effective way

to learn the algorithm.

Students also gave some general comments for improvement. For example, they

suggested adding a “help” button to explain each step, integrating the “Dec-Hex”

conversion into the current converter, and giving a brief explanation when the answer

is wrong in the Pactice mode.

In summary, we conclude that our SHAvisual has fulfilled its initial purpose, helping
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students learn and instructors teach the SHA algorithm effectively. Furthermore, with

the above suggestions we will be able to modify SHAvisual accordingly and improve

its efficiency in the near future.

8.4 AESvisual: A Visualization Tool for the AES

Cipher

8.4.1 System Overview

AESvisual supports Windows, MacOS and Linux. It consists of two major components:

Demo mode and Practice mode. The Demo mode displays both the encryption and

decryption operations of the AES algorithm and each operation contains multiple

pages to demonstrate the major steps. The Practice mode allows students to learn

the detailed computations step by step and perform self-study. Only the encryption

is available in this mode since the decryption follows the same workflow in a reversed

order. The tool also provides a test report system to help the instructor verify the

learning effectiveness.
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8.4.1.1 The Demo mode

AESvisual always starts from the Demo mode. It has four subpages: Overview, Encryp-

tion, Decryption, and Key Expansion. The overview subpage provides a global overview

for the algorithm and also illustrates the relationship between encryption and decryp-

tion. Figure 8.10 shows the snapshot of this page. Both Encryption and decryption

involve ten rounds and only the first round (highlighted in the red) is shown. By

clicking the Go buttons in the Round 1 frames, the user will proceed to the Encryption

or Decryption subpage. A Expand Key button is also provided to allow the user to

advance to the Key Expansion subpage.

Figure 8.10: Overview of the AES algorithm.

ENCRYPTION: This subpage demonstrates the four major steps of the Round 1 for

the encryption operation: Substitute Bytes, Shift Rows, Mix Columns and Add Round

Key. Each of these steps has its own subpage.
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Substitute Bytes. This subpage visualizes how the 128-bit original Plaintext is pro-

cessed using Add Round Key and S-box transformation, as shown in Figure 8.11. By

clicking the Random button, the user may generate a new random plaintext-key pair.

The generated key is then expanded in the Key Expansion subpage to create 44 32-bit

words. To check the key expansion procedure, a Expand Key button is provided to

allow the user to proceed to the corresponding subpage. The user may also click the

Add Round Key to observe how the plaintext is added with the first four words W(0,

3). The output is then transformed with the S-box transformation. The user may

select one element (in red) in the output matrix of the Add Round Key and then click

the Check S-box button to see the details of the transformation (Figure 8.12). The

corresponding element in the result is highlighted (in green) and the selected row

and column are also displayed above the Check S-box button. The result from the

transformation is then used as input matrix to the Shift Rows subpage.

Figure 8.11: Substitue Bytes of Encryption.
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Figure 8.12: SBox for the SBox transformation.

Shift Rows. This subpage demonstrates how the input matrix is transformed by per-

forming row-based byte rotation (Figure 8.13). The result goes to the Mix Columns

subpage.

Figure 8.13: Shift Rows of Encryption.

Mix Columns. This subpage shows how the output matrix is obtained by multiplying
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the input matrix with a given matrix in GF(28) (Figure 8.14). If the user selects a col-

umn (in red) of the input matrix, the corresponding column of the output matrix will

be highlighted (in green). The lower half of the page shows the details of the matrix

multiplication for the selected column. The user may click the × and + buttons to

further explore the corresponding GF(28) multiplication and addition operations in

detail, respectively. Figure 8.15 (a) and (b) show the snapshots of the two operation

windows. For an intuitive illustration, we use binary presentation in these windows.

The output matrix is then feed as input for the Add Round Key subpage.

Figure 8.14: Mix Columns of Encryption.

Add Round Key. This subpage demonstrates how the input matrix is XORed (⊕) with

the word matrix element-by-element. Figure 8.16 shows the corresponding page. The

user may select one element from the input matrix (in red) or the word matrix (in

blue) and the corresponding element in the output matrix will be highlighted (in

green). The lower half of this subpage shows the corresponding exclusive disjunction
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(a) (b)

Figure 8.15: (a) G(28) Multiplication. (b) G(28) Add.

operation in binary format. The final ciphertext after the ten rounds of the encryption

process is also shown in the lower right corner of this page.

Figure 8.16: Add Round Key of Encryption.

DECRYPTION: The Decryption subpage also consists of four subpages showing

the four major steps of the first round of the decryption. It starts with the Shift
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Rows subpage shown in Figure 8.17, followed by Substitute Bytes, Add Round Key,

and Mix Columns. The ciphertext in the Shift Rows is taken from the encryption and

the user may click the Add Round Key and Substitute Bytes buttons to advance to the

corresponding subpages. The decrypted plaintext after ten rounds is shown in the

lower right corner of the Mix Columns subpage (Figure 8.18). The Substitute Bytes

and Add Round Key subpages are the same as in the Encryption subpage.

