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Abstract—The optimization of logistics in large building com-
plexes with many resources, such as hospitals, require realistic
facility management and planning. Current planning practices
rely foremost on manual observations or coarse unverified as-
sumptions and therefore do not properly scale or provide realistic
data to inform facility planning. In this paper, we propose analysis
methods to extract knowledge from large sets of network collected
WiFi traces to better inform facility management and planning
in large building complexes. The analysis methods, which build
on a rich set of temporal and spatial features, include methods
for noise removal, e.g., labeling of beyond building-perimeter
devices, and methods for quantification of area densities and
flows, e.g., building enter and exit events, and for classifying the
behavior of people, e.g., into user roles such as visitor, hospitalized
or employee. Spatio-temporal visualization tools built on top of
these methods enable planners to inspect and explore extracted
information to inform facility-planning activities. To evaluate
the methods, we present results for a large hospital complex
covering more than 10 hectares. The evaluation is based on WiFi
traces collected in the hospital’s WiFi infrastructure over two
weeks observing around 18000 different devices recording more
than a billion individual WiFi measurements. For the presented
analysis methods we present quantitative performance results,
e.g., demonstrating over 95% accuracy for correct noise removal
of beyond building perimeter devices. We furthermore present
detailed statistics from our analysis regarding people’s presence,
movement and roles, and example types of visualizations that
both highlight their potential as inspection tools for planners
and provide interesting insights into the test-bed hospital.

I. INTRODUCTION

Healthcare administrators are constantly under pressure
to reform the healthcare system organization by planning
activities to better utilize available resources to minimize cost
but at the same time offer a high quality healthcare service
[1], [2]. The design and maintenance of a cost-effective and
high quality healthcare system is an ongoing high-priority
challenge for most governments around the world. A crucial
part of this challenge is the difficulties inherent in planning
hospital activities—as these require an accurate knowledge of
the hospital environment, of the availability of resources (both
materials and personnel), of knowledge about flows of per-
sonnel and patients, and usage of services and facilities. One
example where better planning can help optimizing healthcare
services are removal of inefficiencies in patient flows, e.g., of
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patient misplacement or of patient late arrivals which result in
surgery cancellations [3].

Today, only statistics from patient records are generally
available to hospital facility planners [2], e.g. number of
ambulant treatments and hospitalizations. Other existing ap-
proaches [4], [5] have tried to address the lack of knowl-
edge using a modeling approach. These approaches focus on
length of stay and flow of patients between departments to
provide models reflecting the complex, variable, dynamic and
multidimensional nature of hospital systems. However, in [6]
the authors demonstrate that such model-based calculations
typically do not provide the appropriate information needed
to obtain reliable results—since the models do not take into
account all variables influencing the continuous operations at
a hospital. Examples of such variables include: i) amount and
spatio-temporal distribution and flow of visitors—influencing
the planning of offered facilities such as seating areas, parking
spaces, and toilets; ii) precise up-to-date information about
people within the building complex such as their role as
patients, visitors, and staff.

Nowadays, widespread user devices such as smartphones,
tablets and in the future also smart watches, emit WiFi signals
on a frequent but irregular basis [7]. Moreover, the already
available wireless infrastructures in large building complexes,
like hospitals, enable the collecting of large data sets of
WiFi measurements that can be used not only to analyze
the network’s performance and usage, as proposed in earlier
work among others [8], [9], [10], but potentially also the
density and flow of people within the building. Compared
to earlier approaches based on Bluetooth, in urban [11] or
indoor settings [12], or based on video in indoor settings
[13], the use of WiFi comes with lower setup costs, due to
the existing deployment, for monitoring complete large-scale
building complexes. However, analysis methods are missing
that allow to extract information, relevant for planning, from
collected large-scale WiFi data sets.

In this paper, we propose analysis methods to extract
knowledge from large sets of WiFi traces to better inform facil-
ity planning in large building complexes. The analysis methods
build on a rich set of temporal and spatial features extracted
from the WiFi traces. The analysis methods include methods
for 1) noise removal, ii) quantification of people densities and



flows per area of interest, and for iii) classifying the behavioral
roles of people. To remove noise we propose methods to clean
data, filtering out, e.g., device traces that are close to the
perimeter of the building complex but not within it. We do so
by labeling these devices as beyond building-perimeter devices
using machine learning-based classification with a novel set of
features calculated from raw WiFi signal data. For estimating
people densities and flows in areas we propose heuristics to
filter streams of calculated device positions—assessing, among
others, the number of enter and exit events. To classify user
roles we propose a method based on machine learning-based
classification on our rich set of spatial and temporal features,
trained with weakly labeled data. Furthermore, we present
spatio-temporal visualization tools built on top of the described
methods for enabling planners to inspect and explore extracted
information to inform facility planning activities.

