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ABSTRACT

Cities worldwide aim to reduce their greenhouse gas emissions

and improve air quality for their citizens. Therefore, there is

a need to implement smart city approaches to monitor, model,

and understand local emissions to better guide these actions.

We present our approach that deploys a number of low-cost

sensors through a wireless Internet of Things (IoT) backbone

and is thus capable of collecting high-granular data. Based on a

�exible architecture, we built an ecosystem of data management

and data analytics including processing, integration, analysis,

and visualization as well as decision-support systems for cities

to better understand their emissions. Our prototype system has

so far been tested in two Scandinavian cities. We present this

system and demonstrate how to collect, integrate, analyze, and

visualize real-time air quality data.

1 INTRODUCTION

Urban emissions contribute over 60% to global greenhouse gas

emissions. Cities aim at reducing their emissions through tailored

policy and integration to Smart City approaches. Smart City

approaches facilitate easier integration of emission sensing into

city systems and ful�ll city requirements through novel and low-

cost approaches [5, 6, 8, 10, 11].

The overall aim of our project1 is to ful�ll the information

needs of cities that need speci�c data for emission reduction

actions by providing complementary on-the-ground emission

data for improved understanding and decision making [2]. In

short, the need based on future challenges faced by cities will be

better and more high-granularity measurements to complement

existing o�cial measurement stations.

Some Nordic cities have speci�c challenges in that they have

already implemented a range of climate actions, which means

that future impact on a certain class of emissions can only be

achieved by a more detailed and granular understanding and

analysis of emissions, since many broad measures are already

in place. The next step then is to get better insight into more

1Carbon Track & Trace – CTT: https://www.ntnu.edu/ad/ctt
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di�cult to measure components, also to be able to adapt policy

in fast feedback loops and at varying scales. This includes impact

assessment of measures ranging from small-scale such as closing

down certain streets (and being able to observe spillover and

evasion e�ects in surrounding parts of the city) to large-scale

such as changes in public transport or denser urban development.

A high spatial granularity of sensor deployments is obviously

not possible with the existing expensive high-quality measure-

ment stations that are often provided nationally. Our approach,

in contrast, is to use low-cost sensors to cover a city’s spatial

footprint with a much higher sensor density. This enables a trade-

o� of high number and high granularity of low-cost sensors that

can compensate for their relatively lower accuracy.

Existing o�cial measurement stations are equipped with high-

quality sensors that cost up to $500,000. Our low-cost approach

could provide a very dense coverage of a city with 250 additional

sensors for the price of one additional station by using sensor

units of around $2,000 each. For ease of installation, this requires

standalone sensor units that do not need cabling for electricity or

connectivity. We achieve that by deploying solar-powered sensor

nodes with a wireless data link over the LoRaWAN standard for

Smart City IoT applications, which also enables us to quickly

scale up the sensor deployment. The approach allows to quickly

prototype system components on the hardware and software

side for the overall goal of linking the measurement data to the

information needs of the cities for emission reduction both for

baseline and continuous data collection.

After having built and deployed the general IoT sensor net-

work before [2], we focus here on the integration of data sources

and the data analysis infrastructure for Smart City applications.

2 APPROACH

Our approach is to build an ecosystem of relevant tools and

methods to better understand city emissions and work with data,

such as analytics [9, 12], visualizations [7], and decision support

systems [5, 6, 11] around local emission measurements and the

integration of external data sources. This is an important aspect

of Smart Cities [9], and can also be used as a case study to un-

derstand and build similar systems. Our system is piloted in the

two cities of Trondheim, Norway, and Vejle, Denmark.

In this paper, we describe key aspects of this ecosystem of data

analysis and visualization that strongly relates to challenges and

https://www.ntnu.edu/ad/ctt


Figure 1: Overall system architecture

requirements of the cities.We further demonstrate the integration

and aggregation of data sources for a smart city.

2.1 Architecture

The system architecture and data �ow is sketched in Fig. 1, which

consists of four components: a city-wide IoT sensor network,

cloud-based systems for data collection and storage, integration

of external data, and analysis and visualization platforms for

stakeholders. The architecture is �exible through an ecosystem

approach and accommodates di�erent components for a range of

related tasks. Our technology stack follows common concepts for

IoT and Smart City systems [10] with project-speci�c adaptations.

The sensor network is composed of sensor nodes deployed

within the city, which measure emissions and air parameters:

CO2, NO2, PMx (particulate matter); temperature, pressure, and

humidity. The data is transmitted to the IoT backbone, which

forwards collected data to the cloud storage, from where it is

available for analysis and visualization, using relevant external

data sources. The backbone uses LoRaWAN as a radio-based ur-

ban sensor networks through a number of gateways covering

the pilot regions [2]. Data forwarding and cloud sensor manage-

ment was built through the event-driven MQTT communication

protocol.

Visualizations and analyses are connected to all stages of the

data processing. Examples are network monitoring and early data

validation close to the sensors, stream processing on measure-

ment data, up to C&C centers, satellite measurement grounding,

integration into GML-based 3D city models, and other forms of

mapping and integration that we describe in the following.