Figure 8.17: Shift Rows of Decryption.

Figure 8.18: Mix Columns of Decryption.
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KEY EXPANSION: This subpage demonstrates how the original 128-bit key is

expanded to 44 words (Figure 8.19). These words are used in the ten rounds ( four

words per round) and one initial step for both encryption and decryption. Figure

8.10 provides an intuitive illustration of the workflow. The first four words (in black)

are directly derived from the input and all other words (in red) are generated from

them. The user may right drag the mouse to move words back and forth horizontally

and click a single word (in blue) to check the word generation procedure. The lower

portion of this subpage demonstrates how the four output words with the selected

word in blue are obtained using the four input words. The user may click the G

button to proceed to the “OperationG” window. Figure 8.20 shows the snapshot of

the corresponding window. We also allow the user to check the XOR (⊕) operations

(Figure 8.21) by clicking the XOR buttons.

Figure 8.19: The Key Expansion subpage
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Figure 8.20: The operation G window.

Figure 8.21: The XOR window.

8.4.1.2 The Practice mode

The Practice mode follows the same structure of the Demo mode with only encryption

supported. A snapshot of this mode is shown in Figure 8.22. The user may step

through each computation; however, all results are hidden and a correct answer is

required to advance to the next step. Clicking the Start button allows the user to

start a new session by generating a new plaintext-key pair. Then a dialogue window

will pop up to briefly describe the current question and ask the user to enter the
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answer. A Check Ans button is provided to let the user verify the answer correctness

and the user may enter a new one if the current answer is wrong. We also provide

a Show Ans button to allow the user to skip the current question by showing the

correct answer. To assist the computation, a simple hexadecimal-binary converter is

also provided. After the user finishes all the questions, a Completion Report window

recording the user’s answer to each question will pop up. The words Correct, Wrong

or Show Ans are used to indicate the corresponding answer was correct, incorrect

or skipped, respectively. The instructor may use this report to check the student

completion rate and evaluate the learning effectiveness.

Figure 8.22: Practice mode of AESvisual.
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8.4.2 Evaluation

We conducted a survey which took one week to evaluate the effectiveness of AESvisual.

Our survey consists of two parts: a set of 12 questions and 11 write-in comments.

Choices available are 5:strongly agree, 4:agree, 3:neutral, 2:disagree, and 1:strongly

disagree. We collected 23 valid forms. The distribution of majors was as follows: 1

in computer network and system administration (CNSA), 8 in electrical and com-

puter engineering (EECE), 9 in computer science, 2 in mathematics, 1 in chemical

engineering, and 2 undeclared.

8.4.2.1 General Discussion

We set α = 0.05 as the level of significance for all statistical decisions. We found that

the students used AESvisual 2.6 times on average during the period of evaluation and

the average time they spent on the software was 34.3 minutes with standard deviation

and confidence interval 18.9 and (26.4, 41.0).

A summary of the remaining questions is listed in Table 8.6. The first three questions

Q1, Q2 and Q3 received means 4.04, 4.09 and 3.83, standard deviations 0.64, 0.67 and

0.98, and confidence intervals (3.79, 4.30), (3.82, 4.35) and (3.45, 4.20), respectively.

This suggested that AESvisual indeed helped students better learn the encryption
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Table 8.6

Survey Questions.

ID Question

Q1 The Demo mode helped better understand encryption workflow

Q2 Demo mode was helpful for my self-study

Q3 The Demo mode was helpful for self-study

Q4 The “Mix Columns” module helped understand multiplication and
addition in GF(28)

Q5 The Practice mode helped remember how to encrypt and decrypt

Q6 AESvisual helped identify the parts of AES that I did not understand

Q7 AESvisual helped better understand AES

Q8 AESvisual enhanced the course

Q9 Is AESvisual easy to use

and decryption flow and for self-study. On the other hand, the Practice mode (Q5)

was rated slightly lower with mean, standard deviation and confidence interval 3.70,

0.97 and (3.31, 4.09), respectively. We also found that students gave Mix Columns

module (Q4) low rate with mean, standard deviation and confidence interval 3.26,

1.32 and (2.73, 3.79). This may be caused by the fact that theMix Columns component

requires students to have a deeper understanding of GF(28) arithmetic to completely

comprehend the workflow, which may not be very easy for some students. On the

other hand, the low rating of Q4 may also indicate that our design of AESvisual and

the way we present the materials require some improvement to be more effective. For

example, we found that a few students were not satisfied with the diagram-based

design and preferred to have an algorithmic view. The next three questions Q6, Q7

and Q8 received good ratings with means 3.87, 3.91 and 3.78, standard deviations

0.97, 0.79 and 0.90, and confidence intervals (3.48, 4.26), (3.60, 4.23) and (3.42,

4.23), respectively. This indicated that AESvisual helped students better understand
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the AES algorithm and that AESvisual did enhance the course. Finally, the easy to

use question Q9 was rated relatively low with mean 3.48, standard deviation 0.95 and

confidence interval (3.10, 3.86). In our opinion, this may be due to the complexity of

the GF(28) arithmetic and too many subpage/step switching.

