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Abstract

Defeaturing consists in simplifying geometrical models by removing the geometrical features that are
considered not relevant for a given simulation. Feature removal and simplification of computer-aided
design models enables faster simulations for engineering analysis problems, and simplifies the meshing
problem that is otherwise often unfeasible. The effects of defeaturing on the analysis are then neglected
and, as of today, there are basically very few strategies to quantitatively evaluate such an impact. Un-
derstanding well the effects of this process is an important step for automatic integration of design and
analysis. We formalize the process of defeaturing by understanding its effect on the solution of Poisson
equation defined on the geometrical model of interest containing a single feature, with Neumann bound-
ary conditions on the feature itself. We derive an a posteriori estimator of the energy error between the
solutions of the exact and the defeatured geometries in Rn, n ∈ {2, 3}, that is simple, reliable and efficient
up to oscillations. The dependence of the estimator upon the size of the features is explicit.

Keywords: Geometric defeaturing, a posteriori error estimation, isogeometric analysis.
AMS Subject Classification: 65N50, 65N30

1 Introduction

Complex geometrical models are created and processed using computer-aided design tools (CAD) in the
context of computer-aided engineering. The automatic integration of design and analysis tools in a single
workflow has been an important topic of research for many years [1, 2]. One of the methodologies that
emerged in the last 15 years is the one based on isogeometric analysis (IGA) [3,4], a method to solve partial
differential equations (PDEs) using smooth B-splines, NURBS or variances thereof as basis functions for the
solution field. IGA has proven to be a valid simulation method in a wide range of applications [5], and a
sound mathematical theory [6, 7], including strategies for adaptive refinement [8–11], is now available.

However, a major challenge remains in the usability of complex CAD geometries in the analysis phase.
While the first CAD models used in IGA were relatively simple geometries defined by multiple patches [3,12],
in recent years, more effort is being dedicated to the analysis on complex geometries defined via Boolean
operations such as intersections (trimming) [13–15] and unions [16–18]. The related engineering literature
includes in particular the shell analysis on models with B-reps [19–21], and the finite cell method combined
with IGA on complex geometries [22–24]. Before even doing any simulation on complex geometries, defining
them may already require a very large number of degrees of freedom, that are not necessarily needed –
and potentially too costly to be taken into account– to perform an accurate analysis. Moreover, repeated
design changes is part of a typical process in simulation-based design for manufacturing, and it involves
adding or removing geometrical features to the design, as well as adjusting geometric parameters in order to
meet functionality, manufacturability and aesthetic requirements. Therefore, to be able to consider complex
geometries and to accelerate the process of analysis-aware geometric design, it is essential to be able to
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(a) Original geometry Ω with multiple features (fil-
lets, holes, protrusions).

(b) Defeatured (or simplified) geometry Ω0.

Figure 1: Illustration of defeaturing.

simplify the geometrical model, process also called defeaturing, while understanding its effect on the solution
of the problem in hand. The idea of defeaturing is illustrated in Fig. 1, where we show a complex geometry
and its simplified version, with all the features removed.

For a long time, the defeaturing problem has been approached using subjective a priori criteria, relying
mostly on the engineers’ expertise or based on geometrical considerations such as variations in volume or area
of the domain [25]. More objective criteria have then been considered, still based on some a priori knowledge
of the mechanical problem at hand such as the verification of constitutive or conservation laws [26, 27].
However, in order to automatize the simulation-based design process, the interest is to have an a posteriori
criterion to assess the error introduced by defeaturing from the result of the analysis in the defeatured
geometric model. Following this direction, an a posteriori criterion is given in Ref. [28]: it evaluates an
approximation of the energy norm between the exact solution of the problem at hand and the solution on
the defeatured geometry. It is intuitively based on the fact that the energy error due to defeaturing is
concentrated in the modified boundaries of the geometry, and this boundary error is estimated by solving
local problems around each feature. Nevertheless, this approach does not give a demonstrated certification
that the proposed criterion is indeed a good estimator of the defeaturing error.

A different approach is based on the concept of feature sensitivity analysis (FSA) [29, 30], which relies
on topological sensitivity analysis [31, 32], a method used in design optimization that studies the impact of
infinitesimal (topological) geometrical changes on the solution of a given PDE. The works on FSA study
the defeaturing in geometries with a single arbitrarily-shaped feature. First order changes of quantities of
interest are analyzed when a small internal or boundary hole is removed from the geometry. However, besides
the underlying assumption of infinitesimal features, this technique cannot be generalized to more complex
features.

An alternative approach, still based on a posteriori error estimators, is proposed in Ref. [33] for internal
holes. The idea behind this estimator is to reformulate the geometrical defeaturing error as a modeling
error, by rewriting the PDE solved in two different geometries as two different PDEs on a unique geometry.
The modeling error is then estimated using the dual weighted residual method introduced in Ref. [34] and
Ref. [35], following the lines of Refs. [36–38] that study heterogeneous and perforated materials, and Ref. [39]
that studies the error introduced by the approximation of boundary conditions, two problems that can be
easily related to defeaturing. This a posteriori approach has then been generalized to different linear and
non-linear problems, and to other types of features, in Refs. [40–43]. However, some heuristic remains in
all these contributions, and a precise mathematical study of the estimator with regards to its efficiency and
stability is lacking. In particular, it is assumed that the difference between the solutions of the PDE in the
exact and defeatured geometries is small, and it relies on the heuristic estimation of constants that depend
on the size of the features, but are not explicit with respect to it.

Consequently, the first aim of this paper is to give a solid mathematical framework for analysis-based
defeaturing, and to precisely define the defeaturing error. We consider geometries that contain a single
feature, the case of a geometry with multiple features being the subject of our subsequent work in preparation.
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We work in the context of Poisson equation for which Neumann boundary conditions are imposed on the
features, and we introduce an a posteriori estimator of the defeaturing error that explicitly depends on the
size of the features. Our estimator is easy to compute, very cheap, and it is proven to be reliable and efficient
up to oscillations. Moreover, the considered features are very general, they can either be negative (internal
or boundary holes), positive (protrusions), or more complex with both positive and negative components.
As mentioned earlier, the estimator is very cheap to compute: after the computation of the solution in
the defeatured domain, it only requires the solution of a local problem in a simplified feature (as, e.g.,
its bounding box) if the feature is positive, and the computation of local boundary integrals. Indeed, the
proposed estimator is derived from a representation of the defeaturing error that only involves differences
between boundary terms on the feature, as already observed in Refs. [29, 30] and in Refs. [40–42].

After introducing the notation used throughout the article in Sec. 2, we precisely define the defeaturing
problem in Sec. 3 in the simpler setting in which the feature is either negative or positive. Then, in Sec. 4,
the defeaturing error estimator is derived and analyzed in the case in which the geometry contains a negative
feature. In Sec. 5, the defeaturing problem and error estimator are generalized to the case of a geometry with
a complex feature, required by complex geometric models. The study of the defeaturing problem when the
feature is positive can be deduced from Sec. 5 as a special case. Subsequently, in Sec. 6, we present a validation
of the results presented previously. Our validation is obtained by comparing errors and defeaturing estimators
for numerical solutions on very fine meshes. We finally draw conclusions in Sec. 7, and some mathematical
results used throughout the paper are stated and proven in Appendix A.

2 Notation

We start by introducing the notation that will be used throughout the paper. Let n = 2 or n = 3, let ω be
any open k-dimensional manifold in Rn, k ≤ n, and let ϕ ⊂ ∂ω.

We denote by |ω|, ω, int(ω) and conn(ω), respectively, the measure of ω, its closure, its interior, and the
set of its connected components. We also denote by diam(ϕ) and hull(ϕ), respectively, the manifold diameter
and convex hull. More precisely, if ϕ is connected, we let diam(ϕ) := maxξ,η∈ϕ ρ(ξ, η), where ρ(ξ, η) is the
infimum of lengths of continuous piecewise C1-paths between ξ and η in ϕ. If ϕ is not connected, by abuse
of notation, we denote by diam(ϕ) the diameter of hull(ϕ), where hull(ϕ) is the smallest geodesically convex
subset of ∂ω containing ϕ, that is, given any two points in hull(ϕ), there is a unique minimizing geodesic
contained within hull(ϕ) that joins those two points.

Moreover, for any function z defined on ω, we denote zω its average over ω. Furthermore, for 1 ≤ p ≤ ∞,
let ‖ · ‖Lp(ω) be the norm in Lp(ω), and let Hs(ω) denote the Sobolev space of order s ∈ R whose classical
norm and semi-norm are written ‖ · ‖s,ω and | · |s,ω, respectively. We recall from Ref. [44, Definition 1.3.2.1],
that for all z ∈ Hs(ω) with θ := s− bsc,

‖z‖2s,ω := ‖z‖2bsc,ω + |z|2θ,ω; |z|2θ,ω :=

ˆ
ω

ˆ
ω

(
z(x)− z(y)

)2
|x− y|k+2θ

dx dy.

We also write L2(ω) := H0(ω) so that the norm in L2(ω) will be written ‖ · ‖0,ω. And to deal with boundary

conditions, for z ∈ H 1
2 (ϕ), we denote

H1
z,ϕ(ω) :=

{
y ∈ H1(ω) : trϕ(y) = z

}
,

where trϕ(y) denotes the trace of y on ϕ ⊂ ∂ω. Moreover, we consider the Sobolev space

H
1
2
00(ϕ) :=

{
z ∈ L2(ϕ) : z? ∈ H 1

2 (∂ω)
}
,

where z? is the extension of z by 0 on ∂ω, with its norm and semi-norm that we respectively denote ‖·‖
H

1/2
00 (ϕ)

and | · |
H

1/2
00 (ϕ)

, where

‖z‖2
H

1/2
00 (ϕ)

:= ‖z‖21
2 ,ϕ

+ |z|2
H

1/2
00 (ϕ)

and |z|2
H

1/2
00 (ϕ)

:=

ˆ
ϕ

ˆ
∂ω\ϕ

z2(s)

|s− t|n
dtds.
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We recall from Ref. [44, Lemma 1.3.2.6], that there are two constants C ≥ c > 0 (independent from the

measure of ϕ) such that for all z ∈ H
1
2
00 (ϕ),

c|z|2
H

1/2
00 (ϕ)

≤
ˆ
ϕ

z2(s)

dist (s, ∂ϕ)
ds ≤ C|z|2

H
1/2
00 (ϕ)

,

and from Ref. [44, Eq. (1,3,2,7)], ‖z‖
H

1/2
00 (ϕ)

= ‖z?‖ 1
2 ,∂ω

. In particular, we have |z|21
2 ,ϕ

+ |z|2
H

1/2
00 (ϕ)

= |z?|21
2 ,∂ω

.

When ϕ is not a connected set, then we define

H
1
2
00(ϕ) :=

{
z ∈ L2(ϕ) : z|ϕc

∈ H
1
2
00(ϕc),∀ϕc ∈ conn(ϕ)

}
,

and we equip this space with the norm

‖ · ‖
H

1/2
00 (ϕ)

:=

 ∑
ϕc∈conn(ϕ)

‖ · ‖2
H

1/2
00 (ϕc)

 1
2

.

Next, let H
− 1

2
00 (ϕ) be the dual space of H

1
2
00(ϕ) equipped with the dual norm written ‖·‖

H
−1/2
00 (ϕ)

. Furthermore,

for m ∈ N, let Qm(ω) be the set of polynomials on ω of degree at most m on each variable. And if {ω`}L`=1

is a given partition of ω such that each ω` is a flat element, that is, a straight line if k = 1 or a flat square
or triangle if k = 2, let Qpw

m,0(ω) be the set of continuous functions q such that q|∂ω ≡ 0, q|ω`
∈ Qm (ω`) for

all ` = 1, . . . , L.
Finally, we will need the following assumptions on different domains, where the symbol . is used to mean

any inequality which does not depend on the size of considered domains, but which can depend on their
shape.

Definition 2.1 We say that ω is isotropic if

diam (ω) . max
ωc∈conn(ω)

(
diam(ωc)

)
,

and if each connected component ωc of ω is isotropic, that is if diam(ωc)
k . |ωc|, for all ωc ∈ conn(ω).

Definition 2.2 We say that ω is regular if ω is piecewise shape regular and composed of flat elements, that

is, if there is Lω ∈ N such that ω = int

(
Lω⋃
`=1

ω`

)
, where for all `,m = 1, . . . , Lω, ω` ∩ ωm = ∅, |ω| . |ω`| and

ω` is flat (for instance, if k = 1, it is a straight line).

If ω is regular, for all m ∈ N, we define Πm,ω : L2(ω) → Qpw
m,0(ω) as the extension of the Clément

operator [45] developed in Ref. [46] on ω.

3 Defeaturing model problem

Let us consider a given open Lipschitz domain Ω ⊂ Rn that can potentially be complex: in this paper, we
assume that it contains a feature F , that is, one geometrical detail of smaller scale. There exist three kinds
of such geometrical features: a feature F ⊂ Rn is said to be

• negative if
(
F ∩ Ω

)
⊂ ∂Ω;

• positive if F ⊂ Ω;

• complex if it is composed of both negative and positive components.