To evaluate the proposed methods, we present results for
a large hospital complex covering more than ten hectares in
which we have collected WiFi traces over two weeks observing
around 18000 different devices recording more than one bil-
lion individual WiFi measurements. Moreover as background
information we also present detailed statistics of the observed
devices, e.g., type of devices and the frequency of observations.
We present quantitative results for the analysis methods, e.g.,
for noise removal of beyond building perimeter devices where
results demonstrate over 95% accuracy for correct removal. For
the quantification of area densities and flows we present com-
parisons with manually recorded flows. For the classification
of user behavior we present results showing a high degree of
correlation with statistics provided by the test-based hospitals
regarding visitors, staff and hospitalized people. Additionally,
we present example visualizations such as heat and flow maps
that both highlight the visualizations’ potential as inspection
tools for planners and provide interesting insights into the
hospital’s workings.

The presented methods can be generalized and thus applied
not only to hospital settings but enable facility analysis also
in other types of large building complexes such as industrial
facilities, shopping malls or public buildings in general. The
proposed methods can be also used to analyze the spatio-
temporal distribution of people to offer better planing services
and facilities, e.g., seating areas, parking spaces, toilets, and
their maintenance, e.g., for cost-efficient scheduling of clean-
ing personnel at times of low load on the respective facilities.

II. RELATED WORK

Existing work utilizing measurements from wireless net-
works [8] focused on analyzing the networks’ performance
and usage. The analysis was based on aggregating the data
into various forms of graphs and statistical summaries; for
instance, to obtain statistics about the number of devices that
made use of the network, which applications the network was
used for, and the mobility of the users. The main aim of these
studies was to improve the design, modeling and management
of wireless networks in regards to, e.g., improved protocol
designs or better adaptability for areas where APs exhibit a
lot of network traffic. Such studies have been performed both
in an university campus settings [8], corporate settings [9]
and urban settings [10]. For a campus setting Calabrese et
al. [14] proposed methods to explore overall user behavior for

buildings on the campus but did not relate it to the within-
building movements.

Another line of work has utilized data collected from peo-
ple’s own devices instead of using data from wireless networks.
Such work has analyzed different aspects of people’s behavior
and of the places they visit. Chon et al. presented a system
for categorizing places from mobile device data [15]. Vu et al.
[16] presented a framework for constructing predictive models
of people’s movement. Focusing on sensing of the collective
behavior of crowds, different methods have been proposed,
e.g., to estimate properties regarding flocking, followers and
density. Kjergaard et al. [17], [18], [19] propose methods for
flock detection and follower detection based on mobile sensing
data. Neil et al. [11] consider methods for counting people in
an urban setting using Bluetooth scanning. Other approaches
focus on traffic analysis, including Musa et al. [7], and study
vehicle tracking based on passive WiFi transmissions. The
above study demonstrated that tracking unmodified devices
using WiFi monitoring is feasible in outdoor settings but it
did not consider indoor settings or facility planning. In contrast
to previous work in this paper we propose analysis methods
utilizing data from WiFi networks in large building complexes.
These methods are designed to extract knowledge from such
data to inform facility planning.

III. HOSPITAL TESTBED

During the process of developing the proposed analysis
methods we have collaborated with staff from the planning
and IT departments at the Aarhus University Hospital. In dis-
cussions the staff told that their current practices for planning
are mainly based on statistics from patient records and coarse
estimates which is common according to existing research
studies [2]. Furthermore, they were very interested in new
means of obtaining and using more realistic information for
their planning activities.

In collaboration with the hospital a data set of Wi-Fi
measurements was collected through-out the hospital complex,
see Figure 1 for an overview of the complex. The hospital
features 22 different buildings with up to 3 stories, covering
an area of more than 10 hectares. The entire hospital relies
on a wireless network infrastructure that covers all of its
buildings, with the exception of those areas reserved to surgery
rooms, where, due to safety reasons, electromagnetic radiation
is restricted. The total amount of access points (APs) available
in the hospital is 798, with most of them (around 95%) being
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Fig. 1. Aarhus University Hospital - Skejby complex.
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Fig. 2. Overview of the steps involved in data processing feature extraction, analysis methods and visualization.

Trapeze and Juniper devices. The network provides several
virtual networks including a guest network open to the general
public. The system architecture used for data collection is
network-based, i.e., WiFi measurements are collected by the
APs on all WiFi channels and forwarded to a central server
which stores them to a database. Our data collection was
carried out for 15 days using all available APs, collecting in
total more than a billion of WiFi measurements from around
18000 different devices.