8.4.2.2 Further Statistical Analysis

We first investigated the relation among questions and found that the ratings of

questions are loosely related to each other. The correlation between every pair of

questions was positive. The lowest correlation was 0.18 between Q8 and Q9, which

indicated “whether AESvisual enhanced the course” is mostly independent of “whether

AESvisual is easy to use”. The highest correlation was 0.77 between Q3 and Q7, which

suggested that the helpfulness of the Demo mode for self-study and the helpfulness

of AESvisual to better understand AES were closely related. The correlation between

Q1 and Q2 was 0.63, indicating the ratings for the Demo mode to better understand

encryption workflow and decryption workflow were moderately related to each other.

We also investigated the reaction from different disciplines. Students were grouped

into three groups: computer science (CS), electrical and computer engineering

(EECE), and students from other departments (non-CS). Since the questions may

correlate with each other, the questions were also grouped into three groups: (1) Q1,

Q2, Q3: the Demo mode was helpful, (2) Q6, Q7, Q8: AESvisual was helpful, and (3)
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all other questions in a single group. We applied MANOVA (Multivariate ANOVA)

to study the differences among the three student groups on each of the three questions

groups. We also applied ANOVA to investigate the difference among all three student

groups on each single question.

We used the general linear model (GLM) of R to perform all tests. The p-values for

the three groups were 0.72, 0.75 and 0.87, respectively. This indicated that the ratings

from students in different groups did not vary significantly. The ANOVA result on

each single question did not suggest any significant difference either, with the smallest

p-value being 0.45 for Q7. In addition, we investigated the difference between CS and

EECE using MANOVA on the same question groups and ANOVA on each question.

The p-values for the three groups were 0.49, 0.31 and 0.78, indicating that the ratings

from CS and EECE did not vary significantly. We did not find significant difference

on any single question either using ANOVA, with the smallest p-value being 0.21 for

Q7.

8.4.2.3 A Test Score Comparison

To evaluate the effectiveness of our AESvisual, we preformed a test score comparison.

First, a quiz of six problems that address all aspect of the AES cipher was given

after the classroom lecture. Then, we introduced AESvisual to students and made the

software available. One week later a second quiz was given. The quiz problems were
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similar to those of the first, which covered Substitute Bytes, Shift Rows, Mix Columns,

Add Round Key and Key Expansion. Both quizzes had a full score of 6 points (i.e., one

point per problem). We collected 37 and 36 papers from the first quiz and second

quiz, respectively. The results for the two quizzes are shown in Table 8.7. The t-

values of comparing the means obtained in various t-tests were all larger than 3 with

p-values around 0.003, and Cohen’s d is 0.73. Thus, the difference between the means

is significant and the effect size is reasonably large. As a result, we concluded that

our AESvisual did have a significant impact on student learning of the AES algorithm.

Table 8.7

Test Scores.

Quiz1 Quiz2

Mean 3.32 4.17

St. Dev 1.23 1.13

CI (2.93, 3.72) (3.80, 4.54)

8.4.2.4 Student Comments

We also collected results of the 11 write-in questions asking students to make sug-

gestions for further development. Specifically, we focused on the following issues:

whether only doing the first round of the AES algorithm would be sufficient, whether

the Substitute Bytes, Shift Rows, Mix Columns, Add Round Key and Key Expansion

modules are helpful, the usefulness of the Practice mode, whether the Demo mode

is more useful than black-board work, whether new features should be added, and
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software installation issues. We found that students uniformly agreed that only do-

ing the first round of the AES algorithm is sufficient. For the module evaluation,

only the Mix Columns module received negative comments. Students indicated that

the Substitute Bytes, Shift Rows, Add Round Key and Key Expansion modules were

straightforward. Typical comments were “It (Substitute Bytes) was explanatory and

did enhance my learning”, “The diagrams (of Shift Rows) made it very easy to learn”,

“It (Add Round Key) did not enhance my learning as much as other modules but it

was still helpful”, “This part was hard for me to figure out until I used the simula-

tion”, and “This section greatly enhanced my learning by visually showing the full

key expansion procedure and operation”.