Analysis-aware defeaturing: problem setting and a posteriori estimation 4



Ω

F

γ

(a) Domain with a negative
feature.

γ

Ω

F

(b) Domain with a positive
feature.

γ0

Ω0

(c) Simplified domain for
domains (a) and (b).

γ

Ω0

F

γ0

(d) Domain with a positive
feature,
Ω := int

(
Ω0 ∪ F

)
.

Figure 2: Different examples of geometries with a negative or a positive feature.

A positive feature corresponds to the addition of some material, a negative feature corresponds to a part where
some material has been removed, and a feature is complex in the most general situation that corresponds to
both the addition and the removal of some material.

In this section, we suppose that F is either negative or positive, and the considered defeaturing problem
is stated, together with the notation for the problem that will be used throughout the article. The general
situation in which F is a complex feature will then be studied in Sec. 5.

So for now, let F be an open Lipschitz feature which is either positive or negative, as in Fig. 2. Then, let
Ω0 ⊂ Rn be the defeatured (or simplified) geometry, that is

• if F is negative, Ω0 := int
(
Ω ∪ F

)
;

• if F is positive, Ω0 := Ω \ F ,

and we also assume that Ω0 is an open Lipschitz domain. In other words, if the feature F is negative, then
the exact domain Ω is embedded in the defeatured domain Ω0; if F is positive instead, the exact domain Ω
is the union of the defeatured domain Ω0 and the feature F .

Let n, n0 and nF be the unitary outward normals of Ω, Ω0 and F respectively. Let ∂Ω = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅ with ΓD 6= ∅, and we assume that ΓD ∩ ∂F = ∅. Finally, let γ0 := ∂F \ ΓN ⊂ ∂Ω0 and
γ := ∂F \ γ0 ⊂ ∂Ω so that ∂F = γ ∪ γ0 and γ ∩ γ0 = ∅ (see Fig. 2). In particular, note that an internal
feature F is a negative feature for which γ = ∂F and γ0 = ∅. In the following, the defeaturing problem is
stated, and the cases in which F is either positive or negative are treated separately.

Let h ∈ H 3
2 (ΓD), g ∈ H 1

2 (ΓN ) and f ∈ L2 (Ω). The considered problem is Poisson equation on the exact
geometry Ω: find u ∈ H1(Ω), the weak solution of

−∆u = f in Ω

u = h on ΓD
∂u

∂n
= g on ΓN ,

(1)

that is, u ∈ H1
h,ΓD

(Ω) satisfies for all v ∈ H1
0,ΓD

(Ω),

ˆ
Ω

∇u · ∇v dx =

ˆ
Ω

fv dx+

ˆ
ΓN

gv ds. (2)

If feature F is negative, consider any L2-extension of f ∈ L2(Ω) in F , that we still write f ∈ L2(Ω0) by
abuse of notation. Note that such an extension is not needed for a positive feature. Then, instead of (1),

the following defeatured (or simplified) problem is solved: given g0 ∈ H
1
2 (γ0), find u0 ∈ H1(Ω0), the weak

Analysis-aware defeaturing: problem setting and a posteriori estimation 5



solution of 

−∆u0 = f in Ω0

u0 = h on ΓD
∂u0

∂n0
= g on ΓN \ γ

∂u0

∂n0
= g0 on γ0,

(3)

that is, u0 ∈ H1
h,ΓD

(Ω0) satisfies for all v ∈ H1
0,ΓD

(Ω0),

ˆ
Ω0

∇u0 · ∇v dx =

ˆ
Ω0

fv dx+

ˆ
ΓN\γ

gv ds+

ˆ
γ0

g0v ds. (4)

We are interested in controlling the energy norm of the defeaturing error, which we suitably define in what
follows.

Negative feature case: since Ω ⊂ Ω0 in this case, we consider the restriction of u0 to Ω. Then we define
the defeaturing error as

∣∣u− u0|Ω
∣∣
1,Ω

. In this setting, we suppose that γ is isotropic according to Definition

2.1, where the diameter and the convex hull of γ are considered in the manifold ∂Ω (see Sec. 2).

Positive feature case: the solution u0 is only defined in the defeatured geometry Ω0 which does not contain
the feature F , since F ⊂ Ω but F 6⊂ Ω0. That is, the solution u0 is not defined everywhere on the exact
geometry Ω = int

(
Ω0 ∪ F

)
. Therefore, to define the defeaturing error, and since Ω is the union of Ω0 and

F , one needs to solve a problem to extend u0 to F . The most natural extension would be the solution of
−∆ũ0 = f in F

ũ0 = u0 on γ0

∂ũ0

∂nF
= g on γ.

(5)

However, F may be complex or even non-smooth (see the examples in Sec. 6.3), thus finding or computing
the solution of (5) may be cumbersome. Therefore, let F̃ ⊂ Rn be a Lipschitz domain that contains F and

such that γ0 ⊂
(
∂F̃ ∩ ∂F

)
, that is, F̃ is a suitable (simple) domain extension of F such as the bounding box

of F for example. Note that it is possible to have F̃ ∩ Ω0 6= ∅, but we also assume that F̃ \ F is Lipschitz.
Thus if we consider any L2-extension of f in F̃ , that we still write f by abuse of notation, then we can solve
an extension problem in F̃ instead of F . Note that one can look at F̃ as the defeatured geometry of the
positive feature F , that is, as a geometry simplified from the exact geometry F , for which F̃ \F is a negative
feature.

γ

Ω

(a) Domain Ω with a positive fea-
ture F .

γ0

γr

γs

Ω0

F

(b) Simplified domain Ω0 and posi-
tive feature F , Ω = int

(
Ω0 ∪ F

)
.

γ0

Ω0

γs

F̃
γ̃

(c) Example of extended feature do-
main F̃ ⊃ F .

Figure 3: Example of geometry with a positive feature.
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This is illustrated in Fig. 3: instead of solving the extension problem (5) in F , we can choose to solve
an extension problem in F̃ , a simpler domain which shares γ0 as a boundary. Let ñ be the unitary outward
normal of F̃ , let γ̃ := ∂F̃ \ ∂F , and let γ be decomposed as γ = int(γs ∪ γr), where γs and γr are open, γs is
the part of γ that is shared with ∂F̃ while γr is the remaining part of γ, that is, the part that does not belong
to ∂F̃ . Note that γ0 and γ̃ are “simple” boundaries since they are the boundaries of the chosen simplified
geometry Ω0 and of the chosen extended feature domain F̃ , respectively.

Therefore, let us consider the following extension of the solution u0 of (3) on F̃ : given g̃ ∈ H 1
2 (γ̃), find

ũ0 ∈ H1
(
F̃
)

, the weak solution of 

−∆ũ0 = f in F̃

ũ0 = u0 on γ0

∂ũ0

∂ñ
= g̃ on γ̃

∂ũ0

∂ñ
= g on γs,

(6)

that is, ũ0 ∈ H1
u0,γ0

(
F̃
)

satisfies for all v ∈ H1
0,γ0

(
F̃
)

,

ˆ
F̃

∇ũ0 · ∇v dx =

ˆ
F̃

fv dx+

ˆ
γ̃

g̃v ds+

ˆ
γs

gv ds.

Let ud ∈ H1
h,ΓD

(Ω) be the extended defeatured solution, that is,

ud = u0 in Ω0 and ud = ũ0|Fp
in Fp.

Then we define the defeaturing error as |u− ud|1,Ω.
In this setting, we suppose that γ0 and γr are isotropic according to Definition 2.1, where the diameter

and the convex hull γ0 are considered in the manifold ∂Ω0, and the diameter and the convex hull of γr are
considered in the manifold ∂F .

Remark 3.1 The problem is studied in the case in which all domains are Lipschitz, and under the isotropy
conditions stated above. A finer analysis could be performed to take into account more general geometries,
such as the non-Lipschitz fillet of Sec. 6.3, but this goes beyond the scope of this paper. Moreover, when
used, the regularity condition defined in Definition 2.2 is taken for the sake of simplicity, but it can be relaxed
by considering ω piecewise smooth and shape regular instead.

Note that the boundaries γ, γ0 and γr can be non-connected sub-manifolds (see Fig. 2d). In the remaining
part of this article, the symbol . will be used to mean any inequality which does not depend on the size of
the feature F nor on the size of the positive extension F̃ , but which can depend on their shape. Moreover,
we will write A ' B whenever A . B and B . A.

4 Negative feature a posteriori defeaturing error estimator

In this section, an optimal a posteriori defeaturing error estimator is derived in the simplest setting of a
negative feature. We show that the derived estimator is an upper bound and a lower bound (up to oscil-
lations) of the energy norm of the defeaturing error. The key issue in the subsequent analysis is to track
the dependence of all constants from the size of the feature. Although it would be possible to present the
equivalent analysis for a positive feature, we have decided to omit it and to let the positive feature case be a
consequence of the more general case of a complex feature, whose dedicated analysis is presented in Sec. 5.

Let F be a negative feature of Ω, and suppose that γ is isotropic according to Definition 2.1. Then, let

dγ := g +
∂u0

∂nF
on γ (7)

Analysis-aware defeaturing: problem setting and a posteriori estimation 7



be the error term on the Neumann data on γ, and we define the defeaturing error estimator as

En(u0) :=

(
|γ|

1
n−1

∥∥∥dγ − dγγ∥∥∥2

0,γ
+ c2γ |γ|

n
n−1

∣∣∣dγγ∣∣∣2) 1
2

, (8)

where, if we define η ∈ R as the unique solution of η = − log(η),

cγ :=

{
max

(
|log (|γ|)| , η

) 1
2 if n = 2

1 if n = 3.
(9)

We first show that the quantity En(u0) is a reliable estimator for the defeaturing error, i.e., it is an
upper bound for the defeaturing error (see Theorem 4.3). Then, assuming that γ is also regular according to
Definition 2.2, and under mild assumptions for the two-dimensional case, we show that it is also efficient (up
to oscillations), i.e., it is a lower bound for the defeaturing error up to oscillations (see Theorem 4.4). This
means that the whole information on the error introduced by defeaturing a negative feature, in energy norm,
is contained in the boundary γ, and can be accounted by suitably evaluating the error made on the normal
derivative of the solution.

Remark 4.1 Consider the simplified problem (3) restricted to F with the natural Neumann boundary
condition on γ, that is, u0|F ∈ H1(F ) satisfies

−∆ (u0|F ) = f in F
∂ (u0|F )

∂n0
= g0 on γ0

∂ (u0|F )

∂nF
=

∂u0

∂nF
on γ.

By abuse of notation, we omit the explicit restriction of u0 to F . Then if we multiply the restricted problem
by the constant function 1 and integrate by parts, we obtain

ˆ
F

f dx+

ˆ
γ0

g0 ds+

ˆ
γ

∂u0

∂nF
= 0.

Consequently,

dγ
γ

=

(
g +

∂u0

∂nF

)γ
=

1

|γ|

(ˆ
γ

g ds−
ˆ
γ0

g0 ds−
ˆ
F

f dx

)
.

Therefore, the second term of the estimator En(u0) in (8) only depends on the defeatured problem data, and
more precisely on the choice of g0 that one considers on γ0, and on the choice of the extension of f that one
considers in the feature F . As a consequence, if the second term of the estimator (8) dominates, this means
that the defeatured problem data should be better chosen. Moreover, under the following reasonable flux
conservation assumption ˆ

γ

g ds−
ˆ
γ0

g0 ds−
ˆ
F

f dx = 0, (10)

the defeaturing error estimator (8) rewrites

En(u0) = |γ|
1

2(n−1) ‖dγ‖0,γ .

Note that condition (10) is easily met if the Neumann boundary condition g and the source function f are
zero in the vicinity of the feature.

Analysis-aware defeaturing: problem setting and a posteriori estimation 8



Remark 4.2 Since (4c2γ − 1) > 0 for all γ, remark that by Cauchy-Schwarz inequality,

En(u0) . |γ|
1

2(n−1)

[
‖dγ − dγ

γ‖20,γ + 4c2γ |γ|
(
dγ
γ
)2
] 1

2

= |γ|
1

2(n−1)

[
‖dγ‖20,γ +

(
4c2γ − 1

)
|γ|
(
dγ
γ
)2
] 1

2

. cγ |γ|
1

2(n−1) ‖dγ‖0,γ =: Ẽn(u0).

One could be tempted to use the simpler indicator Ẽn(u0), but when n = 2 and under the flux conservation
condition (10), Ẽn(u0) is sub-optimal since in this case, Ẽn(u0) = cγEn(u0). Indeed, no lower bound can be

provided for Ẽn(u0).

4.1 Upper bound

In this section, we prove that the error indicator defined in (8) is reliable, that is, it is an upper bound for
the defeaturing error.

Theorem 4.3 Let u and u0 be the weak solutions of problems (1) and (3), respectively. If γ is isotropic
according to Definition 2.1, then the defeaturing error in energy norm is bounded in terms of the estimator
En(u0) introduced in (8) as follows: ∣∣u− u0|Ω

∣∣
1,Ω

. En(u0).

