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Abstract

Analysis, Design, And Optimization Of Spiral Inductors And
Transformers For Si RF ICs

by

Ali M. Niknejad

Master of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California

Professor Robert G. Meyer, Chair

 Si IC spiral inductors and transformers are analyzed using electromagnetic analysis.

With appropriate approximations, the calculations are reduced to electrostatic and

magnetostatic calculations.  The important effects of substrate loss are included in the

analysis.   Classic circuit analysis and network analysis techniques are used to derive two-

port parameters from the circuits.  From two-port measurements, low-order frequency-

independent lumped circuits are used to model the physical behavior over a broad-

frequency range.  The analysis is applied to traditional square and polygon inductors and

transformer structures, as well as to multi-layer metal structures.  A custom CAD tool

ASITIC is described, used for the analysis, design, and optimization of  these structures.

Measurements taken over a frequency range from 100 MHz to 5 GHz show good

agreement with theory.



3

Table of Contents

Table of Contents 3

Acknowledgments 4

Chapter 1:  Introduction 5

Chapter 2:  The Electric and Magnetic Integral Equations 7

Chapter 3:  Circuit Analysis 14

Chapter 4:  Inductance Matrix Calculation 19

Chapter 5:  Capacitance and Substrate Loss Matrix Calculation 27

Chapter 6:  Modeling 43

Chapter 7:  Optimization 51

Chapter 8:  Experimental Verification 57

Chapter 9:  Conclusion 82

References 83



4

Acknowledgments

First and foremost I would like to thank my advisor, Prof. Robert G. Meyer, for giving me

the opportunity to work on such an exciting problem.  His help, support, and guidance has

been outstanding.  I would also like to thank Ranjit Gharpurey for his support and

guidance.  He has acted as a friend and as a co-advisor and I have learned a lot by working

with him. Also, I would like to thank Prof. Paul R. Gray for his support and guidance,

especially during the 1995-96 during which time he acted as a advisor in Prof. Meyer’s

absence.  Finally I would like to thank Prof. Bernhard Boser for acting as the second

reader the thesis.

I also thank Bill Mack for his help and support in fabricating the test structures.  The help

of Janice Eisenstadt and Yen Nguyen of Philips Semiconductors in measuring the test

structures is also greatly appreciated.

I must also thank the companies and individuals who have given me the opportunity to

work on this problem during the summer.  I thank T.R. Viswanathan and Texas

Instruments for their support.  I also thank Mihai Banu and Lucent Technologies for their

support.

I must thank all of my colleagues that I have interacted with in the past few years.  They

have made my experience  rich and satisfying.  I thank Manolis Terrovitis, Keng Leong

Fong, John T. Wetherell, Darrin Young, Sang Won Son, Kevin J. Wang, Joel King, Tom

Naiyavudhi, Li Lin, George Chien, Jeff Jia-Jiunn Ou, Matrin Tsai, Sekhar Narayanaswami,

and Chris Rudell.

Last, but certainly not least, I am gratefully indebted to my close family and friends.  I

thank my parents for their friendship and support, and especially my father for introducing

me to the exciting world of electronics.  I thank my sisters for their friendship and their

guidance.  I thank my friend Alexandra for her love and friendship.



5

Chapter 1:  Introduction

Si ICs are finding wide application in the GHz frequency range.  Modern bipolar,

CMOS, and BiCMOS processes provide high fT  transistors allowing Si RF-ICs to

compete with GaAs ICs in the important low GHz frequency ranges.  However, the lossy

Si substrate makes the design of high Q reactive components difficult.  Despite this

difficulty, the low cost of Si IC fabrication over GaAs IC fabrication and the potential for

integration with baseband circuits makes Si the process of choice in many RF IC

applications.

The demands placed on portable wireless communication equipment include low

cost, low supply voltage, low power dissipation, low noise, high frequency of operation

and low distortion.  These design requirements cannot be met satisfactorily in many cases

without the use of RF inductors.  Hence, there is a great incentive to design, optimize, and

model spiral inductors fabricated on Si substrates.  This topic is addressed in this paper.

Since the introduction of Si spiral inductors [1], many authors have reported

higher performance inductors on Si substrates, primarily utilizing advances in processing

technology.  This has included higher conductivity metal layers to reduce the loss

resistance of the inductor [2], use of multi-metal layers to increase the effective thickness

of the spiral inductor and thereby reduce loss, the connection of multi-metal layer spirals

in series to reduce the area of the inductors [3][4], low-loss substrates to reduce losses in

the substrate at high frequency [5], and thick oxide or floating inductors to isolate the

inductor from the lossy substrate [6].  Little, though, has been written on the analysis and

optimization of these structures.

In [7] an analysis approach is presented where an equivalent circuit for each

segment of the spiral is calculated and the inductor is considered as an interconnection of

such segments. The approach is limited, though, as many important effects are not

included.  For instance, non-uniform current distribution due to skin and proximity effects
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within each segment is not considered.  In addition, the impedance to substrate is

calculated using a 2-dimensional approach, making it difficult to apply to arbitrary

structures or to coupled inductors.

Most past researchers have used measurement results on previously built inductors

to construct models.  While this technique is most practical, it does not allow the

possibility of optimization nor does it allow the circuit designer freedom to choose

parameters such as inductance, resistance, capacitance and Q.  Otherwise researchers have

used commercial 3D electromagnetic simulators [8][9] to design and analyze inductors

and transformers.  While this approach is accurate, it can be computationally very

expensive and time-consuming. This prevents the designer from performing optimization.

In this paper we present an accurate and computationally efficient approach to overcome

some of these difficulties.
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Chapter 2:  The Electric and Magnetic Integral Equations

In this chapter, the basic problem is formulated and the analysis technique is

outlined.  In section 2.1 we examine the important physical phenomena that give rise to

inductance and  other parasitic effects for passive inductors and transformers over the Si

substrate.  Our discussion will be at first qualitative in order to gain physical insight into

the problem.  Next, in section 2.2, we examine the problem more rigorously.  By making

appropriate assumptions, the problem will be simplified by reduction to electrostatic and

magnetostatic equations.

2.1  Qualitative Discussion of the Physics of Inductors and Transformers

A typical spiral inductor has geometry as shown in Fig. 1.  Qualitatively, the spiral

inductor consists of a number of series-connected metal segments.  In each segment, time-

varying conductive current will flow due to a time-varying voltage impressed on the

segment.  In addition, due to self-inductive and mutual-inductive effects (i.e. magnetic flux

Fig. 1.  Layout of a typical square spiral inductor.
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linkage from segment to segment) a time varying emf is produced with a phase 90° leading

the impressed conductive current.  Furthermore, due to the presence of the substrate and

closely spaced metal segments, charge on each segment will cause charge to accumulate

and flow at the surface of the substrate as well on neighboring segments. This charge will

flow as a current 90° lagging the impressed voltage.  Due to the finite conductivity of the

substrate, the induced substrate charge must flow through the lossy substrate, acting as an

additional source of loss.

The equivalent circuit of Fig. 2 can be used as a model for the spiral.  In the figure,

L(ω) models the frequency dependent inductive effects of the spiral by combining all

sources of reactance that cause current to lag by 90°.  It shows frequency dependence

since the magnetic field and current distributions in the segments will change due to

current constriction (skin-effect) and proximity effects of neighboring segments.  R(ω)

models the loss due to the finite conductivity of the metal segments and its frequency

effects are also due to current constriction and proximity effects.  In addition, at very high

frequency, time retardation effects become important and R can also model the radiation

resistance.  To model interwinding impedance we use CBR(ω) and RBR(ω).  The

interwinding capacitance is lossy since segments are not only linked through the oxide but

also through the substrate.  Its frequency dependence is due to the substrate impedance.

L(ω) R(ω)

Cs1(ω) Cs2(ω)

Rs1(ω) Rs2(ω)

CBR(ω) RBR(ω)

Fig. 2.  Frequency-dependent model of spiral.
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At lower frequency, when the substrate acts like a good ground plane,  the substrate will

partially shield segments from each other.  But at higher frequency, due to the finite time

constant of the substrate, as well as the non-zero impedance that grounds the substrate

externally, the substrate will begin to float electrically.  In this situation, the substrate will

not shield metal segments as effectively, and the effective coupling capacitance will

increase.

Finally, Cs(ω) and Rs(ω) model the substrate current injection and reception.  Cs(ω)

represents the capacitance from the metal segments to the substrate;  Rs(ω) models the

substrate loss.  Both are frequency dependent due to the frequency dependence of the

substrate conduction.  At high frequency, current in the substrate can flow due to

displacement as well as conductive mechanisms.  In addition, the external grounding

circuits, typically bond-wires, have finite impedance.  Note that the equivalent circuit is

almost symmetric.  The outer segments of the spiral are longer and have more volume to

support fringing fields whereas inner turns are shorter and less capacitive.  The  outermost

turn has additional volume for fringing fields outside of the area of the spiral itself.  This

would tend to make the outer port of the spiral more capacitive.  The inner turn, however,

has an additional bridging segment of higher capacitance located on the lower metal

layers.

In addition to the above effects, many other higher-order effects are present.  For

instance, eddy-currents flow in the substrate due to the penetration of time varying

magnetic fields in the substrate.  Additionally, currents induced in the substrate give rise to

secondary magnetic fields which interact with the primary magnetic fields impressed by the

current of the metal segments.  These effects can be modeled by adding additional

frequency dependent loss to R(ω).  The secondary magnetic fields generated by substrate

currents can be modeled by adding a secondary port to the model of Fig. 2, coupled with

coefficient k(ω), which of course is also frequency dependent.
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2.2  Electromagnetic Formulation

Consider a typical spiral inductor or transformer.  It consists of series and parallel

interconnection of metal segments.  Applying Maxwell’s equations to the conductive

portions of such a structure, we obtain [10]

E dl
J

dl
A

t
dl dl0 0⋅ − ⋅ − ⋅ − ∇ ⋅ =∫∫∫∫ σ

∂
∂

φ (1)

where E0 is the applied field, J is the current density, σ is the conductivity of the metal

segment, A is the magnetic vector potential, and φ is the electric scalar potential. The first

term of the above equation arises from the applied field, the second term represents the

internal impedance of the segments, the third term represents external inductance, and the

fourth term is the capacitive term.

To see how the third term represents the external inductance, apply Stoke’s theorem to

get

∂
∂
A

t
dl

d

dt
A dl

d

dt
A dS

d

dt
B dS

S S

⋅ = ⋅ = ∇ × ⋅ = ⋅∫ ∫∫∫ ( ) (2)

from circuit theory therefore

∂
∂
A

t
dl L

dI

dt
⋅ =∫ (3)

The magnetic and electric potentials are integrals over the charges and currents in the

circuit.  In the time-periodic case we have

φ
ρ

πε
( , , )

( ' , ' , ' )
'x y z

x y z e

R
dV

jkR

V
=

−

∫ 4
(4)

A x y z
J x y z e

R
dV

jkR

V
( , , )

( ' , ' , ' )
'=

−

∫µ
π4

(5)

The above retarded potentials can be simplified to static potentials since at frequencies of

interest the exponential term is nearly unity.  As they stand, though, the above equations

are impractical since they involve integrating over all charges and currents, including those

that flow through the substrate.  If, however, we replace the R−1 term involving the free-

space Green function with the appropriate Green functions over a multi-layer substrate,
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the volume of integration reduces to metal segments containing the charges and currents.