The Mix Column module was rated the lowest at 3.26. Thus, student comments may

provide more information of the possible problems. In general, students felt that the

Mix Columns component is the most difficult part of the AES algorithm. Reactions

were mixed. Typical positive comments were: “Helped me understand what I was

doing wrong the first time I did the assignment”, “It made matrix multiplication

easier to grasp”, and “The actual process is hard to understand but the tool helped

break down the steps and was very helpful to learning”. Typical negative comments

were “The multiplication steps are still complicated” and “This is really the only

hard part of AES, and the program did not help. (Neither the book nor the program

explain multiplication in GF(28) field.)”. In general, those who provided negative

comments indicated that AESvisual did not help step through and did not explain
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the multiplication and addition over GF(28) well. The textbook [84] explains GF(28)

arithmetic with polynomials and provides several examples step-by-step. However,

this is not the focus of AESvisual.

Some students believed that the Demo mode would be sufficient and they did not use

the Practice mode. The following has some typical comments: “I think it is a useful

way for some people to visualize it, but I don’t learn that way” and “Pretty great. It

has a nice step-by-step implementation”.

As for the question “if the Demo version helped the students follow the AES algorithm

better than the use of the blackboard”, most students believed it is useful with typical

comments like “I think it did because I learn better visually, which is what this tool

provided. Watching values change instantaneously helped”, and “The Demo mode

version did help me more than the use of the blackboard”. On the other hand, a

few students suggested that the use of blackboard would help them take notes: “It

helped, but being told about how it works and writing it out helped equally”, and “I

feel you couldn’t have one without the other. A basic intro is needed before demoing

the software”.

Based on the student comments, we conclude that our AESvisual indeed helped stu-

dents learn the AES algorithm, especially for understanding the Substitute Bytes, Shift

Rows, Add Round Key and Key Expansion modules.
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Chapter 9

Distributed System and Tiled

Display Wall

9.1 Overview

Since the size of many visualization data is extremely large, big data processing be-

comes a new research trend in visualization recently. Therefore, designing algorithms

to process such data with least space and time cost by utilizing parallel computing

and distributed systems forms my another minor research interest. In order to well

coordinate multiple processors to work efficiently, smart resource scheduling strategies

0The material contained in this chapter has been accepted for publication in IS&T/SPIE Conference
on Visualization and Data Analysis 2015.

199



should be carefully designed. Furthermore, since workload balance among processors

will significantly effect the system performance, how to partition the original data

becomes a crucial problem. As an attempt, we develop a framework to visualize big

visualization data, e.g., climate and astronomy data on the fly and enable user inter-

action for the iGraph: A Graph-Based Technique for Visual Analytics of Image and

Text Collections [31]. This work has been published in IS&T/SPIE Conference on

Visualization and Data Analysis 2015. Section 9.2 briefly introduces the iGraph on

a single machine and Section 9.3 discusses how we extend this work to a distributed

system.

9.2 iGraph Introduction

With the booming of digital cameras, image archiving and photo sharing websites,

browsing and searching through large online image collections has become a notable

trend. Consequently, viewing images separately as individuals is no longer enough. In

many cases, we now need the capability to explore these images together as collections

to enable effective understanding of large image data. Another notable trend is that

images are now often tagged with names, keywords, hyperlinks and so on. Therefore,

solutions that can nicely integrate images and texts together to improve collective

visual comprehension by users are highly desirable.
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Therefore, Yi et al.[31] developed iGraph, a visual representation and interaction

framework to address the increasing needs of browsing and understanding large im-

age and text collections. These needs include the following. First, when relationships

among images and texts are extracted and built in the general form of a graph,

effective navigation through such a large graph representation becomes critically im-

portant. A good solution must allow collection overview and detail exploration. This

demands a flexible graph layout that dynamically and smoothly displays relevant in-

formation content at various levels of detail. Second, visual guidance should be given

so that users can easily explore the collection with meaningful directions. Besides

interactive filtering, the capability to compare nodes of interest for deep comprehen-

sion is necessary. Third, automatic recommendation that provides the suggestions for

further exploration is also desirable. Such a capability allows users to browse through

the graph in a progressive manner.

iGraph consists of tens of thousands of nodes and hundreds of millions of edges. To

enable effective exploration, it incorporates progressive graph drawing in conjunction

with animated transition and interactive filtering. Node comparison is enabled by

visually arranging selected nodes and their most related ones for detailed analysis.

iGraph also provides various means for image and keyword input so that users can

conveniently select nodes of interest for purposeful comparisons. To provide effective

guidance, automatic visual recommendation is realized by providing the suggestions

for future exploration based on the analysis of image popularity, text frequency, and
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user exploration history.

Since iGraph on the single machine is not the focus of this Chapter, we skip the

technique part of this work and recommend readers to read the paper [31] for details.

9.3 iGraph on Distributed System

iGraph is designed for a single machine and the user interface is suitable to display on

a desktop monitor. To make it capable for dealing with big data and providing high-

resolution rendering, we extend this work by using a large tiled display at Michigan

Technological University’s Immersive Visualization Studio (IVS ).