Proof. Let us first consider the simplified problem (3) restricted to Ω with the natural Neumann boundary
condition on γ, that is, since nF = −n on γ, the restriction u0|Ω ∈ H1

h,ΓD
(Ω) is the weak solution of

−∆ (u0|Ω) = f in Ω

u0|Ω = h on ΓD
∂ (u0|Ω)

∂n
= g on ΓN \ γ

∂ (u0|Ω)

∂n
= − ∂u0

∂nF
on γ.

(11)

By abuse of notation, we omit the explicit restriction of u0 to Ω. Then, for all v ∈ H1
0,ΓD

(Ω),

ˆ
Ω

∇u0 · ∇v dx =

ˆ
Ω

fv dx+

ˆ
ΓN\γ

gv ds−
ˆ
γ

∂u0

∂nF
v ds. (12)

Let e := u− u0 ∈ H1
0,ΓD

(Ω). Then for all v ∈ H1
0,ΓD

(Ω), it holds from equations (2) and (12) that

ˆ
Ω

∇e · ∇v dx =

ˆ
ΓN

gv ds−
ˆ

ΓN\γ
gv ds+

ˆ
γ

∂u0

∂nF
v ds

=

ˆ
γ

(
g +

∂u0

∂nF

)
v ds =

ˆ
γ

dγv ds. (13)

Now, if we take v = e ∈ H1
0,ΓD

(Ω) in (13), then

|e|21,Ω =

ˆ
γ

dγeds =

ˆ
γ

(
dγ − dγ

γ
)
eds+ dγ

γ
ˆ
γ

eds. (14)
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Let us first estimate the first term of (14). Thanks to Poincaré inequality of Appendix A.1 and a trace
inequality, ˆ

γ

(
dγ − dγ

γ
)
eds =

ˆ
γ

(
dγ − dγ

γ
)

(e− eγ) ds ≤
∥∥∥dγ − dγγ∥∥∥

0,γ
‖e− eγ‖0,γ

.
∥∥∥dγ − dγγ∥∥∥

0,γ
|γ|

1
2(n−1) |e| 1

2 ,γ
≤ |γ|

1
2(n−1)

∥∥∥dγ − dγγ∥∥∥
0,γ
|e| 1

2 ,∂Ω

. |γ|
1

2(n−1)

∥∥∥dγ − dγγ∥∥∥
0,γ
|e|1,Ω. (15)

Moreover, the second term of (14) can be estimated thanks to Appendix A.2 and a trace inequality, that is,

dγ
γ
ˆ
γ

e ds ≤
∣∣∣dγγ∣∣∣ |γ| 12 ‖e‖0,γ .

∣∣∣dγγ∣∣∣ cγ |γ| 1
2(n−1)

+ 1
2 ‖e‖ 1

2 ,∂Ω

. cγ |γ|
n

2(n−1)

∣∣∣dγγ∣∣∣ |e|1,Ω. (16)

Therefore, combining (14), (15) and (16), and simplifying on both sides, we obtain the desired result.

4.2 Lower bound

In this section, we prove that the error indicator defined in (8) is efficient, that is, it is a lower bound for the
defeaturing error, up to oscillations. In the case n = 2, the flux conservation assumption (10) is also required.

Theorem 4.4 Let u and u0 be as in Theorem 4.3, and assume that γ is isotropic and regular according
to Definitions 2.1 and 2.2. Suppose that either n = 3, or n = 2 and the flux conservation condition (10)
is satisfied. Then the defeaturing error, in energy norm, bounds up to oscillations the estimator En(u0)
introduced in (8), that is

En(u0) .
∣∣u− u0|Ω

∣∣
1,Ω

+ oscn(u0),

where

oscn(u0) := |γ|
1

2(n−1) ‖dγ −Πm (dγ)‖0,γ (17)

for any m ∈ N, with Πm := Πm,γ being the extension of the Clément operator defined in Sec. 2.

Proof. To simplify the notation, we omit to explicitly write the restriction of u0 to Ω when it would be
necessary, since the context makes it clear. As before, let e := u − u0 ∈ H1

0,ΓD
(Ω). From equation (13), for

all v ∈ H1
0,ΓD

(Ω), ˆ
γ

dγv ds =

ˆ
Ω

∇e · ∇v dx ≤ |e|1,Ω|v|1,Ω. (18)

Now, for all w ∈ H
1
2
00(γ), let uw ∈ H1

0,∂Ω\γ(Ω) ⊂ H1
0,ΓD

(Ω) be the unique weak solution of{
−∆uw = 0 in Ω

uw = w? on ∂Ω,

where w? is the extension of w by 0. Then |uw|1,Ω . ‖w?‖ 1
2 ,∂Ω = ‖w‖

H
1/2
00 (γ)

by continuity of the solution

on the data. Therefore, using (18),

‖dγ‖H−1/2
00 (γ)

= sup
w∈H1/2

00 (γ)
w 6=0

ˆ
γ

dγw ds

‖w‖
H

1/2
00 (γ)

. sup
w∈H1/2

00 (γ)
w 6=0

ˆ
γ

dγuw ds

|uw|1,Ω

≤ sup
v∈H1

0,ΓD
(Ω)

v 6=0

ˆ
γ

dγv ds

|v|1,Ω
≤ sup
v∈H1

0,ΓD
(Ω)

v 6=0

|e|1,Ω|v|1,Ω
|v|1,Ω

= |e|1,Ω. (19)
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Moreover, using Remark 4.2 if n = 3, or Remark 4.1 if n = 2 and if the flux conservation condition (10) is
satisfied, then

En(u0) . |γ|
1

2(n−1) ‖dγ‖0,γ .

Therefore, using the triangle inequality and applying the inverse inequality of Appendix A.5, we get

En(u0) . |γ|
1

2(n−1)

(
‖Πm (dγ)‖0,γ + ‖dγ −Πm (dγ)‖0,γ

)
. ‖Πm (dγ)‖

H
−1/2
00 (γ)

+ |γ|
1

2(n−1) ‖dγ −Πm (dγ)‖0,γ . (20)

Finally, using another time the triangle inequality, Appendix A.4 and (19), we obtain

‖Πm (dγ)‖
H

−1/2
00 (γ)

≤ ‖dγ‖H−1/2
00 (γ)

+ ‖Πm (dγ)− dγ‖H−1/2
00 (γ)

. |e|1,Ω + |γ|
1

2(n−1) ‖dγ −Πm (dγ)‖0,γ . (21)

Consequently, combining (20) and (21), and recalling the definition (17) of the oscillations, then

En(u0) . |e|1,Ω + oscn(u0).

Remark 4.5 In some sense, the oscillations pollute the lower bound in Theorem 4.4. It is therefore important
to make sure that the oscillations are asymptotically smaller than the defeaturing error, with respect to the
size of the feature. While there is a strong numerical evidence of it (see Sec. 6), an a priori error analysis
of the defeaturing problem is needed in order to obtain a rigorous proof, but this goes beyond the scope of
this paper. However, we are expecting the term ‖dγ‖0,γ to depend on the measure of γ. When the data is
regular, so is u0, and it is then always possible to choose m large enough so that the asymptotic behavior of

the oscillations is O
(
|γ|m+ 1

2(n−1)

)
. Therefore, upon a wise choice of m, the oscillations converge faster than

the defeaturing error with respect to the measure of γ.

5 Defeaturing a geometry with a complex feature

In this section, instead of discussing only a defeaturing error estimator for a geometry containing a positive
feature, we directly generalize the previous study to a geometry containing a complex feature, that is, a
feature containing both negative and positive components. More precisely, we first generalize the defeaturing
problem of Sec. 3 to this context, and then we derive a corresponding optimal a posteriori defeaturing error
estimator. Building upon the study of Sec. 4, we show that the derived estimator is an upper bound and
a lower bound (up to oscillations) of the energy norm of the defeaturing error, by accurately tracking the
dependence of all constants from the size of the feature.

5.1 Defeaturing model problem for a complex feature

Suppose now that F ⊂ Rn is a complex feature. More precisely, this means that we suppose that F is an
open Lipschitz domain which is composed of a negative component Fn and a positive component Fp that can
have a non-empty intersection (see Fig. 4). More precisely, F = int

(
Fn ∪ Fp

)
, where Fn and Fp are open

Lipschitz domains such that if we let
Ω? := Ω \ Fp,

then Fp ⊂ Ω and Fn ∩Ω? ⊂ ∂Ω?. In particular, note that if Fp = ∅ and F = Fn, then F is negative, while if
Fn = ∅ and F = Fp, then F is positive, as defined in Sec. 3.

In this setting, the defeatured geometry is defined by Ω0 := int
(
Ω? ∪ Fn

)
⊂ Rn, and as before, we also

assume that Ω0 is an open Lipschitz domain. Note that it is in general not true that Ω? = Ω ∩ Ω0 (see
Fig. 4f), while it is true if F is completely negative or positive.
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Ω

F = Fn

γ = γn

(a) Domain with a negative
feature.

γ = γp

Ω

F = Fp

(b) Domain with a positive
feature.

γn

γp

Ω

Fp

Fn

(c) Domain with a general
complex feature.

γ0

Ω0

(d) Simplified domain for
domains (a)–(c), (e)–(f).

γn

γp

Ω

Fp

Fn

(e) Domain with a general
complex feature.

γn

γp

Ω

Fp

Fn

(f) Domain with a general
complex feature.

γ0,n

γ0,p

Ω0

(g) Simplified domain for
domains (e), (f).

γ = γp

Ω0

F = Fp

γ0 = γ0,p

(h) Domain with a positive
feature,
Ω := int

(
Ω0 ∪ F

)
.

Figure 4: Different examples of geometries with a negative, a positive, or a general complex feature.

The considered problem in the exact geometry Ω is still the Poisson equation defined in (1), for which we
assume that ΓD ∩ (∂Fn ∪ ∂Fp) = ∅. Moreover, let

γ0 := int (γ0,n ∪ γ0,p) ⊂ ∂Ω0 with γ0,n := ∂Fn \ ∂Ω?, γ0,p := ∂Fp \ ∂Ω,

γ := int (γn ∪ γp) ⊂ ∂Ω with γn := ∂Fn \ γ0,n, γp := ∂Fp \ γ0,p.

so that ∂Fn = γn ∪ γ0,n with γn ∩ γ0,n = ∅, and ∂Fp = γp ∪ γ0,p with γp ∩ γ0,p = ∅ (see Fig. 4).
Similarly to the negative feature case, consider any L2-extension of the restriction f |Ω? in the negative

component Fn of F , that we still write f ∈ L2(Ω0) by abuse of notation. Then instead of (1), we solve
the defeatured (or simplified) problem (3) whose weak formulation is given in (4). As previously, we are
interested in controlling the energy norm of the defeaturing error, which we suitably define in what follows.

Similarly to the positive feature case, the solution u0 of the defeatured problem is not defined everywhere
on Ω since Fp \ Fn 6⊂ Ω0 but Fp \ Fn ⊂ Ω. Therefore, following the same rationale for Fp as the one exposed

in Sec. 3, let F̃p ⊂ Rn be a Lipschitz domain that contains Fp and such that γ0,p ⊂
(
∂F̃p ∩ ∂Fp

)
, that is,

F̃p is a suitable (simple) domain extension of Fp such as the bounding box of Fp for example. Let us also

assume that F̃p \ Fp is Lipschitz, and consider any L2-extension of f in F̃p, that we still write f by abuse

of notation. Let ñ be the unitary outward normal of F̃p, let γ̃ := ∂F̃p \ ∂Fp, and let γp be decomposed as

γp = int(γs ∪ γr), where γs and γr are open, γs is the part of γp that is shared with ∂F̃p while γr is the

remaining part of γp, that is, the part that does not belong to ∂F̃p, see Fig. 5.
Therefore, and as for the positive feature case, we can consider the extension of the solution u0 of (3) on

F̃p, called ũ0 ∈ H1
u0,γ0,p

(
F̃p

)
and defined as the weak solution of (6) where F , F̃ and γ0 are replaced by Fp,

F̃p and γ0,p, respectively. Now, we can define the extended defeatured solution ud ∈ H1
h,ΓD

(Ω) as

ud = u0|Ω0\Fn
in Ω? = Ω \ Fp and ud = ũ0|Fp

in Fp. (22)

Then the defeaturing error is defined by |u− ud|1,Ω.

Remark 5.1 Note that if Fn ∩Fp 6= ∅, it may happen that u0 6= ũ0 on Fn ∩Fp. But in this case, on Fn ∩Fp,
the definition of ud in (22) specifies that ud = ũ0.
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Fn

Fp

Ω

γp

γn

(a) Domain Ω with feature F that has non-empty posi-
tive and negative components Fp and Fn.

F̃p

Ω0

γ0,p γ0,n

γ̃

γr

(b) Simplified domain Ω0, extension F̃p of the positive
component of the feature, and different boundaries.

Figure 5: Example of a geometry with a feature whose positive and negative components share a part of the
boundary.