One important aspect in large-scale mining studies is that
some of the extracted features (e.g. user position) are privacy
sensitive—especially when working in hospital environments,
since personal health information must be protected in regards
to identification of individuals. Regarding this concern, we
emphasize that we only collected network scan frames, and
used an anonymization procedure during data acquisition that
ensures a high level of privacy protection. Following the same
approach as utilized for the Nokia data challenge [20], MAC
addresses were encrypted by hashing after concatenating them
with a secret key. This ensures that the collected tracking
information can not be re-associated with a specific device.

IV. OVERVIEW OF ANALYSIS METHODS

Figure 2 illustrates how the proposed analysis methods
build upon each other and together enable a tool chain to
extract knowledge for facility planning and provide associated
visualizations. The data used as input (a) are provided from
two different sources: WiFi measurements from a large-scale
wireless network, and a geometric model of the perimeter
of the building complex. The feature calculation phase (b)
is divided into two steps consisting of: (1) basic processing
where the type of the device is identified (1.¢) and the raw WiFi
measurements are converted to positions using existing WiFi
positioning algorithms (1.i¢); and (2) calculation of a rich set
of spatial (2.7), temporal (2.i) but also spatio-temporal (2.i4i)
features to enable the analysis methods. In addition, our novel
technique to deduce from raw signal measurements whether
a device is within the building perimeter is applied (2.iv).
The analysis methods (c) extract relevant information from
the calculated features. The proposed heuristic based-method
for quantifying densities and flow (4) is applied to estimate
the usage of entries and exists. Furthermore, for classification
of behavioral user roles (3) we apply machine-learning, and in
the hospital setting we apply it to classify devices according to

a device owner’s role as either a short-term visitor, long-term
visitor, employee or hospitalized person.

The visualization tools (d) provide intuitive and interac-
tive access to the information extracted in order to facilitate
assessment and planning regarding facilities and services in
the building complex. The visualization tools show different
outputs provided along the entire process as heat-maps, flow-
maps, graphs and tables and thereby provide an important set
of information that reflects different aspects of the utilization
of the buildings, and of associated facilities and services.

V. FEATURE CALCULATION

This section covers the proposed rich set of features calcu-
lated to enable the mentioned analysis methods. Furthermore,
to argue for the feasibility of using large-scale WiFi traces
for facility planning we provide illustrating examples of the
feature data calculated from the hospital data set.

A. Device Type Identification

Network-based WiFi monitoring effectively collects mea-
surements for all signal emitting WiFI devices—both for mo-
bile as well as for infrastructure devices. When analyzing den-
sities and flows of people we are only interested in mobile de-
vices; we therefore aim to filter out the infrastructure devices.
To this end, we apply a filter which exploits that the devices’
MAC addresses encode the manufacturer in the initial three
octets. This allows to distinguish manufacturers who mainly
produce mobile devices (Apple, HTC, Samsung, Sony, Nokia,
Huawei, Murata, LGE and RIM) from those producing mainly
infrastructure devices (Cisco, Trapeze and Juniper). Figure 3
shows the distribution of devices we observed, grouped into
infrastructure, mobile, and devices of undetermined type: The
amount of infrastructure devices remains stable over time,
while the amount of mobile devices regularly increases during
day-time, and decreases over weekends and holidays (here:

Friday the 26th).

Figure 4 compares the observed disribution (blue) of
devices, subclassified according to operating system, with
statistics about smartphone platforms in Denmark during 2012!
(red). The obtained distribution of the different platforms

IStatistics provided by Google’s Our Mobile Planet service,

http://www.ourmobileplanet.com
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Fig. 3.  Amount of devices, grouped by device type, observed over 2 weeks.
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Fig. 4. OS distribution among mobile devices observed at a hospital.
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fits the statistics as obtained for the general population. The
apparent differences, prominently the larger percentage of
observed i0OS devices is in part due to that the observed
amounts of mobile devices also includes tablets and pods,
since the MAC address analysis does not allow to distinguish
them from smartphones. This concurs with that 33% of danish
households have a tablet and most of these are iOS devices.!

B. Large-scale WiFi Positioning

To estimate the position of the observed devices we use
a WiFi positioning module. Since we do network-based mea-
surement collection we will only be able to position devices
when they scan for networks. Musa et al. [7] provide statistics
and observations of the scanning behavior of different mobile
devices, e.g., most devices scan when the screen is turned on
or when they aim to transmit data. In the collected data, the
median and average time between a mobile device’s scans are
58 and 196 seconds, resp. Whenever an AP observes a scan
it sends to a central machine a measurement message which
contains: the id of the AP, the MAC address of the device,
the received signal strength (RSS) in dBm, and a timestamp.
The main advantage of using this network-based measuring
approach is that every device providing WiFi connectivity
can be monitored, independently of its platform and installed
software, thus reducing the system deployment time and cost
and not requiring the user to install specific software [21].