9.4 IVS Cluster and Tiled Display Wall

IVS cluster is a distributed system built with Rocks Cluster Distribution 5.4.2 (with

CentOS 5.5) at Michigan Technological University. There are eight tile nodes with

four CPU cores, 32 GB RAM, and two NVIDIA GeForce GTX 680 GPUs in the cluster

for computation and visualization. The cluster also provides a tiled display wall which

consists of 6× 4 thin-bezel 46-inch Samsung monitors, each with 1920× 1080 pixels.

These 24 monitors are driven by the eight tile nodes and each node corresponds
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to three monitors. In total, the tiled display can display nearly 50 million pixels

simultaneously.

9.4.1 Chromium

As an initial attempt, we first leveraged the open-source libraries Chromium [1], a

system for interactive rendering on clusters of workstations to forward iGraph from

the local desktop monitor to the display wall. One key feature of Chromium is that

it is transparent to the programmers and allows many OpenGL programs to run

without modification. By specifying the hardware configuration into the Chromium

config file, users can easily set up Chromium and fit it into their own tiled display

architecture. However, Chromium could only support pure OpenGL program. This

will not be the case when a OpenGL program has some GUI components designed by

some third-party libraries, such as QT. Furthermore, the performance of Chromium

is poor when a program has a lot of animation and transitions due to some network

bandwidth issues. In order to overcome such problems, we built a distributed display

framework which was initially designed by James Walk and Dr. Kuhl.
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Figure 9.1: Computation and rendering workflows of the distributed sys-
tem.

9.4.2 Distributed Display Framework

The iGraph on the distributed system has two major modules: computation mod-

ule and rendering module. The computation module consists of a master node and

eight slave computation nodes. The master program not only has a user interface

to accept all the user interactions but also displays iGraph. It runs on a local com-

puter which is located in the same room as the display wall. This computer captures

user interactions, sends instructions to the eight slave computation nodes for parallel

computing. Specifically, each computation node uses a CUDA based program to pro-

cess extensive computations in parallel locally and the eight computation nodes work

simultaneously to achieve parallel computing globally. The communication between
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nodes are achieved by using Message Passing Interface (MPI ). An uniform work as-

signment strategy is used to balance work load among nodes. When the computation

nodes complete the computation, the master node gathers all the results and then

executes the CUDA-based graph layout program to generate final layout of iGraph.

To render the iGraph on the display wall, the master then sends the rendering data

to the rendering module.

For the rendering module, an OpenGL program will be installed and running on

all eight slave rendering nodes simultaneously with different viewport specifications.

Basically, we partition the whole iGraph layout into eight blocks based on the tiled

display configuration and each rendering node is responsible for one block. A relay

node is used to communicate between the master node and all rendering nodes. It

receives the rendering data from the master and then broadcasts it to all the rendering

nodes. The UDP packages are used for fast data transmission. However, since the size

of one UDP package is too small to hold all the data, there will be hundreds and even

thousands of packages for each transmission. To guarantee the correctness, we order

each package before sending and let the rendering nodes sort them after receiving.

Furthermore, the rendering nodes will send a flag to the relay after each receive and

the relay node will send next package right after it gets all the flags from the rendering

nodes. After the rendering nodes receive the data from the relay node, they decode

the data and render the visualization results to the block that it is responsible for.

Since the time gaps between neighboring receiving of a rendering node may be less
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than that of decoding so that the data may change undesirably during decoding, we

create a large buffer, use one thread to receive the data and save it to the buffer so

that the new coming data will not override the previous data. This also prevents

receiving from interrupting decoding and rendering.

Figure 9.1 shows the workflows for the computation and rendering modules of the

distributed system. The blue and red arrows indicate the data transmission for the

computation and rendering modules, respectively.

9.5 Results

We experiment with two well-known collections: the APOD collection and the MIR

Flickr collection. The Astronomy Picture of the Day (APOD) [65] is an online astron-

omy image collection maintained by NASA and Michigan Technological University.

Everyday APOD features a picture of our universe, along with a brief explanation

written by a professional astronomer. Since its debut in June 1995, APOD has

archived thousands of handpicked pictures, which makes it the largest collection of

annotated astronomy images on the Internet. The MIR Flickr collection [37] is of-

fered by the LIACS Media lab at Leiden University. The collection was introduced by

the ACM MIR Committee in 2008 as an ACM sponsored image retrieval evaluation.

We use the MIRFLICKR-25000 collection which consists of 25,000 annotated images
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downloaded from the social photography site Flickr through its public API.

Figure 9.2: Photos showing iGraph of the MIR Flickr data set using the
tiled display wall.

Figure 9.2 shows three iGraph photos of the MIR Flickr data set rendered on the

display wall (1000 images and 50 keywords are displayed). The figure is from the

original publication [31]. With the display wall, we are able to display thousands of

images and keywords simultaneously for comfortable viewing. Currently, we are using

this display wall for showing iGraph demos to visitors, including university alumni,

visitors, and summer students. Initial feedback from several groups of visitor is fairly

positive as they comment that running iGraph on this life-size tiled display is much

more expressive and fun to watch compared with on a regular desktop display. The

advantage of using the display wall is that it allows more than a dozen of people to

comfortably view and discuss the results together in such a collaborative environment.