2.2 Data Integration

Apart from the direct sensor data, there is a range of municipal

and national data sets available as well as other external data

sources that need to be included in the data analytics and visu-

alization to support analyses and improve data quality. Table 1

gives an overview of these sources and how they can be utilized.

They range from direct measurements of air quality that can be

used to validate and calibrate the sensor network to other data

sources that help to understand emissions in the context of a city,

for example through tra�c patterns [12] or integration into city

tools and systems.

The sensor network has the usual issues of missing data that

is dealt with on a technical monitoring level and being handled

by standard methods in the analyses, as well as the aggregation

of data from multiple sensor units. More interesting are the chal-

lenges posed in the data integration. The sources contain highly

heterogeneous data, with di�erent timescales, measurement fre-

quencies, spatial distributions and granularities, measurement

technologies, and a complex set of related uncertainties and in-

accuracies in the data.
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Figure 2: Dataport Protocol Diagram

2.3 Network Metadata Analysis and System

Status Monitoring

The network, server components, gateways and sensors are sub-

ject to transient and permanent failures, which can ultimately

result in missing data. Although the later analysis tasks can detect

such losses of data, they do not analyze the cause for the error, or

prevent further losses. Instead, failures in the system should be

detected as quickly as possible, so that data loss is kept at a mini-

mum. We therefore built a monitoring application (the dataport)

to monitor the status of all sensors, gateways and the network [3].

It is built with the Akka framework, which facilitates the creation

of fault-tolerant applications based on the actor model [4]. Actors

are independent, supervised processes that encapsulate data and

control logic and communicate via messages. Each device in the

real world corresponds to a dedicated actor that acts as its digital

twin, which is a virtual model of the sensor or gateway. It keeps

track of its state in real-time, monitors all communication and

triggers alarms if data is not received as expected. Incoming data

contains meta-data that identi�es the originating sensor and the

gateway from which it was received. In this way, the digital twin

for a gateway can detect if a gateway operates as expected.

Faults of a more complex nature, such as decaying sensors, er-

roneous behavior of sensor nodes, or missing data patterns need

speci�c analysis. For example, a single missing measurement is

expected occasionally. Based on the measurement frequency of

individual sensors, it takes some cycles to determine a failure

with certainty. As sensors nodes can adapt their frequency based

on battery levels, a complex model of the sensor node and its

status is needed for detection. Actors are organized hierarchically.

On higher levels, failures can be grouped so that for example a dis-

tinction can be drawn between sensor failures versus a gateway

outage that would make a set of sensors invisible.

The dataport also monitors the larger system, such as the The

Things Network (TTN) cloud backend and the MQTT connection.

If any of the components on the data path from the sensors to

the data storage fails, the dataport generates a noti�cation. If the

dataport itself fails, it is detected by an external watchdog service,

in this case AppBeat. The dataport further drives a visualization

of the network itself, shown in Fig. 3, of the structure of digital

twins for sensors and gateways, their location, the connections

and live data transmission between sensors and gateways. Apart

from the practical value of monitoring the network, it is also a

useful illustration of the spatial and measurement characteristics.

2.4 Data Analyses and Visualizations

A range of analyses work on the collected data streams as illus-

trated in Fig. 1 apart from the more operational network analysis.

Examples are ongoing data collection and analysis, understand-

ing of patterns, as well as comparison of sensor measurements

to air quality measurement stations to ground the network and

calibrate the sensors. There are very few o�cial stations; to



Table 1: Examples of external data integration

Type Example Description

O�cial air quality

measurements

NILU data (Norwegian Air

Quality Institute)

Ground truth for certain pollution types, grounding and calibrating measurements

to high-quality reference stations

Remote sensing NASA OCO-2 satellite CO2

measurements

Ground truth top-down measurements for certain emission types, large-scale

coverage, low spatial resolution, coupling to large-scale modeling and validation

Tra�c data Tra�c density from here.com Estimate tra�c emissions by correlating continuous external tra�c density to

emission measurements

Municipal tra�c counts Validate tra�c estimations, but only available for short periods

3D city models Municipal 3D model of Vejle Integration into existing visualization tools. Use of city geometry in future

emission modeling

National statistics GHG emission estimates from

national statistics o�ce

down-scaled national GHG emission data, often with high uncertainties

Other municipal

data and tools

GIS, statistics, decision support,

etc.

Understanding emissions in the context of the city

Figure 3: Visualization of sensors, gateways, and links

support the grounding and calibration, we have co-located one

of our sensor units to the only station in the pilot area. This

allows to compare both absolute and relative accuracy and cali-

brate the local sensor and, through larger-scale correlated trends,

the network, but with lower certainty. In connection with the

network monitoring, it also allows the identi�cation of outliers

and malfunctioning sensors. Main ongoing work is modeling

dependencies of NO2, PMx , and CO2, especially from transport

emissions, which therefore also looks at linking to tra�c patterns

[12]. We discuss some analytics around this data in the following.