In chapter 5 we derive the electrostatic Green function over a multi-layer conductive

substrate which can be used in (4).   Hence (4) and (5) can be written

φ
πε

ρ( , ) ( , ' ) ( ' ) 'r t G r r r dVE
Vk

k

= ∫∑ 1

4
(6)

A r t G r r J r dVM
Vk

k

( , ) ( , ' ) ( ' ) '= ∫∑ µ
π4

(7)

where the index k runs through the conductors which make up the device.  The above

quasi-static approximations simplify the problem greatly.  From Maxwell’s equations and

the definition of the magnetic vector potential we have

∇ × = −
= ∇ ×

E j B

B A

ω
(8)

Combining the above equations we have

∇ × + =( )E j Aω 0 (9)

Since the curl of the above relation is identically zero, one can find a scalar potential

whose gradient is equal to parenthetical expression of (9)

E j A+ = −∇ω φ (10)
Using equations (10) and (7), and assuming a linear constitutive relation between J and E,

we have for each segment

J r j
J r G r r dVi

i
k MV

k
i

k

( )
( ) ( , ' ) '

σ
ωµ
π

φ+ = −∇∫∑4
(11)

In general, the current density is non-uniform across the cross-section of each segment.

The non-uniformity is due to current constriction and proximity effects.  These effects

make (11) difficult to solve directly.  If, however, we discretize the cross-section into b

sections of constant current density [11][12], then (11) will take on a more tractable form.

In other words assume Ji can be approximated by

J r I w r li i m i m m
m

b

( ) ( ), ,=
=

∑
r

1

(12)

where Ii,m is current inside the sub-segment m of segment i, 
r
lm  is a vector in the direction

of the segment, and wi,m is a function that has a value of 1/ai,m inside the cross-section and
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zero outside, where ai,m is the cross-sectional area of  sub-segment m of segment i.  Using

equation (12), it can be shown that equation (11) becomes [12]

l

a
I j

a a
l l G r r dV dV I

a
dAi

i m
i m

i m j m
i j M

v v
j m

j Sk i m
i m

ai jk i
σ

ω
µ

π
φ

,
,

, ,
,

,
,( , ' ) '









 + ⋅











 =∫∫∑∑ ∫

∈ 4

1r r
∆ (13)

where Sk is the set of indices of the sub-segments of segment k.  The above equations can

be simplified if we make the assumption that the potential drops across parallel sub-

segments are equal, or ∆ ∆φ φi m i, = .  In chapter 5 we will show that this assumption

simplifies the above equation to

Z I j Z Iii
L

i ik
L

k i
k

+ =∑ω φ∆ (14)

or in matrix notation
[ ] [ ][ ]∆φ = Z IL (15)

where the matrix [ZL] has diagonal entries representing the internal impedance of each

segment and the off-diagonal terms represent the external magnetic coupling from

segment to segment.   Equation (15) alone, though, is not enough since both the potentials

and the currents in the segments are unknowns.  But the potential at each segment is also

related to the charge distribution by (6). We seek to find the potential of segment i, due to

a charge distribution on segment j.  If we partition the segments into sufficiently small

segments i and j, we may assume uniform charge distribution and take the potential of the

segment to be the average potential over the volume.  For these approximations, we

obtain

φi

j

j i
E j i

V V

Q

V V
G dV dV

i j

= ∫∫
,

(16)

By considering the above integral for all combinations of segments, we generate

the following matrix equation

[ ] [ ][ ]φ = P Q (17)

The matrix [P] is known as the coefficient-of-potential matrix.  By inverting the

above relation we form the coefficient-of-induction matrix and henceforth we have the

desired charge distribution

[ ] [ ][ ]Q c= φ (18)

Alternatively, we may rewrite (18) in terms of the potential differences as
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[ ] [ ][ ]Q C= ∆φ (19)

where [C] is the familiar capacitance matrix.  Charge conservation at each segment implies

that

∆I Q j Qi i i= =& ω (20)

where ∆I i  is net current flowing into segment i which must equal the rate of change of

charge depositing on the segment.  Thus

∆I j Q j e C V e Z Vi i i
T

i
T C= = ≡ω ω [ ][ ] [ ][ ] (21)

where ei is the unit vector with one in entry i and zero everywhere else, and [ZC] is the

capacitive impedance matrix.  We can account for the finite conductivity of the substrate

in the capacitive impedance matrix calculation as follows.  From Maxwell’s equation we

have

∇ × = + = + = + =B j D J j D E j
j

D j Deffω ω σ ω ε
σ
ω

ωε( ) (22)

where we have defined an effective frequency-dependent complex permittivity.  If we use

this effective permittivity in deriving our Green function, then the losses due to the finite

conductivity of the substrate will be accounted for by the real part of the ZC matrix.

Equations (14) and (21) form a complete system of equations which can be solved at each

frequency to obtain the voltages and currents in the segments.
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Chapter 3: Circuit Analysis

In the next two chapters we will show how to extract circuit parameters from the

geometric layout of an inductor or transformer.  In this chapter we will consider the

interconnection of these various conductors and the resulting current-voltage

characteristics of interest in the design of circuits.

3.1  Circuit Equation Formulation

From a circuit point of view, equations (2.14) and (2.21) can be interpreted as shown in

Fig 1. To derive the 2-port parameters of such a structure, we must solve the circuit

equations by selecting an appropriate number of independent equations, using for instance

nodal or loop analysis.  Let us consider the topology of the network in relation to the

spiral.  For a typical p-sided spiral of n turns, there are s=n×p segments.  Each segment

has one branch associated with the series inductance and resistance, and one branch

associated with the substrate impedance.  Assuming a dense capacitive coupling

impedance matrix, then this adds an additional s(s-1)/2 branches of lossy capacitors from

segment to segment.  Hence, the total number of branches B = (s+1)(s+2)/2.  The total

number of nodes N in the circuit is simply one plus the number of segments, or s+1.

Lj-1 Rj-1

Cj-1,s1 Cj-1,s2

Rj-1,s1 Rj-1,s2

Lj Rj

Cj,s1 Cj,s2

Rj,s1 Rj,s2

Lj+1 Rj+1

Cj+1,s1 Cj+1,s2

Rj+1,s1 Rj+1,s2

kj,j+1kj,j-1

kj-1,j+1
ZC,j-1,j+1

ZCj-1,j ZC,j,j+1 ZC,j+1,j+2

Fig. 1.  Equivalent circuit model of spiral segments.
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Consequently, the total number of fundamental loops L in the circuit equals L=B-N~O(s2).

Although loop equations are a more natural formulation, due to the mutual inductive

nature of the circuit, the number of required equations is one order of magnitude larger

than the number of node equations.  Hence, nodal analysis is the method of choice.

Writing the nodal equations at node j results

V

Z

V

Z

V

Z
I I

j

j
C

j

jk
C

k j

k

jk
C j j

k j0
1 0+ − + − =

≠
−

≠
∑ ∑ (1)

In the above equation, Vj is the voltage at node j, Ij is the current flowing into segment j,

Z jk
C  is the lossy capacitive impedance coupling segment j and k.  The above equations

involve the voltages and currents in the segments, similar to modified nodal analysis.  The

voltage across each segment is related to the currents flowing in the segments by

V V Z Ij j jk
L

k
k− =+ ∑1 (2)

where Z jk
L

 is an entry of the symmetric inductance matrix ZL.  The diagonal terms

represent the internal impedance of each segment whereas the off-diagonal terms represent

the magnetic coupling between segments.  The above system of equations yields an

invertible complex frequency-dependent matrix.  Since there are 2s equations in (1) and

(2), the system can be solved directly using Gaussian elimination with pivoting or LU

factorization, in time O((2s)3).  However, the matrix naturally partitions into four square

matrices as

Y D

D Z

V

I

I

V

C T

L

s

s−


















 =









 (3)

YC is a matrix with elements

[ ] [ ]Y
Z

Y
Zij

C

ij
C ii

C

ik
C

k

=
−

= ∑1 1
(4)

D is an upper-triangular band matrix with its diagonal entries as 1 and with super diagonal

entries as -1.  Rewriting (3) we have

( )Y D Y D V I D Y VC T L
s

T L
s+ = + (5)

I Y DV VL
s= −( ) (6)
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where Y ZL L= −( ) 1  is the inverse of the inductance matrix.  As we will see later, Y L is

known a priori and no explicit matrix inversion needs to be performed.  In addition, due to

the simple structure of D, the matrix products involving D and its transpose can be done in

O(s2).  Hence, in forming (5) and (6) no explicit matrix products need to be formed.

Thus, we can solve (5) by using an LU decomposition of ( )Y D Y DC T L+ and then solve

(6) directly for I.  Therefore, the solution of (3) is dominated by one LU decomposition of

an s×s matrix, which can be performed in time O(s3).  This is more than eight times faster

than solving (3) directly.

3.2  Low-Frequency Network Analysis

In the previous section the complete matrix inverse was found for a dense

capacitive and inductive matrix.  In practice, it is not uncommon for the capacitive matrix

to be sparse, especially if the approximations are employed.  In this case, sufficiently far

from self-resonant frequency, one can obtain the two port parameters for the entire spiral

in O(n) time.

The approximation is to treat each segment of the spiral as an effective two-port.

Clearly, each segment is not a two-port since it interacts with all other segments both

capacitively and inductively.  Far from self-resonance, though, the segments act

inductively and negligible current will flow through coupling capacitors and into the

substrate.  Using this approximation, equation (4.19) becomes

V Z j L I Z Ii ik
L

ik
k Ck C

i eff
L

ii

≈ +








 =

∉∈
∑∑ ω , (7)

where I is the total AC current driving the spiral.  This approximation yields an effective

series impedance.  In addition, if we neglect all mutual capacitive coupling except for

segments which neighbor one another, or in other words if we only consider turn to turn

interwinding capacitance, then each turn of the p-spiral can be considered as a cascade of

p effective segment two ports.  Fig. 2 illustrates this idea.  Each segment is represented by
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a pi-circuit similar to Fig. 1 but the lumped impedance and admittance of segment i are

given by

L Z R Zi i eff
L

i i eff
L= =Im[ ] Re[ ], , (8a)

C Y R Ys i i
C

s i i
C

, ,Im[ ] Re[ ]= =1
2 0 02 (8b)

lumping the mutual inductive effects in Li and Ri.  The ABCD parameters of the segment

are given by [13]

A
y

y
= +1 2

3

(9a)

B
y

=
1

3

(9b)

C y y
y y

y
= + +1 2

1 2

3

(9c)

D
y

y
= +1 1

3

(9d)

where

L1 R1

Cs1 Cs2

Rs1 Rs2

L2 R2

Cs1 Cs2

Rs1 Rs2

p segments cascaded to make a turn

Fig. 2.  Equivalent two-port representation of a single turn of a spiral.
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y y

j C
R

y
j L R

s i
s i

i i
1 2 3

1
1

1
= =

+
=

+
ω

ω
,

,

(10)

Utilizing the above equations, the cascade of p two-ports can be performed to find

the equivalent two-port for one entire turn.  The resulting two-port ABCD parameters are

converted to y-parameters, since the effective turn-to-turn capacitance appears in shunt

with the turn two-port matrix.  After performing a similar calculation for each turn of the

spiral, the overall y-matrix parameters can be derived by cascading all the turns of the

spiral.