Nevertheless, with the dramatic expanding of display area, it takes more effort for a

viewer to correlate and compare images that are on the opposite sides of the display

wall, especially for those images close to the wall’s boundary.
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Appendix A

Information Theory Background

In this Chapter, we give detailed explanations for several key concepts in information

theory which are extensively used in our work. The original definitions are provided

first followed by their application in our projects.

A.1 Terminology

A.1.1 Marginal, Joint, and Conditional Probabilities

The marginal probability refers to the occurrence probability of a single event for a

given random variable which is irrelevant to other events. Marginal probability is
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usually computed by summing values in a table along rows or columns, and writing

the summation in the margins of the table [85].

Given a random variable A and all its n sample events, the marginal probability of a

specific independent event x can be computed as m/n, where m is the times event x

occurs.

A joint probability is the probability that two events will occur simultaneously. Given

two independent events x and y, their joint probability p(x, y) is computed as p(x)×

p(y) where p(x) and p(y) are marginal probabilities for events x and y, respectively.

We use the conditional probability to compute the occurrence probability of an event

on the premise that another event has already occurred, assuming x and y are inde-

pendent to each other. Given two events x and y, the conditional probability of x

given y is denoted as p(x|y) and can be computed as follows:

p(x|y) =
p(x, y)

p(y)
, (A.1)

where p(y) is the marginal probability of y and p(x, y) is the joint probability of x

and y.
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A.1.2 Shannon Entropy

The concept of entropy was first introduced by Shannon in 1948 as a quantitive mea-

surement for the expected information value contained in a message or the uncertainty

of a random variable represented by a distribution. Entropy is typically measured in

bits, nats, or bans [9].

Given a discrete random variable X with alphabet X and its marginal probability

p(x), we define its entropy as following:

H(X) = −
∑

x

p(x) log p(x), (A.2)

where p(x) ∈ [0, 1] and
∑

p(x) = 1.0. The logarithm is taken in base 2 or e. The zero

probability contributes nothing to the entropy as we define 0 log 0 = 0. Since entropy

indicates the number of bits required to measure the uncertainty of the variable X,

its value will never be negative, which could also be verified from Equation A.2. The

higher the entropy is, the more information the variable contains. One important

property of the entropy is that H(X) is a concave function and reaches its maximum

of log |X| if and only if p(x) is equal for all x, i.e., when the probability distribution

is uniform. So in most visualization applications including ours, the notion of “equal

probability, maximum entropy” [93] is at the heart of probability function design.
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A.1.3 Mutual Information

In information theory, the mutual information of two random variables is used to

quantify the mutual dependence of the two variables. In other words, it measures the

amount of information shared by two variables. Given two discrete random variable

X and Y , we define the mutual information between them as:

I(X;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
, (A.3)

where p(x) and p(y) are marginal probabilities of variable X and Y , and p(x, y) is

their joint probability. Mutual information is the reduction in the uncertainty of one

random variable due to the knowledge of the other [17]. If X and Y are independent

to each other, then p(x, y) = p(x)p(y), which means knowing X does not provide

any information about knowing Y and vice versa. Therefore, I(X;Y ) = 0. On the

other hand, if X and Y are exactly identical, then all information from one variable

will also be shared by the other. In this case, I(X;Y ) is equal to the information

contained in X or Y alone, which is the H(X) or H(Y ).
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A.1.4 Information Channel

In data communication, transmitting a message X from the source point, the sender,

through a noisy communication channel to the destination, the receiver, is a major

task. However, due to the noisy nature of the channel, information loss is inevitable

and the final received message X ′ will be different from the original message X.

Therefore, one obvious goal for data communication is to quantify the uncertainty

noise embedded in the transmitted message so that the signal interference could be

eliminated as much as possible in the noisy channel [93].

Borrowing the idea from data communication, we treat the visualization process as

a special communication channel, which is called information channel. This channel

conveys the information in the source data, e.g., a 2D image or a 3D iso-surface, to

the destination, the viewer. As described in [93], the source data in a visualization

pipeline need to be transformed by a sequence of steps such as denoising, filtering,

visual mapping, and projection. Each of the transformation steps can be thought as

an encoding process whose goal is to preserve the maximum amount of information

from the source data and generate output for the next stage. However, information

loss is usually inevitable during the transformation, e.g. projecting 3D objects into

a 2D image. Therefore, most visualization applications pay attention to reduce the

distortion and preserve as much information of the original data as possible.
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A.2 Application in our work

In this section, we explain how information theory is applied to our work by intro-

ducing the way we define the streamline importance based on entropy and mutual

information. Furthermore, the entropy field computation for a corresponding flow

field is also described. Finally, we also introduce how we leverage information chan-

nel to build two dual channels between a set of streamlines and a set of viewpoints

in order to solve streamline selection and viewpoint selection in a unified framework.

