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Abstract—The synthesis-based sparse representation model for
signals has drawn considerable interest in the past decade. Such
a model assumes that the signal of interest can be decomposed
as a linear combination of a few atoms from a given dictionary.
In this paper we concentrate on an alternative, analysis-based
model, where an analysis operator — hereafter referred to as
the analysis dictionary — multiplies the signal, leading to a sparse
outcome. Our goal is to learn the analysis dictionary from a set of
examples. The approach taken is parallel and similar to the one
adopted by the K-SVD algorithm that serves the corresponding
problem in the synthesis model. We present the development of
the algorithm steps: This includes tailored pursuit algorithms
— the Backward Greedy and the Optimized Backward Greedy
algorithms, and a penalty function that defines the objective for
the dictionary update stage. We demonstrate the effectiveness of
the proposed dictionary learning in several experiments, treating
synthetic data and real images, and showing a successful and
meaningful recovery of the analysis dictionary.

Index Terms—Sparse Representations, Synthesis Model, Anal-
ysis Model, Backward Greedy (BG) Pursuit, Optimized Back-
ward Greedy Pursuit (OBG), Dictionary Learning, K-SVD,
Image Denosing.

I. INTRODUCTION
A. Synthesis and Analysis Signal Models

Signal models are fundamental for handling various pro-
cessing tasks, such as denoising, solving inverse problems,
compression, interpolation, sampling, and more. Among the
many ways we have to model signals, one approach that has
found great popularity in the past decade is the synthesis-
based sparse representation model. In this model, a signal
x € R? is modeled as being the outcome of the multiplication
x = Do, where D € R¥*™ jg a dictionary — its columns are
signal prototypes (atoms) that are used to build the signal. We
typically consider a redundant dictionary with n > d. The
vector o € R™ is the redundant signal’s representation, and a
fundamental feature in this model is the expectation that this
vector is sparse, i.e. ||allo = k < d. This implies that the
signals we work on are assumed to be composed as linear
combinations of a few atoms from the dictionary [1], [2].

Vast work on the synthesis model during the past decade
has been invested in an attempt to better understand it, and
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build practical tools for its use. The main activity concentrated
on problems such as methods to estimate or approximate
the sparse representation from the possibly corrupted signal,
deriving theoretical success guarantees for such algorithms,
and techniques to learn the dictionary D from signal examples.
Referring specifically to the last point of dictionary learning,
two popular techniques for this task are the MOD and K-SVD
algorithms [3]-[5], whose deployment has led to state-of-the-
art results in various image processing applications [2].

While the synthesis model has been extensively studied,
there is a dual analysis viewpoint to sparse representations
that has been left aside almost untouched [6]. The analysis
model relies on a linear operator (a matrix) Q € RP*?,
which we will refer to as the analysis dictionary, and whose
rows constitute analysis atoms. The key property of this
model is our expectation that the analysis representation vector
Qx € RP should be sparse with ¢ zeros. These zeros carve out
the low-dimensional subspace that this signal belongs to. We
shall assume that the dimension of this subspace, which is
denoted by r is indeed small, namely r < d.

While this description may seem similar to the synthesis
counterpart approach, it is in-fact very different when dealing
with a redundant dictionary p > d. More on this model will be
given below, contrasting it with the synthesis alternative. Until
recently, relatively little was known about the analysis model,
and little attention has been given to it in the literature, com-
pared to the synthesis counterpart model. In the past few years
there is a growing interest in the analysis model, as we gain
more understanding and insight to its interesting viewpoint.
See [7]-[16] for some work that has already commenced on
this model.

In this paper we focus on the analysis model and more
specifically, on the development of an algorithm that would
learn the analysis dictionary €2 from a set of signal examples
X = [x1,X2, ... ,Xg|. The objective is to find a suitable
dictionary € so that the analysis coefficients 22X are sparse.
We note that when dealing with a square (and invertible)
matrix €2, the analysis model is completely equivalent to the
synthesis one with Q'=D [6], and in such a case, the
synthesis-dictionary-learning methods can be used to build 2.
In this work, though, we concentrate on the redundant case
(p > d), where the two models depart, and where the analysis
model becomes more interesting and powerful. This case of
analysis dictionary training is a challenging problem, which
has recently started to attract attention [13]-[16].
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B. Related Work

One of the first attempts to train an analysis model was
the pioneering work of Black and Roth, who adopted a very
different point of view in their quest for €2 [17], [18]. Roth and
Black trained an image prior, termed Field-of-Experts (FoE),
for the purpose of regularizing inverse problems in image
processing. Their work originates from the area of probabilistic
image modeling [19], [20], which aims at representing image
patches through the notion of constraint violation and filter re-
sponses. When applying the analysis model on image patches,
each row in 2 can be viewed as a local filter operating on a
patch, and once included in the co-support of the patch, this
row serves as a constraint. Reviewing this area of research is
not the intention of this paper. Instead we focus on the FoE
approach and refer the readers to [18] for a comprehensive
review.

The FoE prior derives its value from the sparsity of the anal-
ysis representations computed for overlapping image patches.
The measure of sparsity used is a relaxed ¢°-norm. Our
approach will be based on a different sparsity measure — the
co-rank, which in turn will define a different objective for
dictionary learning. Black and Roth use contrastive divergence
for learning the analysis atoms, which approximates the max-
imum likelihood estimator and requires a high computational
load as it relies heavily on Monte Carlo sampling. As such, this
learning framework differs substantially from our work, which
will take a block-coordinate relaxation approach, alternating
between an analysis pursuit stage for each signal example and
a simple update rule for each of the learned atoms.

The training set used by the FoE approach is a large
database of image regions (each consisting of a set of over-
lapping patches) and the learning algorithm runs “offline”
resulting in one generic prior that will be suitable for any
natural image. In the context of image denoising, previous
work on the synthesis model [21] has shown that adapting
the dictionary to a given noisy image can lead to improved
image denoising performance with respect to denoising with
a “global” dictionary that was trained “offline”. The approach
we are about to suggest in this paper is capable of learning
an adaptive analysis dictionary from a given noisy set of
examples.

More recently, three interesting attempts to learn a redun-
dant analysis dictionary have been proposed [13]-[16]. The
first work, reported in [13], suggests to incrementally learn
2 one row at a time, exploiting the fact that a considerable
set of examples is expected to be orthogonal to such a row.
Assuming knowledge of this set of signals, the eigenvector
that corresponds to the smallest eigenvalue of these examples’
autocorrelation matrix is the desired row. For each row, the
proposed algorithm thus alternates between the computation
of this row from the current subset of chosen examples, and
an update of this subset to reject outlier signals. This algorithm
relies heavily on a randomized initialization strategy, both for
enabling the detection of a variety of rows, and for surpassing
deadlock situations in the iterative process. As the dimension
of the signal d grows (and with it p, the number of rows
in ), this approach loses its efficiency rapidly, requiring

(too) many rounds of attempts before a new row is detected.
Moreover, this method might suffer from a poor detection
quality, since a row that was admitted to the accumulated set
cannot be replaced. These two limitations will be demonstrated
in Section V-A when comparing our approach with [13] in the
task of recovering the dictionary in a synthetic setup.

The work reported in [14], [15] takes a different route
towards the task of learning €2, posing it as a constrained opti-
mization problem. The goal of sparsifying the representations
QX is formulated by an ¢'-norm penalty function on these
representations. In order to avoid the trivial solution 2 = 0 and
solutions like an orthonormal basis in the first d rows followed
by zero rows, this work proposes to constrain the dictionary
to be a uniform normalized tight frame. However, this choice
limits the possible €2 to be learned, and puts a rather arbitrary
constraint for regularizing the learning problem. In our work
we aim at handling the most general setup of redundant
analysis dictionaries and therefore we would like to be less
restrictive as possible with respect to the learned atoms.

The work in [16] proposes to learn €2 such that it optimizes
the denoising performance on a given set of example pairs
(clean and noisy versions of example signals). The learning
is achieved by formulating the learning task as a bilevel-
programming optimization problem, which in turn is handled
using gradient descent. The main focus of [16] is on learning
an analysis operator that takes the form of a convolution, which
is equivalent to learning one filter (convolution kernel). This
is very different from our main goal — learning a set of p
analysis atoms, which can be viewed as local filters operating
on image patches.

