
Analysis Methods for (Alleged) RC4

Lars R. Knudsen1, Willi Meier2, Bart Preneel3?, Vincent Rijmen3, and Sven
Verdoolaege3

1 Department of Informatics, University of Bergen, N-5020 Bergen
2 HTL Brugg-Windisch, CH-5210 Windisch

3 SISTA/COSIC Lab, Dept. ESAT, K.U.Leuven, K. Mercierlaan 94, B-3001 Leuven

Abstract. The security of the alleged RC4 stream cipher and some vari-
ants is investigated. Cryptanalytic algorithms are developed for a known
plaintext attack where only a small segment of plaintext is assumed to
be known. The analysis methods reveal intrinsic properties of alleged
RC4 which are independent of the key scheduling and the key size. The
complexity of one of the attacks is estimated to be less than the time of
searching through the square root of all possible initial states. However,
this still poses no threat to alleged RC4 in practical applications.

Keywords. Cryptanalysis. Stream Cipher. RC4.

1 Introduction

Many key stream generators proposed in the literature consist of a number of
possibly clocked linear feedback shift registers (LFSRs) that are combined by a
function with or without memory. LFSR-based generators are often hardware
oriented and for a variety of them it is known how to achieve desired cryptogra-
phic properties [3]. For software implementation, a few key stream generators
have been designed which are not based on shift registers. One of these genera-
tors, known as (alleged) RC4, has been publicized and described in [1]. RC4 is
widely used in commercial products and standards (one example is the Secure
Sockets Layer standard SSL 3.0).

RC4 takes an interesting design approach which is quite different from that
of LFSR-based stream ciphers. This implies that many of the analysis methods
known for such ciphers cannot be applied. The internal state of RC4 consists of
a table of 2n n-bit words and two n-bit pointers, where n is a parameter (for
the nominal version, n = 8). The table varies slowly in time under the control of
itself. As discussed by Golić in [2], for such a generator a few general statistical
properties of the key stream sequence can be measured by standard statistical
tests, but these criteria are hard to establish theoretically. A noticeable exception
are the results in [2], which show a (slight) statistical deviation of the output
stream of RC4. These results are mainly of theoretical interest, as a large amount
? F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research, Flan-

ders (Belgium).

K. Ohta and D. Pei (Eds.): ASIACRYPT’98, LNCS 1514, pp. 327–341, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

328 L.R. Knudsen et al.

of output stream is necessary before this deviation can be detected. It remains
an open problem whether these results can be used to cryptanalyze RC4.

The aim of this paper is to derive some cryptanalytic algorithms that find
the correct initial state of the RC4 stream cipher using only a small segment of
output stream, and to give precise estimates for the complexity of the attacks
where possible. The cryptanalytic algorithms in this paper exploit the combina-
torial nature of RC4 and allow to find the initial table, i.e., the state at time
t = 0. Knowledge of this table enables to compute the complete output sequence
without knowing the secret key.

If the first portion of about 2n output words are known, our basic algorithm
allows to find the initial table in a reduced search with complexity much lower
than exhaustive search over all possible initial states. A careful analysis, which
is confirmed by numerous experiments for different values of the word length n,
shows that the complexity of the best attack is lower than the square root of
all possible initial states. Our algorithms become infeasible for n > 5 and thus
pose no threat to RC4 with n = 8 as used in practice. However, our attacks
give new insight into the design principles of RC4 and the estimates of the
complexity should give some realistic parameters for the security of RC4. Our
results are intrinsic to the design principles of RC4 and are independent of the
key scheduling and the size of the key.

This paper is organized as follows. In Sect. 2 we give a description of RC4. In
Sect. 3 we discuss an attack on a simplified version of RC4. Section 4 describes
attacks on the full RC4, and Sect. 5 presents a possible optimization. We conclude
in Sect. 6.