A.2.1 Streamline Entropy

We evaluate the streamline importance based on its entropy value. For each stream-

line, we employ a sliding window technique along each point of the streamline and

evaluate its entropy within the local window region. To better evaluate the entropy,

we assume that each streamline has been reparameterized by the arc length and we

use newly created sample points along the reparameterized streamline.

Based on Equation A.2, we need to compute p(x) for every point on the streamline

to obtain the entropy value. To achieve this, we interpolate the point’s vector from

the original vector field and evaluate the vector variation within the sliding window
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Figure A.1: The entropy field of the five critical points data set ( c○ 2014

IEEE).

centered at the point. Specifically, the sliding window covers several consecutive

sample points on the streamline (e.g. 5 or 7) and the current computed point is

at the center of the window. We consider both the direction and the magnitude of

the vectors. For vector direction, we decompose a unit sphere into a certain number

of patches of equal area with small diameter following the algorithm proposed by

Leopardi [47]. All vectors falling into the same patch will be quantized into the same

bin of vector direction. For vector magnitude, we quantize it into a certain number

of levels and each level corresponds to a counting bin. A 2D histogram consisting of

vector direction and magnitude is created for each sliding window. p(x) is computed

as the normalized bin count of the 2D histogram.
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A.2.2 Entropy Field Computation

Given an input 3D flow field, we first compute its corresponding scalar entropy field.

We employ a 9 × 9 × 9 cube centered at each voxel and evaluate its entropy within

this local region. The entropy of a discrete random variable X with alphabet X

fulfills the following equation: H(X) = −
∑

x p(x) log p(x), where p(x) ∈ [0, 1] is the

marginal probability of x. In our case, we compute p(x) by evaluating the variation

of both direction and magnitude of vectors for all voxels in the cube and creating a

2D histogram consisting of these two components. In terms of vector direction, we

decompose a unit sphere into a certain number of patches with equal area following

the work of Leopardi [47]. Each sphere patch indicates one bin of vector direction. By

locating the sphere patch each vector falls into, we quantize all vectors into different

bins of vector direction. For vector magnitude, we first define several magnitude

levels and then quantize vector magnitudes accordingly. The final p(x) is obtained

by normalizing each bin count of the 2D histogram. By applying this process to

each voxel in the flow field, we generate an entropy field for the original flow field.

Figure A.1 gives one such example. Colors are mapped to different entropy values as

shown. The figure is from the work FlowTour [54] ( c○ 2013 IEEE). We implement entropy

computation in the GPU using CUDA. For a data set which cannot be loaded into

graphics memory once, we divide it into blocks and compute the entropy field in an

out-of-core manner.
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A.2.3 Streamline Mutual Information

We utilize the mutual information I(X;Y ) between the 3D streamline X and its 2D

projection Y as one factor to quantify the view-dependent streamline importance. If

I(X;Y ) is high, then the 3D streamline has a high entropy and its 2D projection pre-

serves much of the 3D information. Conversely, if the 3D streamline has a low entropy,

or its 2D projection loses much of the 3D information (even though the 3D streamline

has a high entropy), then I(X;Y ) is low. Therefore, we favor streamlines that have

high information content while their 2D projections reveal their characteristics well.

To compute the marginal probability p(x) in Equation A.3, we use a similar solution

presented in entropy evaluation and consider both vector direction and magnitude

for the points along each streamline. The only difference is that we do not use the

sliding window here and p(x) is taken over the entire streamline. To compute the

marginal probability p(y), we use the projections of all vectors along all points of

the streamline. To quantize projected 2D vector directions, we evenly partition a

unit circle into a certain number of angle ranges. All vectors falling into the same

range will be quantized into the same bin of vector direction. For projected vector

magnitude, we quantize it into a certain number of levels as well. To compute the

joint probability p(x, y), we create a 2D joint histogram where the two axes are for all

vector direction and magnitude combinations for variables X (3D streamline) and Y
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(streamline 2D projection), respectively. In the joint histogram, the normalized bin

count corresponds to p(x, y).