In the process of preparing this paper for publication,
another relevant work on analysis dictionary learning was
brought to our attention [22]. The approach suggested in this
paper shares some basic ideas with the FoE approach, such
as learning a “global” dictionary for natural image patches
and inserting it to a regularization term of an image recovery
formulation. However, the authors of [22] take a very different
route towards the dictionary learning problem, posing it in
terms of an optimization over manifolds. This allows them
to update the analysis dictionary as a whole, in contrast to
the separate atom updates practiced in our approach, thus
explicitly enforcing basic dictionary properties, such as having
distinct rows and full row rank into the learning procedure.
Using these optimization tools, they learn a redundant analysis
dictionary that obtains competitive results with respect to
the synthesis counterpart model for various image processing
applications.

C. This Work

In this paper we adopt a different approach to the anal-
ysis training problem, based on a co-rank measure which
determines the dimension of the analysis subspace. This co-
rank measure allows us to develop a novel training algorithm,
whose uniqueness is in the relations it exhibits with the
synthesis formulation. Specifically, the proposed dictionary-
training method is parallel to the synthesis-model K-SVD in
its rationale and computational steps. Similar to the work in
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[14], [15], we consider the learning process as a solution of
a constrained optimization task. However, as we shall show
next, the constraint we employ uses our knowledge on the
signals and their relation to €2 in a more direct way. The atom
update rule in our proposed approach will be similar to the
one suggested in [13]. However, it will be better justified by
deriving it directly from the constrained optimization problem.
Moreover, the set of signals orthogonal to each row in 2 will
be determined in a more effective fashion, resulting in a more
efficient algorithm.

The analysis model gives rise to a series of research
questions, which are far from being solved: (i) What are the
desired properties of an analysis dictionary? (ii) How can
a signal and its sparse analysis representation be recovered,
given the dictionary and a noisy version of the signal? (iii)
Can the analysis dictionary be learned from a given data-set of
examples? In this work we aim at providing some answers to
these questions. Our main contribution is an efficient algorithm
for obtaining the analysis dictionary from a given data-set in
a K-SVD-like manner. We demonstrate the potential of this
approach in a series of experiments on synthetic and real data
(images), showing the ability of the algorithm to recover a
meaningful result in all cases. We note that our main goal in
this work is to highlight the potential and capability of the co-
rank analysis approach, and we do not focus here on specific
applications.

This paper is organized as follows: In Section II we present
the core concept of the co-rank analysis model, and character-
ize the signals that belong to it. In Section III we consider
the analysis pursuit problem of denoising a signal using
the analysis model, which serves as an important building-
block in the Analysis K-SVD algorithm described in detail in
Section IV. Finally, Section V provides several experiments
that demonstrate the performance of the Analysis K-SVD
algorithm.

II. A CLOSER LOOK AT THE ANALYSIS MODEL

In this section we briefly review the co-rank analysis model,
and characterize the signals that belong to it, and which our
learning algorithm is to operate on. The content of this section
relies in part on explanations found in [8], [9], [13].

The analysis model for the signal x € R? uses the possibly
redundant analysis dictionary € € RP*? (redundancy here
implies p > d), and assumes that the analysis representa-
tion vector 2x should be sparse. In this work we consider
specifically ¢° sparsity, which implies that 2x contains many
zeros. The co-sparsity ¢ of the analysis model is defined as
the number of zeros in the vector 2x,

1x]lp = p — £. (1)

In the synthesis model the representation o is obtained
by a complex and non-linear pursuit process that seeks (or
approximates) the sparsest solution to the linear system of
equations Da = x. This representation can be arbitrarily
sparse, ||allo = k < d. The signal x is characterized by the
k non-zero indices in the representation vector ¢, and their
associated atoms define the subspace this signal belongs to.

The dimension of this subspace equals k and as we mentioned
before, it is small with respect to the signal dimension d.

In contrast, in the analysis model the computation of the
representation is trivial, obtained by the multiplication €2x. In
this model we put an emphasis on the zeros of £2x, and define
the co-support A of x as the set of ¢ = |A| rows that are
orthogonal to it. In other words, 2,x = 0, where 2, is a
sub-matrix of €2 that contains only the rows indexed in A.
For a given analysis dictionary €2, we define the co-rank of a
signal x with co-support A as the rank of Q4. The signal x
is thus characterized by its co-support, which determines the
subspace it is orthogonal to, and consequently the complement
space to which it belongs. Just like in the synthesis model, we
assume that the dimension of the subspace the signal belongs
to, denoted by 7, is small, namely r < d. The co-rank of such
an analysis signal is d — r.

How sparse can the analysis representation vector be? Let
us first assume that the rows in €2 are in general-position,
implying that every subset of d or less rows are necessarily
linearly independent. This is equivalent to the claim that the
spark of Q7 is full [2]. Naturally, for this case, ¢ < d, since
otherwise there would be d independent rows orthogonal to
X, implying x = 0. Thus, in this case the analysis model
leads necessarily to a mild sparsity, [|Qx||p > p — d, and
for a highly redundant analysis operator, the cardinality of
the analysis representation vector €2x is expected to be quite
high. In this case, the dimension of the subspace the signal
belongs to is 7 =d — /.

A more interesting case is when Q7 has non-full spark,
implying that linear dependencies exist between the dictionary
atoms. The immediate implication is that ¢ could go beyond
d, and yet the signal would not necessarily be nulled. An
example of such a dictionary is the set of cyclic horizontal
and vertical one-sided derivatives, applied on a 2D signal of
size v/d x v/d. The corresponding analysis dictionary, denoted
Qprr, is of size 2d x d, thus twice redundant. Figure 1
shows this dictionary for d = 25. In [9] this dictionary is
discussed in detail, showing that its rows exhibit strong linear
dependencies.

Generating a random analysis signal amounts to the follow-
ing process: Choose a set of row indices A C {1,...,p} —
this will be the signal’s co-support. Starting with a random
vector u, project it onto the subspace orthogonal to 24:

x=(I-Q2\)u, @)

and x is an analysis signal that satisfies our sparsity assump-
tion. For a general-positioned 2 we choose ¢ rows from
at random. Otherwise we choose d — r linearly independent
rows from 2. This choice is still done in a random fashion,
but is naturally more restricted. In the experiments that follow
we shall use such randomly generated signals, when dealing
with synthetic experiments.

As mentioned above, when the rows in €2 are not in general-
position, the co-sparsity ¢ can be greater than d. In this case,
once a signal x has been generated using the process (2),
computation of its analysis representation 2x, could reveal
additional rows that are orthogonal to the signal, due to linear
dependence on the chosen subset A. To demonstrate this
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Figure 1.

Left: The dictionary Q2 prp of size 50 X 25, corresponding to horizontal and vertical cyclic one-sided derivatives of image patches of size 5 X 5

pixels. Right: Examples of sparse analysis signals (5 X 5 patches) residing in 4-dimensional subspaces related to the dictionary Qprp, i.e., orthogonal to 21

linearly-independent atoms each.
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Figure 2. A histogram of the effective co-sparsities of the 1000 analysis
signals generated from Q pyp of size 50 x 25. The reference value of £ = 21
is indicated by the thin vertical line. As can be seen, the effective co-sparsities
are all strictly higher.

behavior, we generated 1000 unit-norm analysis signals resid-
ing in 4-dimensional subspaces related to Qprp € R59%25,
Figure 1 presents a set of such randomly created signals. For
these signals, Figure 2 presents a histogram of the effective
co-sparsities. As can be seen, though the signals are each
orthogonal to subspaces of rank 21, their actual co-sparsities
are much higher, varying in the range 23 to 40. Thus, we see
that by allowing linear dependencies between the rows in €2,
co-sparsities much higher than the signal dimension can be
achieved.