In this setting, we suppose that γn, γ0,p and γr are isotropic according to Definition 2.1, where the diameter
and the convex hull of γn, γ0,p and γr are considered in the manifolds ∂Ω, ∂Ω0 and ∂F , respectively (see
Sec. 2). Note that, as before, the considered boundaries can be non-connected sub-manifolds. Finally, for
further use, let Σ := {γn, γr, γ0,p} and let dΣ be defined piecewise as dΣ|σ := dσ for all σ ∈ Σ, with

dσ :=


g − ∂ud

∂n
if σ = γn or σ = γr

−
(
g0 +

∂ud

∂nF

)
if σ = γ0,p.

(23)

That is, dσ is the error term on the Neumann data for σ = γn or σ = γr, and dγ0,p
is the jump in the normal

derivative of ud due to the Dirichlet extension of ud in the positive component of the feature.

5.2 Complex feature a posteriori defeaturing error estimator

Recalling the definition of the defeaturing solution ud in (22) and of Σ and dσ in (23), we define the defeaturing
error estimator as

E(ud) :=

[∑
σ∈Σ

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2σ |σ|

n
n−1

∣∣∣dσσ∣∣∣2)]
1
2

, (24)

where cσ is defined as in (9).

Remark 5.2 If F is a negative feature, then E(ud) = En(u0) where En(u0) is defined in (8), while if F is a
positive feature, then E(ud) = Ep(ũ0) where

Ep(ũ0) :=

|γ0|
1

n−1

∥∥∥∥∥
(
g0 +

∂ũ0

∂nF

)
−
(
g0 +

∂ũ0

∂nF

)γ0
∥∥∥∥∥

2

0,γ0

+ |γr|
1

n−1

∥∥∥∥∥
(
g − ∂ũ0

∂nF

)
−
(
g − ∂ũ0

∂nF

)γr
∥∥∥∥∥

2

0,γr

+ c2γ0
|γ0|

n
n−1

∣∣∣∣∣
(
g0 +

∂ũ0

∂nF

)γ0
∣∣∣∣∣
2

+ c2γr
|γr|

n
n−1

∣∣∣∣∣
(
g − ∂ũ0

∂nF

)γr
∣∣∣∣∣
2
 1

2

.
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In this section, we first show that the quantity E(ud) is a reliable estimator for the defeaturing error, i.e.,
it is an upper bound for the defeaturing error (see Theorem 5.5). Then, assuming that γn, γr and γ0,p are
also regular according to Definition 2.2, and under mild assumptions for the two-dimensional case, we show
that it is also efficient (up to oscillations), i.e., it is a lower bound for the defeaturing error up to oscillations
(see Theorem 5.6).

Remark 5.3 Consider the simplified extended problem (6) restricted to Fp and then to F̃p \ Fp, with the
natural Neumann boundary condition on γ0,p and γr respectively, in a similar way to (11). By abuse of

notation and as previously, we omit the explicit restriction of ũ0 to Fp or to F̃p \Fp. Then if we multiply the
restricted problems by the constant function 1 and integrate by parts, we obtain

ˆ
Fp

f dx+

ˆ
γp

g ds+

ˆ
γ0,p

∂ũ0

∂nF
ds = 0,

and

ˆ
F̃p\Fp

f dx+

ˆ
γ̃

g̃ ds−
ˆ
γr

∂ũ0

∂nF
ds = 0.

Consequently,

dγ0,p

γ0,p
=

(
g0 +

∂ũ0

∂nF

)γ0,p

=
1

|γ0,p|

(ˆ
γ0,p

g0 ds−
ˆ
γp

g ds−
ˆ
Fp

f dx

)
,

dγr

γr
=

(
g − ∂ũ0

∂nF

)γr

=
1

|γr|

(ˆ
γr

g ds−
ˆ
γ̃

g̃ ds−
ˆ
F̃p\Fp

f dx

)
.

Moreover, as in Remark 4.1, it can be seen that

dγn

γn
=

1

|γn|

(ˆ
γn

g ds−
ˆ
γ0,n

g0 ds−
ˆ
Fn

f dx

)
.

Therefore, the terms involving the average values of dσ in the estimator E(ud) defined in (24) only depend on
the defeatured problem data. More precisely, they only depend on the choice of g0 and g̃ that one chooses on
γ0 and γ̃ respectively, and on the choice of the extension of f that one considers in the extended feature F̃p.
As a consequence, if those terms dominate, this means that the defeatured problem data should be better
chosen. Moreover, under the following reasonable flux conservation assumptions

ˆ
γ0,p

g0 ds =

ˆ
γp

g ds+

ˆ
Fp

f dx,

ˆ
γ̃

g̃ ds =

ˆ
γr

g ds−
ˆ
F̃p\Fp

f dx,

and

ˆ
γ0,n

g0 ds =

ˆ
γn

g ds−
ˆ
Fn

f dx, (25)

the defeaturing error estimator (24) rewrites E(ud) :=

(∑
σ∈Σ

|σ|
1

n−1 ‖dσ‖20,σ

) 1
2

. Conditions (25) are easily

met if the Neumann boundary condition g and the source function f are zero in the vicinity of the feature.

Remark 5.4 Analogously to the case of a negative feature in Remark 4.2, note that

E(ud) .

(∑
σ∈Σ

c2σ |σ|
1

n−1 ‖dσ‖20,σ

) 1
2

=: Ẽ(ud).

One could be tempted to use the simpler indicator Ẽ(ud), but when n = 2 and under the flux conservation
conditions (25), Ẽ (ud) is sub-optimal since in this case, Ẽ(ud) . max

σ∈Σ
(cσ) E(ud). Indeed, no lower bound can

be proven for Ẽ(ud).
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5.2.1 Upper bound

In this section, we prove that the error indicator defined in (24) is reliable, that is, it is an upper bound for
the defeaturing error.

Theorem 5.5 Let ud be the defeaturing solution as defined in (22). If γn, γr and γ0,p are isotropic according
to Definition 2.1, then the defeaturing error in energy norm is bounded in terms of the estimator E(ud)
introduced in (24) as follows:

|u− ud|1,Ω . E(ud).

Proof. Using arguments similar to Theorem 4.3, let us first consider the original problem (1) restricted to
Ω? := Ω\Fp with the natural Neumann boundary condition on γ0,p, that is the restriction u|Ω? ∈ H1

h,ΓD
(Ω?)

is the weak solution of 

−∆ (u|Ω?) = f in Ω?

u|Ω? = h on ΓD
∂ (u|Ω?)

∂n
= g on ΓN \ γp

∂ (u|Ω?)

∂n0
=

∂u

∂n0
on γ0,p.

(26)

By abuse of notation, we omit the explicit restriction of u to Ω?. Then for all v0 ∈ H1
0,ΓD

(Ω?),

ˆ
Ω?

∇u · ∇v0 dx =

ˆ
Ω?

fv0 dx+

ˆ
ΓN\γp

gv0 ds+

ˆ
γ0,p

∂u

∂n0
v0 ds. (27)

Then, let us consider the simplified problem (3) restricted to Ω? with the natural Neumann boundary con-
dition on γn, in the same way as in (11). Thus, since by definition ud|Ω? = u0|Ω? , and if we omit the explicit
restriction of ud to Ω?, for all v0 ∈ H1

0,ΓD
(Ω?),

ˆ
Ω?

∇ud · ∇v0 dx =

ˆ
Ω?

fv0 dx+

ˆ
ΓN\γ

gv0 ds+

ˆ
γn

∂ud

∂n
v0 ds+

ˆ
γ0,p

g0v0 ds. (28)

Let e := u− ud ∈ H1
0,ΓD

(Ω). So from (27) and (28), for all v0 ∈ H1
0,ΓD

(Ω?), we obtain

ˆ
Ω?

∇e · ∇v0 dx =

ˆ
γn

(
g − ∂ud

∂n

)
v0 ds+

ˆ
γ0,p

(
∂u

∂n0
− g0

)
v0 ds. (29)

Now, let us consider the simplified extended problem (6) restricted to Fp with the natural Neumann boundary
condition on γr, in a similar way to (26). Note that ud|Fp = ũ0|Fp , and by abuse of notation and as previously,
we omit the explicit restriction of ud to Fp. That is, ud ∈ H1

(
Fp

)
is one of the infinitely-many solutions (up

to a constant) of
ˆ
Fp

∇ud · ∇vp dx =

ˆ
Fp

fvp dx+

ˆ
γs

gvp ds+

ˆ
γ0,p∪γr

∂ud

∂nF
vp ds, ∀vp ∈ H1

(
Fp

)
. (30)

And let us consider the original problem (1) restricted to Fp with the natural Neumann boundary condition
on γ0,p, again in a similar way to (26). By abuse of notation and as previously, we omit the explicit restriction
of u to Fp. So u ∈ H1

(
Fp

)
is one of the infinitely-many solutions (up to a constant) of

ˆ
Fp

∇u · ∇vp dx =

ˆ
Fp

fvp dx+

ˆ
γp

gvp dx+

ˆ
γ0,p

∂u

∂nF
vp ds, ∀vp ∈ H1

(
Fp

)
. (31)

Consequently, from (30) and (31), for all vp ∈ H1
(
Fp

)
,

ˆ
Fp

∇e · ∇vp dx =

ˆ
γ0,p

∂ (u− ud)

∂nF
vp ds+

ˆ
γr

(
g − ∂ud

∂n

)
vp ds. (32)
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Let v ∈ H1
0,ΓD

(Ω), then v|Ω? ∈ H1
0,ΓD

(Ω?) and v|Fp
∈ H1

(
Fp

)
. Therefore, from equations (29) and (32),

since n0 = −nF on γ0,p and recalling the definitions of Σ and dσ in (23), we obtain

ˆ
Ω

∇e · ∇v dx =
∑
σ∈Σ

ˆ
σ

dσv ds. (33)

Now, if we take v = e ∈ H1
0,ΓD

(Ω) in (33), then

|e|21,Ω =
∑
σ∈Σ

ˆ
σ

dσeds =
∑
σ∈Σ

[ˆ
σ

(
dσ − dσ

σ
)

(e− eσ) ds+ dσ
σ
ˆ
σ

e ds

]
. (34)

For each σ ∈ Σ, the first terms of (34) can be estimated as in (15), using Appendix A.1, trace inequalities
and the discrete Cauchy-Schwarz inequality. Thus we obtain∑

σ∈Σ

ˆ
σ

(
dσ − dσ

σ
)

(e− eσ) ds .
∑
σ∈Σ

|σ|
1

2(n−1)

∥∥∥dσ − dσσ∥∥∥
0,σ
|e| 1

2 ,σ

. |γn|
1

2(n−1)

∥∥∥dγn
− dγn

γn
∥∥∥

0,γn

‖e‖1,Ω?

+

 ∑
σ∈{γ0,p,γr}

|σ|
1

2(n−1)

∥∥∥dσ − dσσ∥∥∥
0,σ

 ‖e‖1,Fp

.

(∑
σ∈Σ

|σ|
1

n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ

) 1
2

|e|1,Ω. (35)

Moreover, for each σ ∈ Σ, the last terms of (34) can be estimated using Appendix A.2, trace inequalities and
the discrete Cauchy-Schwarz inequality to obtain∑

σ∈Σ

dσ
σ
ˆ
σ

eds .
∑
σ∈Σ

∣∣∣dσσ∣∣∣ |σ| 12 ‖e‖0,σ
.

 ∑
σ∈{γn,γ0,p}

∣∣∣dσσ∣∣∣ cσ |σ| 1
2(n−1)

+ 1
2

 ‖e‖ 1
2 ,∂Ω?

+
∣∣∣dγr

γr
∣∣∣ cγr
|γr|

1
2(n−1)

+ 1
2 ‖e‖ 1

2 ,∂Ω

.

(∑
σ∈Σ

c2σ |γσ|
n

n−1

∣∣∣dσσ∣∣∣2)
1
2

|e|1,Ω. (36)

Therefore, combining (34), (35) and (36), and simplifying on both sides, we obtain the desired result.

5.2.2 Lower bound

In this section, we prove that the error indicator defined in (24) is efficient, that is, it is a lower bound for
the defeaturing error, up to oscillations. In the case n = 2, the flux conservation assumptions (25) are also
required.

Theorem 5.6 Consider the same notation and assumptions as in Theorem 5.5, and assume that all σ ∈ Σ
are also regular according to Definition 2.2 with |γn| ' |γr| ' |γ0,p|. Suppose that either n = 3, or n = 2 and
the flux conservation conditions (25) are satisfied. Then the defeaturing error, in energy norm, bounds up to
oscillations the estimator E(ud) introduced in (24), that is

E(ud) . |u− ud|1,Ω + osc(ud),
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where

osc(ud) := |Γ|
1

2(n−1)

(∑
σ∈Σ

‖dσ −Πm(dσ)‖20,σ

) 1
2

(37)

for any m ∈ N, with Γ := γn ∪ γr ∪ γ0,p, Σ and dσ defined as in (23) and Πm such that Πm|σ ≡ Πm,σ for all
σ ∈ Σ, Πm,σ being extensions of the Clément operator as defined in Sec. 2.