2 Description of RC4

We follow the description of RC4 as given in [1,2]. RC4 is a family of algorithms
indexed by a positive integer n (in practice n = 8). The internal state of RC4
at time t consists of a permutation table St = (St[l])2

n−1
l=0 of 2n n-bit words

and of two pointer n-bit words it and jt. Thus the internal memory size is
M = log(2n!) + 2n, where log denotes logarithm to the base 2. The pointers i0
and j0 are initialized to zero. Let Zt denote the output n-bit word of RC4 at
time t. Then the next-state and output functions of RC4 for every t ≥ 1 are
defined by

it = it−1 + 1 (1)
jt = jt−1 + St−1[it] (2)

St[it] = St−1[jt], St[jt] = St−1[it] (3)
Zt = St[St[it] + St[jt]] (4)

where all additions are modulo 2n. In one update, all the words in the table
except the swapped ones remain the same (and swapping is only effective if
it 6= jt). The output n-bit word sequence is Z = (Zt)∞

t=1. Every word Zt is
XORed with a piece of plaintext of length n bits to produce ciphertext, or

Analysis Methods for (Alleged) RC4 329

XORed with ciphertext to produce plaintext. The initial table S0 is derived
from the secret key. The details of this derivation are not important for our
attacks.

3 Attacking Simplified RC4

The swap operation in (3) makes the recovery of the table S very difficult. In
this section we develop an attack on simplified versions of RC4, where the swap
operation occurs less often.

3.1 No Swap Operation

RC4 without the swap operation (3) is useless as a key stream generator. The
following theorem illustrates this.

Theorem 1. If the swap operation in the state update is omitted, the key stream
of RC4 becomes cyclic with a period of 2n+1.

Proof: Equation (4) gives: Zt+2n = S[S[it+2n] + S[jt+2n]] . Because of the mo-
dular addition it+2n = it. Since S is constant now, (2) can be applied repeatedly
on jt+2n . We get: Zt+2n = S[S[it] + S[jt +

∑2n−1
u=0 S[u]]] . Because S is a permu-

tation, we can evaluate the summation, and Zt+2n = S[S[it] + S[jt + 2n−1]] . In
a completely analogous way, we can derive Zt+2n+1 = S[S[it] + S[jt]] = Zt .

The algorithm to recover S works as follows. Initially, we guess a small subset
of the entries of S. We derive the other entries from the observed key stream
and (4). If we get a contradiction at some point, we know that we guessed one
of the initial values wrongly.

There are four possibly unknown variables in (4): jt, S[it], S[jt] and S−1[Zt].
If all four variables are known and a contradiction arises, we guessed one of the
initial values wrongly. If three variables are known, we can determine the fourth.

– If S−1[Zt], jt and S[it] are known, we can determine S[jt] as follows:

S[jt] = S−1[Zt] − S[it] . (5)

(S−1[Zt] is known if the value Zt is already filled in somewhere in S.)
– If S[it], S[jt] and thus also jt are known, then

S[S[it] + S[jt]] = Zt . (6)

– If S[it], S[jt] and S−1[Zt] are known, then

jt = S−1[S−1[Zt] − S[it]] . (7)

– If S−1[Zt], jt and S[jt] are known, then

S[it] = S−1[Zt] − S[jt] . (8)

330 L.R. Knudsen et al.

The initial value of j is known. If we guess the values of v entries at the
beginning of S, we know the value of the j-pointer for the first v steps. In
these steps we use (5) and (6) to determine new values of S. If we have not
determined S[v + 1] after v steps, we “lose” knowledge of the j-pointer. We
discard the following Zt-values until we can use (7) to recover the value of j.
Once j is recovered we can use (5) and (6) again, but we can also work backwards
and use (8) to determine more entries of S. If v is too small, we will lose the
value of j too fast and we will not be able to recover the table in this way.

3.2 Reduced Swap Frequency

In this version of RC4 we swap two entries after every s iterations. We start by
applying the same algorithm as above, until the first swap occurs. If we do not
know the value of j at this moment, we do not know with what value St[it] gets
swapped. At this point we can only remove St[it] from our (incomplete) table. If
the unknown j actually points at a table entry that we have already filled in, this
entry will change in the RC4 table, but not in our partial solution. In this way,
errors are introduced in our St table. After a while we will observe contradictions;
however, it is not possible to determine which element is responsible for the
contradiction. A naive solution is to remove the three entries involved when
we encounter a contradiction. However, in this way we will destroy more good
values than we are able to produce, and we will end up with an empty table. For a
good solution strategy it is important that the number of removed correct values
is minimal. We have developed a number of heuristics to solve this problem;
the details are omitted because of space restrictions. The resulting algorithm
converges very fast.