The above approximation works well far from the self-resonant frequency where

the approximation made in equation (7) holds.  This approximation may be refined near

resonance in an iterative fashion as follows.  First, we perform the above described

computation, and as matrix multiplication is performed, we save the results of the node

voltages Vi.  Then we begin an iteration where we repeat the above calculation with the

following modifications.  First, in computing the effective series impedance of each

segment, we utilize (4.19) directly where In is given by

I I
V

Z

V V

Zn
i

i
C

i

n
i j

ij
C

j n

N

i

n

= − −
−

=

−

= +=

−

∑ ∑∑
01

1

11

1

(11)

The above equation is exact and is derived by KCL, where I is the total current

injected into the spiral, and the first term subtracted represents current lost to the substrate

and the second term represents current flowing through the interwinding impedance.

Although the Vi are unknown, they may be approximated by the previous iteration.  The

above iteration is performed until sufficient accuracy is obtained.  This provides the two-

port parameters of the spiral in O(n) time.
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Chapter 4:  Inductance Matrix Calculation

In Chapter 2 we de-coupled the electric and magnetic field calculations.  This

simplified the inductance matrix calculation  tremendously.  In this chapter we will outline

some practical techniques to calculate the inductance of metal segments which constitute

our inductors and transformers.  Although we will use the term inductance freely in the

following discussion, we often mean partial inductance rather than inductance.  The

important difference between these two terms is explained [14].  The distinction, though,

should be clear in context.

First, we will tackle the calculation of inductance at zero frequency, when the

current distribution across the width of our conductor segments is uniform.  This leads

naturally to the Geometric Mean Distance (GMD) approximation which is used widely.

Next, we consider the problem at high frequency, when the current in the conductors

becomes non-uniform.  We already alluded to this earlier in our discussion in Chapter 2

where we proposed to approximate the conductor by finitely many constant current

sections.  This leads naturally to the concept of calculating the inductance matrix, with

diagonal entries corresponding to the impedance of each metal segment and off-diagonal

terms corresponding to mutual inductive coupling.  The matrix is naturally symmetric, due

to the reciprocal nature of the physics.

4.1  Geometric Mean Distance Approximation

If we apply the free space Green function to equation (2.13) we obtain an

expression for the mutual inductance between segments

M
a a

l l

r r
dV dVij

i j

i j

V Vi j

=
⋅

−∫∫
µ

π4

r r

'
'

'

(1)

which may be evaluated to yield the mutual inductance matrix. By employing the GMD

approximation, we can compute the self and mutual inductance of an arbitrary

arrangement of conductors in closed form.  Fig. 1a shows two infinitesimally thin current
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filaments of length l separated by a length d.  The mutual inductance between these

filaments may be evaluated in closed form using equation (1).  The result is given by [15]

M( , ) lnl d l
l

d

l

d

d

l

d

l
= × × × +





 +











 − +





 +













−2 10 1 14
2 2

(2)

where lengths are given in µm and M is in nH.  For a typical geometry of interest, l d>> ,

hence we neglect the term 
d

l






2

.   This leads to

M l
d

l
d l= × × × − + −−2 10 2 14 ( ln( ) ln( ) ) (3)

In order to find the mutual inductance between two equal length conductors

separated by a fixed distance with arbitrary cross-sectional areas, we compute the

following integral utilizing equation (2)

M l d dA dAA B A B
A AA B

, M( , )= ∫∫ (4)

If equation (3) is used as an approximation, then d is the only variable under

integration.  Integrating equation (3), the first term leads to the mean distance between the

two cross-sectional areas, or the Arithmetic Mean Distance (AMD).  The second term

leads to the Geometric Mean Distance, or GMD, the mean of ln(d) as d takes on the

distance between all points within the two cross-sectional areas.

For self-inductance, we average equation (3) over the area of a single conductor.

This leads to the GMD and AMD of an area from itself.  For a rectangular cross-section of

d l

Fig. 1a.  Layout of current filaments.

y

z
(y1,z1)

(y2,z2)
(y3,z3)segment i
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w2

d

(y4,z4)m

Fig. 1b.  Cross-section of rectangular metal segments.
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width w and thickness t, this integral may be computed exactly, but the following

approximation offered by [15] serves well

L l
l

w t
= × × ×

+




 +











−2 10
2

054 ln . (5)

To compute the mutual inductance between two rectangular conductors shown in

Fig. 1b, we must calculate the GMD and AMD.  The GMD is found by integrating

log ( ' ) ( ' ) ' 'y y z z dy dz dydz
AA

− + −∫∫∫∫ 2 2

21

(6)

The above integral can be evaluated exactly [11] by observing that

∂
∂ ∂ ∂ ∂

4
2 2 25

6

F( ' , ' )

' '
ln[( ' ) ( ' ) ]

y y z z

dy dz y z
y y z z

− −
= − − + − −  (7)

where

F( , )
( )

ln( ) ( tan tan )y z
y y z z

y z
yz

y
z

y
z

y

z
=

− +
+ − +− −

4 2 2 4
2 2 2 1 2 16

24 3
(8)

Using the above observation for the geometry in Fig. 1b, equation (6) evaluates to

− − − −
1

2
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(9)

For the case of infinitely thin conductors, the above simplifies to

− + − + + − + +
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= = = =
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m
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k j

( tan tan ) (log( ) log( ))

(( ) log ( ) log )

, ; , , ; ,

, ; ,

β γ α δ β γ α δ

β γ α δ

where

α β
γ δ

≡ + ≡
≡ + ≡ + +

d w d

d w d w w
2

1 1 2

,

,
(10)

where d is the horizontal distance between the conductor inner edges and m is the vertical

distance between the conductors.  Although equations (9) and (10) are complex, they can

be handled effectively by computer analysis. Further simplifications to the geometry of

(10) lead to simple equations. For instance, for equal width conductors of negligible
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thickness, (10) takes on a simple form.  The GMD for these simple cases can be found in

[15]. Alternatively, simplifications such as power series expansions or polynomial

approximation may be used.

We have found the GMD of two equal length parallel conductor segments.  These

results may be used to build more complex cross-sections by using the rules of GMD

found in [15].  Consider the N conductor cross-sections shown in Fig. 2, each cross-

section i has an area Ai and a GMD to itself Rii, and a GMD to other cross-sections Rij.

If we assume that the N cross-sections form a new cross-section, then we would like to

find the total effective GMD of this cross-section to itself. The new GMD of the total

conductor from itself Rs is given by

log

log

( )
R

A A R

A
s

i j ij
j

N

i

N

i
i

N= ==

=

∑∑

∑
11

2

1

(11)

In the above equation, the Rij may be calculated by equation (9).  Furthermore, for the

above system of N cross-sections, we can find the effective GMD to a system of M other

cross-sections of area Bi shown in Fig. 2 by the following

log

log log

,R

A B R

A B
M N

p k B A
k

M

p

N

p
p

N

k
k

M

k p

=









==

= =

∑∑

∑ ∑
11

1 1

(12)

A1

A2
A3

A4
B1

B2

B3

B4

Fig. 2.  Cross-section of multi-rectangular metal segments.
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where RB Ak p
is the GMD from Bk to Ap. The above equations can be used to calculate the

GMD of more complex cross-section.  Using the GMD, self and mutual-inductance can be

calculated using (2).

The above discussion has concentrated on equal-length parallel conductors.  This

is an important special case as it occurs frequently in the analysis of spirals. As shown in

Fig. 3, the layout of a typical non-rectangular spiral contains many segments which are not

parallel.  But the set of segments which couple most strongly tend to be parallel; such a

typical set is highlighted in Fig. 3.  The lengths of such segments are not equal, and more

Fig. 3.  Layout of  polygon spiral.

l
m

p

q

d

Fig. 4.  Layout of non-equal length current
filaments.
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complicated formulas may be derived for such a case [15] [10].  Alternatively, the GMD

of non-equal length conductors can be written in terms of equation (2).  For instance, by

symmetry arguments [15], for the non-equal length segments shown in Fig. 4, the

appropriate equation is a combination of three equal length filaments

2M M m p d M m q d M p d M q d= + + + − −( , ) ( , ) ( , ) ( , ) (13)

where M l d( , )  is given by equation (2).

For non-parallel conductors, the concept of GMD may be used but equation (4)

becomes difficult to evaluate in closed-form.  Since segments which couple most strongly

tend to be parallel and closely spaced in a typical spiral, whereas non-parallel segments

tend to be distant, we may assume that the magnetic field generated by such segments is

equivalent to the magnetic field generated by a current filament flowing through the center

of such conductors.  With this approximation, the mutual inductance between

infinitesimally thin filaments in arbitrary geometric relations to one another may be found

using Neuman’s formula or other techniques and such formulas appear in [15]. This

approximation improves if we divide the cross-section of a conductor into many sub-

sections to obtain the frequency-dependent current distribution [14].

4.2.  High Frequency Current Constriction and Proximity Effects

As discussed in section 2.1, the current distribution at high frequency ceases to be

uniform through the cross-section of the conductor segments and hence the GMD

approximation fails at high frequency.  The non-uniformity in the current distribution is

not only due to the skin effect, but also due to proximity effects of neighboring current

segments.  Hence, although many past authors [16] have analyzed and developed closed-

form equations for current constriction in an isolated conductor, these results are not

directly applicable to the spiral inductor due to proximity effects.

In [11] a nice technique is developed to handle this problem without abandoning

the closed-form equations already developed in section 2.2.  In essence, as shown in

equation (2.12), the current distribution in the conductor can be approximated in a step-
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wise fashion by breaking up each segment into sub-segments.  Although this technique is

general and accurate, it is computationally expensive.  Consider a typical 10-sided spiral

with 10 turns as an example.  Such a spiral has 100 segments, and if we were to further

divide each segment into 5 parallel segments, this would involve 500 segments, and a

corresponding 500×500 matrix inversion.  To alleviate the demand on computational

resources, we will assume that the segment current distribution is only influenced by a

small set of neighboring segments.  For a typical planar spiral, this might involve only two

neighboring segments.