Proof. As before, let e := u− ud ∈ H1
0,ΓD

(Ω). Then from equation (33), for all v ∈ H1
0,ΓD

(Ω),∑
σ∈Σ

ˆ
σ

dσv ds =

ˆ
Ω

∇e · ∇v dx ≤ |e|1,Ω|v|1,Ω. (38)

Now, let H :=
{
v ∈ H

1
2
00 (Γ) : v|σ ∈ H

1
2
00(σ), for all σ ∈ Σ

}
, equipped with the norm

‖ · ‖H :=

(∑
σ∈Σ

‖ · ‖2
H

1/2
00 (σ)

) 1
2

,

and let H∗ be its dual space equipped with the dual norm ‖ · ‖H∗ . Recall that Ω? := Ω \ Fp, so that
Ω = int

(
Ω? ∪ Fp

)
. So for all w ∈ H, let us define piecewise the function uw ∈ H1

0,∂Ω\(γn∪γr)
(Ω) as the unique

solution of {
−∆

(
uw|Fp

)
= 0 in Fp

uw|Fp
=
(
w|γr∪γ0,p

)?
on ∂Fp,

{
−∆ (uw|Ω?) = 0 in Ω?

uw|Ω? =
(
w|γn∪γ0,p

)?
on ∂Ω?,

where
(
w|γr∪γ0,p

)?
and

(
w|γn∪γ0,p

)?
are the extensions by 0 of w|γr∪γ0,p on ∂Fp and of w|γn∪γ0,p on ∂Ω?,

respectively. Then by continuity of the solution on the data and from Appendix A.6,

|uw|1,Ω =
(
|uw|21,Fp

+ |uw|21,Ω?

) 1
2

.

(∥∥∥(w|γr∪γ0,p

)?∥∥∥2

1
2 ,∂Fp

+
∥∥∥(w|γn∪γ0,p

)?∥∥∥2

1
2 ,∂Ω?

) 1
2

=
(
‖w‖2

H
1/2
00 (γr∪γ0,p)

+ ‖w‖2
H

1/2
00 (γn∪γ0,p)

) 1
2

. ‖w‖H . (39)

So, recalling that by definition, dΣ|σ = dσ on each σ ∈ Σ, thanks to (38) and (39) and since H1
0,∂Ω\(γn∪γr)

(Ω) ⊂
H1

0,ΓD
(Ω), then

‖dΣ‖H∗ = sup
w∈H
w 6=0

ˆ
Γ

dΣw ds

‖w‖H
. sup
w∈H
w 6=0

∑
σ∈Σ

ˆ
σ

dσuw ds

|uw|1,Ω

≤ sup
v∈H1

0,ΓD
(Ω)

v 6=0

∑
σ∈Σ

ˆ
σ

dσv ds

|v|1,Ω
≤ |e|1,Ω. (40)

Moreover, using Remark 5.4 if n = 3, or Remark 5.3 if n = 2 and if the flux conservation conditions (25) are
satisfied, then

E(ud) .

(∑
σ∈Σ

|σ|
1

n−1 ‖dσ‖20,σ

) 1
2

.
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Therefore, using the triangle inequality, and the fact that |γn| ' |γr| ' |γ0,p| ' |Γ|, then

E(ud)2 ≤
∑
σ∈Σ

|σ|
1

n−1 ‖Πm(dσ)‖20,σ +
∑
σ∈Σ

‖dσ −Πm(dσ)‖20,σ

. |Γ|
1

n−1 ‖Πm(dΣ)‖20,Γ + |Γ|
1

n−1 ‖dΣ −Πm(dΣ)‖20,Γ .

Now, we use the definition of the broken norm in H∗ to apply the inverse inequality of Appendix A.7.
Recalling the definition (37) of the oscillations, and using again the triangle inequality, we thus obtain

E(ud)2 . ‖Πm (dΣ)‖2H∗ + osc (ud)
2

.
[
‖dΣ‖H∗ + ‖Πm (dΣ)− dΣ‖H∗ + osc (ud)

]2
. (41)

Furthermore, applying Appendix A.6 and then Appendix A.4, we have

‖Πm (dΣ)− dΣ‖H∗ . ‖Πm (dΣ)− dΣ‖H−1/2
00 (Γ)

. |Γ|
1

2(n−1) ‖Πm (dΣ)− dΣ‖0,Γ = osc (ud) . (42)

To conclude, we plug in (40) and (42) into equation (41), and thus

E(ud) . |e|1,Ω + osc(ud).

Remark 5.7 As in Remark 4.5, when the data is regular, it is always possible to choose m large enough so

that the asymptotic behavior of the oscillations is O
(
|Γ|m+ 1

2(n−1)

)
. Therefore, we can make sure that the

oscillations get small with respect to the defeaturing error, when the feature gets small.

6 Numerical considerations and experiments

From the definition of the a posteriori defeaturing error estimator (24) in the general case, to estimate the
error introduced by defeaturing the problem geometry, we only need to perform the following steps.

(i) Choose the Neumann data g0 and solve the defeatured problem (3).

(ii) For the positive component Fp of the feature F , choose the Neumann data g̃ and solve the local
extension problem (5). However, features may be geometrically complex, and the solution of the
extension problem an unwanted burden. Therefore, instead of (5), one can solve the extension problem

(6) in a chosen (simple) domain F̃p that contains Fp and such that γ0,p ⊂
(
∂F̃p ∩ ∂Fp

)
.

(iii) Compute the boundary averages and integrals dσ
σ

and
∥∥∥dσ − dσσ∥∥∥

0,σ
for each σ ∈ Σ, as defined in

(23). That is, we suitably evaluate the error made on the normal derivative of the solution on specific
parts of the boundaries of the features.

In the remaining part of the paper, we present a few numerical examples to illustrate the validity of
our defeaturing error estimator. All the numerical experiments presented in the following section have been
implemented in GeoPDEs [47], an open-source and free Octave/Matlab package for the resolution of partial
differential equations specifically designed for isogeometric analysis [3]. For the geometric description of the
features and the local meshing process required, multipatch and trimming techniques have been used [13,48].
Moreover, a rather fine mesh is used in order to neglect the error due to the numerical approximation.
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Ω?
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(a) Domain with a star feature.
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Ωc

γc

(b) Domain with a circle feature.

Fs

Ωs

γs

(c) Domain with a square feature.

Figure 6: Comparison between feature shapes.

Domain Ω Perimeter
of F Area of F E(u0) |u− u0|1,Ω

|u− u0|1,Ω
|u0|0,Ω

Eff. index

Ω?, r? = 1.83 · 10−2 0.400 2.07 · 10−3 1.98 · 10−3 1.56 · 10−3 2.49 · 10−3 1.27

Ωc, rc = 6.37 · 10−2 0.400 1.27 · 10−2 1.21 · 10−2 8.42 · 10−3 1.34 · 10−2 1.45

Ωs, rs = 5.00 · 10−2 0.400 1.00 · 10−2 9.57 · 10−3 6.74 · 10−3 1.07 · 10−2 1.42

Ωc, rc = 5.64 · 10−2 0.355 1.00 · 10−2 1.01 · 10−2 6.76 · 10−3 1.08 · 10−2 1.51

Ω?, r? = 4.02 · 10−2 0.880 1.00 · 10−2 7.53 · 10−3 6.65 · 10−3 1.38 · 10−2 1.13

Table 1: Results of the comparison between feature shapes.

6.1 Impact of some properties of the feature on the defeaturing error

While validating the theory developed in Sec. 4 and Sec. 5, we study the impact of the shape and the size of a
feature on the defeaturing error and estimator, and of the choice of the defeatured Neumann data. Moreover,
as the estimator depends upon the size of the features and the size of the solution gradients “around” the
feature, we will be able to show an example where small features count more than big ones.

6.1.1 Feature shape

In this example, we compare the behavior of the error and the estimator on the same Poisson problem in
three different geometries: one with a star-shaped feature, another one with a circular feature, and the last
one with a squared feature. Let

Ω0 :=
{(
r cos(θ), r sin(θ)

)
∈ R2 : 0 ≤ r < 1, 0 ≤ θ ≤ 2π

}
,

let Ω? := Ω0 \ F?, Ωc := Ω0 \ Fc and Ωs := Ω0 \ Fs, with

• F? the 10-branch regular star of inner radius r? > 0, outer radius 2r?, centered in (0, 0),

• Fc the circle of radius rc > 0, centered in (0, 0),

• Fs the square of side length 2rs > 0, centered in (0, 0),

as in Fig. 6.
We choose r?, rc, rs > 0 such that F?, Fc and Fs have, first, the same area, and then, the same perimeter.

We consider Poisson problem (1) solved in Ω?, Ωc and in Ωs, and its defeatured version (3). We take f ≡ 1
in Ω0, h ≡ 0 on ΓD := ∂Ω0, and g ≡ 0 on ∂F?, on ∂Fc and on ∂Fs.

The results are summarized in Table 1. We can see that in all the cases, the larger the area of the
feature, the larger the defeaturing error and estimator. Moreover, the effectivity index only changes slightly
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(a) Exact domain Ω with two features (not at scale).
0
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(b) Exact solution in Ω.

Figure 7: Geometry with two features of different size and exact solution.

E1(u0) E2(u0) E(u0)
∣∣u− u0

∣∣
1,Ω

|u− u0|1,Ω
|u0|0,Ω

Effectivity index

5.03 · 10−2 7.86 · 10−6 5.03 · 10−2 1.45 · 10−2 2.05 · 10−2 3.47

Table 2: Results of the comparison between feature sizes.

when considering the same feature but with different measures: this shows that it is indeed independent
from the measure of the considered feature and its boundary. The small change in the effectivity index is
only due to numerical approximation, the solutions not being exact but being obtained on a very fine mesh.
Furthermore, the shape of the feature does not impact much the defeaturing estimator: we do not observe
any major difference between the smooth feature (the circle), the convex non-smooth Lipschitz feature (the
square), and the non-convex non-smooth Lipschitz feature (the star). Our theory indeed treats those different
types of geometries in the same way. Finally, even if the estimator is referred to the absolute error, both the
relative and the absolute errors are given to be able to quantify the magnitude of the defeaturing effect.

6.1.2 Feature size

Removing a small feature where the solution of the PDE has a high gradient can significantly increase the
defeaturing error, while the error might almost not be affected when removing a large feature where the
solution of the PDE is nearly constant. The following example shows that our estimator is also able to

capture this. Let Ω0 := (0, 1)2 and Ω := Ω0 \
(
F 1 ∪ F 2

)
, where F 1 and F 2 are circles of two different sizes

given by

F 1 :=
{

(1.1 · 10−3, 1.1 · 10−3) +
(
r cos(θ), r sin(θ)

)
∈ R2 :

0 ≤ r < 10−3, 0 ≤ θ ≤ 2π
}
,

F 2 :=
{

(8.9 · 10−1, 8.9 · 10−1) +
(
r cos(θ), r sin(θ)

)
∈ R2 :

0 ≤ r < 10−1, 0 ≤ θ ≤ 2π
}
,

similarly as in Fig. 7a. We consider Poisson problem (1) solved in Ω, and its defeatured version (3) in Ω0.
Let f(x, y) := −128e−8(x+y) in Ω0, h(x, y) := e−8(x+y) on

ΓD :=
{

(x, 0), (0, y) ∈ R2 : 0 ≤ x, y < 1
}
,

the bottom and left sides, g(x, y) := −8e−8(x+y) on ∂Ω0 \ ΓD, and finally g ≡ 0 on ∂F 1 ∪ ∂F 2. Since the
geometry contains two features, we call E1 and E2 the defeaturing estimators defined in (8) and computed,
respectively, on the boundary of F 1 and on the boundary of F 2, and we consider the sum of E1 and E2 as
the total defeaturing estimator E .

With this choice, the solution to Poisson problem has a very high gradient near feature F 1, and it is
almost constantly zero near feature F 2, as we can observe in Fig. 7b. Therefore, one can expect the presence
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Figure 8: 2D geometries Ωiε, i = 1, 2, 3, 4.

of F 1 to be more important than F 2 with respect to the solution accuracy, even if F 1 is notably smaller than
F 2. The results are presented in Table 2, where we can see that this is indeed the case: the estimator on
F 2 is four orders of magnitude smaller than the estimator on F 1, even if the radius of F 1 is two orders of
magnitude smaller than the one of F 2. This confirms the fact that our estimator as written in (24) correctly
trades off the measure of the features and their position in the geometrical domain, in order to correctly
assess the impact of defeaturing on the solution.

Finally, and as in the previous numerical experiment of Sec. 6.1.2, both the relative error and the absolute
error are given to be able to quantify the magnitude of the defeaturing effect. In the following, we will be
interested in the convergence of the error and estimator with respect to the size of the feature. Since the
relative error is a scaling of the absolute error, the convergence will be the same whether one considers the
relative or the absolute error. Moreover, since the magnitude of the error depends on the problem at hand
(geometries, size of the feature, and PDE data), and since the derived estimator is referred to the absolute
error, we will only look at the absolute defeaturing error in the next experiments.