At the central machine MAC addresses are encrypted and
position estimates are computed from the RSS measurements
using the centroid lateration algorithm as described in [22].
For this computation the algorithm only requires the location
of the APs. Using these, the algorithm estimates the position of
a device to be the weighted geometric average of the locations
of the receiving APs, using as weights the received signal
strengths for each AP. The estimate is then snapped to the
location of the nearest AP, in order to enforce that reported
positions are inside the buildings. Using this approach the
position estimates were evaluated to have a mean accuracy
of 15m on traces collected through-out the buildings. While
other methods may provide more accurate estimates, such as

fingerprinting based methods [23], they have additional re-
quirements such as collection of fingerprints or the availability
of digital building models. Reliable fingerprint collection (and
keeping it up-to-date over time, facing also building- and WiFi-
infrastructure changes) at a hospital with more than six thou-
sand rooms spread over ten hectares was deemed unfeasible
[21]; furthermore, a complete digital building model, suitable
for fingerprinting, of the hospital was not available.

C. Classification of Beyond Building Perimeter

Discriminating whether a device is inside or outside one of
the complex’s buildings is a difficult task as such complexes
often have court yards and passages between buildings. Pre-
vious work has considered this problem using GPS signals
[24] and other sensor modalities [25]. However, given only
WiFi measurements these solutions do not apply, and the WiFi
positioning literature has also not yet addressed the problem.

In general, when being located outside but close to a build-
ing, the WiFi signals emitted from a device can be observed by
the APs within the building; a positioning module as described
above would therefore end up placing the observed device
inside the building. These situations generate erroneous cases
in which the device could receive certain information, e.g.,
from an indoor navigation application or advertising from a
specific shop, when it is still out of the buildings that offer
these services. In the chosen scenario such errors may impair
our analysis methods, e.g., for detecting the time of entry in a
building. Moreover, distinguishing outdoor from indoor posi-
tions may allow us to filter out those devices that never enter
the building and therefore should not be taken into account in
statistics of people utilizing the building facilities. The outdoor
detection method we present here is based on several features
which have been extracted from the set of RSS measurements
at a given timestamp and the resulting estimated positions: (i)
The signal strength difference between the strongest AP and
the weakest AP observed; (ii) Average signal strength of the
k-strongest APs received; (iii) Averaged distance between the
device’s estimated position and the position of the k-strongest
APs received; (iv) Average distance among all the received
APs; (v) Percentage of perimeter APs observed: for this we
define a perimeter area utilizing the building complex’s layout
data, and we classify a AP as either a perimeter AP or interior
AP according to if it is within or out of the perimeter area. In
Figure 5 the perimeter area is highlighted as it is defined for
the hospital; note, that this area includes only the part of the
perimeter that is physical accessible from public streets. Given
this labeling we can calculate the percentage of perimeter APs
for each observation. For features ii) and iii) we empirically
tested several values for k and we finally chose a value of
k = 3. We are conscious that the features listed above may
need to be adjusted in order to use the classifier at other
building complexes according to their wireless network infras-
tructures. For instance, For high-rise buildings also the floor
level detected by the positioning system can provide valuable
input to the classifying procedure. Furthermore, our analysis
detailed below revealed that among the listed features the ones
having the strongest benefit for the intended classification are
features iv) and v); these features are largely independent from
specific device’s hardware characteristics (e.g. from absolute
RSSI value computations), and thus can cope well with device
heterogeneity [26].
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Fig. 5. Geometry that defines the perimeter area of the building complex.
Indoor and outdoor paths and examples of wrong estimation cases.

The classifier was implemented using the JAVA API
provided by Weka [27]. For initial testing and refining we
collected data during two 15 minutes indoor and outdoor
walks through the hospital and its surroundings, see Figure 5,
using four different devices (a Samsung Galaxy Tab and three
smartphones, one Jiayu G2-Plus and two Google Nexus One),
obtaining around 1,200 data points (54% inside, and 46%
outside buildings). We evaluated classification accuracy using
four different classifiers: Random Forest, J48, BayesNet and
Decision Tables. Previous to the classification, we normalized
the training dataset by applying a resampling filter, generating
a uniformly distributed random subsample of the dataset.
Table I shows the classification results obtained using ten-
fold cross-validation. The results show a high accuracy of
over 90% for all used classifiers, which indicates that the
extracted features are indeed reliable in differentiating between
indoor and outdoor positions. We selected the most robustly
performing learner, the Random Forest algorithm, to be used
in posterior experiments. As one can observe in Figure 5, most
of the incorrect classifications (labeled by colored pushpins)
in both test cases, indoors and outdoors, happen near main
entrances or in areas where the number of APs detected is
relatively low (which is the case in one of the building corners).
Although entrances are a crucial challenge when distinguishing
inside and outside positions, the problem can be alleviated
since people are not constantly leaving and entering a building
in short order: i.e, when they are inside or outside the building,
they usually remain so for a sufficiently long time to produce
several position estimates. This in turn allows us to optimize
the robustness of the estimations, c.f. Section VI-A.

