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Abstract This paper deals with the problem of minimizing the weighted mean flow-time in n/m flow-shop schedul-
ing where no passing is allowed. Analysis, through the adjacent pairwise interchange method, leads to a condition for
determining the precedence relation between adjacent jobs. The condition consists of inequalities, the number of which
equals the square of the number of machines. An algorithm based on these inequalities is proposed to obtain the
optimal or near optimal solution. The numerical examples show that the algorighm can produce a solution which has an
average approximation ratio of 91.4 percent over 160 problems. The three factors: the number of jobs, the number of
machines and the range of weights do not affect the approximation ratio of the tested problems. The computational
time required to obtain a solution through the proposed algorithm is proportional to (the number of jobs) x (the
number of machines)®>. As a result, the CPU time needed to solve a seven job and six machine problem through

TOSBAC 5600/120 is 0.25 sec.

1. Introduction

There have been many theoretical studies on flow-shop scheduling [1 Vv 5,
8 v 15, ete.]. The performance measures considered in these papers are mainly
concentrated on maximal flow-time. 1In the previous paper [8], we investigated
the minimization of mean flow-time in n/m flow-shop scheduling by means of
adjacent pairwise interchange method. The paper presented sufficient condi-
tions to decide the precedence relations between adjacent pairwise jobs. On
the basis of the conditions, a computational algorithm was proposed for an

optimal or near optimal solution.
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The model studied in the paper [8], however, takes no account of job
importance. In many situations, the jobs do not have equal importance. For
instance, the earlier due-dates are, and the higher inventory costs are, the
jobs should be regarded as more important objects for scheduling. This paper
introduces the weighting factor wi to each job (the larger wi’ the higher
priority of job) and deals with the problem of minimization of weighted mean
flow-time. A computational algorithm is presented for an optimal or near
optimal solution on the basis of adjacent pairwise approach. The efficiency

of the algorithm is verified by means of numerical experiment.

2. Flow-Shop Model

2.1 Definition and Notation of the Model

The discussed model can be stated as follows:

1) Let »n be the number of jobs to be processed, and “th job in the arbi-
trary sequence S is denoted by Ji where i37,2,...,n. All these jobs are
available for processing at time zero.

2) The manufacturing system consists of m different machines which are
numbered according to the order of production stage. Let M3 be the Jjth machine
in the system where j=I1,2,...,m. Every machine is continuously available. A
machine can process only one job at a time.

3) Every job is completed through the same production stage that is Mj+
M2%5...,ﬁMh.
4) Let pi,j denote the processing time of Ji on Mg. Setup times for
operations are sequence-independent and are included in processing timeé. Handl-

ing times are assumed to be so limited that they can be neglected.

5) Let Fj(i) denote the partial flow-time of J71 counted from the starting

time of first job J., on M., to the completion time of J£ on Mb, referring to

I 1

Fig. 1. In paticular, Eﬁ(i) is called as flow-time of J{.
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6)

passing is allowed in the shop.

S. Miyazaki and N. Nishiyama

The same job sequence occurs on each machine; in other words, no

7) Each job is assigned weight w?l according to its importance.
Machine
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Fig. 1. Definition of F

2.2 Performance Measure

7.('5).

e

The performance measure studied is weighted mean flow-time defined by:

(1.1) 'ﬁw = {2 WiFm(i)}/n-

n
i=1
This measure can be redefined as:
(1.2)

N n . »
Fo= {2 WF (DI W
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Each definition produces the same solution, since the denominators of (1.1)
and (1.2) are sequence-independent. From (l.l) we have:

= n .
(1.3) nFW = Zi=l WiFm(l),
where an expresses the total weighted flow-time. n?w shall be used in place

of Fw in the further analysis.

3. Analysis

In the sequence S, let s be a subsequence consisting of the first g-I
jobs, that is, Jj,Jé,»..,Jé_l, and in succession to s, Jq and Jq+1 (these two
jobs are called adjacent two jobs hereafter) are assumed to be processed in

the order Jq J ‘ are

g+l Now consider the sequence S' in which Jé and J

q+1

pairwise interchanged and are processed in the order Jq+1 Jq. The sequence

is the same for the first g-I jobs and the last (n-g-1) jobs under either S

or §' as illustrated in Fig. 2.