6.2 Error convergence with respect to the feature size

We now analyze the convergence of our estimator with respect to the size of the feature and we compare
it with the convergence of the defeaturing error. Moreover, we show an example in which the choice of the
defeatured problem data influences drastically the convergence of both the estimator and the defeaturing
error.

6.2.1 Two-dimensional geometries

We begin with two-dimensional examples of geometries with a negative feature. For k = 0, 1, . . . , 6, let

ε =
10−2

2k
, and let Ωiε := Ω0 \ F iε for i = 1, 2 with Ω0 := (0, 1)2 and

F 1
ε :=

{(
0.5 + r cos(θ), 1 + r sin(θ)

)
∈ R2 : 0 ≤ r < ε,−π < θ < 0

}
,

F 2
ε := (1− ε, 1)2,

as in Fig. 8a and Fig. 8b. For i = 1, 2, we consider Poisson problem (1) solved in Ωiε, and its defeatured
version (3) in Ω0. We take f(x, y) := 10 cos(3πx) sin(5πy) in Ω0, h ≡ 0 on

ΓD :=
{

(x, 0) ∈ R2 : 0 < x < 1
}
,

g ≡ 0 on ΓN := ∂Ωiε\ΓD, and g0 ≡ 0 on ∂Ω0\∂Ωiε. We respectively call u(i) and u
(i)
0 the exact and defeatured

solutions.
The results are presented in Fig. 9a. Both the error and the estimator converge with respect to the size

of the feature as ε ∝ |γ| in the first geometry Ω1
ε, and as ε2 ∝ |γ|2 in the second geometry Ω2

ε. Clearly,
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Figure 9: Convergence of the error and of the estimator in 2D domains with one feature.

the difference in asymptotic behavior of the error depends on symmetries and on the Neumann boundary
conditions. Indeed, Ω2

ε has features with sides parallel to ∂Ω0. Moreover, the effectivity index is indeed
independent from the size of the feature since it remains nearly equal to 1.81 and 1.78, respectively, and
for all values of ε. That is, as predicted by the theory since the estimator is both reliable (Theorem 4.3)
and efficient up to oscillations (Theorem 4.4), here in dimension two, the dependence of the estimator with
respect to the size of the feature is explicit.

Let us now consider two-dimensional examples of geometries with a positive feature. Let Ω0, ΓD, f , h

and g be as before, and let Ωjε := int
(

Ω0 ∪ F jε
)

for j = 3, 4 with

F 3
ε :=

{(
0.5 + r cos(θ), 1 + r sin(θ)

)
∈ R2 : 0 ≤ r < ε, 0 < θ < π

}
,

F 4
ε := (1− ε, 1)× (1, 1 + ε),

as in Fig. 8c and Fig. 8d. Let ΓN := ∂Ωjε \ ΓD. For each j = 3, 4, we consider the same Poisson problem (1)
as before, but solved in Ωjε. We also solve its defeatured version (3) in Ω0 with g0 ≡ 0 on ∂Ω0 \ ∂Ωjε. Then

we extend the defeatured solution to F jε by (6) with F̃ := F jε . We respectively call u(j) and u
(j)
0 the exact

and defeatured solutions, and u
(j)
d the defeatured solution extended to F jε .

The results are presented in Fig. 9b. As for the negative feature case, the error in Ω0 and the estimator
converge with respect to the size of the feature as ε ∝ |γ0| in the first geometry Ω3

ε, and as ε2 ∝ |γ|2 in the
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Figure 10: Exact domains Ω5
ε and Ω6

ε.

second geometry Ω4
ε. Again, the difference in asymptotic behavior of the error depends on symmetries and

on the Neumann boundary conditions. Indeed, Ω4
ε has features with sides parallel to ∂Ω0. Moreover, the

effectivity index is indeed almost independent from the size of the feature since it remains nearly equal to
2.93 and 3.22, respectively, for all values of ε. That is, as predicted by the theory since the estimator is both
reliable (Theorem 5.5) and efficient up to oscillations (Theorem 5.6), here in dimension two, the dependence
of the estimator with respect to the size of the feature is explicit. We also remark that the effectivity indices
for the positive features are little bit larger than the ones for the negative features.

Let us finally consider two-dimensional examples of geometries with a general complex feature. Let Ω0,

ΓD, f , h and g be again as before, and for ` = 5, 6, let Ω`ε := int
(

Ω0 ∪ F `n,ε \ F `p,ε
)

where, as illustrated in

Fig. 10,

F 5
p,ε := {(0.5− ε, 1) + (r, t) : 0 < r, t < ε} ,
F 5

n,ε := {(0.5, 1) + (r,−t) : 0 < r, t < ε} ,

F 6
p,ε :=

{(
0.5− 3ε

4
, 1

)
+ (r, t) : 0 < r, t < ε

}
,

F 6
n,ε :=

{(
0.5− ε

4
, 1
)

+ (r,−t) : 0 < r, t < ε
}
.

For each ` = 5, 6, let ΓN := ∂Ω`ε \ ΓD and we consider the same Poisson problem (1) as before, but solved in
Ω`ε. We also solve its defeatured version (3) in Ω0 with g0 ≡ 0 on γ0 (note from Fig. 10 that γ0 is different
whether ` = 5 or ` = 6). Then we extend the defeatured solution to F `ε by (6) with F̃ := F `n,ε. As before, we

respectively call u(`) and u
(`)
0 the exact and defeatured solutions, and u

(`)
d the defeatured solution extended

to F `n,ε.
The results are presented in Fig. 9c. As for the negative and positive feature cases, the error in Ω0 and

the estimator converge with respect to the size of the feature as ε ∝ |γn| ' |γ0,p| in both geometries Ω5
ε and

Ω6
ε. Moreover, the effectivity index is indeed almost independent from the size of the feature since it remains

nearly equal to 1.71 and 1.84, respectively, for all values of ε. That is, as predicted by the theory since the
estimator is both reliable (Theorem 5.5) and efficient up to oscillations (Theorem 5.6), here in dimension two,
the dependence of the estimator with respect to the size of the feature is explicit. We finally remark that the
effectivity indices for the positive features are little bit larger than the ones for the negative features.
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Figure 11: 3D geometries Ωiε, i = 1, 2, 3, 4.
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Figure 12: Convergence of the error and of the estimator in 3D domains with one feature.

6.2.2 Three-dimensional geometries

Let us first consider three-dimensional examples of geometries with a negative feature. Let ε =
10−2

2k
for

k = 0, 1, . . . , 6, and Ωiε := Ω0 \ F iε for i = 1, 2 with Ω0 := (0, 1)3 and

F 1
ε :=

{
(x, y, z) ∈ R3 : 0.5− ε

2
< x < 0.5 +

ε

2
, 1− ε < y < 1, 0 < z < ε

}
,

F 2
ε := F 1

ε +
(

0.5− ε

2
, 0, 0

)
,

as in Fig. 11a and Fig. 11b. For each i = 1, 2, we consider Poisson problem (1) solved in Ωiε, and its defeatured
version (3) in Ω0. We take

f(x, y) := 10 cos(3πx) sin(5πy) sin(7πz) in Ω,

h ≡ 0 on ΓD :=
{

(x, 0, z) ∈ R3 : 0 < x, z < 1
}
,

g ≡ 0 on ΓN := ∂Ωiε \ ΓD, and g0 ≡ 0 on ∂Ω0 \ ∂Ωiε.
The results are presented in Fig. 12a. Both the error and the estimator converge with respect to the size

of the feature as ε
3
2 ∝ |γ0|

3
4 in the first geometry Ω1

ε, and as ε
5
2 ∝ |γ| 54 in the second geometry Ω2

ε. Moreover,
the effectivity index is indeed independent from the size of the feature since it remains nearly equal to 1.87
and 1.92, respectively, for all values of ε. That is, again as predicted by the theory since the estimator is both
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reliable (Theorem 4.3) and efficient up to oscillations (Theorem 4.4), here in dimension three, the dependence
of the estimator with respect to the size of the feature is explicit.

Let us now consider three-dimensional examples of geometries with a positive feature. Let Ω0, ΓD, f , h,

and g be as before, and let Ωjε := int
(

Ω0 ∪ F jε
)

for j = 3, 4 with

F 3
ε :=

{
(x, y, z) ∈ R3 : 0.5− ε

2
< x < 0.5 +

ε

2
, 1 < y < 1 + ε, 0 < z < ε

}
,

F 4
ε := F 3

ε +
(

0.5− ε

2
, 0, 0

)
,

as in Fig. 11c and Fig. 11d. Let ΓN := ∂Ωjε \ ΓD. For each j = 3, 4, we consider the same Poisson problem
(1) as before, but solved in this Ωjε. We also solve its defeatured version (3) in Ω0 with g0 ≡ 0 on ∂Ω0 \ ∂Ωε.
Then we extend the defeatured solution to F jε by (6) with F̃ := F jε .

The results are presented in Fig. 12b. As for the negative feature case, the error in Ω0, the error in F jε
and the estimator converge with respect to the size of the feature as ε

3
2 ∝ |γ0|

3
4 in the first geometry Ω3

ε,

and as ε
5
2 ∝ |γ0|

5
4 in the second geometry Ω4

ε. Moreover, the effectivity index is indeed almost independent
from the size of the feature since it remains nearly equal to 3.10 and 3.22, respectively, for all values of ε.
That is, as predicted by the theory since the estimator is both reliable (Theorem 5.5) and efficient up to
oscillations (Theorem 5.6), here in dimension three, the dependence of the estimator with respect to the size
of the feature is explicit. Finally, and as in the two-dimensional case, we remark that the effectivity indices
for the positive features are a little bit larger than the ones for the negative features.

6.2.3 Effect of the choice of the defeatured problem data

Let us study the effect of the choice of the defeatured problem data on the convergence of the defeaturing
error and estimator. In particular, we will see that in the example of a geometry with one negative feature

F , the convergence of the error and the estimator crucially depends on the value of

(
g +

∂u0

∂nF

)γ
. As seen in

Remark 4.1, this value only depends on the Neumann boundary conditions g on γ and g0 on γ0, and on the
extension of the right hand side f in F . This means that one can obtain an optimal convergence rate of the
defeaturing error by wisely choosing the defeatured data g0 and f , considering the original data g (if possible,
to satisfy the compatibility condition (10)), so that the second term of the estimator in (8) converges faster
than the first one. The same observation can be made in the positive feature case.

To show this, let ε =
10−2

2k
for k = 0, 1, . . . , 6. We consider a 2D geometry with one negative feature.

More precisely, let Ω0 be the disk centered in (0, 0) of radius 1, let Fε be the disk centered in (0, 0) of radius ε,
and let Ωε := Ω0 \Fε, as represented in Fig. 6b. We solve Poisson problem (1) in Ωε with f ≡ 1 in Ωε, h ≡ 0
on ΓD := ∂Ω0, and we choose different Neumann data g = gi on ∂Fε for i = 1, . . . , 4, where g1 ≡ 0, g2 ≡ 1,
g3 ≡ ε−1, and g4 ≡ ε−3. Then we solve the defeatured problem (3) in Ω0, for which we need to choose an
extension of f in Fε, that we still call f . This extension should somehow mimic the behavior of the Neumann
data g, as required by the compatibility condition, but instead of that, we choose the trivial extension f ≡ 1
in all four cases, and we will verify whether this is always a good choice or not. For i = 1, . . . , 4, we call u(i)

and u
(i)
0 the solutions of (1) and (3), respectively.

The results are presented in Fig. 13. As we can see and as expected, the proposed estimator follows the
convergence of the defeaturing error in all four cases. Moreover, the effectivity index always remains the
same, as we were also expecting since the shape of the geometry never changes. However, we see that the
trivial extension of f in F is not always a good choice since it slows down the convergence when g = g2, it
does not permit the error to decrease with ε when g = g3, and it even implies the error to explode with ε
when g = g4. The explanation is present in the expression of the estimator in (8): indeed, in the case g = g1,
the first term of (8) is dominant, while in the other cases, the second term dominates because of the value of(
g +

∂u0

∂nF

)γ
due to the bad choice of f in Fε.
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Figure 13: Convergence of the error and of the estimator with different Neumann boundary conditions.

Consequently, the estimator not only tells us whether a feature is important for the given problem at
hand, but it also tells us whether the choice of the defeaturing problem data is right or should be reconsidered.

6.3 Non-Lipschitz features: fillets and rounds

Classical features one finds in design for manufacturing are fillets and rounds, that allow for example the
use of round-tipped end mills to cut out some material. However, when considered as features isolated
from the rest of the domain, fillets and rounds are non-Lipschitz feature domains. The following numerical
examples analyze these types of features, and show that our estimator manages to capture the behavior of
the defeaturing error even if the domains are not Lipschitz.