If we increase the swap frequency 1/s towards 1, the algorithm needs a larger
number of correctly guessed table entries before it can deduce the remainder of
the table. Figure 1 shows the experimentally determined success probability as
a function of the number of correctly guessed entries at the start, for swapping
frequencies increasing from 1/128 to 1/2 (actual RC4 has swapping frequency
1). For a success ratio of 50% we need 40 correctly guessed entries at the start
if the swapping frequency equals 1/128. If the swapping frequency increases to
1/2, we need about 240 correct entries. For a success ratio of 5%, we need 30,
respectively 210 values. The complexity of this attack is proportional to the
average number of trials required to guess the initial values correctly; e.g., there
are approximately 2315 possible ways to assign 40 8-bit values of the permutation
table.

4 Attacking the Full RC4

This section presents cryptanalytic attacks on RC4 which allow to find the initial
table S = S0, without guessing values initially. Instead, values are only guessed
when they are needed. First the attacks are described and their efficiency is
analyzed. Then some special cases are discussed and experimental results are
presented.

Analysis Methods for (Alleged) RC4 331

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

S
uc

ce
ss

 p
ro

ba
bi

lit
y

Initial number of correctly guessed values

2
�1

2
�2

2
�3

2
�4

2
�5

2
�6

2
�7

Fig. 1. Success ratio for various simplified versions of RC4 for which the swap frequency
is reduced to 1/s.

4.1 Description

The idea of the algorithm may informally be described as follows. For times
t = 1, 2, . . . , m, if St−1[it] or St−1[jt] have not already been assigned values in a
previous time, choose a value v for St−1[it], 0 ≤ v < 2n, compute jt and then
choose St−1[jt]. This is in order to be able to follow up the next update of the
RC4 algorithm, i.e., in order that steps (1) to (4) are defined. We proceed so
that at each time t an output word Z̄t is produced with the property that Z̄t

has the correct value Z̄t = Zt. This imposes several restrictions on the possible
choices for St−1[it], St−1[jt]:

i) As S is a permutation table, every new value St−1[it] or St−1[jt] to be assig-
ned has to be different from a value already chosen as a word in the table.

The next two conditions represent two alternatives and are specific consequences
of the design of RC4.

ii) If the known output word Zt differs from all words which have previously
been fixed in the S table, the sum is = St[it] + St[jt] occurring in step 4 has
to differ from all index positions which have already values assigned. If this
is satisfied, set St[is] = Zt. Otherwise we have a contradiction in our search.

332 L.R. Knudsen et al.

iii) If Zt is equal to a word previously assigned in the S table then is = St[it] +
St[jt] equals the index position of this assigned value. This either uniquely
determines St[jt] or again leads to a contradiction.

Although conditions i), ii) and iii) follow directly from the description of RC4,
it is not obvious how to implement an efficient algorithm that exploits these re-
strictions and how to obtain practically meaningful estimates for the complexity
of such an algorithm.

We implemented this attack by means of a recursive function guess(t). In the
most elementary version, at each parameter t one update following steps 1 to 4
is effected. Thereby, three entries in the S table are affected or suitably chosen,
one entry determined by it, one by jt and one by Zt, so that the update at time
t can be carried out and so that conditions i) to iii) are satisfied.

For a given output word sequence of length m the programs start by calling
guess(1). In the recursive calls for increasing t most branches end up by contra-
dictions. If one branch has reached depth t = size+1 in the recursive algorithm,
we compute backwards the (correct) actual state to state t = 0, in order to get
the initial table S0. Experiments have shown that for the basic version of the
attack as sketched, m = size = 2n known output words are sufficient to uniquely
determine the correct state. Note that for RC4 with n-bit words, there are a
total of 2n! different initial states. Thus, the required number of output words m
can be estimated as the smallest integer such that 2nm > 2n!. Clearly, 2n upper
bounds m for any value of n. (For n = 8, m ' 211.)