An equivalent way to interpret the co-rank analysis and
£° synthesis models is as Unions of Subspaces (UoS) signal
models [23]. As we have seen, in both cases the sparse signals
reside within some UoS defined by the dictionary atoms. In
the synthesis case, these subspaces are formed by the spans
of all sets of atoms with rank < k for some choice of
k. In contrast, in the analysis case these subspaces are the
orthogonal complements of the sets of atoms with rank = d—r.
We note that when the dictionaries are in general position,
the number of such subsets is (Z) and ( a T), respectively.
In general, the UoS’s associated with the two models will be

very different. For example, if p = n = 2d, k = r < d and
the rows in €2 are in general-position, the subspaces united
by the two models are of the same dimension (k or ), but
their number is entirely different, with many more subspaces
included in the analysis model.

III. ANALYSIS SPARSE-CODING
A. Defining the Pursuit Problem

Before we study the problem of learning the analysis dic-
tionary €2, we have to consider a simpler task called analysis
sparse-coding or analysis pursuit. As we shall see in the
next section, this is an important building-block in the overall
dictionary-learning procedure.

A convenient property of the analysis approach is that given
a signal x, we can readily compute its analysis coefficients
Qx, and thus determine the cardinality of its analysis repre-
sentation. However, if we assume an additive contamination
of the signal, y = x + v, then computation of the analysis
representation €2x is no longer simple. We shall assume
that v is a zero-mean white-Gaussian additive noise vector.
Recovering the correct signal x from its noisy version (and
thereby computing the analysis representation), y, requires
solving a problem of the form

{ﬁ, [\} — Argmin |x —y|}» Subject To 3)
X, A
QAX =0
Rank (Qp) =d—r
or
{f(, jA\} = Argmin Rank(£2,) Subject To 4)
x, A
QAX =0
[x —yll2 <e.

In Equation (3) we require a co-rank of d — r for the obtained
solution, while in Equation (4), we constrain the solution to
be e-close to the given noisy signal, where this error tolerance
is derived from the noise power. The above problems can
be considered as denoising schemes, as X is an attempt to
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estimate the true noiseless signal x. The two problems (3) and
(4) are equivalent, of course, given the correct correspondence
between 7 and ¢, and the choice between them depends on the
available information regarding the process that generated y.
We refer to these problems as the analysis sparse-coding or
analysis-pursuit problems.

In principle, denoising is possible with the analysis model
because, once the co-support has been detected, projection
on the complement subspace attenuates the additive noise in
the co-support subspace, thus cleaning the signal. Indeed, the
higher the dimension of the true co-support, the better the
denoising is expected to perform.

In an oracle setup, the true co-support A is known, and thus
can be used for obtaining a signal recovery,

%= (I _ Q*AQA) y. (5)
The mean denoising error in the oracle setup is given by
Elx—%|2 =t (1 . QTAQA) o? = ro?, ©)

where tr(-) denotes the trace of a matrix. In the first equality
we used the fact that the noise is white and Gaussian and
that Q2,x = 0. The last equality holds since I — Q}L\Q A ls a
projection matrix onto a r-dimensional space, so that it has
two eigenvalues — a zero eigenvalue of multiplicity d — r and
an eigenvalue 1 with multiplicity r. This should remind the
reader of the oracle error in the synthesis case, as described
in [2].

Similar to the synthesis sparse approximation problem, the
problems posed in Equations (3) and (4) are combinatorial
in nature and can thus only be approximated in general. One
approach to approximating the solution is to relax the £° norm
and replace it with an ¢! penalty function, producing

X = Argmin |x —y||2 x|, <T. ()

X

Subject To

This approach is parallel to the basis-pursuit approach for
synthesis approximation [24], and the resulting problem may
be solved via an iterated re-weighted least squares (IRLS)
method [25], or using standard quadratic or conic optimization
methods.

B. The Backward-Greedy Algorithm

A second approach parallels the synthesis greedy pursuit
algorithms [26], [27], and is the one we shall use in this
work. It suggests selecting rows from {2 one-by-one in a
greedy fashion. The solution can be built by either detecting
the rows that correspond to the non-zeros in €2x, or by
detecting the zeros. The first approach is the one taken by
the Greedy-Analysis-Pursuit (GAP) algorithm, described in
[9]. We shall take the alternative (and simpler) approach of
finding the co-support A one element at a time. We refer
to this algorithm as the Backward-Greedy (BG) Algorithm,
as it is gathering the zeros in the representation. A detailed
description of this algorithm, is given below in Algorithm 1.
Note that this algorithm takes as input the co-rank d —r of the
desired co-support rather than the exact number of zeros, and

thus the actual number of vanishing coefficients in the output
representation may be larger than d — 7.

The process begins by setting X = y and initializing the
co-support to be an empty set of rows. In each iteration, the
inner-products £2X are computed, and the row with the smallest
non-zero inner-product is selected and added to the set. The
solution X is then updated by projecting y on the orthogonal
space to the selected rows. Finally, the co-support is refined
by recalculating the representation vector X and finding the
additional coefficients that fall below some small threshold
€o- This can reveal additional rows that are orthogonal to
the current estimate of the signal, namely the rows that are
spanned by the existing set of rows €2, ,. The process described
above repeats until the target subspace dimension is achieved.

Algorithm 1 BACKWARD-GREEDY

1: Input: Analysis dictionary £ € RP*4, signal y € R?, and
target co-rank d — r

2: Output: Signal x € R? with co-rank d—7 and minimizing
Iy — x|2

3: Initialization: Set i = 0, Ag := 0, Xo:=y

4 fori=1 ... d—rdo
5:  Sweep: k; := Argmin |wi X;_1 |
k¢A; 1

6:  Update Co-Support: A; :=A; 1 U {I%Z}
7. Project: Xx; := (I — QI\QA> y
8:  Refine Co-Support:
Api={k|1<k<p, W[ %| <e}

9: end for

10: return X = Xg_,

In practice, the above algorithm can be implemented ef-
ficiently by accumulating an orthogonalized set of the co-
support rows. This means that once k; has been found and
the row W];T‘ is about to join the co-support, it is first orthog-
onalized with respect to the already accumulated rows using
a modified Gram-Schmidt process. Denoting by {q; };;11 the
orthogonal set accumulated so far (as column vectors), the

orthogonalization of Wg_ is obtained by

i—1
q, =wy, — > (a4 w;)a;. ®)

j=1

This should be followed by a normalization of this vector,
q; = q;/[lq;]l2.

The above-described orthogonalization process is done for
one purpose: avoiding the matrix inversion in the update of X;.
The “Projection” step in Algorithm 1 translates comfortably
to

%= (-2l )y=1-Yqd |v.  ©
j=1
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The correctness of this update formula can be easily verified
by multiplying X; by q; (j = 1,2,...,1), leading to q]Tf(i =0,
as required. This can be further simplified by observing that

i i—1
%= 1= qqf |y= 1= q;dj |y —a;qy
j=1 j=1
=%i-1 —q,q] Y- (10)
Finally, we can suggest a slight modification,
Xi =%~ 4y = [I-q,q7 | X1 (11)

This last change is justified by the fact that a projection of y
onto q, is the same as the projection of X;_;. Though mathe-
matically the two expressions are the same, we have observed
that the latter option exhibits better numerical stability.

C. The Optimized Backward-Greedy Algorithm

We can propose an improved pursuit algorithm in the spirit
of the BG, by considering the following approach: At the ith

step, rather than choosing k; := Argmin |w} X;_1 |, we can
k‘%/\,’,_l

test all possible values of I%i ¢ A,;_1, and for each, compute
the complete update (“Update Co-Support” and “Project”
steps) in Algorithm 1. Then we choose k; that leads to the
smallest decrease in the signal’s energy, i.e. choosing k; that
minimizes |qlX;_;|. This should remind the reader of the
OOMP algorithm [28], also known as the Least-Squares OMP
algorithm [2]. We shall refer hereafter to this algorithm as the
Optimized-BG (OBG), detailed in Algorithm 2.

In practice, the OBG algorithm can be implemented effi-
ciently using the accumulated set of orthogonalized rows {q B 1.
Using Equation (11) we get that the provisional steps (lines
6-8) in Algorithm 2 can be replaced by computing qgk) for
every k ¢ A;_; using (8) and the eventual “Sweep” step can
be replaced by

foi == Arg min | (¢") 7 %, |.