S = JIJ JZ’..'.’ Jé_zj Jz;<ij+1,....3 Jh
S = JJJ J2,...., Jé_%} Jq+1’ Jq,...., Jﬁ

partial sequence s

Fig. 2. The Relationship between Sequence S and S~

In order to distinguish the notation of partial flow-time under S from S’,
let Fj(q), Fj(q,q+1), and Fj(i) (i=q+2,q+3,...,n) denote the partial flow-time

of J ,

- : ' '
q Jq+1, and Ji (i=q+2,q+3,...,n) under S in turn, and let Eﬁ(q+1), Fj(q+1,

ql), and Fé(i) (i=q+2,q+3,...,n) denote the partial flow-time of Jq+1’

Ji (i=g+2,9+3,...,n) under S' in turn, moreover let Fé be the weighted mean

J _, and
q
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flow-time under S’'. Then the total weighted flow-times under S and S’ are

expressed by:

(3.1) nF = Zi;iwiFm(i) + W F(@ + Wy F (g, qtD)
+ Zl q+2W F (i),

and

(3.2) nF! = Zg;iWiFm(i) Wy Fa (@) + W (a4, )
+Z1*121+2 1F 1.

Eliminating the common terms between (3.1) and (3.2) from the each equa~

tion, and denoting the remaining, <an> and <nﬁé>, respectively, we have:

(3.3) <nf > = Wqu(q) W F (D) + I +2 JF ),
and

=3 n 1/
(3.4) <nFW> = wq+lF (q+1) + W F! (q+l,q) + Z i=q+ 2WiFm(l).
1f
(3.5) <nF > < <nF'>

w o= W
that is:

o ot
(3.6) an <n -
holds, J

gt1 cannot directly precede Jq in the optimal sequence. Therefore, we
shall investigate the sufficient conditions, which have transitive property of
job ordering, for satisfying (3.5) independently of the two jobs' position, as

shown in the following:

Comparing each term of (3.3) with the corresponding term of (3.4), we

have:

(3.7) Wqu(q) §:Wq+lF$(q+l),

(3.8) Wq+lFm(q,q+l) < WqF&(q+l,q),
and

(3.9) Z1 2+2 i m(i) §:Zi=2+2wiF&(i),

which are to be sufficient conditions for (3.5).
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There exist next recurrence relations on partial flow-time F.(Z), referr-
ing to Fig. 1.
3.10 F.(1) = max {F, (i), F,(i-1)} + P, .
( ) J( ) -1 ) J( ) i,3°

i=1,2, ..., n; =1, 2, ..., m),

where F_(1)=0, F.(0)Z0.
0 J

Working out the recurrence relations (3.10), we have:

.\ _ max . T
(Sfll) Fj(l) = r=1vj {Fj-r+1(1 1) + Zt=1Pi,j—t+l}'
Substituted into (3.7), (3.11) gives
(3.12) W "M% (g (g-1) + I }

q r=1"m ~“m-r+l t*l q,m—t+l

max
{F

Wq+l r=1lvm ~“m-r+l

(¢-1) + . * 1.

f

t=1 q+l m-t+1
The comparison between the respectively corresponding terms of (3.12) gives

the following sufficient conditions of (3.7):

(3.13) W < Wy,

and

r r
(3.14) Wq Zt=l Pq,m—t+l S wq+l Zt=l Pq+l,m—t+l, (x=1,2, ..., m.

Now the partial flow-time Fj(i,i+2) is given as similar to (3.10),

(3.15) Fj(l,l+l) = max {Fj_l(l,l+l), Fj (l)} + Pi+l,3’

(i=1,2, ..., n-1; j=1, 2, ..., m),

where Fo(i,i+l)50, Fj(O)EO.