We investigated several variants of the attack. In order to accelerate the
attack in simulations, we pre-assigned the first few words in the S table at the
beginning of the program execution. This has motivated a modification of the
function guess(t) which is based on the following observation: if St−1[it] has
a value assigned one can compute jt according to step 2. Thus one can swap
St−1[it] and St−1[jt] even if St−1[jt] was not assigned a value before swapping.
After swapping, St[jt] is assigned but St[it] is not.

As a consequence, suppose St−1[it] has a value assigned but St−1[jt] has not.
Assume now that the value Zt is different from all previously assigned values
in the S table. Then instead of guessing the value of St−1[jt] one can check
whether St−1[it+1] has already been assigned a value and whether the value of
Zt+1 equals a value previously assigned in the S table. Under this condition it
may pay off not to check all possible values for St−1[jt] because a check can
be done at time t + 1 without guessing any additional values. This variant has
in experiments shown to be particularly attractive for parameter values n = 7
and 8. Moreover note that for this variant the known output segment has to be
slightly longer than for the basic attack.

There are even further refinements of the variant which we will not describe
here. In another direction, computer experiments have lead to the following ob-
servation: suppose two initial tables S0 and S̄0 are given with the property that
S0[i] = S̄0[i] for i = 1, 2, . . . , k. Then for k sufficiently large, suitable segments
of the corresponding output sequences Z and Z̄ of the RC4 algorithm are cor-
related. This correlation is illustrated in Fig. 2. We have built this statistical

Analysis Methods for (Alleged) RC4 333

property into our attack in order to make a preliminary test at a suitable time
t whether a choice of values S0[i], i = 1, 2, . . . , t − 1, is correct. It turned out
that this in fact can lead to an acceleration of the attack but at the cost of a
decreased success probability, as often a correct choice is excluded erroneously.

0

50

100

150

200

250

0 50 100 150 200 250 300

fit
ne

ss

Number of correct table entries.

1
2
3

Fig. 2. Correlation between key streams as a function of the number of equal table
entries. Three measures for the correlation are shown: (1) the number of equal outputs
until the first difference occurs, (2) the number of equal outputs in the first 250 values
and (3) the number of equal outputs in the first 250 values, added with a weighting
function that emphasizes the first outputs of the row. It is clear that the last two
functions are better measures.

4.2 Efficiency of the Attack

The complexity of the attacks is measured in terms of the total number of
assignments made for all entries in the initial table. It is necessary at this point
to explain some further details of our search algorithm. The algorithm uses
recursive function calls with the time variable t as parameter. Assume we are at
some given time t, and let at denote the number of entries in the initial table,
which were assigned a value at time t.

1. It is checked whether St−1[it] has been assigned a value:
a) if it has, proceed to step 2.

334 L.R. Knudsen et al.

b) if it has not, then assign, one after one, the 2n − at remaining values to
St−1[it], increment at and go to 2.

2. It is checked whether Zt has a value which has been used in an assignment:
a) if it has, we can calculate the expected value of St[jt] from (4) of the

RC4 description. If this does not lead to a contradiction, proceed to time
t + 1 and go to step 1.

b) if it has not, go to 3.
3. It is checked whether St−1[jt] has already been assigned a value:

a) if it has not, then assign, one after one, the 2n − at remaining values
to St−1[jt] and update at. Subsequently, it can be checked whether the
given values of it, jt and Zt lead to a contradiction. If they do not,
proceed to time t + 1 and go to step 1.

It follows that the search algorithm can be split into 8 cases, depending on
whether it and jt have been assigned a value or not and whether Zt has a value
already assigned to an entry in the table. It is possible to simulate the behavior of
the search algorithm by assigning probabilities to the different cases in the above
informal description. As an example, the case “St−1[it] has been assigned a value”
has an average probability of at/2n of being true and an average probability of
1 − at/2n of being wrong. We define a function complex(·), which takes as input
a, the number of assigned values in the table. The function has the following
form:

complex(a) =
3∑

i=0

pi · no-assignmentsi · complex(a + i) . (9)

Our approximation reduces the 8 above cases to 4 cases, each one with a recursive
call of the function complex. The four recursive calls are explained as follows: pi

denotes the probability of the particular case, no-assignmentsi denotes the total
number of assignments we do for St−1[it] and St−1[jt].