12
L min (12)

The computational complexity of the two pursuit algo-
rithms, using their efficient implementations discussed above,
is O(d?p) for BG and is O(d®p) for OBG, where we have
used the assumption that » < d — see Appendix A. Finally,
we can design alternative error-based versions for both the
BG and OBG pursuit algorithms, where the process described
above proceeds until the error ||X; — yl||2 is above a pre-
specified threshold. Suppose this happens at the i*" step of
the algorithm, then the algorithm returns X;_;.

D. Experimenting with Analysis Sparse-Coding

In order to illustrate how the BG and OBG operate in prac-
tice, we provide the following brief experiment. Continuing
with the experiment setup reported in Section II, we take the
1000 generated example signals and contaminate them with
additive white Gaussian noise. We set the noise standard-
deviation to be 0 = 0.04, which corresponds to a signal-to-
noise ratio (SNR) of 25, and apply BG and OBG. We test the
two algorithms in their rank-constrained and error-constrained

Algorithm 2 OPTIMIZED-BACKWARD-GREEDY

1: Input: Analysis dictionary Q € RP*4, signal y € R?, and
target co-rank d — r
2: Output: Signal X € R? with co-rank d—r and minimizing

ly — x]|2
3: Initialization: Set ¢ = 0, Ag := 0, Xg:=y
4: fori=1 ... d—rdo
S: for k ¢ A1 do
6: Provisional Update Co-Support
AZemp = Ai,1 @] {k}

7: Provisional Project:

)A(Eemp = (I — Qj\?e’”l’ ﬂAfa7np) y
8: Provisional Error: ¢, = ||X/“™ — %; ||
9: end for
10:  Sweep: k; := Argmin ey,

kgA; 1 R
11:  Update Co-Support: A; := A;—1 U {k; }
122 Project: X; := (I - QRLQA) y
13:  Refine Co-Support:
A= {k|1 <k <p, W% <eo}
14: end for

15: return X = X;_,

variants. For the rank-constrained case, we use a varying target
subspace dimension r in the range [3, 10] (recall that the true
subspace dimension in our case is 4). For the error-constrained
case, we use an error threshold nv/do with a varying 7 in
the range [0.5,1.5]. We use a threshold ¢y = 10~* on the
coefficients to find the effective co-support.

Figure 3 presents the mean denoising results obtained,
measured as the ratio ||x—x||3/(do?). A ratio below 1 implies
an effective noise reduction. The best performance in each of
the tests is obtained for r = 4 and n = 1.1 respectively.
Interestingly, we see that the BG appears to give a better
denoising performance than OBG in this case. The figure also
displays the oracle’s performance, computed using Equation
(5), assuming knowledge of the true co-support.

The observant reader might ask at this stage: why bother
with the more complicated OBG, when the simpler BG per-
forms better? The answer resides in a closer inspection of the
obtained results. While indeed giving better denoising (which
should be explained), the OBG does better in terms of finding
a set of clean signals x that are closer to y, while satisfying
the co-sparsity requirement. Figure 4 presents this “represen-
tation” error as a function of the chosen dimensionality of
the signals x, and as can be seen, the OBG error is smaller
(and better). Notice that the error obtained for both methods
is below the oracle’s, implying that these greedy methods do
succeed in extracting good set of rows for the co-support. This
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Figure 4. Denoising experiment with sparse analysis signals of dimension 4
created from Qprp: The “representation” error obtained for BG and OBG
with varying target subspace dimension. Note that the error is normalized by
the number of signal examples R.

superiority of the OBG will become pronounced and critical
when turning to the dictionary learning task.

IV. THE ANALYSIS K-SVD ALGORITHM

A. The Learning Goal

We now turn to describe the main part of this work —
learning the analysis dictionary. We consider the following
setting: Given a training set Y = [y; yy ... yp] € R¥*E,
we assume that every example is a noisy version of a signal
residing in an r-dimensional subspace related to the dictionary
Q. Thus, y;, = x; + v,;, where v; is an additive zero-mean
and white Gaussian noise vector, and Xx; satisfies a co-rank
of d — r with respect to the dictionary €2. For simplicity we
shall assume that all example signals have the same co-rank
d — r, although the treatment we give below can cope with
more general scenarios. Our goal is to find the dictionary €2
giving rise to these signals. Taking into account the noise in
the measured signals, we formulate an optimization task as

follows:

PN " R
{Q,X, {A} } — Argmin X —Y|Z Subject To
i=1 Q,X, {AR
(13)
Qax;i =0, VI<i<R
Rank (Qy,)=d—r, V1<i<R

[willa =1, V1<j<p.

Here, x; are our estimates of the noiseless signals, arranged
as the columns of the matrix X, and A; are their co-supports.
The vectors w; denote the rows of €2 (held as column vectors).
The normalization constraint on the rows of €2 is introduced
to avoid degeneracy, but otherwise has no practical influence
on the result. We note the similarity of this problem to the ¢°
synthesis training problem [4], given by

{f),f} — Argmin DT — Y|%  Subject To (14)
D.T
[djll2=1, Vj.

This similarity will become useful in developing a learning
method for the analysis case, which shares the same overall
structure with some synthesis training algorithms. Indeed, the
training problem posed in Equation (13) is highly non-convex
(as is the problem posed in Equation (3)), and as such we can
only hope for a local solution in general. Thus, we adopt a
simple iterative approximation method, described next, which
draws its spirit from earlier works on synthesis dictionary
learning.

B. Block-Coordinate Descent Algorithm

Assuming an initial estimation {2y of the analysis operator,
the optimization scheme is based on a two-phase block-
coordinate-relaxation approach. In the first phase we optimize
for X while keeping € fixed, and in the second phase we
update € using the computed signals X (in fact, we will be
using the detected co-supports and not X directly). The process
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repeats until some stopping criterion (typically a fixed number
of iterations) is achieved.

Given the analysis dictionary €2, optimizing for X can be
done individually for each column of X, defining an ordinary
co-rank analysis approximation problem for each signal y;,

{)ZZ-7 Ai} = Argmin ||x; —y,|l2 Subject To

Xiy g

5)

QAixi =0
Rank (Q2),) =d—r

which may be solved using a pursuit method as described in
Section III.

Once X is computed, we turn to update €2 in the second step.
The optimization is carried out sequentially for each of the
rows w; in £2. We note that, similar to the K-SVD algorithm
[4], the update of w; should be affected only by those columns
of X that are orthogonal to it, while the remaining signal
examples should have no influence. Thus, letting X denote
the sub-matrix of X containing the columns found to be
orthogonal to w;, and denoting by Y ; the corresponding sub-
matrix of Y, the update step for w; can be written as

{ij XJ} = Argmin | X; —Y||7 Subject To

wi, Xy

(16)

QAiXi = 0, Vied
Rank (Qp,)=d—r, VielJ

[wjll2=1".

Adopting the approach taken by the K-SVD, we maintain the
constraint on 2x; by constraining each x; to remain orthogonal
to the rows in €2 it has been found to already be orthogonal to.
This is parallel to the K-SVD atom update process, where the
representation supports are kept fixed. To formalize this, we
use the notation £2; to denote the sub-matrix of {2 containing
the rows from € that x; is currently orthogonal to, excluding
the row w;. We can thus write the optimization problem for
W, as

{ij XJ} = Argmin ||X; — Y;||% Subject To

wi, X

a7)

2x, =0, Vield
wiX; =0
[will2 =1

This suggests that the “dictionary-update” stage uses only the
co-supports (rather than the processed signals X) that were
found in the “sparse-coding” stage. Unfortunately, in general,
solving the problem posed in Equation (17) is a difficult
task. However, as an alternative, we propose the following
approximation to the above optimization goal:

W, = Argmin ||w]TYJ||§ Subject To  ||wj[2 =1. (18)
Wi

For this problem, the solution is the singular vector corre-

sponding to the smallest singular value of Y;, which can

be efficiently computed from the SVD of Y, or using some

inverse power method. As we show in the results section, this

simple approach turns out to be very effective in recovering

analysis dictionaries from sparse example sets. In Appendix
B we discuss this approximation choice and its relation to the
original goal posed in Equation (17).

One advantage of this specific approximation method is that
it disjoints the updates of the rows in €2, enabling all rows
to be updated in parallel. Another desirable property of the
resulting algorithm is that it assumes a similar structure to the
Synthesis K-SVD algorithm — replacing the maximum eigen-
value computation with a minimum eigenvalue one. We term
the resulting algorithm Analysis K-SVD due to its resemblance
to the original K-SVD algorithm.