A.2.4 Shape Characteristics

Shape characteristics is one critical term for computing the streamline conditional

probability which will be introduced in the next subsection. It indicates how stereo-

scopic the shape of streamline s is reflected under viewpoint v. Since the number

of points along each streamline could be fairly large (e.g., in the order of hundreds

or thousands of points), we opt to approximate a streamline using its skeleton for

fast shape characteristics analysis. The “skeleton” of a streamline is obtained using a

uniform subsampling scheme along the integration points of the streamline to reduce

the number of points to a smaller scale (e.g., in the order of tens of points). Let

us denote the skeleton of streamline s as s̃ = {p̃1, p̃2, . . . , p̃k}, the viewing vector as

−→v , and the angle between −→v and
−−−→
p̃ip̃i+1 as θ. We define the shape characteristics of

−−−→
p̃ip̃i+1 as

αp̃ip̃i+1;v = αmin + (1.0− αmin)
(

1.0−
|π/4− θ′|

π/4

)

, (A.4)

where αmin is the minimum value for the shape characteristics (we set αmin = 0.1 in

our work) and

θ′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

π − θ, θ > π/2

θ, θ ≤ π/2

(A.5)
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The intuition is that αp̃ip̃i+1;v gets its maximum (minimum) value of 1.0 (αmin) when

−→v and
−−−→
p̃ip̃i+1 form a 45◦ or 135◦ (0◦, 90◦, or 180◦) angle. The shape characteristics

of streamline skeleton s̃ is defined as

αs̃;v =

∑k−1
i=1 αp̃ip̃i+1;v‖p̃ip̃i+1‖
∑k−1

i=1 ‖p̃ip̃i+1‖
. (A.6)

A.2.5 Streamline Conditional Probability

With mutual information and shape characteristics defined for streamline s under

viewpoint v, we define conditional probability p(s|v) as

p(s|v) =
αs̃;vI(s; sv)

∑

s∈S αs̃;vI(s; sv)
. (A.7)

With p(s|v) defined, besides simply assuming p(v) = 1/m, we can also obtain p(v)

from the normalization of the summation of all streamlines’ conditional probabilities

under v over all viewpoints V . That is, p(v) = p(S|v)/p(S|V ), where p(S|v) =

∑

s∈S p(s|v) and p(S|V ) =
∑

v∈V p(S|v). We use this nonuniform specification of

p(v) in our work. Figure A.2 summarizes the order of computing the probabilities for

the two channels.

Figure A.3 shows a comparison of selecting the best viewpoint based on p(v) with

considering mutual information only (left), shape characteristics only (middle), and
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Figure A.2: The order of computing the probabilities for the two channels
( c○ 2013 IEEE).

Figure A.3: The best viewpoint selection results ( c○ 2013 IEEE).

both (right). When only mutual information is considered, the main axis of the

tornado is almost parallel to the viewing vector, making −→v and
−−−→
p̃ip̃i+1 form an almost

0◦ or 180◦ angle. p(s|v) achieves its maximum for almost every streamline, letting

p(v) get its highest value. When only shape characteristics is considered, −→v and

−−−→
p̃ip̃i+1 now form an almost 45◦ or 135◦ angle. The best viewpoint selected is still

not desirable. When considering both mutual information and shape characteristics

into p(v) evaluation, we can select the more desirable best viewpoint as the overall

structure of the tornado is best perceived.
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A.2.6 Information Channel Between A Streamline Set and

A Viewpoint Set

We solve the problems of streamline selection and viewpoint selection in a single,

unified framework. We consider a set of streamlines S = {s1, s2, . . . , sn} and a set

of viewpoints V = {v1, v2, . . . , vm} as discrete random variables and build two inter-

related information channels between them: V → S and S → V . Our assumptions

for viewpoints are (1) the flow field is centered in a sphere of sample viewpoints con-

structed from the recursive discretization of an icosahedron; and (2) the camera at a

sample viewpoint is looking at the center of the sphere. Figure A.4 (a) shows sam-

ple viewpoints along the sphere. We use modified spectral colors [50] for streamline

coloring based on the velocity magnitude.

The main components in the information channel V → S are the following:

• The transition probability matrix p(S|V ) where conditional probability p(s|v)

represents the probability of “seeing” streamline s from viewpoint v (i.e., the

importance of s with respect to v).

• The input probability distribution p(V ) where p(v) represents the probability

of selecting viewpoint v. If we assume p(v) to be evenly distributed, then

p(v) = 1/m where m is the number of sample viewpoints.
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(a) (b)

Figure A.4: (a) Sample viewpoints constructed along a view sphere (b)
The information channel V → S (left) and the inverted channel S → V

(right) ( c○ 2014 IEEE).

• The output probability distribution p(S) where p(s) represents the average prob-

ability that streamline s is seen from all viewpoints V . That is, p(s) =

∑

v∈V p(v)p(s|v).

Similarly, we can construct the inverted information channel S → V , where the

input and output probability distributions are swapped: p(S) becomes the input and

p(V ) becomes the output. In this inverted channel, the new transition probability

matrix is p(V |S), where p(v|s) represents the probability of selecting viewpoint v

given streamline s. As shown in Figure A.4 (b), these two channels are connected via

the Bayes theorem, i.e., p(v)p(s|v) = p(v, s) = p(s, v) = p(s)p(v|s), which provides us

a means to compute p(v|s) given p(v), p(s), and p(s|v). Figure A.2, A.3 and A.4 are

from the work [81] ( c○ 2013 IEEE) discussed in Chapter 3.
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