By definition, complex(255) = 1 and complex(a) = 0 for all a ≥ 256. Given
the values for complex(a+3), complex(a+2), complex(a+1) and expressions for
pi and no-assignmentsi, (9) can be solved for complex(a). In this way complex(0)
can be determined.

Solving the Recurrence: Instead of determining pi and no-assignmentsi

directly, we will rewrite (9). We define three new functions c1(·), c2(·) and c3(·),
representing the complexity of each individual step in our algorithm. We start
with the equation for c1(a). The first test of step 1 will succeed on average a/2n

times. If it succeeds, we go to step 2 without assigning a value. If it does not
succeed (probability 1−a/2n), we will do for every possible value of St−1[it] one
assignment and call step 2. Thus we have:

c1(a) =
a

2n
c2(a) + (1 − a

2n
)(2n − a)c2(a + 1) . (10)

Analysis Methods for (Alleged) RC4 335

In a similar way, we can derive the expressions for c2(a) and c3(a):

c2(a) =
a

2n

(
(1 − a

2n
)2(1 + c1(a + 1)) +

1
2n

c1(a)
)

+ (1 − a

2n
)c3(a) (11)

c3(a) = (1 − a

2n
)
(

f(a) +
2a + 1

2n
c1(a + 1) + (2n − a)e(a)c1(a + 2)

)
, (12)

where e(a) = (1−(a+1)/2n)(1−1/(2n−a)) and f(a) = (2n−a)(1+e(a))+a/2n.
Again we start with the known values ci(2n) and work downwards. The maximal
number of assignments in our algorithm is given by complex(0) = c1(0). The
results of the calculation are presented in Table 2, where they are compared
with some experimental results.

4.3 Special Streams

There are streams of output words for which our attack has an increased per-
formance. Consider the above description of our algorithm. In step 2 of the
algorithm we check whether Zt has a value which has previously been used in an
assignment. If this is the case we can calculate an expected value for the entry
St[jt]. This either leads to a contradiction or it gives an assignment of an additio-
nal entry in the (unknown) table. If this is not the case we try and assign values
to St[jt] and proceed from there. Assume now that Zt equals Zt+1. Then in our
algorithm at time t + 1 the condition in step 2 is satisfied, since the value of Zt

was used in an assignment in a previous step without reaching a contradiction,
since we assume we are at time t + 1. Thus, the performance of the algorithm
can be improved if many of the given words are equal. We have incorporated
this in the above approximations, but we leave out the exact details. Table 1
lists the results of our tests for versions of RC4 with n = 4, 5. It follows that the
performance of our algorithm for RC4 with n = 5 increases with more than a
factor of two if the first two words of the given stream are equal, and that the
improvement is a factor of about 2k−1 if the first k words are equal. Clearly, a
similar phenomenon can be expected if the number of different values in the first
k words of the stream is greater than 1, but small.

Table 1. Approximations of the complexities of the attack on RC4, when the first k
words in the target stream are equal.

n k = 1 k = 2 k = 3 k = 4 k = 5
√

2n!
4 221 220.5 219.9 219.4 218.9 222

5 253 251.6 250.5 249.4 248.4 258

4.4 Experimental Results

The first interesting value for n is n = 4, where the number of entries in S0 is
16 and the number of possible initial tables is 16! = 2.09 · 1013 ≈ 244. It turns

336 L.R. Knudsen et al.

out that the basic algorithm for our attack always finds the correct initial table
in a few seconds, which represents a considerable improvement over exhaustive
search. It is interesting to compare our result for n = 4 with a result in [2]: the
method developed in [2] needs about 26n−8 output words of the RC4 stream
cipher to detect a statistical deviation. This is about 216 output words for RC4
with n = 4, whereas we need 16 or 17 output words and about 220 computations
to find the correct initial table.

As measure of complexity we take the total number of calls of the function
guess(t) that are necessary to find the initial table. For n = 4 the average number
of function calls turns out to be about 220. For n = 5 the complexity of the attack
is too high for the computing power we have available. Therefore, in simulations
for n ≥ 5 we accelerate the programs by giving the correct values of the first few
entries of the S table. Experiments show that the amount of computing time
can differ some orders of magnitude depending on the initial table to be found.