We re-derive the results presented in [11] with this approximation in mind.  For a

set of N segments, let the (i,j) segment represent the jth sub-segment of segment i and let

Ni denote the number of such sub-segments in segment i.  Let Iij be the current in the (i,j)

segment, and let Ii be the total current in segment i.  With this notation, the voltage across

the (i,j) segment is given by

V r j L Iij ij ki jm ij km km
m

N

k

N k

= +
==

∑∑ ( ),δ δ ω
10

(14)

In the above equation rij is the resistance of the (i,j) conductor, δij  is the Kronecker delta-

function, and Lij km,  is the mutual inductance between sub-segments (i,j) and (k,m).  Let Ci

denote the set of segments in the neighborhood of segment i, or the set of segments which

influence the current distribution of segment i [17].  Equation (14) may be broken up as

follows

V V V Z I j L Iij ij
L

ij
G

ij km km
m

N

k C
ik

k C
k

k

i i

= + = +
=∈ ∉

∑∑ ∑,
1

ω (15)

Inverting the first term corresponding to the local voltage at segment (i,j) we obtain

I Y Vij ij km
m

N

k C
km
L

k

i

=
=∈

∑∑ ,
1

(16)

The total current in segment i is given by

I I Y Vi ij
j

N

ij km km
L

m

N

j

N

k C

i ki

i

= =
= ==∈

∑ ∑∑∑
1 11

, (17)
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If we make the reasonable assumption that the voltage across each sub-segment (i,j) is

independent of the index j (as was done in [11]), then (17) becomes

I V Y V Yi km
L

ij km
m

N

j

N

k C
km
L

ik
L

k C

ki

i i

= =
==∈ ∈

∑∑∑ ∑,
11

(18)

Equation (15) may be rewritten as

V Z I j L Ii ik
L

k ik k
k Ck C ii

= +
∉∈
∑∑ ω (19)

Repeating for all i, one generates the desired matrix equation.  The above

technique involves one matrix inversion going from equation (15) to equation (16), and

another matrix inversion of reduced order going from (18) to (19).  The latter matrix

inversion can be neglected, since the matrix is small.  Assuming matrix inversion is the

most computationally intensive operation, and that it is done O(n3), whereas the original

technique presented in [11] is O[(n×p)3], where n is the total number of segments and p is

the average number of sub-segments, this technique is O[n×(q×p)3], where q is one plus

the average number of neighbors for each segment.  Hence this technique is  n q2 3  faster

and demands n q2 2  less memory to store the matrix.  For the example given earlier, a 10-

sided 10-turn spiral, with two neighbors and five sub-segments per segment, this means

this technique is 370 times faster, and more than 1000 times less memory intensive.
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Chapter 5:  Capacitance and Substrate Loss Matrix Calculation

Although undesirable, all passive devices on the Si substrate suffer from substrate

effects.  The inherent capacitance between metal segments and the substrate leads to self-

resonance at higher frequencies.  After self-resonance, the inductors and transformers

appear capacitive and fail to function as inductors.  Hence, the highest frequency of

operation is limited.  Also, due to the finite conductivity of the substrate layers beneath the

inductors and transformers, currents are induced in the substrate electrically and

magnetically.  These currents act as an important additional loss mechanism which limits

the frequency of operation and the quality factor at high frequencies.

5.1  Capacitance Matrix and Approximations

In chapter 4 we found the GMD approximation to be very useful, as it allows one

to bypass equation (4.1).  The approximation lies in the assumption that the current

distribution is uniform across the cross-section of the conductor.  While this

approximation is true at low frequency, it fails at high frequency due to current

constriction and proximity effects.  But as discussed before, we can always partition the

cross-section into uniform current sections, as in equation (2.12), to approximate the

physics at higher frequency.

Although the same approximation is used for the capacitance calculation, the

partitioning of the segments into constant charge sections requires a lot more divisions to

retain sufficient accuracy.  This is due to the edge effects which cause high charge density

at the edges of the conductors and large charge density variation near the edges.  Non-

uniform segment divisions help, but the basic problem remains.  In addition, edge effects

are important even for calculating capacitance at low frequency whereas current

constriction and proximity effects are only important at higher frequency.

The substrate and coupling capacitance can be estimated using two dimensional

approximations.  Much work has been done in determining the capacitance of coupled
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transmission lines in even and odd mode.  The classic work of [18] gives closed form

relations for these capacitors, but can involve lengthy numerical calculations.  The work of

[19] gives empirical closed-form equations which are suitable for computer applications.

For most cases, the capacitance matrix can be approximated by a band-matrix by

considering only the nearest neighbors in the coupling problem.  This can be used to

simplify the matrix inversion.

For an arbitrary arrangement of conductors, empirical methods or numerical

methods must be employed.  For instance, in [20] empirical formulas appear which allow

one to find the capacitance matrix very quickly.  Three dimensional numerical techniques,

on the other hand, are computationally expensive.  If the problem is constrained to two

dimensions, fast numerical techniques are available.  One such technique is the Method of

Pipes [21].   In this finite-element technique, the electrostatic integral equations are

developed with the edge effects in mind, necessitating fewer divisions at the edges of

conductors.

The biggest drawback to many of these techniques is that they avoid the important

effects of the conductive substrate.  Pairs of segments not only couple through the oxide,

but also through the conductive substrate.  This can be represented as a lossy capacitor.

Depending on the frequency of operation, the substrate coupling can be significant.  Of

course, it is of paramount importance to include the substrate loss of the capacitance to

substrate.  Many previous papers have assumed this resistance to be constant, an

approximation which fails at high frequency.  Due to displacement current in the substrate,

the effective substrate impedance is a function of frequency.  For an accurate

characterization of these effects, (2.16) must be solved.  A full treatment of the substrate

problem follows.
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5.2.  Derivation of the Multi-Layer Green Function

To derive the electrostatic Green function in a multi-layer substrate, consider a

point charge placed at (x',y',z') in layer k as shown in Fig. 1.  The Green function must

satisfy Poisson's equation in layer  j

∇ =
− − − −2G x y z x y z

x x y y z z

k

( , , , ' , ' , ' )
( ' ) ( ' ) ( ' )δ δ δ

ε
(1)

where we assume that layer k has a uniform permittivity of ε k .  Let

G X x x Y y y Z z z= ( , ' ) ( , ' ) ' ( , ' )  in the above equations thus resulting in
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 in order to satisfy the boundary condition of zero

normal E-field on the side walls.  Making these substitutions results
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Fig. 1.  Geometry of Multi-Layer Substrate.
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By multiplying the above equations by cos [ ] cos [ ]
m x

a

n y

b

π π
 and by integrating over x and y

chip dimensions we get
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By defining Z z z Z z z
m x

a

n y

b
' ( , ' ) ( , ' ) cos [

'
] cos [

'
]=

π π
 and substituting in the above equation

we get a simple second-order differential equation

ab d Z

dz
Z

z z
mn

k4

2

2

2( )
( ' )

− = −
−

γ
δ

ε
(5)

where γ
π π

mn

m

a

n

b
= +( ) ( )2 2 .  For z ≠ z' the above equation has the general solution

Z d z d zmn mn= + + +β γ γsinh [ ( )] cosh [ ( )]Γ (6)

Hence, in each layer, the solution must be of the above form.  In particular, in layer k the

solution is of the form

Z d z d z f zk
u l

k
u l

mn k
u l

mn k
u l, , , ,( sinh [ ( )] cosh [ ( )]) ( ' )= + + +β γ γΓ (7.a,7.b)

where the superscript u and l distinguish between the upper and lower solutions,

depending if the observation point is above or below the point charge.  The potential must

be continuous at z = z',, and the first derivative discontinuity can be found by integrating

equation (5) for m,n > 0.

Z z Z z
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dz abk
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= = −
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+
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4

(8.a,8.b)

 Using these two conditions, one can solve for the z' dependence of the potential

f z
d z d z

ab
k
u l k

u l
mn k

u l
mn

k mn k
u

k
l

k
l

k
u

,
, ,

( ' )
[ sinh ( ( ' )) cosh ( ( ' )]

( )
=

+ + +
−

4 β γ γ
ε γ β β

Γ
Γ Γ

(9.a,9.b)

In any other layer, the solution takes the same form as (7a) or (7b), depending on

whether the observation layer j is above or below the point charge.  Boundary conditions

imply that the z' dependence must be the same as in the layer  k.  Hence, the most general

solution for the z dependence of the potential is
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Z
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j k
u l

k mn

j
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(10.a,10.b)

where ϑ γf s mn f sd z, ,( )= − .  Here we introduce the notation of the field point z zf = and

the source point z zs = ' .  The coefficients βk  and Γk  still need to be determined.  Even

though we have two constants, only one is independent.  By examining equation (7), it is

clear that either βk or Γk  can be factored out and absorbed into the z' dependence. Due to

the boundary condition at z = -d, i.e. zero potential at the back ground plane, we must

choose β0 01 0= =,Γ .  Furthermore, for each adjacent layer, the following boundary

conditions must hold at the interface
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The above pair of equations lead to a recursion relation that adjacent layer coefficients

must satisfy
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(12)

By employing the above recursion, we can find the coefficients in any layer below

the point charge layer k.  Similarly, at the top layer, we impose the boundary condition

dZ

dz
N

z d N=− =+

=
1 0

0 (13)

This implies that the top layer coefficient values are β γN N mn d= = −0, coth ( )Γ .  Using the

top layer coefficients, and using the inverse of (12), we can recurse downwards from the

top layer to any layer above the point charge layer k.  Hence, all unknowns have been

determined.   Therefore, for the case of m,n > 0 we have
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For the case m=0, n>0, or (n=0, m>0) the form of (14) remains the same except

the factor 4 changes to 2 and we have a single summation instead of a double sum.  For

the case m=n=0, the original differential equation (5) has the general solution
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Z B z Gk k k= + .  Applying boundary conditions to adjacent layers results in the following

recursion relations

B B

G d B G

j j

j j j j

j

j
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j

=

= − +
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−
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ε
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To satisfy boundary conditions at the back-plane, we have B G dl l
0 01= =, .  To satisfy the

top-layer boundary condition (13), B B j LN
u

j
u

upper= ⇒ = ∀ ∈0 0  (upper layers).  In

addition, G G j Lj
u u

upper= ∀ ∈ .  By applying the fact that the potential must be continuous

across the point charge, and by integrating the differential equation (5) we find
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The Green function derived above is represented as a double infinite series which

converges slowly.  In practical applications, we need a way to evaluate the Green function

at many different points in the substrate, thus necessitating a technique for fast evaluation

of (52).  In [22] a technique of representing (14) as a Discrete Cosine Transform (DCT) is

shown.  We will use the same technique, and for continuity we will summarize the work of

[22].   We begin by integrating the Green function over the surface of a contact.  Equation

(2.16) becomes:
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To find p Qi j i j, /= φ , we integrate (14) and (16) over the surface of contacts i and j with

coordinates given in Fig. 2.  This results in
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in the above equation C00 0= , C Cm n0 0 2= = , and C m nmn = ∀ >4 0, .  And
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where the subscript s denotes the source point (with z coordinate of the contact in layer j),

and the subscript f denotes the field point (with z coordinate of the contact in layer i).

By using the identity
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equation (21) can be cast into a sum of 64 terms in the form
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If we discretize the substrate space in the x-y directions, and represent the

coordinates of the contacts as ratios of integers such that
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then (21) can be recast as
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Fig. 2.  Contact Coordinates
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As (24) stands, it cannot be considered a DCT.  However, using the following

properties of the DCT allows one to compute (23).

X x m n

X X X X
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The Green function can therefore be computed rapidly by employing an FFT to

compute the DCT.

The following list summarizes our algorithm for extracting the substrate parasitics.

A.  For A Given Technology

• Input:  Substrate layer data (thickness and dielectric constant and resistivity)

• Input:  Metal layer z-coordinates

• For each pair of metal layers i and j, compute the Green function using the DCT method 

and store results.  Due to symmetry of the Green function, for Nm metal layers, this 

requires Nm(Nm+1)/2 DCTs.