6.3.1 Round: a negative non-Lipschitz feature

Let us first consider the case of a round, that is, the rounding process creates a convex domain. For R ∈ (0, 1],
and as represented in Fig. 14, let

ΩR :=(R, 1−R) +
{(
r cos (θ) , r sin (θ)

)
∈ R2 : 0 ≤ r < R,

π

2
< θ < π

}
∪ (0, 1)× (0, R] ∪ [R, 1)× [1−R, 1),

γ0

γ = ΓN

Ω1

F1

ΓD

(a) Geometry Ω1 with the
round feature F1.

γ0

Ω0

ΓD

(b) Simplified geometry
Ω0 := Ω1 ∪ F1.

γ0

γ

Ω 1
2

F 1
2

ΓD

ΓN

ΓN

(c) Geometry Ω 1
2

with the

round feature F 1
2
.

γ0

Ω0

ΓD

ΓN

ΓN

(d) Simplified geometry
Ω0 := Ω 1

2
∪ F 1

2
.

Figure 14: Geometries with a round.
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R E(u0)
∣∣u− u0

∣∣
1,ΩR

Effectivity index

1 6.83 · 10−3 2.37 · 10−3 2.88

0.99 6.48 · 10−3 2.27 · 10−3 2.85

0.5 3.36 · 10−4 1.26 · 10−4 2.67

0.25 2.08 · 10−5 7.77 · 10−6 2.67

0.125 1.30 · 10−6 4.86 · 10−7 2.67

Table 3: Results for the geometry with a round.

Ω0 := (0, 1)2, and FR := Ω0\ΩR. We remark that FR is not a Lipschitz domain, that is, this case is not covered

by the presented theory. We consider Poisson problem (1) with f ≡ 0 in ΩR, h(x, y) := x2 (1− x)
2
+y2(1−y)2

on
ΓD :=

{
(x, 0), (1, y) ∈ R2 : 0 ≤ x, y < 1

}
.

and g ≡ 0 on ΓN := ∂ΩR \ ΓD. We solve the defeatured Poisson problem (3) with the same data and g0 ≡ 0
on γ0 := ∂FR \ ΓN .

The results are presented in Table 3, and for all considered values of R, we indeed have
∣∣u−u0

∣∣
1,ΩR

. E(u0)

with a low effectivity index. In particular, the effectivity index is almost the same for all considered values
of R in (0, 0.5) while it is slightly larger for R ∈ (0.5, 1), since the geometries for R ∈ (0, 0.5) are almost an
homothety of one another, while it is not when R > 0.5 because of the closeness of the boundary ΓD from the
boundary γ. This example shows that our estimator estimates well the defeaturing error even if the feature
is not a Lipschitz domain, and it confirms the fact that we can indeed have a feature that is attached to the
Dirichlet boundary, that is γ ∩ ΓD 6= ∅ but γ ∩ ΓD = ∅, as in the case R = 1.

6.3.2 Fillet: a positive non-Lipschitz feature

Now, let us consider the case of a fillet, that is, the filleting process creates a non-convex domain. Since the
fillet F is a complex positive feature we possibly do not want to mesh, we will consider two different feature
extensions F̃ 1 and F̃ 2 containing F to solve the extension problem (6). We will compare them, and we will
also compare the result with the one obtained without feature extension, that is for F̃ = F . In particular, we
remark again that F is not a Lipschitz domain, that is, this example is not covered by the presented theory.
As illustrated in Fig. 15, let

Ω0 := (0, 1)2 \
[

1

2
, 1

]2

, F̃ 1 :=

(
1

2
, 1

)2

,

F̃ 2 := F̃ 1 \
{(

1 + r cos(θ), 1 + r sin(θ)
)
∈ R2 : 0 ≤ r ≤ 1

4
, π ≤ θ ≤ 3π

2

}
,

F := F̃ 1 \
{(

1 + r cos(θ), 1 + r sin(θ)
)
∈ R2 : 0 ≤ r ≤ 1

2
, π ≤ θ ≤ 3π

2

}
,

Ω := int
(
Ω0 ∪ F

)
.

F̃ 1 is the bounding box of F , it is therefore a very simple geometry but
∣∣∣F̃ 1
∣∣∣ � |F |. At the contrary, F̃ 2 is

a little bit more complex, but
∣∣∣F̃ 2
∣∣∣ ≈ |F |.

We consider Poisson problem (1) with f ≡ 0 in Ω,

h(x, y) := cos (πx) + 10 cos(5πx)

on ΓD :=
{

(x, 0),∈ R2 : 0 ≤ x ≤ 1
}
, and g ≡ 0 on ΓN = ∂Ω \ ΓD. We solve the defeatured Poisson problem

(3) with the same data and with g0 ≡ 0 on γ0 := ∂Ω0 ∩ ∂F . Then, we solve the Dirichlet extension problem
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(b) Simplified geometry Ω0 and fea-
ture extension F̃ 1.
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(c) Simplified geometry Ω0 and fea-
ture extension F̃ 2.

Figure 15: Geometry Ω = int
(
Ω0 ∪ F

)
with a fillet F , and two possible extended features.

Extension E(ud)
∣∣u− ud

∣∣
1,Ω

∣∣u− u0

∣∣
1,Ω0

∣∣u− ũ0

∣∣
1,F

Effectivity index

F̃ 1 1.78 · 100 2.92 · 10−1 1.69 · 10−1 2.39 · 10−1 6.11

F̃ 2 1.71 · 100 2.89 · 10−1 1.69 · 10−1 2.34 · 10−1 5.93

F 1.33 · 100 2.69 · 10−1 1.69 · 10−1 2.01 · 10−1 4.94

Table 4: Results for the geometry with a fillet.

(6) first in F̃ 1, and secondly in F̃ 2, with g̃ ≡ 0 on γ̃ := ∂F̃ 1 \ γ0 and γ̃ := ∂F̃ 2 \ γ0, respectively. Finally, we
also solve (6) by taking F̃ := F itself.

The results are presented in Table 4, and we indeed have
∣∣u−ud

∣∣
1,Ω

. E(ud) with a reasonable effectivity

index in all three cases. Note that the effectivity index is higher in this case than in the case of a round
since not only the geometry Ω but also the feature F are simplified, respectively by Ω0 and by F̃ 1 or F̃ 2.
Moreover, F contains the extension F̃ 1 that itself contains the extension F̃ 2, and this is reflected both on
the defeaturing error and on the estimator. Indeed, both the error and the estimator are larger when the
considered extension is F̃ 1 instead of F̃ 2, and smaller when F̃ = F , but the effectivity index is not affected:
it is different because the shapes of F , F̃ 1 and F̃ 2 are different, not because an extension is bigger than the
other one, as we have seen in the numerical examples of Sec. 6.1 and Sec. 6.2. Furthermore, the effectivity
index on the fillet is larger than the one on the round: as already remarked in Sec. 6.2, the effectivity index
is in general larger for positive features than for negative ones. Finally, the effectivity indices for both the
round and the fillet are larger than for the other negative and positive features, respectively, and this can
come from the fact that rounds and fillets are non-Lipschitz features.

Remark 6.1 (Effectivity indices) Let us summarize the observations made on the behavior of the effectivity
indices.

• The effectivity index of every test case is independent from the measure of the feature (see Sec. 6.2.1
and 6.2.2), but it depends on their shape (see Sec. 6.1.1).

• The observed effectivity indices are small when Lipschitz features are considered: in both two and three
dimensions, the value of the effectivity index ranges between 1 and 4 (see Sec. 6.1 and 6.2), in general
with smaller values for negative features than for positive ones. While we have no evidence of it, the
difference possibly comes from the smoothness of the defeatured solution u0. Indeed, in the positive
feature case, a γ0-Dirichlet extension of u0 is necessary to define the error in the whole geometry Ω.
This extension is in H1(Ω) by definition, but its gradient jumps at the boundary γ0, making it possibly
less regular than the defeatured solution that one can have in the negative feature case.

• The observed effectivity indices are larger when non-Lipschitz features are considered, but such geome-
tries are not considered in the presented theory. The special cases of rounds and fillets are analyzed in
Sec. 6.3, and the observed effectivity indices in those cases are smaller than 3 and 5, respectively.
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• The observed effectivity indices in the case of an extended positive feature, that is, a feature for which
F̃ ) F , are larger than in the case of a positive feature, while still remaining relatively small (see
Sec. 6.3.2). Indeed, in the former case, not only the geometry Ω but also the feature F are simplified,
respectively by Ω0 and by F̃ .

7 Conclusions

We have introduced a novel a posteriori error estimator for analysis-aware geometric defeaturing in the
context of Poisson equation on geometries of arbitrary dimension. We have demonstrated its reliability and
efficiency up to oscillations, and tested it on an extensive set of numerical experiments: in all of them, we
have observed that the proposed estimator acts as an excellent approximation of the true error. We have
considered geometries with either a negative, a positive or a general complex feature, and we have verified
that our estimator is not only driven by geometrical considerations, but also by the differential problem at
hand. The proposed estimator is able to weight the impact of defeaturing in energy norm, and it is explicit
with respect to the size of the geometrical features. Finally, our estimator is simple and computationally
cheap: once the solution of the defeatured problem is computed, it only requires the computation of the
solution of a local extension problem if the feature has a positive component, and of boundary integrals.

In this paper, the analysis is performed in continuous spaces, and for one feature only. The extension to
a few features is not hard as the indicator is merely additive, but the extension to several features as well as
the development of a fully adaptive scheme taking into account the discretization and the defeaturing errors
will be the object of our subsequent work. Finally, this work focuses on the global energy norm of the error,
which is an important first step to understand the impact of defeaturing in analysis. Studying defeaturing
using a local goal-oriented error measure would be a further step attracting a broader industrial interest.

A Appendix

In this section, we state lemmas that are used throughout the paper, and the symbol . will be used to mean
any inequality which does not depend on the size of the considered domains, but which can depend on their
shape. We assume that all considered domains are Lipschitz.

Appendix A.1 (Poincaré I) Let ω be an (n− 1)-dimensional manifold in Rn that is isotropic according to

Definition 2.1. Then for all v ∈ H 1
2 (ω),

‖v − v‖0,ω . |ω|
1

2(n−1) |v| 1
2 ,ω
,

where v :=
1

|ω|

ˆ
ω

v ds is the average of v on ω.

Proof. Let v ∈ H 1
2 (ω). Recall that since ω is an (n− 1)-dimensional manifold in Rn, then

|v|21
2 ,ω

=

ˆ
ω

ˆ
ω

(
v(x)− v(y)

)2
|x− y|n

dx dy.

Moreover, let
ωmax := arg max

ωc∈conn(ω)

(
diam (ωc)

)
.

Then since ω is isotropic,

diam (ω) . diam (ωmax) . |ωmax|
1

n−1 ≤ |ω|
1

n−1 .
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Therefore,

‖v − v̄‖20,ω =

ˆ
ω

(
v(x)− 1

|ω|

ˆ
ω

v(y) dy

)2

dx

=
1

|ω|2

ˆ
ω

[ˆ
ω

(
v(x)− v(y)

)
dy

]2

dx

≤ 1

|ω|2

ˆ
ω

[
|ω|
ˆ
ω

(
v(x)− v(y)

)2
dy

]
dx

=
1

|ω|

ˆ
ω

ˆ
ω

(
v(x)− v(y)

)2
|x− y|n

|x− y|n dy dx

≤ diam (ω)
n

|ω|

ˆ
ω

ˆ
ω

(
v(x)− v(y)

)2
|x− y|n

dy dx . |ω|
1

n−1 |v|21
2 ,ω
.

Appendix A.2 Let D ⊂ Rn, and let ω ⊂ ∂D be a (n − 1)-dimensional manifold in Rn. Then for all

v ∈ H 1
2 (∂D), if we define η ∈ R as the unique solution of η = − log(η),

‖v‖0,ω . cω|ω|
1

2(n−1) ‖v‖ 1
2 ,∂D

, where cω :=

{
max

(
|log (|ω|)| , η

) 1
2 if n = 2;

1 if n = 3.

The hidden constant is independent from the measure of ω.

Proof. Let v ∈ H 1
2 (∂D). By Sobolev embedding, it is well known thatH

1
2 (∂D) can be continuously embedded

in L2p(∂D) for every 1 ≤ p <∞ if n = 2, or for every 1 ≤ p ≤ 2 if n = 3. Therefore, by Hölder inequality,

‖v‖20,ω =
∑

ωc∈conn(ω)

‖v‖20,ωc
≤

∑
ωc∈conn(ω)

|ωc|1−
1
p ‖v‖2L2p(ωc) . |ω|

1− 1
p ‖v‖2L2p(∂D). (43)

If n = 3, by taking p = 2 in (43) and by Sobolev embedding,

‖v‖20,ω . |ω| 12 ‖v‖21
2 ,∂D

= c2ω|ω|
1

n−1 ‖v‖21
2 ,∂D

.