J48 Random Forest | BayesNet | DecisionTable
Correct Inside 535 551 514 527
Incorrect Inside 22 6 43 30
Correct Outside 605 612 563 591
Incorrect Outside 21 14 63 35
Accuracy 96.3% 98.3% 91% 94.5%
TABLE 1. CONFUSION MATRIX FOR INSIDE AND OUTSIDE

CLASSIFICATION.

D. Calculation of Features

A crucial task for the goal followed in this paper and
when dealing with large sets of unlabeled data is the design
of features for extracting vital information on which further
analysis can build. In the following we list features central to
this task, differentiating them into three categories:temporal,
spatial and spatio-temporal.

Temporal features capture aspects concerning the times a
device is located within the building complex.
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Number of days detected (T1) indicates the number of days
we observe a specific device, as shown in Figure 6(a).
Within the chosen use-scenario the feature helps dis-
tinguishing between devices that belong to employees
and those that belong to visitors, since the duration of
observations should be clearly different in those cases.

Hours per day (T2) spent inside the building complex. In
general terms, employees’ smartphones remain visible
within the building more hours per day than those of
short-term visitors, but less than those of hospitalized
persons. Such differences can be observed in Figure 6(d),
where Device 1 is typical for a short-term visitor whereas
Device 4 is typical for a hospitalized person.

Daytime (T3) indicates the times of day each device is ob-
served. We distinguish between: during day-time(e.g. 7am
to 11:59pm), night-time (e.g. 9pm to 6:59pm) and during
both. As shown in Figure 6(d), devices of hospitalized
persons (Device 4) are usually observed at any time,
whereas visitors are mainly observed during daytime.

Working shifts (T4) help us to discriminate what devices
belong to employees or other people that have a fixed
timetable. Since the ranges of working hours can vary
from one environment to another, we have taken into
account the hospital working shift schedule (from 7am to
3pm, from 3pm to 11pm and from 11pm to 7am). Figure
6(c) shows the number of devices whose duration inside
the hospital correlates with a shift time on at least three
days. Those devices would clearly belong to employees.

Spatial features capture aspects of the locations of people
(respectively their devices) within the building complex.

Restricted areas (S1) indicates that a device resides within
hospital areas that are restricted to certain kinds of people;
for example, surgery rooms and laboratories. The areas
accessible only to employees are indicated in Figure 1.
Moreover, in the particular hospital most parts of the
basement floors are only accessible to employees. This
last restriction, times observed in basement is one of the
features that will be used in the posterior processing.

Frequent places(S2) determines the set of areas were a de-
vice is frequently observed. This information allows, e.g.,
to infer ambulant treatment types or job roles.



Beyond Building Perimeter Classification (S3) has  been
described in V-C and is listed here for completeness.

Spatio-temporal features consider both spatial and temporal
aspects of a device’s movement within the building complex.

Motion speed (TS1) depicts average speed of a device. The
feature’s accuracy depends on realised positioning accu-
racy as well as frequency. We estimate speed based on
the distance covered over time. Though this does not
provide a highly accurate speed estimation, it serves well
to differentiate motion status (still vs. moving) of devices.
Earlier work [28] has proposed a more accurate method
for still vs. motion detection using raw signal measure-
ments, however, we did not apply this method because it
requires frequent measurements often not satisfied in our
data set.

Time stationary (TS2) reflects whether a device has been
stationary for a longer period of time—which we define
here as being located for more than 7" minutes within r
meters of any single place. For choosing r we suggest
taking into account the average distance among APs.

Places where stationary (TS3) determines, relating to the
feature S2, the different locations where a device has been
stationary, e.g., in a waiting, patient or meeting room.
Figure 6(b) shows a building map indicating the places
visited by a device during one day (with the color scale
indicating total stationary time at the respective locations).

The presented features form the basis for the analysis methods
presented in Section VI. Furthermore, the graphical presenta-
tion of the collected data set for the described features illustrate
and highlight their utilization, revealing e.g., that ca. 2000-
3000 mobile devices were observed per day (Figure 3), and
that a large fraction of these were observed only on one day
(Figure 6(a)). These numbers support that our measurement
approach provides rich data for a significant number of devices.
Compared to previous wireless network studies in campus or
company settings [8], [9], [10], the large percentage of one-
day-only visitors differentiates this data set from what has
been observed in the above studies where the sets of perceived
devices per day were highly correlated across days. This also
highlights that hospital environments are different and thus
relevant use-scenarios to consider in future work in wireless
network analysis and related fields.

VI. ANALYSIS METHODS

In the following, we describe how to utilize the features
extracted from WiFi measurements for further analysis meth-
ods for informing and supporting decisions within facility
planning. In particular, we propose methods in two areas,
briefly introduced already in Section IV.