C. Summary: The Algorithm

The Analysis K-SVD is an iterative scheme that has a
simple intuitive interpretation. Each iteration consists of two
stages. In the first stage we find for each signal the rows in
2 that determine the subspace it resides in (the set of rows
that the signal is “most orthogonal” to). This is followed by
updating each row in €2 to be the vector that is most orthogonal
to all signals associated to it in the first stage. A detailed
description is provided in Algorithm 3.

Algorithm 3 ANALYSIS K-SVD

1: Input: Training signals Y € R¥*%, initial dictionary
Qo € RPxd, target co-rank d —r and number of iterations
k

2: Output: Dictionary €2 and signal set X minimizing (13)
3: Initialization: Set 2 := Q,

. k do

Analysis Pursuit:

4. form=1 ..

W

Vi : {f(i, f\l} := Argmin ||x —y,||2 Subject To
X, A

QAX =0
Rank () =d—r

6: forj=1... pdo
7: Extract Relevant Examples: J := indices of the
columns of X orthogonal to w
8: Compute Row:
w; = Argmin W'Y |2 Subject To |wl|z =1
w
9: Update Row: Q{j-th row} := w}
10:  end for
11: end for

In practice, our implementation incorporates the following
improvement to Algorithm 3, intended to resolve deadlock
situations in the iterative process: During the dictionary update
step, each row in € which is found to have too few associated
examples or is too close to another row in €2, namely the
maximal inner product with the rest of the rows is larger (in
absolute value) than 1 — §, is regarded as a false one and
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is therefore replaced by a new row which is generated in a
random fashion. One possible generation process, which we
use here, is randomly selecting a set of d — 1 examples and
setting the row as the vector that spans their one-dimensional
null-space.

Algorithm 3 constitutes our basic scheme for analysis
dictionary learning. Depending on the specific setup at hand,
we may want to encourage certain properties in the learned
dictionary. To this end, we can apply a post-processing on the
learned atoms or explicitly modify the atom update rule (18).
We shall consider such options in the experiments in the next
section.

V. SIMULATION RESULTS

In this section we present a set of experiment results
with the proposed training algorithm. The intention of these
experiments is to demonstrate the core capability of the
proposed learning method, and to expose the potential that
exists in the analysis model when coupled with a learned
dictionary. In the first part we present experiments on synthetic
signals, demonstrating the ability of the method to recover
the true underlying analysis dictionary 2 given a training set
of analysis signals. In the second part we show results for a
piecewise-constant (PWC) image and observe the emergence
of meaningful structures in the trained dictionary. We also
show that the Analysis K-SVD approach may outperform
the Synthesis K-SVD, total-variation (TV) denoising and the
BM3D method in denoising of such a PWC image.

We then turn to natural images and test the image de-
noising performance of the analysis dictionary learned by
our approach. In this setup we get results that outperform
those obtained by the FoE approach, and are comparable to
those obtained by the Synthesis K-SVD algorithm. We discuss
the limitations of our approach and point to future research
directions that will better exploit the capabilities of the analysis
model and its learned dictionary.

A. Synthetic Experiments

To demonstrate the performance of the proposed algorithm
in recovering an underlying dictionary €2, we perform a set
of synthetic experiments. In these experiments, the analysis
dictionary © € RP*? is known and a set of R sparse signal
examples, each residing in an r-dimensional subspace, are gen-
erated as described in Section II. These sparse analysis signals
are normalized to unit length and are optionally subjected to
additive white Gaussian noise, producing the final training set.

We begin with a setup where the ground-truth analysis
dictionary € € R®0%25 ig generated with random Gaussian
entries, and the data set consists of R = 50,000 analysis
signals each residing in a 4-dimensional subspace. We test
both the noise-free setup and a noisy setup with noise level
0.2/v/d = 0.04 (SNR=25). We remark that in the
noiseless case, and when using the rank-constrained variants
of BG and OBG, we first of all find the rows in Q) that are
orthogonal to the input signal, update the initial co-support Ao,
and then run the main loop in these algorithms until the rank
of 2, equals d — r. This may take less than d — r iterations

o =

when the input is already orthogonal to one or more rows in
), which occurs as the trained dictionary approaches the true
analysis dictionary.

The algorithm is initialized with a dictionary €2 in which
each row is orthogonal to a random set of d — 1 examples. We
apply 100 iterations of the Analysis K-SVD algorithm using
the OBG algorithm' with a target subspace dimension r = 4
for the sparse-coding stage. We fix the parameter J = 0.05 to
enable the recovery of distinct rows in £2. A row w; in the
true dictionary €2 is regarded as recovered if

Min(1 lwi w;|) < 0.01, (19)
where Ww; are the atoms of the trained dictionary.

The results of these experiments are shown in Figure 5 on
the top, demonstrating the ability of the proposed approach
to produce a good estimate of the true underlying operator 2
given a sparse analysis training set. As can be seen in the right
figure, 94% of the rows in the true € were recovered in the
noise-free setup and 86% in the noisy one. Referring to the
left figure, which shows the average representation error per
element ||X — Y| »/v/Rd, we see that this error goes below
the noise level o, indicating a successful training.

To demonstrate the improved efficiency of the Analysis K-
SVD, we compare it with [13] on the same experimental
setup. Each iteration in their approach starts with a random
row, generating a candidate row by a sequential process (10
inner iterations) that alternates between determining the set of
relevant signals (there is a ratio ¢/p between the size of this
set and the total number of signals in use at a given iteration)
and computing the least eigenvector corresponding to their
autocorrelation matrix. A row is accepted to the set of learned
atoms if its maximal inner product with the relevant signals is
smaller than 6y and its maximal inner product with the rows
accepted so far is smaller than 1 — §.

We apply the randomized version of their algorithm (Algo-
rithm 3 in [13]) with parameters ¢ = d—4 = 21, 6y = 1.50 (in
the noise-free setup: 6y = 1072) and § = 0.05. Note that the
parameter ¢ in this case equals the co-sparsity of each signal
example. The ¢ parameter is similar to the one used in our
algorithm — we use it for replacing similar rows in €2, while
they use it for rejecting rows. The algorithm terminates when p
rows have been accumulated or after 300 iterations. The results
are shown in Figure 6 on the bottom. In the noise-free setup
we observed that while all the accepted rows were correct,
the algorithm requires an increasing number of iterations to
detect a new distinct row. The final recovery rate after 300
iterations is 74%, which is still inferior to the Analysis K-
SVD algorithm. In the noisy case, however, many false rows
are accepted to the accumulated set, and once admitted they
cannot be replaced. This results in a very poor recovery rate
of 44%.

Next we repeat the experiments with the Analysis K-
SVD algorithm for the dictionary Qp;r € R59%25 (Figure
1), keeping the setup the same as before, apart from one
modification: In the last 25 iterations (out of 100 iterations)

'We have found the OBG to perform much better than the BG for dictionary
training, and thus focus on this option here.
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Figure 6. Synthetic experiment results of analysis dictionary learning with
the algorithm suggested in [13] for a random dictionary £ € R50%25 and
a training set of R = 50,000 analysis signals residing in 4-dimensional
subspaces.

of the algorithm, we employ a slight modification to the
training iterations, intended to encourage linear-dependence
in the dictionary. Specifically, at the end of each iteration, we
nullify near-zero entries in €2, and remove the mean from rows
whose mean is near-zero. These two simple post-processing
steps have been found to be advantageous in several training
experiments, as these steps promote linear dependencies in the
analysis dictionary. Intuitively, such dictionaries enable larger
co-supports to be achieved, which can likely be more stably
recovered. We note that this is in sharp contrast with synthesis
dictionaries, where linear independence is highly desirable.
The results of these experiments are depicted in Figure 7,
showing good recovery results for this setup as well. As can
be seen, at the end of the first phase of the algorithm (after
75 iterations) 84% of the rows in Qprr were recovered in
the noise-free setup and 80% in the noisy one. At the the end
of the second phase (after 100 iterations) the recovery rates
increase to 92% for the noise-free setup and 84% in the noisy
case. The learned analysis dictionaries at the end of the first
and second phases are shown at the bottom row of this figure.
During the second phase of the algorithm — the last 25
iterations — there is a steep increase in the co-sparsity ¢ due to
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Synthetic experiment results of the Analysis K-SVD algorithm for a random dictionary £ € R59%25 and a training set of R = 50, 000 analysis

the linear dependencies emerging within the rows of €2: The
average ¢ becomes 34.1 for the noise-free setup and 30.6 for
the noisy one, which is close to the true average co-sparsity,
35. This results in a significant improvement in the denoising
performance for the noisy setup, aligning with our hypothesis
that linear dependencies in the dictionary are beneficial for
analysis-based denoising. Note that the representation error
per element increases in the second phase, however it is still
below the noise level, as in the previous experiment.