Let us now consider the case n = 2. Thanks to Ref. [49, Lemma 5.1], it is known that for all q ∈ [2,∞) and

all v ∈ H 1
2 (0, 2π),

‖v‖Lq(0,2π) ≤ c
√
q‖v‖ 1

2 ,(0,2π),

where c is a constant independent from q. Then by definition of the norms Lq and H
1
2 on a manifold (see

Ref. [44, Sec. 1.3.3]), we obtain ‖v‖L2p(∂D) ≤ c̃
√
p‖v‖ 1

2 ,∂D
, where c̃ is a constant independent from p. So by

taking p = max
(
|log (|ω|)| , η

)
= c2ω in (43), then |ω|−

1
p ≤ e and thus

‖v‖20,ω . |ω|1−
1
p p ‖v‖21

2 ,∂D
. |ω|c2ω‖v‖21

2 ,∂D
= c2ω|ω|

1
n−1 ‖v‖21

2 ,∂D
.

Appendix A.3 (Poincaré II) Let ω be an (n− 1)-dimensional manifold in Rn that is isotropic according to

Definition 2.1. Then for all v ∈ H
1
2
00(ω),

‖v‖0,ω . |ω|
1

2(n−1) ‖v‖
H

1/2
00 (ω)

.
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Proof. Let D ⊂ Rn and ϕ ⊂ Rn such that ∂D = ω ∪ ϕ and ω ∩ ϕ = ∅. Let v ∈ H
1
2
00(ω). First, suppose that

ω is connected. Then from Ref. [50, Proposition 2.4], since ω is isotropic and if we let v? ∈ H 1
2 (∂D) be the

extension of v by 0,

‖v‖20,ω . |ω|
1

n−1
∣∣v?∣∣21

2 ,∂D
≤ |ω|

1
n−1 ‖v?‖21

2 ,∂D
= |ω|

1
n−1 ‖v‖2

H
1/2
00 (ω)

. (44)

Now, if ω is not connected, then dist(s, ∂ωc) = dist(s, ∂ω) for all ωc ∈ conn(ω) and for all s ∈ ωc. Thus∑
ωc∈conn(ω)

‖v|ωc‖
2

H
1/2
00 (ωc)

=
∑

ωc∈conn(ω)

(∥∥v|ωc

∥∥2
1
2 ,ωc

+
∣∣v|ωc

∣∣2
H

1/2
00 (ωc)

)
. ‖v‖21

2 ,ω
+

∑
ωc∈conn(ω)

ˆ
ωc

v2(s)

dist
(
s, ∂ωc

) ds

= ‖v‖21
2 ,ω

+

ˆ
ω

v2(s)

dist
(
s, ∂ω

) ds = ‖v‖2
H

1/2
00 (ω)

.

Therefore, from (44),

‖v‖20,ω =
∑

ωc∈conn(ω)

‖v‖20,ωc
.

∑
ωc∈conn(ω)

|ωc|
1

n−1 ‖v‖2
H

1/2
00 (ωc)

. |ω|
1

n−1 ‖v‖2
H

1/2
00 (ω)

.

Appendix A.4 Let ω be an (n−1)-dimensional manifold in Rn that is isotropic according to Definition 2.1.
Then for all v ∈ L2(ω),

‖v‖
H

−1/2
00 (ω)

. |ω|
1

2(n−1) ‖v‖0,ω.

Proof. Since H
− 1

2
00 (ω) is the dual space of H

1
2
00(ω), then by Appendix A.3, we obtain

‖v‖
H

−1/2
00 (ω)

= sup
z∈H1/2

00 (ω)
z 6=0

ˆ
ω

vz ds

‖z‖
H

1/2
00 (ω)

≤ sup
z∈H1/2

00 (ω)
z 6=0

‖v‖0,ω ‖z‖0,ω
‖z‖

H
1/2
00 (ω)

. sup
z∈H1/2

00 (ω)
z 6=0

‖v‖0,ω |ω|
1

2(n−1) ‖z‖
H

1/2
00 (ω)

‖z‖
H

1/2
00 (ω)

= |ω|
1

2(n−1) ‖v‖0,ω.

Appendix A.5 (Inverse inequality I) Let ω be an open (n− 1)-dimensional manifold in Rn that is isotropic
and regular according to Definitions 2.1 and 2.2, and let m ∈ N. Then for all p ∈ Qpw

m,0(ω),

‖p‖0,ω . |ω|−
1

2(n−1) ‖p‖
H

−1/2
00 (ω)

,

where the hidden constant increases with m.

Proof. For all q ∈ Qpw
m,0(ω) ⊂ H1

0 (ω), the following inverse estimate is well known (see Ref. [51, Theorem 3.2]
for example): with the notation of Definition 2.2, for all ` = 1, . . . , Lω,∣∣q|ω`

∣∣
1,ω`

. |ω`|−
1

n−1
∥∥q|ω`

∥∥
0,ω`

,
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and the hidden constant increases with m. Therefore, since ω is isotropic and shape regular,

|q|1,ω . max
`=1,...,Lω

(
|ω`|−

1
n−1

)
‖q‖0,ω . |ω|−

1
n−1 ‖q‖0,ω .

Moreover, from Ref. [52], we know that the interpolation space[
H1

0 (ω) , L2 (ω)
]

1
2

= H
1
2
00 (ω)

(see also Ref. [53, Theorem 11.7]). Therefore, from Ref. [53, Proposition 2.3], for all q ∈ Qpw
m,0(ω),

‖q‖
H

1/2
00 (ω)

. |q|
1
2
1,ω ‖q‖

1
2
0,ω . |ω|−

1
2(n−1) ‖q‖0,ω. (45)

Consequently, for all p ∈ Qpw
m,0(ω) ⊂ H−

1
2

00 (ω), since Qpw
m,0(ω) ⊂ H

1
2
00(ω),

‖p‖0,ω =

ˆ
ω

p2 ds

‖p‖0,ω
≤ sup
q∈Qpw

m,0(ω)

q 6=0

ˆ
ω

pq ds

‖q‖0,ω
. |ω|−

1
2(n−1) sup

q∈Qpw
m,0(ω)

q 6=0

ˆ
ω

pq ds

‖q‖
H

1/2
00 (ω)

≤ |ω|−
1

2(n−1) sup
v∈H1/2

00 (ω)
v 6=0

ˆ
ω

pv ds

‖v‖
H

1/2
00 (ω)

= |ω|−
1

2(n−1) ‖p‖
H

−1/2
00 (ω)

. (46)

For the following lemmas, let D ⊂ Rn be an open bounded domain, and let ∂D =
⋃K+1
k=1 ωk for some

K ∈ N, such that ωi ∩ ωj = ∅, for all i, j = 1, . . . ,K + 1, and let ω = int
(⋃K

k=1 ωk

)
. Moreover, let

H :=
{
v ∈ H

1
2
00(ω) : v|ωk

∈ H
1
2
00(ωk),∀k = 1, . . . ,K

}
⊂ H

1
2
00(ω)

equipped with the norm ‖ · ‖H :=

(
K∑
k=1

∥∥ · |ωk

∥∥2

H
1
2
00(ωk)

) 1
2

, and let H∗ be its dual space, equipped with the

dual norm ‖ · ‖H∗ .

Appendix A.6 For all v ∈ H,
‖v‖

H
1/2
00 (ω)

≤
√
K‖v‖H ,

and for all w ∈ H−
1
2

00 (ω),

‖w‖H∗ ≤
√
K‖w‖

H
−1/2
00 (ω)

.

Proof. Let v ∈ H ⊂ H
1
2
00(ω), and let v|?ωk

be the extension of v|ωk
by 0 on ∂D. Then by triangular inequality,

‖v‖
H

1/2
00 (ω)

=

∥∥∥∥∥
K∑
k=1

v|?ωk

∥∥∥∥∥
H

1/2
00 (ω)

≤
K∑
k=1

∥∥v|?ωk

∥∥
H

1/2
00 (ω)

=

K∑
k=1

∥∥v|?ωk

∥∥
1
2 ,∂D

=

K∑
k=1

∥∥v|?ωk

∥∥
H

1/2
00 (ωk)

≤
√
K‖v‖H . (47)
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Moreover, for all w ∈ H−
1
2

00 (ω) ⊂ H∗, using (47),

‖w‖H∗ = sup
v∈H
v 6=0

ˆ
ω

wv ds

‖v‖H
≤
√
K sup

v∈H
v 6=0

ˆ
ω

wv ds

‖v‖
H

1/2
00 (ω)

≤
√
K sup

v∈H
1
2
00(ω)

v 6=0

ˆ
ω

wv ds

‖v‖
H

1/2
00 (ω)

=
√
K‖w‖

H
−1/2
00 (ω)

.

Appendix A.7 (Inverse inequality II) Assume that ω is isotropic and regular according to Definitions 2.1
and 2.2, and let m ∈ N. Then for all piecewise polynomial p ∈ Q0

m, where

Q0
m :=

{
q ∈ Qpw

m,0(ω) : q|ωk
∈ Qpw

m,0(ωk),∀k = 1, . . . ,K
}
⊂ H,

then
‖p‖0,ω . |ω|−

1
2(n−1) ‖p‖H∗ ,

where the hidden constant increases with m.

Proof. For all q ∈ Q0
m and all k = 1, . . . ,K, q|ωk

∈ Qpw
m,0(ωk), and thus from (45) and since ω is regular,∥∥q|ωk

∥∥
H

1/2
00 (ωk)

. |ωk|−
1

2(n−1)
∥∥q|ωk

∥∥
0,ωk

. |ω|−
1

2(n−1)
∥∥q|ωk

∥∥
0,ωk

.

Therefore,

‖q‖H =

(
K∑
k=1

∥∥ · |ωk

∥∥2

H
1
2
00(ωk)

) 1
2

. |ω|−
1

2(n−1) ‖q‖0,ω.

Consequently, for all p ∈ Q0
m ⊂ H, following the same steps as in (46) of the proof of Appendix A.5, replacing

H
− 1

2
00 (ω) by H∗, H

1
2
00(ω) by H, and Qpw

m,0(ω) by Q0
m, then

‖p‖0,ω . |ω|−
1

2(n−1) ‖p‖H∗ .
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[15] R. Schmidt, R. Wüchner, and K.-U. Bletzinger, “Isogeometric analysis of trimmed NURBS geometries,”
Computer Methods in Applied Mechanics and Engineering, vol. 241-244, pp. 93 – 111, 2012.

[16] P. Antolin, A. Buffa, R. Puppi, and X. Wei, “Overlapping multipatch isogeometric method with minimal
stabilization,” SIAM Journal on Scientific Computing, vol. 43, no. 1, pp. A330–A354, 2021.
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no. R2, pp. 77–84, 1975.

[46] C. Bernardi and V. Girault, “A local regularization operator for triangular and quadrilateral finite
elements,” SIAM J. Numer. Anal., vol. 35, p. 1893–1916, Oct. 1998.

[47] R. Vázquez, “A new design for the implementation of isogeometric analysis in Octave and Matlab:
GeoPDEs 3.0,” Computers & Mathematics with Applications, vol. 72, no. 3, pp. 523–554, 2016.

[48] X. Wei, B. Marussig, P. Antolin, and A. Buffa, “Immersed boundary-conformal isogeometric method for
linear elliptic problems,” arXiv:2011.01622, 2020.

[49] F. Ben Belgacem, A. Buffa, and Y. Maday, “The mortar finite element method for 3D Maxwell equations:
first results,” SIAM Journal on Numerical Analysis, vol. 39, no. 3, pp. 880–901, 2001.

[50] G. Acosta and J. P. Borthagaray, “A fractional Laplace equation: regularity of solutions and finite
element approximations,” SIAM Journal on Numerical Analysis, vol. 55, no. 2, pp. 472–495, 2017.

[51] I. G. Graham, W. Hackbusch, and S. A. Sauter, “Finite elements on degenerate meshes: inverse-type
inequalities and applications,” IMA Journal of Numerical Analysis, vol. 25, pp. 379–407, Apr. 2005.

[52] H. Triebel, “Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds,” Ark. Mat., vol. 24,
pp. 299–337, 12 1985.

Analysis-aware defeaturing: problem setting and a posteriori estimation 36



[53] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1.
Springer-Verlag, 1973.

Analysis-aware defeaturing: problem setting and a posteriori estimation 37


	1 Introduction
	2 Notation
	3 Defeaturing model problem
	4 Negative feature a posteriori defeaturing error estimator
	4.1 Upper bound
	4.2 Lower bound

	5 Defeaturing a geometry with a complex feature
	5.1 Defeaturing model problem for a complex feature
	5.2 Complex feature a posteriori defeaturing error estimator
	5.2.1 Upper bound
	5.2.2 Lower bound


	6 Numerical considerations and experiments
	6.1 Impact of some properties of the feature on the defeaturing error
	6.1.1 Feature shape
	6.1.2 Feature size

	6.2 Error convergence with respect to the feature size
	6.2.1 Two-dimensional geometries
	6.2.2 Three-dimensional geometries
	6.2.3 Effect of the choice of the defeatured problem data 

	6.3 Non-Lipschitz features: fillets and rounds
	6.3.1 Round: a negative non-Lipschitz feature
	6.3.2 Fillet: a positive non-Lipschitz feature


	7 Conclusions
	A Appendix
	Bibliography