B.  For A Given Layout

• Input:  Contact x, y, z  coordinates

• Form matrix [P] by accessing DCT of the Green functions

• Invert [P] matrix using LU factorization

• Form impedance matrix

Step A need only be done once for a given technology.  This saves computation

time since step A can be computationally expensive.  For three metal layers, 6 2D DCTs

need to be performed.  Using the FFT, this operation is O p p( log )2 2 where p represents

the accuracy required.  For a typical substrate dimension of 1024µm × 1024µm, a 512 ×

512 DCT suffices.  This sets the minimum metal trace width at 2µm.  Once step A is

performed, step B uses the pre-computed Green functions to build the p-matrix.  In other

words, computation time is dominated by O(n3) where n represents the number of
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contacts, not the DCT size.  Although the accuracy of the method depends on the grid size

of the DCT, this only affects step A, which is performed once, and not step B, which is

performed many times.

5.3  Implementation of  Numerically Stable Green Function

Although the derivation of section 5.2 is straightforward, the actual numerical

implementation poses many problems.   For large values of n and m, and deep substrate

contacts, tanhϑ → 1 and coshϑ → ∞ .  Furthermore,  for each term (tanh /ϑ β+ Γ ), the

ratio Γ / β → −1 so that the numerator factors of equation (10) approach zero.  The

denominator of (10) also approaches zero.  The product of the ratio and the hyperbolic

factors must converge to zero as a whole, due to the physical nature of the solution, but

with finite precision it is very difficult to accurately calculate equation (10).  The above

equations, though, may be recast into more numerically stable forms as follows.  We begin

by rearranging equation (10a)
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Notice that the we have separated the equations into a factor with only the source layer  k

and a factor involving an upper recursion of  j,k.  We define rk
l k

l

k
l k

u k
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notation.  We also rewrite (12) as follows
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From the above, we define new coefficients as follows
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and similarly
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Using the above definitions, we rewrite (26) as
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We will now treat each factor separately.  We begin with the first factor in

equation (30).  The following recursion relations are derived from (12)
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where p qk
k
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= =+ −ε
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1 1, .  Using (31) and (32), and substituting into the first factor of

(30) gives1

( tanh( ))( tanh( )

tanh( )( )

cosh( ) cosh( )

cosh( )

R q R p

q R p R p q R R
k
l

k s k k
u

k f k

k k
u

k k
l

k k k k k
u

k
l

s k f k

k k

− + +

+ − + + −

+

+

+ − + −

− + − −

− −

−
1 1 1

1 1 1 1 1

1

1

ϑ ϑ ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ
(33)
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The above equations satisfy the following recursion relations and terminating

conditions

                                                       
1 This follows after much algebra.
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Using equations (36) and (37), (33) can be rewritten as
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The above equations may be evaluated in a numerically stable fashion since

equations (34) and (35) are numerically stable as ϑ → ∞ .  Equation (38) is valid for field

points above the source point charge (upper case).  However, due to the symmetry of

equation (30), equation (38) can be rewritten for the lower case by inspection.

What remains is the second factor in equation (30).  We may calculate this

indirectly by using (34) and (35) as well.  Rewriting (35) as a ratio:
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The common factor is not canceled for a  good reason.  When calculating (35) as a ratio,

this factor does not play an important role since it always cancels out.  But if we wish to

calculate N k
u  recursively, this factor is important.  Let us observe that
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In equation (40) nk
u  is the numerator of (34), calculated recursively without the factor of

( tanh tanh )1 1− +ϑ ϑp p .  By using the above definitions, the first factor in equation (30)

may be rewritten as
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(41.a)

where ~n j
u is the numerator of (39) modified so that ϑ ϑj f= .  A similar analysis for the

lower case gives
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Utilizing the above results, the complete upper Green function z dependence can

be rewritten as
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and the lower case can be written as

Z
F z z

ab

n

nj k
l k

l
f s

k mn

j
l

k
l

f j

f k

j

k

p p

p pp j

k

f k s k

,

( , ) ~

~
cosh( )

cosh( )

cosh

cosh

cosh cosh

cosh( )
cosh( ) cosh( )

=
−

−
×

−
− −

+

+

+=
+∏

4

1

1

1
1

ε γ

ϑ ϑ

ϑ ϑ

ϑ

ϑ

ϑ ϑ

ϑ ϑ
ϑ ϑ ϑ ϑ

(42.b)

The above equations are numerically stable and may be used to implement the algorithm

presented in section 5.2.

5.4  IC-Interconnect as an Example

In this section, we illustrate the above described techniques with examples.  We

start with the simplest possible example of a single metal contact in two hypothetical Si IC

processes.  The first process, shown in Fig. 3, consists of a thick highly doped substrate

and a thin lightly doped epi (such as a typical CMOS process).  The second process,

RSH=25Ω/sq

εOX= 3.9

ρSUB= 100 Ω-µm

ρEPI=100 kΩ-µm t = 5 µm

t = 300µm

εOX= 3.9
t = 1 µm
t = 1 µm

Fig. 3.  Lightly/Highly Doped Epi/Substrate

RSH=25Ω/sq

εOX = 3.9

ρSUB= 100 kΩ-µm

ρEPI=500 Ω-µm t = 1 µm

t = 300µm

εOX = 3.9

t = 1 µm

t = 1 µm

Fig. 4.  Highly/Lightly Doped Epi/Substrate
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shown in Fig. 4, consists of a thick lightly doped substrate and a thin highly doped surface

layer (such as a buried layer in a BiCMOS process).  The oxide thickness and metal sheet

resistivity are the same in both processes.  We use a metal contact with a length of 100 µm

and a width of 10 µm located at approximately the center of a 256 µm × 256 µm chip.

Using the algorithm described in section 2,  we compute the impedance of the

contact.  In our case, we subdivided the contact into 100 internal divisions.  Figure 5 is a

plot of the magnitude and phase of the contact impedance for the two processes.  At

increasingly higher frequency,  the contact presents a lower impedance due to the

capacitive nature of the substrate current injection.  The contact has a lower impedance in

the first process due to the highly doped bulk substrate layer.  On the other hand, the

impedance of the second process is very sensitive to the presence of a substrate tap2.  As

shown in Fig. 5, when a 10 µm × 10 µm substrate tap is located 30 µm away from the

contact, the impedance drops to a value below that of process 1.  The impedance drops

                                                       
2 A substrate tap is a metal contact to the surface of the substrate.
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 Fig. 5. Magnitude and Phase of Contact to Substrate Impedance for Processes 1 and 2
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since significant lateral current flows through the surface of the substrate.  This indicates

the importance of modeling the presence of a substrate tap in such a process.  On the

other hand, process 1 is not sensitive to the presence of the substrate tap since most

current flows vertically through the surface epi layer.

Fig. 6 shows the extracted model, which is highly frequency-dependent.  We can

model the contact impedance with fixed capacitors and a resistor as shown in Fig. 7.  This

is the physical representation, with a fixed CMS  representing the metal to substrate

CMS

RSUBRSUBCSUB

Fig. 7.  Frequency Independent Model of Contact

C(ω)

R(ω)

Fig. 6.  Frequency Dependent Model of Contact
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Fig. 8.  Contact to Substrate Impedance For Two Contacts of Different Area
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capacitance, and a fixed resistance RSUB and capacitance CSUB  from the substrate to the

ground plane.  The agreement between the model and the previous simulation result is

excellent.

Using the same simulation setup as described before, we examine the coupling

impedance between two contacts.  Two contacts are placed symmetrically around the

center of the chip, one contact of length 100 µm and width 10 µm, the other contact of

length 50 µm and width 10 µm.  Three values of spacing are simulated: 2 µm, 5 µm, and

10 µm.  Similar to the single contact case, the contact to substrate impedance is plotted in

Fig. 8.  For both processes, the larger contact naturally presents a lower impedance.  The

coupling impedance values are plotted in figures 9 and 10.  Here we see significant

differences.  For the first process, Fig. 9 shows that the value of the spacing is very

significant and the coupling impedance changes by orders of magnitude for different

spacing values.  For the second process, however, Fig. 10 shows that the contact

impedance is not too sensitive to the spacing used.  This is understandable since the

second process coupling current flows laterally through surface, whereas in the first

process lateral current flows through the bulk substrate.
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Fig. 9.  Substrate Coupling Impedance for Process 1 for Different Contact Spacing Values
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Fig. 10 also shows that the coupling impedance changes dramatically in the

presence of a substrate tap placed between the contacts. As a result, a significant fraction

of the lateral surface current flows to ground instead of to the other contact.  The same

isolating effect is not seen in the first process due to the highly resistive surface layer.

Similar to before, frequency-independent circuits can be constructed to model the

impedance over a wide-frequency range.
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Fig. 10.  Substrate Coupling Impedance for Process 2 for Different Contact Spacing Values
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 Chapter 6:  Modeling

Since our inductance and capacitance matrix calculations are frequency dependent,

our previous approach produces a frequency dependent model of the device.  This is not a

serious limitation since most RF circuits employing inductors and transformers in narrow-

bands.  On the other hand, enough situations arise in practice to warrant a frequency-

independent model.  On another front, measured data is often fit to frequency-independent

models over a broad frequency range and this necessitates modeling the device with low-

order circuits.

6.1  Equivalent Circuit of Planar Spiral

In the previous chapters we discussed how to generate two-port parameters as a

function of frequency for a given spiral layout.  Usually, the spiral inductor will be used in

a larger circuit, with hundreds of other active and passive components.  Hence, it is

desirable to model the spiral two-port parameter with a low-order lumped circuit to

reduce simulation time.  In some cases, the y-parameters of the spiral can be utilized

directly in the simulator;  for the most part, however, it is more desirable to work with an

equivalent circuit since this gives the designer more intuition about the performance of the

circuit relative to the spiral inductor.

Fig. 1a shows a frequency independent model first proposed in [1] and Fig. 1b shows

modifications to the circuit [2].  Most modifications model second order effects that

increase the effective usable bandwidth of the model.  For instance, a CBR has been added

to model the interwinding capacitance and to make the series inductance and resistance

frequency dependent.  Some authors [2] use a non-linear resistor to model skin/proximity

effects.  CS represents displacement current in the substrate which makes the substrate

impedance vary as a function of frequency.  RC is a substrate coupling resistor, which

models the substrate coupling impedance.
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Although the circuit of Fig. 1a may be derived physically at a single frequency

from the two-port parameters, it is very difficult to physically derive models like Fig. 1b

over a large frequency range. Usually optimization is used to minimize the least-square

error between the two-port parameters of the two circuits. These circuits model the spiral

well up to the first resonant frequency.

6.2  Equivalent Circuit of Multi-Level Spiral

To overcome the high losses intrinsic to Si spiral inductors, many authors [3][4]

have reported utilizing processes with multiple metal layers to build inductors.  Spirals on

individual metal layers are interconnected by copious amounts of via connections, putting

the spirals in shunt or in series.  The purpose of making shunt connections is to increase

the effective thickness of the metal conductor to thereby reduce the loss of the spiral.  For

L R

Cs1 Cs2

Rs1 Rs2

Fig. 1a.  Traditional spiral inductor model.

L R

Cs1 Cs2

Zs1 Zs2

CBR

RC

                Fig. 1b.  Modified spiral inductor model.
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N metal layers with equal conductivity in shunt, the spiral loss at low frequency will drop

by a factor of N.  The inductance drops also, but since the metal-to-metal spirals are

tightly coupled magnetically (k > 0.8), the loss in inductance is not substantial.  Hence, the

overall Q of the inductor increases.