In Table 2 we give the results of our experiments for parameter values n =
4, . . . , 8. Hereby k denotes the number of preassigned entries S0[i], 1 ≤ i ≤ k.
Complexity means the average number of calls of the function guess(t) in the
program with given parameter k in 1000 test cases. We should mention however,
that the figures for the complexity are only rough estimates as the distribution
for these numbers has a large variance. When the k preassigned entries have
wrong values, the search terminates rather quickly with a contradiction in most
cases. For k > 0 the total complexity is computed as the number N of all
possible choices of the first k entries multiplied by the average complexity. Note
that N is computed as 2n!/(2n − k)!. It can be seen that our test results for
the cases n = 4 and 5 correspond well to the estimated complexity given in
Sect. 4.2. Furthermore, for n = 5, k = 3 one can apply a program variant
using the statistical property as described in Sect. 4.1. It turns out that the
complexity in this case is about 230, thus the total complexity is about 245.
However the algorithm often terminates unsuccessfully. The average success rate
may be below 50%. For comparison, in the last column of Table 2 the magnitude
of square root of 2n! is shown. It follows that the estimated total complexity is
slightly below the square root of 2n!.

We already mentioned that our search algorithm works better if the first
words of the output stream are equal. We close this section by listing the results
for RC4 with n = 4 in Table 3 and leave it as an open question how large the
improvement is for RC4 with n > 4 in these cases.

5 A Possible Improvement

In this section we explain a technique that can be used to improve the efficiency
of the RC4 attack of Sect. 4.

5.1 Description

The basic principle of the technique is the following. The initial state of the
permutation table S depends on the cipher key and is unknown. We assume that

Analysis Methods for (Alleged) RC4 337

Table 2. Complexities of attacks on n-bit RC4. One column gives estimates based on
the analytical calculations of Sect. 4.2. Other values are based on extrapolations of
experimental results on simplified versions (preassigning k values). It follows that the
(total) complexities are close to

√
2n!.

calculated experimental
n k complexity k complexity total complexity

√
2n!

3 0 28 0 28 28 28

4 0 221 0 220 220 222

5 0 253 7 221 255 258

6 0 2132 20 223 2138 2148

7 0 2324 45 226 2302 2358

8 0 2779 100 230 2797 2842

Table 3. Complexities of the attack on RC4 with n = 4, when the first k words in the
target stream are equal, averaged over 1000 tests.

n k = 1 k = 2 k = 3 k = 4
√

2n!
4 220.5 219.5 218.4 217.6 222

all 2n! possibilities are equally likely, or that the a priori probability distribution
of S0 is uniform. We observe the generated values Zt and try to calculate an a
posteriori probability distribution for S0. The method can easily be extended to
deal with a non-uniform a priori probability distribution.

We represent our information about the value of j and the state of S by means
of probability distributions. We define the functions ft as ft(a) = Pr(jt = a) and
the array of functions gt as gt[x](a) = Pr(St[x] = a). Since we know that j0 = 0,
the function f0 is 1 at the origin, and zero elsewhere. Also, because S is a
permutation at all times, we know that for all values of t and for a ∈ [0, 255]:∑2n−1

x=0 gt[x](a) = 1.
During the attack we observe the generated key stream Zt, t = 0, 1, . . ., and

we try to extract information about the value of j and the state of S after
iteration t, by using (4) and Bayes’ rule. The extracted information is manifest
in the functions ft and gt[x]: the closer these functions are to a delta-function,
the less uncertainty we have about the values of jt and St[x].

In order to calculate the updated probability distributions, we have to take
into account two effects: observation of Zt, which gives us more information,
or “narrows” the probability distributions, and the change of state for j and
two elements of S, which tends to “flatten” the probability distributions. The
derivation of the rules for updating the probability distributions is given in Ap-
pendix A. We assume that the different entries of St are independent from each
other, except that there cannot be two equal values because St is a permutation.
This assumption is only an approximation.