Working out the recurrence relation (3.15), we have:

max max {

- r=1Vvj t=1vr r+l(l L+ 22

(3.16) Fj(i,i+l) k=j-t+l Ti+l,k
j-t+1
* Demjor+1 Pil

Substituted into (3.8), (3.16) gives

max max {

m~t+1
q+l r=1vm t=1lvr m- r+l(q l) + I, P + 3 P }

(3.17) W J=m- t+l q+l, ] j=m-r+l "q,j
max max

~t+1
= q r=1vm t=1vr {F m— r+l(q +z." 4o ® P .

j=m-t+1 q,J j=m-r+l “q+1,]
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The comparison between the respectively corresponding terms of (3.17) gives:

>
m m
. Z > )
(3.19) wq jmm—t4l Pq’j 2 Wq+1 Zj=m-t+1 Pq+1,j,

(t=1, 2, ..., m),

and

m—-t+1 m-t+1
<
j=m-r+1 q,j)/wq:= (Zj=m—r+l q+l,j)/wq+l’

(r=1, 2, «o., m; t=1, 2, ..., T).

(3.20) (Z

If

(3.21) F @) 2 FE), (=92, ¢t3, ..., n)

hold, (3.9) should be satisfied. Moreover, Yueh [15] shows that

(3.22) min (P ) < min (P ) , 1 <u <v < m)

q,u’ Pq+l,v q+l,u’ Pq,v
is the sufficient condition of (3.21) that is (3.9).

The discussion above has led the sufficient conditions of (3.7), (3.8)
and (3.9) individually. Since all of these sufficient conditions have transi-
tive property, the temporary sequence can be induced from each sufficient
condition. In the case that all of these temporary sequences are equal to
each other, the sequence is the optimal solution for this problem. According
to the following algorithm an optimal solution can be produced in this case.
In the usual cases in which all of the temporary sequences do not coincide
with one another, a suboptimal solution can be obtained through the same
algorithm.

Considering that (3.5) is composed of the sum of (3.7), (3.8), and (3.9),
we make, in the algorithm, a solution by the procedure that calculates the sum
of the ordinal numbers according to the temporary sequences. Between two
inequalities (3.13) and (3.18) the expressions of the both sides are identical
but only the sign of inequality is opposite. Such is the case between in-
equalities (3.14) and (3.19) too. The sum of the ordinal numbers derived from

four inequalities: (3.13), (3.14), (3.18), and (3.19) becomes always equal to
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each other job. Therefore, we can eliminate these four inequalities in the

following algorithm from the beginning.

4. Algorithm

The algorithm will be explained by solving an example problem listed in
Table 1.
Step 1. Decide the m(m+1)/2 kinds of temporary sequences which can be led

il p ) /v, of all

from (3.20) as follows: calculate the value (ZW .
J=m~r+1" 1,7

jobs for each combination of r(=1,2,..,m) and ¢t(=1,2,...,r), as
tabulated in Table 2. Make the temporary sequences in accordance
with the non-decreasing order of each row value in Table 2. Assign
an integer to each job according to its order, as shown in Table 3.
In case more than two jobs have the same value in a row, assign the
same integers to them.

Step 2. Make the temporary sequence in which all jobs satisfy (3.22) for each
combination of u and v, using Johnson's Algorithm [5]. Assign an
integer to each job as similar to Step 1. The results of this is
indicated in Table 4. This step produces m(m-1)/2 kinds of temporary
sequences.,

Step 3. Calculate the sum of integers assigned to each job in the Step 1 and
2 as Table 5. Arrange each job in the nondecreasing order of the
total integers. Break a tie by placing jobs with lower original
numbers first.

The solution for this example becomes JZ—J4-J2—J3.
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Table 1. Four Job Three Table 2. The Value of
Machine Problem. ( m-t+1 ) Jw
J=m-r+1 1,57 1"
Job J, J, J, J
1727874 Job
® M| 25 36 r |t 91 Y2 Iz Iy
o
w w
§ EIWZ 3 8 6 3 1 12/6 5/5 4/3 7/7
S¥mM, | 2 5 4 7 1|5/6 13/5 10/3 10/7
=¥ 3 2
Weight 6 5 3 7 213/6 8/5 6/3 3/7
117/6 18/5 13/3 16/7
3 | 2|5/6 13/5 9/3 9/7
Table 3. Ordinal Numbers 312/6 5/5 3/3 6/7
by Step 1.
Job Table 4. Ordinal Numbers
- Jl J2 JS J4 by Step 2.
Job
111 1 2 4 2
u |v JJ J2 JS Jé
1 1 3 4 2
2 2 1 3 2 4
2 2 3 4 1 1
3 1 3 2 4
1 1 3 4 2
2 3 4 2 3 1
312 1 3 4 2
3/ 1 3 3 2
Table 5. Sum of Ordinal Numbers.
Job Iy Jo Iz Iy
Sum of ordi-| ., .5 35 9
nal numbers

5. Efficiency of the Algorithm

5.1 Approximation Ratio

The definition of the approximation ratio, to evaluate the quality of the

solution, used in this paper, is different from that often used in previous

papers [3, 9, etc.].