Assuming perfect coupling as an upper bound, at low frequency the Q increases by

a factor of N.  The shunt connection combats high frequency losses due to current-

constriction, since the multiple metal layers increase the available surface area for current

to flow.  The penalty is that the substrate admittance of the spiral increases since the spiral

moves closer to the substrate with the lower metal layers.  In addition, coupling

capacitance increases.  Hence, high-frequency Q suffers due to substrate loss.

Alternatively, the N spirals may be connected in series increasing the overall

resistance and inductance of the spiral.  The increase in resistance is more than a factor of

N (assuming equal conductivity metal layers and some finite via resistance) whereas the

inductance increases at a faster rate.  For the ideal case of perfect coupling, the inductance

increases by a factor N2(as in the case of discrete coil inductors).  Hence, at low

frequency, an upper bound on the Q increases is N for N metal layers, similar to the shunt

connection.  The series connection, however, suffers from high interwinding capacitance

which lowers the self-resonant frequency substantially.  This renders the series connection

suitable for low-frequency small-area applications.

For both cases considered, modeling and analysis of the inductors become very

important since the geometry has an adverse effect on the frequency response of the

inductor.  The analysis presented in chapter 3 is applicable, although many of the

approximations are not.  For instance, for the series connection capacitance is of utmost

importance and must be computed accurately using the techniques of chapter 5.  In

addition, the simplified low frequency analysis of section 3.2 is no longer applicable, since

we assumed operation far from self-resonance and negligible current flowing in the

interwinding capacitance.  For the shunt case, though, almost all of the analysis techniques
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apply.  In particular, the technique of section 3.1 can be used to model the parallel

segments since this fits naturally into our earlier formulation.

The equivalent circuit for the shunt spiral is identical to the planar inductor.

Special care is needed to calculate substrate capacitance/resistance since these effects are

more important.  The series inductor, though, is more difficult to model with simple

circuits such as Fig. 1b.  The reason is due to the lower self-resonance frequency and

increased capacitance.  These effects may be modeled by using two or three cascades of

Fig. 1a with added coupling capacitors.  Again, it is difficult to uniquely assign values to

the model parameters, due to the unphysical nature of the modeling.

6.3  Equivalent Circuit of Transformers and Coupled Inductors

Similar to inductors, transformers find many important applications in a typical RF

circuit.  For example, transformer baluns aid in converting signals from differential to

single-ended, and vice versa.  In this way, they can be used to improve the gain of

differential circuits which feed single-ended circuits [24].  In [25] a transformer is used as

a low-noise feedback element to improve the performance of a LNA.  Since inductance is

a well controlled parameter (primarily determined by lithography), absolute inductance

values are accurate to begin with, and inductor ratios are even more accurate.  This allows

inductors to be used as loads and as feedback elements.  Other uses include filtering

applications, tuned differential loads, and single-ended to balanced conversion, and narrow

Fig. 2.  Layout of two coupled spiral structures.
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band impedance matching.

Most past researchers, however, have used transformer models derived from

measurement, making it difficult to utilize a custom transformer prior to fabrication.

Modeling of the spiral transformer is difficult since many second-order effects in the spiral

analysis become first-order effects.  This includes the interwinding coupling capacitance

and the finite substrate coupling impedance.

We begin with the simplest case, that of coupled inductors.  Assume that two

spirals are placed on the Si substrate as shown in Fig. 2.  Also assume that one side of

each inductor is grounded.  These inductors act like a loosely coupled transformer and

may be modeled physically as shown in Fig. 3.  This broadband equivalent circuit is

derived by utilizing the calculations of chapter 3 to derive a lumped circuit representation

at each frequency of interest.  Through the use of optimization, the broadband model may

be derived.  In the broadband model Rc models the substrate coupling between the

inductors.  This is sensitive to the location of the substrate taps, as well as the condition of

the back-plane of the Si substrate.  Clearly, substrate taps placed between the spirals as

well as a good back-plane ground help to isolate the inductors.

L1 L2

R1 R2

C1,2
R1,2

Cs2

Rs2

Cs1

Rs1

k1,2

RC

Fig. 3.  Equivalent circuit model for two coupled spirals.
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Notice that the magnetic coupling coefficient k is very small for this arrangement

of inductors.  This remains true even as the spirals are placed in close proximity to one

another.  Fig. 4 is the computed plot of the effective k as a function of distance.  Notice

that k drops off very fast for distant spirals.  Fig. 5 shows the magnitude of the coupling

impedance for two different substrate tap placements.  Whereas in the first case, a

substrate tap is placed between the spirals, in the second case the substrate tap is placed a
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distance of 150 µm away from the spirals. It is evident that the placement of the substrate

tap has an important effect on coupling.

Fig. 6 shows the layout of a typical spiral transformer.  The transformer is realized

simply as two spiral inductors wound together.  Hence, we may calculate equivalent

circuit parameters in a manner similar to before, and build equivalent circuits in exactly the

same way.  The coupling capacitance is especially important since it appears from one port

of the transformer to the other and it is parasitic and dominant.  For an isolated grounded

spiral, the coupling capacitance is shunted by a much larger substrate capacitance and its

effect on the inductance is second order.  The equivalent broadband circuit is shown in

Fig. 7a.  This circuit may be transformed into the equivalent circuit of Fig. 7b [25][26],

which utilizes an ideal transformer shunted by various parasitic elements.

Fig. 6.  Layout of planar transformer.
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Fig. 7b.  Equivalent circuit model for planar transformer with ideal transformer and parasitic elements.
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Fig. 7a.  Equivalent circuit model for planar transformer.
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Chapter 7:  Optimization

In this chapter we pursue the optimal geometry and technology for the fabrication

of inductors and transformers.  While the word optimal is application dependent,

invariably optimality depends in some way or another on the device quality factor.  Hence,

our optimization efforts will be biased in this direction.

7.1  Optimization of Technological Parameters

In this section, we consider optimizing the Si IC process in order to optimize the

performance of inductors.  At low-frequency, the dominant source of loss comes from the

series loss of the spiral.  A process utilizing thick metal [27], or high conductivity metal

[2] can be utilized to improve the low-frequency performance of the inductors.  At high

frequency, the substrate loss limits the Q, and the substrate capacitance lowers the self-

resonant frequency of the structure.  Clearly, utilizing thicker oxide and lower permittivity

dielectric helps to reduce the capacitance [7].  By increasing the self-resonant frequency,

the substrate loss is also lowered.  Alternatively, if special processing steps are taken, the

spiral may be isolated from the substrate by etching away the oxide below the spiral and

floating the inductor [6].  In addition to lowering the permittivity of the spiral capacitance,

it also moves the spiral farther away from spiral.  This increase in self-resonance allows

one to design physically larger inductors, either to minimize loss or to attain a higher

inductance value.

The substrate loss can be reduced by eliminating the substrate resistance.  This can

be done by either shorting out the substrate resistance or by open-circuiting it [22].  To

short it out, one can place a high-conductivity conductor under the spiral, or alternatively

place the spiral above a  highly doped grounded layer.  While this will reduce the substrate

resistance value, it will have the deleterious effect of inducing substrate currents to flow.

Recall that in chapter 4 this ground current was neglected in the inductance calculation.  If

this component is taken into account, its effect is to reduce the inductance of the spiral.
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To understand this, consider a perfectly conducting ground layer.  Using the method of

images under quasi-static approximation, the ground current will mirror the substrate

current, producing a magnetic emf in opposition to the spiral [28].  To combat this effect,

one can place conductive strips in a grid fashion utilizing low conductance “open-circuit”

spaces to minimize eddy currents.  This is the approach taken by [35].  One must exercise

caution, though, as the substrate shield might adversely affect the substrate coupling at

high frequency due to the finite inductance in the ground.  Also, the substrate shield must

be sufficiently thick (thicker than the skin-depth in the material in question) to be effective

at high frequency.

To increase the substrate resistance, one can utilize a lowly doped substrate.  In

the limit, the substrate becomes intrinsic and [29] has reported good performance with this

substrate.  As discussed in section 6.2, multiple metal layers can be used to improve

inductor performance.  Hence, IC processes with many metal layers can be advantageous.

In summary, the ideal spiral inductor process is one with a thick low permittivity oxide

isolating many thick highly conductive metal layers from a highly resistive substrate.

7.2  Optimization of Geometrical Parameters

Consider utilizing a typical Si IC process in the design of the inductor.  A given

design places constraints on the electrical parameters of the spiral.  Typically, these

constraints can be formulated as

L L L

R R R or R

f f

Q
res

min max

min max

max

min[ ]

max[ ]

≤ ≤
≤ ≤

≥
(1)

While the designer typically places the strongest constraints on L, in RF choke

applications it may be desirable to maximize L.  The series loss, though, is usually parasitic

and one wishes to minimize it.  Nevertheless, some designs require a specific value for R.

Ideally, one wishes to maximize the self-resonant frequency, but realistically one must live

“close” to resonance due to the low self-resonant frequency of the structure.  For the most
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part, one wishes to maximize Q.  Also, one wishes to place the frequency of maximum Q

at the frequency of operation.

These electrical constraints map into corresponding geometric constraints.  For a

given typical spiral, as shown in Fig. 1.1, one must choose the parameters to satisfy the

desired electrical constraints.

First, one has to decide on the geometry (square, circular, hexagon, etc.) or the

number of sides p of the spiral polygon.  Most past designs have utilized square spirals for

simplicity, but square spirals are not necessarily optimal.  For minimum loss, one would

like to let p approach infinity, thus utilizing a circular spiral.  In practice, a sufficiently

large p, such as 30, closely approximates a circular spiral.

Given p, one can further change the spiral metal width w, the metal-to-metal

spacing s, and the number of turns n.  These parameters do not necessarily have to remain

constant throughout the spiral either, or they may taper as a function of n. Of course,

these parameters are not independent.  Assuming that s and w are a function of n only,

then the following approximate equation restricts the parameters space greatly

A A w so i j j
j

n

= + +
=

∑2
1

( ) (2)

In order to improve the low-frequency performance of the spiral of a given

inductance, one must minimize the series loss of the spiral.  This can be done by increasing

w as much as possible.  This requires more and more spiral area to achieve the desired

inductance; this process is limited by the negative effects of the substrate loss, since

increasing the spiral area increases the substrate injection in addition to lowering the self-

resonant frequency.  An optimum point exists at each frequency, and one can begin by

finding the optimal area.

Next, consider the spacing s.  Electrically, s controls the oxide coupling

capacitance and the mutual magnetic coupling coefficient.  But given that for most planar

spirals the substrate capacitance is dominant, the bridging capacitance does not play an
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important role and hence may be ignored in the optimization.  Typically, one chooses to

minimize s up to a point where coupling capacitance becomes dominant.  Minimizing s

allows one to maximize mutual magnetic coupling.  It also reduces loss by allowing wider

metal line widths.  But the value of s also affects current constriction. Hence, while at low

frequency one usually uses the minimum spacing available to maximize magnetic coupling,

at high frequency proximity effects favor a larger value of spacing [8].   This is illustrated

in Fig. 1 where we plot the resistance of a typical spiral using two values of spacing.

Similar considerations apply to the area of the spiral and the number of turns.  At lower

frequencies large areas allow wider metal widths to meet a given inductance at lower

values of series resistance and therefore higher Q.  But at high frequencies the Q is

dominated by the substrate and smaller areas are favorable.  This is doubly true for highly

conductive substrates which suffer from eddy-current losses at high frequency [8].