338 L.R. Knudsen et al.

5.2 Implementation

The algorithm reads one word of the key stream and calculates the values for f1
and g1[x]. The complexity is determined by the determination of g1: for each of
the 2n x-entries there are 2n probabilities to calculate and every probability is
the sum of (2n)3 terms (cf. (24)). This gives a total complexity of 25n steps for
each value Zt that is analyzed. In theory, we need less than 2n values in order
to determine the initial table uniquely.

Since the complexity of this algorithm is too high to test it on the full version
of RC4, we tested it with a table that is partially filled in correctly, adapting
the probability distributions accordingly. A partially filled table can result in a
unique determination of j1, j2, . . . As long as jt is known, there is no “flattening
effect” and the Bayes method works as predicted. Experimental results suggest
that it is difficult to get convergence when the uncertainty on jt grows. A possible
explanation for the convergence problems is that the dependence of the different
entries of St on one another is too high to be neglected. If 160 entries or more
of S0 are given, the algorithm always succeeds in completing the table, the
complexity being less than 230. If 150 entries are given, the success ratio is 70%,
and it is expected to drop very quickly from here.

Figure 3 shows some experimental results for a simplified algorithm. The
input of the algorithm consists of the values for k entries of S0. The algorithm
performs the attack, until knowledge of jt is lost. The algorithm restarts and
processes the key stream again with the updated information on S0 until no
new information is obtained anymore. Since jt is known, the complexity of the
algorithm is reduced; it is now about k(2n − k)3. The figure shows how many
table entries can be successfully recovered as a function of k. One can deduce
that the algorithm is most successful when k ≈ 120. Since the algorithm does
not output a complete table, we can use its output table as input for the attack
of Sect. 4. Experiments suggest that for values of k between 100 and 200, the
prior application of the simplified Bayes algorithm before starting the attack of
Sect. 4 increases the efficiency. However, the problem of determining the first k
values remains. Since the latter attack also works without predetermined entries
of S0, it could be used to generate a guess for these first k values. Estimating the
complexity of attacks based on combining the Bayes technique with the attack
of Sect. 4 is a rather involved task. We leave it as an open problem to which
extent this combination will improve the attacks on RC4.

6 Conclusions

We have demonstrated several cryptanalytic algorithms on the alleged RC4
stream cipher. The algorithms try to deduce the initial state in a known plain-
text attack. First we demonstrated the importance of the swapping operation in
RC4. Our results show that a less frequent use of the swapping operation enables
stronger cryptanalytic attacks.

The second algorithm has the best overall performance. It finds the correct
initial state using only a small segment of known plaintext. The complexity of

Analysis Methods for (Alleged) RC4 339

0

50

100

150

200

250

300

0 50 100 150 200 250 300

N
um

be
r

of
 c

or
re

ct
 v

al
ue

s
af

te
r

th
e

B
ay

es
 s

te
p.

Number of correct values before the Bayes step.

Bayes
x

Fig. 3. Average number of entries successfully recovered by the Bayes method as
function of the number of known entries on beforehand.

the attack was estimated by analytical calculations and verified by extensive
testing. The complexity was approximated to be less than the time of searching
through the square root of all possible initial states. We have also identified
certain streams of words of RC4 for which the search algorithm has an increased
performance. The third algorithm is based on probability theory. It involves no
guessing, but it only works if a certain number of table entries is already known.
Although our attacks are by far not practical for the specified word size of RC4,
they give new intrinsic insight into the algorithm. It is our hope that our results
will stimulate further research on RC4.

References

1. B. Schneier, Applied Cryptography, Wiley, New York, 1996.
2. J.Dj. Golić, “Linear Statistical Weakness of Alleged RC4 Keystream Generator,”

Advances in Cryptology - EUROCRYPT’97, Lecture Notes in Computer Science,
Vol. 1233, Walter Fumy (Ed.), Springer-Verlag, pp. 226-238.

3. R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin,
1986.

340 L.R. Knudsen et al.

A Calculating the a Posteriori Probability Distributions

There are two effects: observation of Zt, which gives us more information, or
“narrows” the probability distributions, and the change of state for j and two
elements of S, which tends to “flatten” the probability distributions.