Previously, the approximation ratio was simply defined by:
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(5.1) n, = 100 % (o/al, (%)

where 0 and a are the values of performance measures of the optimal and
obtained solutions, respectively. This ratio, however, does not take into
consideration the existing range of possible solutions. Consequently, it has
the following shortcomings: Suppose that there exist two flow-shop scheduling
problems I and II of which possible solutions are distributed as shown in Fig.
3. If the obtained solutions ar and ary for each problem have a equal value

of performance measure, the approximation ratio defined by nl indicates the

same percentage. The quality of a however, is practically higher than a

I’ 1’

as the existing range of possible solutions for problem II is wider than that
for problem I. Moreover, it is a shortcoming of nl that it indicates a
percentage grater than zero even if the obtained solution coincides with the

worst possible solution.

Distribution of possible

o ///f—-\\<;:ﬂsolutions for problem 1
9]
8
2, Distribution of possible—
o // solutions for problem IT
U
o
>
Z /
©
—
4
25

0 s

Optimal solution Obtained solution Worst solution bI

for problem I for problem I

and IT : Ors O and I : ars ag
———> Value of performance measure

Worst solution bI[

Fig. 3. Distribution of Possible Solutions for Problem I and I .
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We defined the approximation ratio as:

(5.2) n, = 100 x (b-a)/(b-0) (%)

where p is the value of worst possible solution [8]. This ratio contains the
optimal and the worst value of performance measure so as to reach 0% in case
the obtained solution coincides with the worst one, and 100% in case the

obtained solution coincides with the optimal omne.

5.2 Computational Experience

In order to verify the efficiency of the algorithm, the example problems
composed of 4 v 7 jobs and 4 v 6 machines are solved through the proposed

algorithm and the solutions are evaluated by approximation ratio n Table 6

9
shows the results of this evaluation together with Ny for references. The

processing times in the example problems are distributed uniformly between 1
and 99, and the weights assigned to jobs are distributed uniformly between 1

and 10 or 1 and 40. The optimal and worst solutions to calculate n, were

obtained from complete enumeration method.

Table 6. Results of the Experiment

Problems Approximation ratio
n n
noom bz “;  Problem - 2
numbers Mean Range Mean Range
L 4 1~ 99 1710 20 96.5 100.0 ~ 75.8 | 88.4 100.0 ~v 31.3
17V 40 20 96.6 100.0 ~ 81.8 | 91.1 100.0 ~v 37.0
5 5 199 1~10 20 97.1 100.0 ~ 87.8 | 92.6 100.0 ~v 64.9
1740 20 96.0 100.0 v 84.7 | 89.9 100.0 v 55.4
6 6 1~ 99 1710 20 96.9 100.0 v~ 91.1 | 93.6 100.0 ~v 81.2
1%V 40 20 95.3 100.0 ~ 86.9 | 90.5 100.0 ~v 75.8
7 6 1~ 99 1%Vv10 20 94.8 100.0 ~ 88.8 | 91.0 100.0 v 73.3
1™ 40 20 96.4 100.0 v 89.9 | 93.9 100.0 Vv 76.4
Grand average 96.2 91.4
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The results of Table 6 indicate that the average approximation ratio n,
is 91.4% and that none of the three factors, the number of jobs, the number of
machines, and the range of weights affect the average approximation ratio for
the tested problems. The minimal approximation ratio becomes larger as the
number of jobs and the number of machines increase.

Table 7. Mean Computational Times
(CPU Time, sec.)