We should note that in this last experiment we encouraged
the rows in the recovered dictionary to be sparse and have
zero-mean, using a simple post-processing. However, it may
be possible to incorporate these constraints explicitly into the
learning goal of Equation (13). Further work is required to
explore this direction, a well as other options for encouraging
linear dependencies in the recovered dictionary.

Finally, we compare our results on 2p;r with [13]. All
the parameters of their method remain the same as for the
random $2, apart from /¢ that should be adjusted to account
for the expected linear dependence within the rows of 2.
We tested three values of ¢: 28, 30 and 32, all higher than
d — r = 21. The recovery rates for these three choices of ¢
are depicted in Figure 8. We can see that for £ = 32 excellent
recovery rates were obtained (98% recovery rate in the noisy
setup!). However, this requires a large number of iterations.
Specifically, in the noisy case the algorithm terminates after
300 iterations before it has finished accumulating p rows.
More importantly, when using lower values of ¢, the recovery
rates drop to around 60% and 80% (for £ = 28 and ¢ = 30
respectively). This shows the high sensitivity of this algorithm
to its parameters. Note that in contrast to the co-rank r used
by the Analysis K-SVD algorithm and common to all the
signal examples, the parameter ¢ related with the co-sparsity
of the signals has a high variability. Therefore, it is not
straightforward to determine its value.

B. Experiments with Images

We now turn to present experimental results on images,
with the aim of evaluating the behavior of the training algo-
rithm for signals with more meaningful content, where there
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Figure 8. Synthetic experiment results of analysis dictionary learning with the algorithm suggested in [13] for a dictionary Qprr € R?9%25 and a training

set of R = 50,000 analysis signals residing in 4-dimensional subspaces. The algorithm was run with three different choices of the parameter £ in the range

(28, 32].
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Figure 9. Left: A 256 x 256 piecewise-constant image. Among all possible
patches of size 5 X 5 extracted from this image, less than half are non-flat.
Right: Examples of non-flat patches, used for the training (their noise-free
versions are shown).

is no ground-truth reference dictionary. For a given image,
contaminated by additive white Gaussian noise, we apply the
Analysis K-SVD algorithm (specific implementation details
will be provided for each experiment) on a subset of patch
examples chosen for training and learn an analysis dictionary.

The learned analysis dictionary is then utilized to denoise
each overlapping patch extracted from the noisy image. For
the denoising we apply the error-based version of OBG with
an error threshold 1.15\/&0, to allow for content-adaptive
subspace dimensions in the recovered patches, in parallel with
patch denoising with a synthesis dictionary [21]. The patch
denoising stage is followed by averaging the overlapping patch
recoveries to obtain the final denoised image. This approach
is referred to as analysis patch-based image denoising. We
remark that [18] takes a different approach towards image
denoising with their learned analysis dictionary. The core idea
of their approach is that image recovery can be formulated as
a regularized optimization problem where the learned analysis
dictionary serves in a sparsity-promoting prior for the analysis
representations of all overlapping patches.

We start with a piecewise-constant image of size 256 x 256
contaminated by low noise ¢ = 5 (PSNR = 34.15dB) and
extract all possible 5 x 5 image patches. We observe that out
of a total of 63,504 patches, less than half were “active” (i.e.,
non-flat). We randomly choose 20, 000 “active” patches for the
dictionary training. The PWC image and examples of “active”
patches extracted from it are shown in Figure 9.

We apply 100 iterations of the Analysis K-SVD algorithm
on this training set, learning an analysis dictionary of size 50 x
25 and assuming recovered signals residing in 4-dimensional
subspaces. The initialization of the dictionary is the same as
in the previous experiments, and the training is composed of
two phases: In the first phase we apply 75 iterations of the
algorithm using BG for the “sparse-coding” stage’, and in
the second we apply 25 iterations using OBG and the post-
processing described in the previous subsection (nulling small
entries and removing small means).

The learned analysis dictionary is shown in Figure 10.
It exhibits a high resemblance to the Q2p;r dictionary (see

2BG was used in the first phase of the algorithm in order to speed-up the
overall learning.

: "l [ | R
5 FUAPFLETE ™

Figure 10. Results of the Analysis and Synthesis K-SVD algorithms for the
piecewise-constant image shown in Figure 9 with noise level o = 5. Left:
learned analysis dictionary 2 € R50%25_ Right: learned synthesis dictionary
D € R25x100 Both dictionaries are learned from a training set of R =
20,000 patches. Each signal recovery for this training set resides in a 4-
dimensional subspace.

Figure 1). This observation aligns with our intuition that many
finite differences computed on a piecewise-constant signal (in
our case — a 2D patch) are expected to be near zero. This
dictionary leads to a representation error per element of 3.85
and a denoising error per element of 3.88 on the training set —
both are below the noise level o = 5, indicating a successful
training. The average co-sparsity level on the training set
grows from 21 for the initial dictionary to 29.4 for the final
one, indicating the emergence of linear dependencies between
the rows of the learned dictionary.

Next we use the learned analysis dictionary in the patch-
based image denoising approach mentioned above. Previous
work on this approach [21] has found it useful to remove
the DC from each noisy patch before it is denoised and add
back the DC to the recovered patch before the final averaging
process. This procedure guarantees that the DC of each noisy
patch is preserved in its recovery. Note that since the learned
dictionary in the PWC setup consists of zero-mean atoms, the
DC is preserved anyhow, thus we can avoid this procedure.

We compare the suggested approach with three other image
denoising methods — the Synthesis K-SVD [21], TV denois-
ing (with the algorithm and software provided in [29]) and
BM3D [30] that is known to lead to state-of-the-art results
on natural images. For the Synthesis K-SVD we use the
same training set as for the Analysis K-SVD: 20, 000 “active”
patches of size 5 x 5, and we train a redundant synthesis
dictionary of size 25 x 100. The initial synthesis dictionary
is a set of random patch examples (for details see [4]) and the
recovered patches reside in 4-dimensional subspaces (the DC
adds a dimension, namely 3 atoms are used in each recovery).
The learned synthesis dictionary is shown in Figure 10. We can
see that this dictionary consists of atoms containing an edge,
as should be expected when looking at the patch examples (see
Figure 9). TV denoising solves a regularized image recovery
problem using horizontal and vertical one-sided derivatives in
the regularization term (these are the same derivatives used to
generate the Q27 dictionary). The BM3D method is applied
using the “normal” profile (for details see [30]). In this method
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Figure 11.

Image denoising results on a noisy piecewise-constant image (¢ = 5, PSNR = 34.15dB). Images of the absolute errors are displayed in

the dynamic range [0, 20] (from left to right): Analysis K-SVD (PSNR = 45.67dB), Synthesis K-SVD (PSNR = 43.67dB), TV denoising (PSNR =

41.12dB) and BM3D (PSNR = 40.66dB).

parameters such as block dimensions and orthogonal basis for
the 3D blocks are fixed — they are set to perform best on natural
images — rather than adapting them to the data at hand.