A. Density and Flow Estimation

The density of people in a specific area or the flow of peo-
ple through a given area or across a given line or other borders
are fundamental types of information within planning in both
indoor or urban settings [11]. To obtain such information, we
propose to apply a number of heuristics using the features
introduced in Section V. In the following, we will consider
the specific case of quantifying the flow through entrances
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Fig. 7. Entry and exit events over time for S = 30s and R = 40m.

as people enter and leave the hospital. Such information
enable the deduction of, e.g., the most used entrances to a
building complex, which helps to decide e.g., where to install
information boards or vending machines (since these would
be the most busy areas), or to determine the flow-wise most
appropriate entrances for emergency cases (i.e.,less crowded
ones), or to determine where to build additional parking places
(i.e., in those areas by which people usually enter into the
hospital), or to design evacuation plans (for individual day-
times or weekdays, or even dynamically, according to current
crowd conditions, among others).

To estimate the flow through entrances we propose a
method building on the beyond building perimeter classifica-
tion from Section V-C. Having calculated the beyond building
perimeter feature value, once we detect a change in the device’s
in/outdoor state, we record its timestamp. To avoid erroneous
rapid state changes provoked by signal variability, the method
waits for the new state to remain stable for at least .S seconds
before it registers a new entry or exit event. We assign the event
to the closest entrance among a list of entrances previously
defined. To avoid false positive cases we record the event
only in case the distance between the closest entrance and
the estimated position is below a threshold R.

To evaluate the method’s accuracy, we have carried out
several empirical tests using different configurations for the
threshold parameters S and R which define whether an en-
try/exit event should be recorded. Figure 7 depicts the number
of entry and exit events that have been estimated at the
hospital’s main entrance over a period of 6 hours. During
this time, a person manually counted the number of actual
entries (327) and exits (453) at the entrance, obviously with
no knowledge about how many of people that were counted
also carried a smartphone. We can assume that the ratio
of smartphone holders is close to the 59% reported as the
estimated percentage of smartphone penetration in 2013 in
Denmark!. These numbers would correspond to 192 entries
and 270 exits of persons with smartphones approximately.
Using the configuration values S = 30 seconds and R = 40
meters we are able to approximate the expected results as
shown in Figure 7. Finally, in order to provide visualizations
of various obtained results on the complete data set we build,
after executing the method, heat-maps as shown in Figure 8.

B. Classification of Behavioral User Roles

In this section we propose a method to classify the behav-
ioral roles of users. For this classification we employ manually
constructed as well as machine-learning rules, both of which
operate on the spatial, temporal and spatio-temporal features



Fig. 8.

(a) Heat-maps representing all device positions; (b) Only inside to
outside movements (leaving the building); (c) Positions of filtered exits; (d)
Estimated exits constrained to real exits.

described in Section V. Knowing the behavioral roles of device
owners (such as staff, visitor, or patient) is useful, e.g., for
compiling and interpreting statistics regarding the utilization
of individual facilities or services within a building complex.
In particular, for planning and optimizing services and facility
utilization it is crucial to know the current utilization by
individual user groups such as staff or visitors. E.g., for the
chosen environment type, it is important to consider if visitors
use entrances and paths through the building designed for
employees, e.g., entering parts of the hospitals where visitor
traffic should be kept to a minimum, or where they are not
allowed to enter. Furthermore, when analyzing the paths used
by visitors (resp. staff), it is important to filter out traces from
staff (resp. visitors). For the chosen hospital environment, most
people can be semantically classified into one of the following
four roles: Employees, Hospitalized, Short-Term (ST) Visitors
and Long-Term (LT) Visitors. Here, the ST visitor role captures
people who pay a hospitalized person shorter visits or who
receive simple ambulant treatments, while the LT visitor role
captures people receiving more extensive ambulant treatments
or people accompanying persons receiving such treatments.

It is not possible to extensively gather manually labeled
data for all user roles in order to train machine learning
algorithms to differentiate people into these roles, given the
special privacy requirements in hospital settings. E.g., con-
tacting people at the entrance and inquiring their role and
their phone’s MAC address was not considered an ethically
viable procedure. Therefore, we instead employed the help of
domain experts to derive a set of human-made rules (on basis
of our features from Section V) which describe the expected
behavior of the individual roles. To this end, first a strict set of
rules, shown in Table II, was derived, which only provided a
classification when the input data very unambiguously can be
classified into one role. The table states these rules—by way
of listing both used features as well as the respective feature
values expected according to the common behavior patterns for
the individual roles. We chose this strict set of rules to classify
very conservatively in order to obtain valid and trustworthy
separators between roles.