Given Ao and minimum s, one can vary w and n to obtain the optimal Q at a particular

frequency.  Fig. 2 plots the optimum number of turns n as a function of outer length of a

square spiral for different inductance values (the width w also varies).  The analysis was

performed at 2 GHz using a hypothetical BiCMOS process. This optimization is
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Fig.  1.  Normalized spiral resistance as a function of frequency.
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appropriately done using a computer program.  Instead of considering every possible

combination of (n,w,s), many heuristics can be used to restrict the parameter space.  For

instance, approximate closed-form formulas [30][31] may be used to estimate a range for

n for a given w in order to achieve a particular value of inductance.

In the above discussion, we assumed that w does not vary as a function of n.  This

is not the optimal choice due to the intrinsic asymmetry of the spiral.  This asymmetry

becomes important at high frequency when proximity effects render the optimal width w

position dependent.  The inductance of the spiral is a weak function of w, whereas the loss

is strongly dependent on w.  By keeping the average width and length of the spiral

constant, the inductance will not change significantly.  To take advantage of this, one may

taper the width of the spiral to optimize the Q.

7.2  A Custom CAD Tool for Spiral Design, Analysis, and Optimization
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The techniques presented in this paper have been collected into ASITIC [32]

(Analysis and Simulation of Inductors and Transformers for ICs), a user-friendly CAD tool

designed to aid the RF circuit designer in designing, optimizing, and modeling of the spiral

inductor.  The tool is flexible, allowing the user to trade off between speed and accuracy.

For example, to quickly search the parameters space of an inductor optimization problem,

ASITIC uses low-accuracy high-speed techniques of chapter 3 to quickly confine the

search space, then the local space is searched using more accurate techniques.

By working with the entire metal layout of the circuit at hand, ASITIC allows

general magnetic and substrate coupling to be analyzed between different parts of the

circuit.  Parasitic metal extraction may also be performed, including the effects of the

substrate, and the resulting SPICE file may be included in more accurate simulations.  The

final design of a spiral may be exported for final layout;  this feature is convenient in the

layout of complex geometry spirals (non-square spirals), since their hand-layout is time

consuming, especially when changes are made to the geometry of the spiral.
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Chapter 8:  Experimental Verification

8.1  Description of Process/Measurement Setup

All spiral inductors were fabricated in Philips Semiconductors Qubic2 BiCMOS

process.  Approximate process parameters are given in Table I.  Inductors are fabricated

on metal 2 to minimize the series loss and to maximize the distance of the inductors from

the substrate.  Metal 1 is used as the “bridge layer” to make connections to the inner turn

of the spiral.

Metal 2 Rsh = 33mΩ/sq thickness = 1.27µm Csub=14aF/µm2

Metal 1 Rsh = 50mΩ/sq thickness = 1.00µm Csub=21aF/µm2

Metal 0 Rsh = 100mΩ/sq thickness = 0.40µm Csub=105aF/µm2

Buried Layer ρ = 0.085Ω-cm thickness = 1µm p+ Si
Bulk Substrate ρ = 20Ω-cm thickness = 675µm p- Si

Table I.  Approximate Process Parameters

Fig. 1a.  Layout of spiral and probe pads for measurement.
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Using on-chip cascade probes, the average two-port s-parameters of the spirals are

measured from 100MHz - 5GHz.  Since the measurement setup holds wafers in place

using vacuum suction, the back-plane of the substrate is effectively floating. The substrate

surface is grounded by placing substrate taps near the spirals in the layout.

Pad capacitance is de-embedded by subtracting out the open-circuit structure y-

parameters from the spiral y-parameters.  The calibration procedure we use is the standard

approach and is reported widely.  But there is an intrinsic problem with this calibration

approach which can render the measurement results inaccurate.  Fig. 1a shows the layout

of a typical spiral setup for measurement.  To de-embed the large substrate capacitance

and resistance of the pad structure, the open-pad two-port parameters are also measured,

as shown in Fig. 1b.  In the same figures we show a schematic of the pad parasitics along

with the spiral equivalent circuit.  Clearly, the open-circuit pad structure does not contain

the parasitic coupling between the spiral structure and the pads.  In addition, the pad-to-

pad coupling is different in the two cases shown, since the spiral itself tends to shield the

Fig. 1b.  Layout and equivalent circuit models of spiral and pads used for calibration procedure.
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pads from one another.  Hence, the pad parasitics are not correctly de-embedded from the

measurement results.

To show this effect, we simulate a sample inductor with and without pads.  Next,

we de-embed the pad parasitics from the simulation results with pads (just as one would in

measurement) and the resulting extracted series inductance, resistance, and Q factor are

shown in figures 2a and 2b.  The inductance value is in error but in both cases increases

with frequency;  the series resistance values, though, deviate dramatically as a function of

frequency.  Notice too that the trend comes out incorrect, increasing as a function of

frequency instead of decreasing.  Also shown is the resulting error in the Q factor.  Notice

too that this error can change the location of the peak Q-factor, resulting in sub-optimal

designs.  Not shown are the equivalent extracted substrate impedance values.  The

measurement errors can produce dramatic differences here too, changing the substrate

resistance by a factor of 2.  The substrate capacitance can actually change sign due to

resonance phenomena.  In the following sections, in order to match simulation results to

measurements, we simulated our structures under the same conditions as they were

measured.
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To solve these problems, we can of course always minimize the parasitic coupling

between the device under test and the pads by physically moving the structure away from

the pads and by placing isolating substrate taps between the structures.  Nevertheless, this

requires large areas to be consumed on the chip.  While this calibration problem occurs for

a BiCMOS substrate, simulation also indicates some problems on an epitaxial CMOS

substrate.  The magnitude of the error, though, is much smaller.  For instance, the series L

and R change much less and only the substrate impedance changes drastically due to the

calibration step.

8.2  Extraction of Circuit Parameters from Measurement Data

At each frequency of interest, the equivalent pi-circuit of Fig. 6.1a can be extracted

from y-parameters.  By taking real and imaginary parts of Y12, equivalent inductance and

resistance are extracted.  Similarly, input and output shunt capacitance and resistance to

substrate may be extracted by taking real and imaginary parts of Y11+Y12 and Y22+Y12.

Since the circuit is passive, it is also reciprocal so that Y12=Y21.  This extraction procedure
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is widely used and is simple to implement since the electrical parameters of the spiral are

uniquely determined at each frequency.  The drawback, though, is that the extracted

inductance is not physical and contains the effects of the capacitive coupling which tends

to boost the inductance as a function of frequency, similar to a parallel tank.  The

extraction technique presented in [34] is superior in this regard.

To extract Q using Fig. 6.1a one can define the input or output Q by the two-port

parameters. Looking into port 1

Q
Y

Y1
11

11

=
− Im( )

Re( )
(1)

The above definition has the awkward property that the Q is zero at self-

resonance.  Since inductors are usually operated far from self-resonance, this does not

present too many problems.  But in some applications, the inductor is used as a resonant

tank close to self-resonance.  In such cases, it is more appropriate to define the Q using a

3dB bandwidth definition

Q
dB

=
ω
ω

0

3∆
(2)

Equally applicable, one may use the rate of change of phase at resonance

Q
d

d
=

ω φ
ω ω

0

2
0

(3)

The above equations are derived using second-order resonant circuits.  For higher

order circuits, perhaps the best definition is based on ratio of energy stored in the circuit to

energy dissipated per cycle, or

Q
W

W
stored

diss per cycle

= (4)

For circuits, though, the best approach to defining Q should be application

dependent.  For instance, to minimize oscillator phase noise, one requires the rate of

change of phase to be maximum at resonance, as in equation (3).  Equivalently, for a

narrow-band tuned load one wishes to minimize the bandwidth of the device, as in

equation (2).  Our approach to Q extraction is based on equation (3).
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At each frequency of interest, an ideal capacitor is inserted in shunt with the

inductor with admittance equal to the imaginary part of Y11.  The resulting admittance

becomes

Y j C Y C
Y

' ( )
Im[ ( )]

ω ω
ω

ω
= + = −11

11 0

0

(5)

This capacitance will resonate the device at the frequency of interest ω0.  By

examining the rate of change of phase one can find the equivalent Q

d

d

Q Y Yϕ
ω ω

ω δω ω δω
δωω0

2

20

0 0= =
∠ + − ∠ −' ( ) ' ( )

(6)

To illustrate this approach, in Fig. 3 we plot the Q of a typical spiral inductor

(square spiral with 9 turns of dimensions given in the next section) using the definition

present in (6).  In the same plot we show the traditional definition of Q, using (1).  As we

approach self-resonance, the two definitions deviate greatly.  Notice also that the peak

value of Q occurs at different frequencies for the two definitions.

-1

0

1

2

3

4

5

0.2 1.1 2 2.9 3.8 4.7GHz

E
xt

ra
ct

ed
 Q

ua
lit

y 
F

ac
to

r 
Q

new def (eq. 56)

old def (eq. 51)

Fig. 3.  Extracted quality factor Q of a 9 turn square spiral by using equations (1) and (6).



63

In the following sections on measurement results, the data is measured at room

temperature.  It is important to calculate Q at the frequency and temperature of interest

[33].   At low frequencies the Q temperature coefficient (TC) will depend on the metal TC

whereas at high frequency the Q will change due to the TC of the substrate resistance.
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9.3  Square Spiral Inductors

Since square spirals are the most common inductors in Si RF ICs, we begin by

comparing our simulation results of the previous section with measurement results.  Many

square spirals were fabricated and measurement results were compared to simulation.  The

spirals have the following geometry: Constant inner area, Ai = 44µm, constant width w =

7µm, and constant spacing s = 5µm, with turns n = 5-10.  A chip layout of the 8-turn

spiral appears in Fig. 4.  For example, Fig. 5 shows the measured and simulated s-

parameters for the 8 turn spiral.   As can be seen from the figure, simulation s-parameters

match the measured s-parameters well.  The simulation time is under a minute per

frequency point.

Fig. 6a plots of the extracted series inductance from both measurement data and

simulation data for the 5-turn and 8-turn spirals.  Good agreement is found for all spirals.

Fig. 4.  Layout of 8 turn spiral.
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For all spirals, the inductance is an increasing function of frequency.  This is due primarily

to the coupling capacitance which boosts the effective L as a function of frequency.  For

the smaller spirals, the same coupling capacitance tends to increase R as well, but the

effect of the shunt substrate resistance is to lower the effective series R.  For large spirals

in which substrate injection occurs at a lower frequency, the behavior of R is a decreasing

function of frequency.  For smaller spirals, the substrate injection is minimal due to a small

substrate capacitance, and the effect of the coupling capacitance boosts R as a function of

frequency.

Fig. 6b shows the Q-factor for the 5-turn and 8-turn spirals.  Here, we used the

phase definition of equation (6) to compute Q.  Good agreement is found between

measurements and simulations.  For the smaller 5-turn spiral the Q is an almost linear

function of frequency, demonstrating that the substrate has negligible effects on the spiral

and the Q is approximately given by ωLR-1.  The larger 8-turn spiral, though, shows more

complicated behavior due to the substrate.  At low frequencies when the substrate
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impedance is large, the simple linear behavior is observed.  At high frequencies, when the

substrate impedance is smaller than the inductive/resistive impedance of the spiral, the

substrate loss dominates and the Q is a decreasing function of frequency.  In the frequency

range of interest, the Q is a combination of the above mentioned effects, and the Q peaks

at some frequency, fQMAX.  Notice that our analysis predicts this frequency well.  This is

important since we can design inductors that have peak Q at the frequency of interest.