Battery levels depend on the charging of the autonomous sen-

sor units through their solar panels. Charged occurs during day-

time, and is a�ected by weather conditions. It is important to

monitor the battery level to keep the nodes running. Fig. 4 shows

the battery level as a function of time (left), and the di�erence in

battery-level from previous sent package versus time of day, and

where red indicates whether the nodes could have been charged

by sunlight since the previous package (right). This allows to

estimate battery depletion.

Dynamics of CO2 emissions and possible links to tra�c in the

form of a tra�c jam factor (from here.com data) is shown in

Fig. 5. According to the plots, we can conclude for this sensor

location that tra�c is not the only factor that accounts for the

dynamics of the CO2 emission as they exhibit di�erent patterns,

and have no apparent correlation. In fact, CO2 emission dynamic

is a more complex issue that may be a�ected by many factors,

including tra�c, wind speed, temperature, humidity and other

weather conditions, as well as daily and seasonal patterns, which

we will further investigate in our future work.

Figure 4: Battery level analysis

Figure 5: A study of CO2 dynamics

Figure 6: Example of dashboards for air quality and tra�c

Visualizations and Dashboards for real-time monitoring. Fig. 6

shows the air quality and tra�c �ow dashboard, respectively.

The dashboard is implemented using Apache Zeppelin as the

visualization platform and accesses the data from the OpenTSDB

time series database. The mapped sensors show the real-time data

and analytic results for each location. Examples are the the air

quality and tra�c indicators in Fig. 6. This was further integrated

into a 3D CityGML model as seen in Fig. 7 and also into a full

network and data overview wall display shown in Fig. 8.

3 DEMONSTRATION

In this �rst full demonstration of the CTT air quality system, we

show the architecture and implementations of IoT and analytics



Figure 7: Integration of sensor data into 3D city model

Figure 8: Network monitoring and data visualization

dashboards

technologies in air quality monitoring and explore insights. We

use two use cases of deploying our systems in Vejle, Denmark

and Trondheim, Norway, where two and twelve sensors were

deployed respectively to collect air quality data. We demonstrate

our system from the perspective of developers, city policymakers,

and citizens. For developers, we explore the system in detail,

demonstrate the building blocks of the system, and show how

to build similar IoT systems; for policymakers, we aim to assist

them in decision making for smart cities with the proposed IoT

technologies, e.g., urban planning; for citizens, we aim to raise

the awareness of environment protection and greenhouse gas

reduction for better city life.

We use real-time data collected from the deployed sensors from

both cities, as well as tra�c data sets streamed from the third-

party tra�c �ow monitoring operator, here.com. The sensor data

consist of the CO2, NO2, and PMx , and weather data including

humidity and temperature. The sensor data is collected at a �ve-

minute interval. The demo also uses historic data saved in our

time-series database, collected since January 2017.

Developers’ point of view: We show the architecture and com-

ponents used by our air quality monitoring system, including

sensors, IoT sensor network, cloud storage for sensor data and

external tra�c data, analytics, and dashboards. We demonstrate

how to collect, process and visualize high-frequent sensor data

in our system developed on the Zeppelin platform; and how to

streamline the whole data �ow, including segmentation, chaining,

and automation. Finally, we demonstrate how to generate dash-

boards and integrate analysis algorithms in the web interface.

Attendees can vary system and analysis properties, and observe

the re�ection on the dashboard; and change the dependency of

the data �ow to evaluate the �exibility of the data stream analysis.

City o�cials’ point of view: We show an interactive dashboard

to analyze CO2 dynamics using real-time and historic measure-

ment data, and demonstrate the pattern and its correlation to

the tra�c �ow (see Fig. 5–6). In addition, we demonstrate the

3D CityGML model integrating di�erent measuring points of air

quality (see Fig. 7). In this demo scenario, we can inject synthetic

data showing di�erent pollution levels. We interact with atten-

dees by discussing urban planning issues such as construction

sites of roads, buildings or factories, and see how di�erent pol-

lution levels will a�ect their decision makings. Also, we consult

with attendees about choosing the sites of air quality monitoring,

e.g., according to the road network and building density.

Citizens’ point of view: We demonstrate air quality and tra�c

�ow on the dashboard using the real-time data. Similarly, we

use synthetic data with di�erent pollution levels, and discuss

the in�uence on routing planning, and citizens’ approaches for

emission reduction. Attendees can browse historic data in the

system to investigate anomalous emission levels.

4 CONCLUSION

Wehave described the possibilities for urban emissionmonitoring

and our approach and the prototype system we have developed

together with the approaches to data �ows and analysis. The

�exible and scalable solution allows to quickly prototype di�erent

analysis approaches on top of the sensor streams to linkmeasured

data to cities’ information needs for emission reduction.

In future work, we plan to improve the measurement network

and the real-time and aggregate dashboards. Further, with more

data collected, we will be able to tune models for emission distri-

bution and dispersion to overcome some of the issues and provide

improved analysis with better models. Integration into decision

support systems is a far goal. Urban emission monitoring needs

a range of heterogeneous data and we are continuing to build

useful urban systems around it.
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