Applying these strict rules allows to classify and assign
roles (comparatively confidently) to just 5% of the detected
devices. Following a normalization for obtaining a uniform
distribution across roles, these classifications for role-assigned
devices are then used as training data-set for the machine-

Feature | Employee Hospitalized | ST Visitor | LT Visitor

T1 > 5 >3 1 213

T2 6<>9 > 16 < 0.5 2<>5

T3 Daytime || | Daytime & | Daytime Daytime
Nighttime Nighttime

T4 >5 0 0 0

S1 >50 <10 0 0

TS2 False True False False

TABLE II. CRITERIA FOR STRICT RULE-BASED CLASSIFICATION.

Feature | Employee Hospitalized | ST Visitor | LT Visitor

T1 >=3 >=2 =1 >=2

T2 5<>10 > 10 <1 1<>6

T3 Daytime || | Daytime & | Daytime Daytime
Nighttime Nighttime

T4 >2 0 0 0

S1 >20 <20 < 10 < 10

TS2 False True False False

TABLE III. CRITERIA FOR RELAXING RULE-BASED CLASSIFICATION.

learning classification algorithm. We chose the Bayesian Net
learner, provided in the Weka data-mining library [27], because
it has been found to be reliable for classification purposes when
the distribution of attribute values is widely spread; moreover it
also adapts well when new training data are dynamically added
to the model [29]. Thus, the system can evolve over time, as
it is used—allowing the adaption to a wider set of behavioral
patterns within each role. For each instance (device) and role,
the classifier estimates from an instance’s feature values the
probability of belonging to each role, respectively. In the first
row of Table IV results are given from running the algorithm
on the complete data set including the already labeled data.

As an alternative to the machine learning algorithm, we
have carried out a rule-based classification procedure: We
defined, again with domain experts, a more relaxed set of rules:
Table III shows the relaxed rules which classify a larger portion
of devices into roles, as compared to the rules given in Table
II. Note, that the new rules still ensure that the rule-based
definitions for roles are not overlapping; i.e., no device can
be classified into more than one role. The classification results
obtained are given in the second row of Table IV.

Table V summarizes the results obtained with both algo-
rithms and compares them to statistical data. For each role
the table lists the number of devices classified into the role
(as well as in brackets the percentage among total devices
detected). For comparison, we also list for each role the
expected number of observed people for a 15 day period,
as extracted from annual hospital-provided statistics. First, for
hospitalized patients (*) the expected number is obtained by
dividing the number of testing days by the average length of
stay of 3.5 days, and multiply with the average number of
occupied beds, as obtained from OECD Health Data 2009. For
day visitors (+), we sum the hospital-provided annual number
of treatments (245554), and the product of the number of
hospitalized people and the hospital-observed average number
of visits per patient and day). To compare to our number of
detected visitors, we for the latter aggregate the short-term (ST)
and long-term (LT) visitors into one group. In view of these
results we can conclude that both the Bayesian Net algorithm

Method Employee | Hospitalized | ST Visitor | LT Visitor | Unknown

Bayes-Net 1609 359 8290 6837 1241

Relaxed Rules 1206 389 8465 4313 3964
TABLE IV. RESULTS OBTAINED FOR THE DIFFERENT CLASSIFICATION

METHODS.



Bayesian Relaxed Yearly 15 Days
Net Rules Statistics Statistics
Employee 1609 (46%) 1206 (38%) ~ 3500 ~ 3500
Hospitalized 359 (20%) 389 (22%) 412 (Beds) 1766 (*)
ST Visitor 8290 (-) 8465 (-) - -
LT Visitor 6837 (-) 4313 (-) - -
Daily Visitors 15127 (63%) | 12778 (53%) | 593.901 (+) 24026

TABLE V. OBTAINED RESULTS AND COMPARISON WITH YEARLY
STATISTICS. IN BRACKETS, THE PERCENTAGES WITH RESPECT TO THE 15
DAYS STATISTICS ARE GIVEN.

and the rule-based labeling method provide realistic results,
despite smaller deviations from statistics for the employee and
daily visitor role. That the correlation with statistics is even
higher for the role of hospitalized can be explained by that for
this role the behavioral pattern is easier to predict and therefore
good approximation rules are easy to conceive.

According to statistics', the smartphone penetration in

Denmark is around 59% in 2013; and around 54% of people
(i.e., visitors) use their smartphones while waiting at the
doctor’s office!. The results may be biased by the fact that
people not carrying a WiFi enabled device are not accounted
for. Nonetheless, our estimations of the number of daily vis-
itors approximate well the statistics provided by the hospital.
With respect to hospitalized people, considering that 70% of
hospitalized people are over 55 years and 25% are between
35 and 54 years according to hospital information, and taking
into account the statistics ! saying that 27% of people over 55
years and around 71% of people between 35 and 54 makes
use of the smartphone at hospitals, we deduce an expected
36% of hospitalized people to make use of smartphones. Note
that not all smartphone’s users may use them daily during a
hospitalization period, what is essential to be classified within
this role. That could explain that our method estimates the
number of hospitalized people to be 14-16 percentage points
lower than statistics suggest, c.f. Table V.