The resulting PSNRs of the denoised images are 45.67dB
for Analysis K-SVD, 43.67dB for Synthesis K-SVD, 41.12dB
for TV denoising and 40.66dB for BM3D. Figure 11 shows the
absolute difference images for each of the three methods. Note
that these images are displayed in the dynamic range [0, 20] to
make the differences more pronounced. The Analysis K-SVD
approach leads to a much better denoising result compared to
TV-denoising (a performance gap of 4.5dB!), despite the fact
that both use first-order derivatives. This difference can be
explained by the locality and the different measure applied
on the derivative outputs: the co-rank measure on all the
derivatives associated with each patch proves to be much
more efficient than the ¢2-norm computed on the pair of
vertical and horizontal derivatives for each pixel. The much-
inferior denoising performance of BM3D on this image — with
respect to the Analysis and Synthesis K-SVD approaches —
can be explained by the fact that it uses a 2D-DCT basis for
modeling the patches, which is well-suited for patches of a
natural image, but does not give a good fit for piecewise-
constant patches. Both the Analysis and Synthesis K-SVD
approaches adapt the dictionary to the data, leading to better
image denoising despite the fact that they do not exploit self-
similarities within the image as the BM3D does.

More interestingly, when we compare the Analysis and
Synthesis K-SVD results, we get a gain of 2dB (image PSNR)
in favor of the analysis approach. The analysis-based approach
also obtains better patch recoveries (before averaging the
overlaps), both in terms of the average subspace dimension
(1.7 for analysis versus 2.4 for synthesis) and in terms of
the denoising error per element (2.08 for analysis versus
2.94 for synthesis), for the same constraint on the represen-
tation error (||f<l —¥illa < 1.15Vdo, Vi€ {1,.. .,R}). We
thus conclude that for this case, the analysis approach provides
a better modeling platform than the comparable synthesis
approach. Indeed, characterizing additional families of such
signals remains an interesting and open question.

We now turn to natural images and test the suggested
approach on five images, ‘Lena’, ‘Barbara’, ‘Boats’, ‘House’,
and ‘Peppers’, which are commonly used for evaluating image
denoising performance (see for example [18], [21]). For each

such image, contaminated by low noise ¢ = 5, we learn a
redundant dictionary of size 63 x 49 for patches of size 7x7 by
applying 20 iterations of the Analysis K-SVD algorithm, using
OBG with a target subspace dimension of » = 7 in the pursuit
stage. We use a training set consisting of 20, 000 informative
patch examples extracted from the noisy image and a data-
driven dictionary initialization, just as in our experiments with
the PWC image.

In this setup we do not apply the atom post-processing
suggested before for the PWC image, since for these images
the learned atoms do not tend to be sparse. Note that it is
not straightforward to encourage strong linear dependence in
the learned dictionary, and thus, without these dependencies,
the suggested analysis pursuit algorithms are prone to highly
instable recoveries. We have tested with the basic Analysis
K-SVD algorithm on natural images and obtained results that
are comparable with the FoE approach. In order to further
improve these results, we suggest to encourage another desired
dictionary property to compensate for the instability arising
from the lack of strong linear dependencies. Specifically, we
consider the following modification to the atom update rule as
given in (18), consisting of a regularization term in addition
to the original objective function,

Wy =Asgmin. [WIV 2403 AW @0)
wj i#j

Subject To  [|w,|]2 = 1.

Here, I and J are the sets of training examples associated with
the ith and jth atom (/¢ is the complementary set). Similar to
the original atom update rule in (18), this optimization problem
has a closed-form solution given by the least eigenvector of
the matrix

YoYT 44> 1190 Jjwiw] (21)

i

Let us take a closer look at the suggested regularization term. It
encourages pairs of atoms that do not tend to jointly appear in
the co-support to be orthogonal to each other. Intuitively, this
leads to a better distinction between the candidate co-supports
for a given noisy signal and hence to a more stable recovery.
In fact, this modification in the atom update rule is associated
with the Restricted Orthogonal Projection Property (ROPP)
of analysis dictionaries [31], an important factor dictating
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Figure 12. Results of the Analysis K-SVD algorithm with the modified atom upate rule in (20) for several natural images with noise level o = 5. The learned
analysis dictionaries of size 63 X 49 are shown for the images ‘Barbara’ (left), 'House’ (middle) and ‘Peppers’ (right). The atoms are arranged according
to their appearance frequency in the co-supports (from left to right, then one row down). All dictionaries are learned from training sets of R = 20,000
informative patches extracted from the noisy image. Each signal recovery for this training set resides in a 7-dimensional subspace.

I Image denoising method

[ Lena [ Barbara [[ Boats [[ House [[ Peppers ||

FoE [18] 38.12 37.19 36.27 || 38.23 37.63
Analysis K-SVD with the modified atom update rule (20) || 38.47 37.75 37.13 || 39.15 37.89
Synthesis K-SVD [21] 38.60 38.08 37.22 || 39.37 37.78

Table 1
SUMMARY OF IMAGE DENOISING RESULTS (IMAGE PSNR IN dB) ON FIVE NOISY NATURAL IMAGES (o = 5, PSNR = 34.15dB).

the performance of analysis pursuit algorithms. This property
appears in the theoretical performance guarantees derived in
[31] for the analysis thresholding algorithm (a simpler version
of BG and OBG).

In our experiments we set the parameter v to 1000. We
remark that -, the number of atoms p, and many other pa-
rameters (patch size, noise power, target subspace dimension,
number of training iterations) are chosen rather arbitrarily in
our experiments, with no aim at optimizing the performance.
Further work that aims to extract state-of-the art results from
the proposed scheme may explore a proper choice of these
parameters. In this work our goal is to demonstrate the core
paradigm. Several examples of the learned dictionaries are
provided in Figure 12, showing the emergence of meaningful
structures. Specifically, some of the learned atoms are direc-
tional, others are localized and the bottom ones (the most
rarely used in the co-supports) correspond to low frequencies.

The learned dictionaries are utilized for patch-based image
denoising. Here we apply the DC-preserving procedure men-
tioned before, since the learned atoms do not necessarily have
zero mean. We compare the denoising performance for the
learned analysis dictionaries with FoE [18] and Synthesis K-
SVD image denoising [21], which learns a synthesis dictionary
of size 64 x 256 for patches of size 8 x 8. The image
denoising results (image PSNR in dB) appear in Table I. The
suggested approach outperforms FoE and is slightly weaker
than Synthesis K-SVD, showing that the analysis model is

suitable for handling natural images.

To conclude this section, we mention several limitations of
the suggested approach. First, the learned analysis dictionaries
for the natural images are lacking in strong linear depen-
dencies, which are desired as they lead to larger co-sparsity
levels and hence to more stable recoveries. We have already
shown how to encourage strong linear dependence in €2 for the
specific setup of PWC image patches. Extending this property
to other setups, and ultimately designing a general framework
that will work also for natural image patches, seems to be
a challenging and promising direction for future research.
Secondly, at this point it is not clear how to combine the two
useful dictionary properties — linear dependence and ROPP
— and this remains an question for future research. Finally,
the suggested dictionary update stage does not correspond to
a maximum-likelihood estimator and specifically its objective
function does not take into consideration the partition function
of the likelihood function. In future research we intend to
explore the possibility of adding a regularization term to the
dictionary learning objective that will correspond to such a
partition function.

VI. CONCLUSIONS

In this work we have presented an efficient algorithm for
learning an ¢° analysis dictionary, which is parallel to the
Synthesis K-SVD in its rationale and structure. We have
demonstrated the effectiveness of this algorithm in several
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experiments, showing a successful and meaningful recovery
of the analysis dictionary for random, piecewise-constant
and natural signal data. We have also shown a significant
advantage of the suggested approach compared to previous
image denoising methods in the case of a piecewise-constant
image with low noise-level. This exposes the potential benefit
of the suggested approach. For natural images we obtained
denoising results which are close to those of the Synthesis K-
SVD and we believe that these results can be further improved
by better exploiting the capabilities of the analysis model.

Our work gives rise to several questions which are left open
for future research. First, what are the desired properties of
an analysis dictionary? In this work we have seen evidence
that having linear dependencies between sets of rows in
the dictionary can improve the recovery quality of pursuit
algorithms. This naturally leads to a second research question:
How can we encourage such linear dependencies to be formed
within the dictionary? Our simulations have demonstrated that
forcing sparse and zero-mean rows during the training leads to
the emergence of such linear dependencies. It would be desired
to obtain a more general formulation of this property and to
insert it directly into the learning goal. Having strong linear
dependencies is only one desired property of the analysis dic-
tionary and our experiments on natural images imply that other
properties, such as ROPP, can be very useful as well. Further
work is required to reveal additional dictionary properties and
design efficient algorithms for encouraging these properties.
Finally, it remains to be seen which applications could benefit
from the analysis model and its dictionary learning.