A.1 The Change of the State

The “flattening effect” is described by the following equations, denoting the new
probability distribution functions with f ′, g′[x]:

f ′
t(a) =

∑
b

ft−1(a − b)gt−1[it](b) (13)

g′
t[it](y) =

∑
b

f ′
t(b)gt−1[b](y) (14)

g′
t[x](y) = (1 − f ′

t(x))gt−1[x](y) + f ′
t(x)gt−1[it](y) . (15)

Equation (13) corresponds to a convolution.

A.2 Observation of Zt

The information of the known Zt value can be used to calculate the functions ft

and gt[x]. Bayes’ rule gives the following equations:

Pr(jt = a | Zt = d) =
Pr(jt = a) Pr(Zt = d | jt = a)

Pr(Zt = d)
(16)

Pr(St[x] = y | Zt = d) =
Pr(St[x] = y) Pr(Zt = d | St[x] = y)

Pr(Zt = d)
. (17)

In terms of ft and gt[x] this becomes

ft(a) =
f ′

t(a) Pr(Zt = d | jt = a)
Pr(Zt = d)

(18)

gt[x](y) =
g′

t[x](y) Pr(Zt = d | St[x] = y)
Pr(Zt = d)

. (19)

The remaining probabilities can be expressed as functions of f ′
t and g′

t[x].
Equation (4) gives for the probability distribution of Zt:

Pr(Zt = d) =
∑

a

∑
b

∑
c

Pr(jt = a, St[a] = b, St[it] = c, St[b + c] = d) . (20)

We do not need to calculate the probability Pr(Zt = d) explicitly, because it can
be determined from the renormalization requirements:∑

a

Pr(jt = a | Zt = d) = 1

∑
y

Pr(St[x] = y | Zt = d) = 1 .

Analysis Methods for (Alleged) RC4 341

The value Pr(Zt = d | jt = a) can be calculated as

Pr(Zt = d | jt = a) =
∑

b

∑
c

Pr(St[a] = b, St[it] = c, St[b + c] = d) (21)

=
∑

b

∑
c

Pr(St[a] = b) Pr(St[it] = c | St[a] = b)

Pr(St[b + c] = d | St[a] = b, St[it] = c) . (22)

In order to rewrite this in terms of f ′
t and g′

t[x], we assume that for two different
values x1, x2, the values of St[x1] and St[x2] are independent.

– Pr(St[a] = b) = g′
t[a](b).

– Pr(St[it] = c | St[a] = b): if both it = a and c = b, the probability is
one; if only one of the equalities holds, the probability is zero; else it is
Pr(St[it] = c)/(1 − Pr(St[it] = b)) = g′

t[it](c)/(1 − g′
t[it](b)).

– Pr(St[b + c] = d | St[a] = b, St[it] = c): In the generic case, the probability is
Pr(St[b+c] = d)/(1−Pr(St[b+c] = b)−Pr(St[b+c] = c)) = g′

t[b+c](d)/(1−
g′

t[b + c](b) − g′
t[b + c](c)). Special cases occur when a = it, b = c, a = b + c,

d = b, it = b + c, and/or c = d.

Similarly, the value of Pr(Zt = d | St[x] = y) can be calculated as

Pr(Zt = d | St[x] = y)

=
∑

a

∑
b

∑
c

Pr(jt = a, St[a] = b, St[it] = c, St[b + c] = d | St[x] = y) (23)

=
∑

a

∑
b

∑
c

Pr(jt = a | St[x] = y) Pr(St[a] = b | St[x] = y, jt = a)

Pr(St[it] = c | St[x] = y, jt = a, St[a] = b)

Pr(St[b + c] = d | St[x] = y, jt = a, St[a] = b, St[it] = c) . (24)

These equations can also be reworked in terms of f ′
t and g′

t[x].

	Introduction
	Description of RC4
	Attacking Simplified RC4
	No Swap Operation
	Reduced Swap Frequency

	Attacking the Full RC4
	Description
	Efficiency of the Attack
	Special Streams
	Experimental Results

	A Possible Improvement
	Description
	Implementation

	Conclusions
	References
	Calculating the a Posteriori Probability Distributions
	The Change of the State
	Observation of Z_t