Regarding employees, according to statistics' around 84%
of people in Denmark use their smartphones at work. In
a hospital environment a lower number is expected, since
restrictions and tasks for the employees (doctors, nurses and
orderlies) do not allow to make use of smartphones and/or
the network frequently. Taking into account this fact, together
with penetration of smartphones and staff numbers at the hos-
pital, our results provided for employee classification represent
realistic numbers.

VII. VISUALIZATION TOOLS

In this section, we present and discuss example outputs of
the visualization tools we have built based on the introduced
features and analysis methods. The main aim of this section is
to illustrate how the latter enable novel in-depth visualizations,
and how these can aid those in charge of planning decisions.

To illustrate the use classifications of users’ behavioral
roles, Figure 9 shows a heat-map for each user role, depicting
the positions (while disregarding floor information) for one
day and of all devices of that role. The difference among the
maps can be clearly observed with regards to the visited areas
(refer to Figure 1 for the placement of individual departments).
For example, neither ST Visitors nor LT Visitors have been
detected near the surgery area, whereas many employees
were observed in the vicinity. Moreover, a high number of
ST-Visitors come to the hospital for blood donation, or to

(© (d)
Fig. 9. Heat-maps representing most commonly visited zones by: (a) Visitors
Short-Term; (b) Visitors Long-Term; (c) Employees; (d) Hospitalized.

(a) (b)

Fig. 10. Three tests for tracking a device from the used entrance to its
stationary destination.

get consultation, or to visit someone at the maternity unit.
Employees move around in all the buildings, as expected,
whereas hospitalized people are localized in areas that are
devoted to suites for patients. Furthermore, animated versions
of these plots enable further analysis, e.g., considering the load
of different parts of the buildings through-out the day.

To illustrate the methods for flow and density estimation we
consider the entry and exit event detection case. The results
given in Figure 8(d) visualize the load among the different
entries which give rise to several relevant questions, e.g., one of
the exits close to the surgery ward has a high load—higher than
intended given its location; noteworthy is also that the closest
main entrance has a comparatively low load. To further analyze
this situation, it is relevant to consider where people using an
entrances end up within the building. To enable this analysis
we provide additional information about the movement flow
observed from the entrance until a device reaches a stationary
destination (waiting room, canteen, office, etc.) as described
by the “places where stationary” feature (TS3). In Figure
10 we show an example of this type of information. For
privacy reasons, these visualizations are computed from traces
collected by the authors. The left part of the figure shows
the real paths while the right one reflects the estimated paths.
The obtained results support that our method is valid as in
all three cases the correct entrances and stationary end point
was detected by our methods. Given, e.g., the obtained 15 day
dataset, our methods help analyze where people enter and end
up in the building, and judge if the the paths people currently
take through the hospital are optimal, or whether instead means
for improved directing of flow would yield improved efficiency
or safety.

VIII. CONCLUSIONS

In this paper we have proposed a rich set of features
and analysis methods to inform building facility planning



enabling studies of people’s behavior in large building com-
plexes utilizing solely measurements of WiFi signals from
peoples’ devices. To this end, we have addressed the challenges
coming with the complexity of the chosen environment. To
the best of our knowledge, this is the first study of its type
which addresses hospital complexes. The proposed analysis
methods include a method to estimate when and where users
(respectively their mobile devices) enter and leave buildings.
This addresses shortcoming usually inherent in the WiFi-based
tracking and offers several possibilities, e.g., to analyze the
flow of people from the specific moment they enter a building.
We provide a labeling method for differentiating people at the
hospital into roles such as staff and visitors, allowing us to
obtain information about behavior of respective groups inside
the buildings. While we are conscious that this kind of classifi-
cation is highly dependent on the environment to be analyzed,
we also demonstrate that—making use of machine learning
tools and of only some domain expertise—we can estimate
the role of persons. A limitation of the presented evaluation
was that given the privacy concerns of the used test bed we
could not collect comprehensive ground truth data for the
behavior classification. Nonetheless, we achieved the central
goal to provide realistic information that reflects realistically
the behavior of, e.g., hospital staff or visitors who make use of
the facilities and services offered. Thus, the proposed methods
can provide valuable sources of information, e.g. regarding
building, path and service utilization, for supporting hospital
planning activities.

Building on presented results, for future work we plan to
evaluate analysis methods for further aspects of human behav-
ior, consider the development of privacy protecting methods
to enable gathering of labeled data in hospital environments,
and conduct further evaluations of the visual analysis tools in
cooperation with hospital planners.
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