APPENDIX A: BG AND OBG COMPLEXITIES

In this appendix we analyze the computational complexity
of the BG and the OBG algorithms, both assumed to be
implemented using the orthogonalization numerical shortcut
described in Section III. We start with the BG algorithm
and count the number of inner-products between vectors of
length d, each requiring d operations. In the i-th iteration
(1 <i<d-—r), (i) the “Sweep” step requires p — ¢ + 1 such
vector-multiplications, (ii) orthogonalizing the currently cho-
sen vector to compute q; requires ¢ — 1 vector-multiplications,
(iii) the “Project” step requires another such multiplication,
and finally, (iv) the “Refine Co-Support” step uses p vector
multiplications. Adding all these gives

d—r
Complexity g, :d-Z[p7i+1+i—1+1+p] (A-1)
=1

=d(d—r)(2p+1) = O(d*p).

Here we have assumed that r < d.

Similarly, the OBG performs the following operations in the
i-th iteration: (i) the provisional steps are repeated p — i + 1
times, where first we orthogonalize with ¢ — 1 vector multipli-
cations, and then compute the provisional error with another
vector multiplication. After the provisional stage, (ii) we repeat
another orthogonalization with ¢—1 vector multiplications, (iii)
one vector multiplication is used for the “Project” step, and (iv)
the “Refine Co-Support” step uses p vector multiplications.

Adding all these gives

Complexity 5 g =
d—r

=d- > p—i+Di-1+D)+i-1+1+p (A2)

.
I

SH

. [(i + 1)p —i* + 2i] = O(d®p).
i=1

APPENDIX B: APPROXIMATING THE LEARNING GOAL
Equation (17) defines the atom update step,

{Wj, XJ} = Argmin || X; — Y;||% Subject To

w;, X
2x;, =0, VielJ
wiX; =0
[wil2=1".

Our goal in this appendix is to show that there is a simpler
form that approximates the solution of this problem. We
start by eliminating X ; from this equation, by computing the
closed-form solution to X ; for any fixed choice of w;. We note
that given w;, the optimization can be carried out separately
for each column x; € X},

X; = Argmin ||x; —y,||5 Subject To Q;x; =0 (B-1)

X

WJTxi =0.

The solution to this problem is the projection of y; on the space
orthogonal to the rows of 2; and the atom w;. Since we wish
to isolate the dependence of the solution X; on w;, we derive
the expression of this projection in two steps. First, we apply
the projection on the rows of €2; as (I — Qjﬂl) y, =Py, =
y;= (this operation is just like in the oracle setup, see Equation
(5)). The matrix P; is symmetric and nilpotent, i.e. for k > 1
Pf = P;. If we apply a Gram-Schmidt orthogonalization of
the rows in €;, getting the set of vectors {qk}z;_l, this
projection can be rewritten as

d—r—1
Pi=I- ) qq;.
k=1

The next step is to project y;- on w;. First, we orthogonalize
it with respect to the previous rows, obtaining q,_,
P,w;/||P;w;||2, and then project,

1

~ Pi“WVVTPZ
%= (1—qu,q) )y =yi — — -yt (B2

Piw; 3
Tl

RN/ T

=V: W

‘ ‘#fpi“g

This equation defines the analytic solution for X; given w;.
Substituting these solutions for X in Equation (17), we obtain
the following optimization problem for the atom wy,

wlyl ?
L . 1 JJi
W —Ar%vtjmn Z Y-y + WTPZWJ] P;w; (B-3)
ieJ J 2
Subject To  ||w,|l2 = 1.
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Since y; — y; is orthogonal to the third term, and constant in
the optimization, we can reduce the minimization to

2

W yi
; =Argmin P,w; B-4
o || S |
Subject To [willa=1".
The target function in this minimization simplifies to
Tyl 2 Tyl)2
— Vi Pw;| = (TLZ)QW;FPZ.TPM (B-5)
W]- Pin 7 (Wj Piwj)
(wiy)?

With Equation (B-5), the problem posed in Equation (B-4)
finally becomes

(w]yi)?

Ww; =Argmin Z T (B-6)
Wi icJ ] P; iWj
Subject To  ||w,|l2 = 1.

The optimization problem (B-6) for w; is clearly non-trivial,
and does not lead to a closed-form solution for w;. One
option is to work with this problem definition nevertheless,
using classical optimization techniques for its solution (e.g.
projected steepest-descent). Our tests show that, while this
works reasonably well, a better and faster method is within
reach, by approximating the above problem.

We observe that in the minimization, two forces are si-
multaneously acting on w;: The first force comes from the
numerator, which pushes w; to be orthogonal to yi — the
current solution without w;. At the same time, there is an
important second force: The denominator tries to make w;
orthogonal to the rows in €2;, as a large denominator means
w; is far from the span of the rows of €2;. Thus, we see that
this problem naturally incorporates a regularizing force that
aims to “spread out” the rows in 2.

Since we cannot efficiently solve the problem posed in
Equation (B-6), we propose an alternative penalty that contains
the above two forces,

W; =Argmin Z { (ijyil)2 + (wTle) } (B-7)
Wi ieJ
Subject To  ||w;|l2 =1,

where y‘l| =y,— yf-. The first term is identical to the numerator

in (B 6), forcing w; to be orthogonal to the current solution
yi. At the same time, the second term pushes w; to be
orthogonal to yH producing a similar effect to the denominator
in (B-6). Therefore, our second option is to work with this
new goal (Equation (B-7)) in seeking the update of w;. Note
that the new problem is much simpler, with the need to find
the eigenvector that corresponds to the smallest eigenvalue
of the positive definite matrix ), ; {yf- (yH)T + I (yy) &
Still, we have to decompose every example signal y; into t

two parts y;-, yH as part of this computational process. There
is yet another approximation step that can be taken to simplify

further the above penalty, while preserving the desired forces.
The simple observation

(WIy)? + (wWfy))? + 2wl v wly) =
(W]yi +wlyl)? = (w]y,)? (B-8)

suggests that, if we can neglect the contribution of the cross-
term QWJTyf- WTyy , then the penalty may admit a much simpler
form. We found empirically that this is indeed justified, though
further work is required to theoretically justify this step. Thus,
we end up with the following, third and last option, for
updating the analysis dictionary,

Wj:Ar%vmin |Wi'Y;|3 Subject To [jwj[2 =1, (B-9)
J

which has been mentioned in Equation (18).
Note that the problem posed in Equation (B-9) is equivalent
to the problem

{W;, X;} = Argmin |[Y; — X;||% Subject To (B-10)
W]‘,XJ
WJTXJ =0
[wjll2 =1,

which in turn is very close to the original problem we started
with in Equation (17), with one delicate (yet important) dif-
ference — we have omitted the constraints €2,x; =0, Vi € J,
thus leading to a simple update rule for w;. This approximation
is exact for » = d—1, meaning that each example is orthogonal
to one row in . For r < d — 1, this process becomes inexact,
though the approximation does optimize a related goal.

Before we conclude this discussion, we bring this last
observation: Looking at Equation (B-10), we may be tempted
to propose a small modification to the algorithm — A natural
strategy, burrowed from the K-SVD methodology, would be to
first orthogonalize each example y, relative to all its selected
rows from 2 (excluding w;), and then solve

{W;, X;} = Argmin |[Y7 —X;[|% Subject To (B-11)
w;, Xy
wiX; =0
[will2 =1

Here, the columns of Yf are the orthogonalized signals {y;"},
which essentially constitute a set of “residual signals™ that use
all but the current row w;. The solution is given by the left
singular vector corresponding to the smallest singular value of
YJJ‘, which is also the solution to
W = Argmm Z{ wiy; )} Subject To |jw;f2 = 1.
icJ

(B-12)

Comparing this with (B-6), we see that this formulation
completely lacks the second force of pushing w; away from
the rest of rows in 2. Indeed, our experiments have found
this approach to perform poorly compared to optimizing
problem (B-9).
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