Using the modeling described in section IV.A, we model the inductors using the

equivalent circuits of Fig. 6.1b.  Table II compares our results, including the total error

involved in the modeling.  The error is derived by computing the relative error between

the two-port measured s-parameters and the model two-port s-parameters.  The error is

cumulative over 16 points in the frequency range.  Two models were generated, one

model is based on the actual measurement results whereas the other model is based solely

on simulation results (the simulation model is not a curve-fitted model of the

measurements, but rather a curve-fit to the simulations).
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9.4.  Polygon Spiral Inductors

Since polygon spirals with more than four sides have higher Q than square spirals

(for the same area), it is advantageous to use these structures. Many spirals are measured

and compared with simulation.  The geometry of the fabricated spirals is shown in Table

III.  A chip micro-photograph of  a sample spiral inductor L4 appears in Fig. 7.  S-

0

1

2

3

4

5

6

7

0 1 2 3 4 5GHz

Q
ua

lit
y 

F
ac

to
r

Q 5-turn

Q 8-turn

Fig. 6b.  Extracted Q-factor of square spirals from measurements and simulation.

Model Parameter Measured 5-turn Simulated 5-turn Measured 8-turn Simulated 8-turn
L    (nH) 2.93 2.97 8.78 8.55
R    (Ω) 8.02 8.23 17.50 16.99
Cs1   (fF) 93.5 174.4 176.9 152.6
Cs1   (fF) 210.7 341.8 656.6 179.9
Rs1   (Ω) 1.35k 377 527.6 290.2
Rs2   (Ω) 1.06k 472 587.0 314.7
CBR   (fF) 22.4 88.9 63.4 106.2
Σ error2 .06 0.30 0.37 0.52

Table II.  Simulated and Measured Models For Square Spirals
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parameters are plotted for the L4 spiral in Fig. 8 and again good agreement is found

between simulation and measurement.  Extracted series inductance and Q for the L4 and

L11 spirals are plotted in figures 9ab.  The inductors are also modeled using the equivalent

circuit of Fig. 6.1b, and Table IV summarizes the model parameters based on

measurement and simulation.

Spirals L4 L6 L7 L8 L9 L11
Radius R (µm) 105 105 105 105 105 105
Width W (µm) 8.2 7.5 7.5 7.5 7.5 6.5
Space S (µm) 3 3 3 3 3 3
Turns N 6.75 8 8 8 8 7.75
No. of sides 12 12 12 12 12 12
Metal (s) M2 M2 M1+M2

via(+)
M1+M2

via(-)
M1+M2

+M3
M2

Table III.  Polygon Spiral Geometry

Fig. 7.  Layout of polygon spiral inductor L4.
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Model Parameter Measured L4 Simulated L4 Measured L11 Simulated L11
L    (nH) 5.45 5.67 7.3 7.7
R    (Ω) 10.3 11.5 16.0 16.4
Cs1   (fF) 132 225 134 208
Cs1   (fF) 336 280 320 258
Rs1   (Ω) 765 711 762 832
Rs2   (Ω) 726 723 769 869
CBR   (fF) 45 55 45 55
Σ error2 0.02 0.20 0.07 0.24

Table IV.  Simulated and Measured Models For Polygon Spirals
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8.5  Multi-Metal Spiral Inductors

To improve the low-frequency Q of the spiral, we can place metal layers in shunt

as discussed in section IV.B.  To test this, the spiral L6 in the polygon set was used.

Three new inductors L7, L8, and L9 were constructed.  L7 has two L6 spirals on metal 2

and metal 1 connected in shunt with as many vias as possible;  L8 also has two L6 spirals

in shunt, but with vias placed only at the ends of the segments.  Finally, L9 has all metals

connected in shunt (except where it was necessary to use metal 0 to connect to the inner

turn of the spiral).
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Fig. 10.  Measured and simulated s-parameters of the M1-M2 multi-metal polygon spiral L7.
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Simulations were run for the M2+M1 spiral and measured and simulated s-

parameters are shown in Fig. 10.  Good agreement is found as before.  Fig. 11a plots the

extracted series inductance of the spirals.  Due to the tight coupling the inductance value

of the metal-metal structure does not drop much. Fig. 11 plots the extracted Q of the

spirals.  The low-frequency Q enhancement of the metal-metal structure is due to the drop

in series resistance.  The series resistance drop is in accordance with connecting the

appropriate metal layers in shunt.  At high frequency, though, the picture changes greatly

due to substrate loss.  At high frequency the Q of the single metal layer is actually better.

Figure 12 compares the measured Q of L6, L7, L8, and L9.  The measurement

results indicate an overall Q-increase at low frequency for the M1+M2 cases, but using

three metal layers is actually harmful at all frequencies (since the M0 layer is very close to

the substrate).  Also, the Q of L8 is slightly higher than the Q of L7 demonstrating that

use of ample vias helps to boost the Q in the shunt configuration.
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8.6  Coupled Spiral Inductors

Many RF IC designs incorporate several spiral inductors on the same die.  Since

these structures are physically large, substrate coupling can be a significant problem.  For

instance, in any amplification stage the substrate coupling can act as parasitic feedback,

lowering the gain and possibly causing oscillations to occur.  Hence, it is very important to

model the substrate coupling.

The analysis technique presented in 3.2 is directly applicable here.  The s-

parameters of two 8 turn square spirals separated by a distance of 100µm were simulated

and measured.  Fig. 13 shows the magnitude of the measured and simulated s-parameters.

As can be seen from the figure, simulation results predict the coupling behavior accurately,

such as the minimum S21.  To gain further insights into the coupling, we plot the power

isolation from one spiral to the other using the following equations.  For the arbitrary

passive two-port shown in Fig. 14a., the ratio of the power delivered to a resistive load RL

through the two-port can be shown to be
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In the above equation, GI is the current gain through the two port and Zin is the impedance

looking into the two-port from the source side
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Using the above equations we plot the measured and simulated power isolation for

the coupled inductors in Fig. 14b, where a 50 Ω load resistance is used in the above

equations.  Clearly, there are two frequencies where the isolation is maximum.  These

frequencies depend on the geometrical layout of the spirals and hence this gives the

designer the powerful option of placing the spirals in locations to maximize isolation.

z11         z12

z12      z22

RS

RLVS

Fig. 14a.  Circuit for calculating the power delivered to a resistive load from a reciprocal two-port.

-80

-70

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5GHz

E
ffe

ct
iv

e 
P

ow
er

 Is
ol

at
io

n 
(d

B
)

Meas 

Fig. 14b.  Measured and simulated power isolation between the coupled spirals.
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8.7  Planar Transformers

To test the simulation accuracy for transformers, several planar transformers were

fabricated and measured.  An example transformer structure is shown in Fig. 15.  The

transformer is made of two interwound spirals each of  5-turns of  7µm wide metal with a

spacing of 17 µm.  Measured and simulated s-parameters are shown in Fig. 16.  Again,

good agreement is found between simulation and measurement.  We can gain further

Transformer Model
 Parameter

Measured Simulated

L    (nH) 4.88 4.63
R    (Ω) 17.58 16.91
Cs   (fF) 124 123
Cp   (fF) 430 418
Rs   (Ω) 243 252
RC   (Ω) 1.00k 796
C1,2   (fF) 53 59

k1,2 .703 0.715
Σ error2 0.79 0.04

TableV.  Simulated and Measured Models For Planar
Transformer

Fig. 15.  Layout of planar transformer.
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insight into the measurement results by using equation (7).  We plot the measured and

simulated loss in Fig. 17.  Again we use a 50 Ω load resistance value.  But since the loss is

a function of load resistance,  one would typically find the optimal value at the frequency

of interest to minimize losses.

The dynamics of the transformer can be captured in a compact model similar to the

coupled inductors, as shown in Fig. 6.7.a.  The k factor for planar inductors is about 0.7 to

0.8.  Substrate coupling is again modeled with RC.  While the circuit of Fig. 6.7.a is

physically based, one can also derive the equivalent circuit shown in Fig. 6.7.b, which

contains an ideal transformer at the core with parasitic elements.  The model parameters

from measurement and simulation appear in Table V.
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Fig. 16.  Measured and simulated s-parameters of planar transformer.



78

-30

-25

-20

-15

-10

-5

0

0 1 2 3 4 5GHz

E
ffe

ct
iv

e 
P

ow
er

 L
os

s 
of

 T
ra

ns
fo

rm
er

 (
dB

)

meas loss

Fig. 17.  Measured and simulated power loss of planar transformer.
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8.8  Metal-to-Metal Transformers

Planar transformers consume large areas on the Si die.  To save area, one may use

multiple metal layers to design transformers.  The straightforward approach is to use two

spirals on top of each other.  The measured s-parameters of such a structure is shown in

Fig. 18ab.  As evident from the figure, even though the spirals are identical, the structure

is non-symmetric due to the extra series loss of metal 1 and the extra capacitance and

substrate loss associated with metal 1.  In order to design a more symmetric structure, one

may split up the primary and secondary and layout half of the primary on metal 1 and half

on metal 2.  Such a structure is shown in Fig. 19.  Measured s-parameters for such a

structure are shown in Fig. 20.  Clearly, this structure is more symmetric.
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In general, metal-metal transformers suffer from high parasitic coupling from the

primary to the secondary, making these devices unsuitable in most applications.  On the

Fig. 19a.  Layout of symmetric metal-metal transformer. Fig. 19b.  One winding of symmetric metal-metal transformer.
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Fig. 20a.  Measured magnitude  s-parameters of metal-metal symmetric transformer.
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other hand, the k factor is slightly larger than the planar transformer and a lot less area is

consumed.
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Fig. 20b.  Measured phase s-parameters of metal-metal symmetric transformer.
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Chapter 8:  Conclusion

In this thesis we have presented techniques to analyze, model, and optimize spiral

inductors and transformers on the Si substrate.  The techniques are accurate, taking into

account substrate coupling, current constriction, and proximity effects.  The analysis is

also fast and efficient, making it suitable for computer optimization.  Furthermore, the

analysis is general and appropriate for analyzing any arbitrary arrangement of conductors,

such as multi-metal spirals. A custom CAD tool ASITIC  was developed which

incorporates the algorithms discussed in this paper.  ASITIC  was used to analyze a wide

variety of test structures such as square spirals, polygon spirals, coupled spirals, and

transformers. The test spirals were also fabricated and measurement results compared well

to simulation on a BiCMOS substrate. Compact models for the various devices were

presented which model the device dynamics over a wide frequency range.

There are many areas, though, where the work can be improved.  For instance, while the

capacitance matrix calculation was fairly general, taking the effect of the substrate into

account, our inductance matrix calculation assumed the effects of the substrate to be

negligible.  While this was substantiated with measurement results on a BiCMOS

substrate, more study needs to be performed on the CMOS substrate since the highly

conductive bulk substrate of the CMOS epi process is likely to cause extra components of

loss at high frequency due to eddy-currents.  Thus, the inductance matrix calculation

should be performed in an analogous fashion to the capacitance matrix calculation, with an

appropriate Green function representing the substrate loss.
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