Problem | Proposed Complete
n o m method  enumeration
4 4 0.09 0.20
5 5 0.14 0.80
6 6 0.21 2.50
7 6 0.25 16.0

Table 7 shows the mean computational times of TOSBAC-5600/120 required to
obtain a solution through the proposed algorithm and complete enumeration,
respectively. Little time variation occurs in solving the problem which has
the same job number and machine number, through both methods. The structure
of the algorithm should lead the computational times to be proportional to
(the number of jobs ) X (the number of machines) 2.

The number of machines, which affects the computational time quadratically,
has an upper limitation practically, for it coincides with the number of opera-
tions needed to complete a job in a flow-shop. Data from an actual machining
shop indicate that over ninety-five percent of jobs are produced through the
operation stages less than 11 [7]. Although the number of jobs becomes con-
siderably large in practical shop, the computational time of the algorithm goes
up just linearly with the number of jobs. The discussion above shows that the
algorithm is much effective than general purpose optimizing techniques such as

B. & B. method [14] or D.P. [6] from the viewpoint of computational times.
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The required memory capacity should never become a major limitation in execut-
ing the algorithm, as it needs only 68K for solving a 1000 job and 25 machine

problem.

6. Conclusion

In this paper, we dealt with the minimization of weighted mean flow-time
problem in n/m flow-shop scheduling. A computational algorithm was proposed
through an adjacent pairwise approach. 1In order to evaluate the quality of
the solution, we used the new approximation ratio n2 derived from the discus-
sion of the previous approximation ratio nl. The algorithm produces the solu-
tion which has 91.47% of average approximation ratio nz. The computational
time for the algorithm is proportional to (the number of jobs) X (the number of
machines)?. As a result, the CPU time needed to solve a seven job and six
méchine problem through TOSBAC 5600/120 is below 0.3 sec. Memory capacity

should never be the major restriction on solving practical problems.
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7 TR bMFZ DB

TH—Yav 7 AT Va—=) TS
A D & LR EE /MU O AT

KEWLRE B B ® K
i VU S S

KEBRX T, ¥a 7, BREEMEE CBHREILEO Ve — - Y sy T - X7 Vo) T CEN
T, BEHOs PHBEHMEMBEEZER I B> Tnd, —BRIC, X Va—) Y 7ONRERBEY
= 7L, #iE TORBEEY, HEEBEa X P2 EORNMNCE ST, EBHINS IO LTHIE
CEERAINENVIOEND B0 £ T, &Y 2 7OBBEWRIE LA EH | 2ME LAET L ER
FL, BEHAOKEARY s 7KEBWBEE2E2 5L HESL DR PHMBERREFMRECHY &

50
BEB2 2 o 2 FATHAEIC X AR T, B Y s TORTBREZRET HDORD L 9 2 NEX2E
Vlfto
m-t+1 : m-t-+1
Z P » j /W é P +1’ j /W +1’
( j=m-r-+1 @ i) 4 (% j=m-r—+1 d i) d
(r=1, 2, = , maet=1, 2, , T ),

min(Pq, u, Pq+1, v) =min (Pq+1, u, Pq, v ),

(1=u<v=Zm)

v s 7T AERBEEHRE T 5 ch SOFRERICEON T, EHD ETFHHERFRMODO
FUT =) X ABBREIN T Do

CeTHEA~T, BREBEE4~6CHREL, &Y s TOELE1~10, 1~4 0O0—FRELE
TE4 #PIEx1 6 OFEER LT, Tr=) XaOBFMERIEL o TOKR, BET+T) X
ATEH 9 1.4 %O MUEKRE S DOEEBL T ENTE ko BIBEDY 2 7H, BHREER L UEADOE
B, AURCEBEEL 2 doko k¥, ROXBIBERC EOBREL NP2 RTADOFELE
&, ®kOIOOMBEAEERL, chicfbrH L WELREMMA L %o
%%7wﬁufo%&@ékaM%&%%%%@,(Vafﬁ)x(%MQﬁ)zmm%L,
HEZETY a7, 6HMAEE TOSBAC-5600/120THE{DIC0.2 5HB 7o iR
BFEE, EAHHABEOR Vo — ) v 7B BBOEEZHN LT 25w &2 E¥IBE Lo
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