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Abstract

The rapidly increasing quantity of genome-wide

chromosome conformation capture data presents

great opportunities and challenges in the

computational modeling and interpretation of the

three-dimensional genome. In particular, with recent

trends towards higher-resolution high-throughput

chromosome conformation capture (Hi-C) data, the

diversity and complexity of biological hypotheses that

can be tested necessitates rigorous computational and

statistical methods as well as scalable pipelines to

interpret these datasets. Here we review computational

tools to interpret Hi-C data, including pipelines for

mapping, filtering, and normalization, and methods for

confidence estimation, domain calling, visualization,

and three-dimensional modeling.
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Introduction
Now, more than ever, it is recognized that the three-

dimensional organization of chromatin affects gene

regulation and genome function. Capturing chromosome

conformation, first at the level of single locus (3C, 4C)

[1–4] or a set of loci (5C, ChIA-PET) [5, 6], and then

genome-wide (Hi-C) [7–9], made it possible to link chro-

matin structure to gene regulation [10–18], DNA replica-

tion timing [19–21], and somatic copy number alterations

[22, 23]. Furthermore, genome-wide conformation cap-

ture studies reveal conserved structural features that are

now accepted as organizing principles of chromatin fold-

ing [7, 15, 18, 24]. Hi-C data have also proved to be useful

*Correspondence: ferhatay@uw.edu; william-noble@uw.edu
1Department of Genome Sciences, University of Washington, Seattle, WA

98195, USA
2Feinberg School of Medicine, Northwestern University, Chicago 60661, IL, USA
3Department of Computer Science and Engineering, University of

Washington, Seattle 98195, WA, USA

in many other applications, ranging from genome assem-

bly and haplotyping [25–27] to finding the coordinates

of centromeres and ribosomal DNA (rDNA) [28, 29]. See

[7–9, 18, 24, 30] for detailed descriptions of how the

Hi-C assay and its variants work. Briefly, the traditional

Hi-C assay consists of six steps: (1) crosslinking cells with

formaldehyde, (2) digesting the DNA with a restriction

enzyme that leaves sticky ends, (3) filling in the sticky ends

and marking them with biotin, (4) ligating the crosslinked

fragments, (5) shearing the resulting DNA and pulling

down the fragments with biotin, and (6) sequencing the

pulled down fragments using paired-end reads. This pro-

cedure produces a genome-wide sequencing library that

provides a proxy for measuring the three-dimensional

distances among all possible locus pairs in the genome.

We discuss below the processing pipelines, tools, and

methodologies for analysis of Hi-C data. Understanding

how these Hi-C analysis methods work and the available

options to perform each analysis step is becoming more

important with the increasing number and variety of Hi-C

datasets. Currently, Hi-C data are available for a wide

variety of organisms, such as yeasts [8, 28, 31–33], bacteria

[34], fruit fly [30, 35, 36], plants [37–39], malarial para-

sites [16, 40], and numerous human and mouse cell lines

[7, 15, 18, 24, 41–44].

Mapping, filtering, and classification of Hi-C reads

The initial processing step for Hi-C data typically con-

sists of trimming of reads (if necessary), mapping the

reads to the corresponding reference genome with assay-

specific pre- and post-processing to improve the percent

of mapped reads, and filtering of the mapped reads and

read pairs at several different levels. We outline below

the details of several mapping and filtering approaches

used for Hi-C data. Note that, to distinguish between

single-end and paired-end reads, we will refer to them as

‘reads’ and ‘read pairs’, respectively.

Mapping

The two ends of a paired-end Hi-C read ideally corre-

spond to locations that are far apart along the genome. In
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other words, most sequence fragments in a high-quality

Hi-C library are composed of DNA from two or more

non-contiguous loci. Such fragments are referred to as

chimeras. When the two ends of a long chimeric frag-

ment are sequenced, if the ligation junction falls near the

middle of the fragment, then each of the resulting reads

will map to a different location in the genome. How-

ever, if the ligation junction happens to fall within one of

the sequenced ends of the fragment, then the read itself

will be chimeric. Furthermore, if the parent fragment is a

chimera involving more than two genomic loci, then both

reads can potentially be chimeric. The frequency of such

chimeric reads depends heavily on several factors, includ-

ing the size-selection step and the read length used for

sequencing [18, 45].

Partly as a result of this dependence and partly because

of interpretation differences, there are now many pro-

posed ways to handle mapping of Hi-C reads. The sim-

plest approach is to filter out any read that does not fully

map to the genome because it is chimeric. This approach

may be acceptable when size-selected fragments are very

long (800 bp) and read length is relatively short (50 bp)

[30]. However, shorter fragment lengths and longer reads

are more commonly used in Hi-C experiments. For

instance, using the 4-cutter restriction enzyme MboI, size

selecting for 300–500 bp fragments and sequencing with

101 bp reads leads to approximately 20% of sequenced

read pairs with at least one chimeric end [18]. We are

aware of at least four different ways to ‘rescue’ information

from such chimeric Hi-C reads. Two of these alternatives

pre-process reads before initial mapping and the other

two post-process the results after an initial attempt to

map all reads at their full lengths. Instructions for these

methods are as follows.

Pre-truncation: Pre-process all the reads and truncate

the ones that contain potential ligation junctions to keep

the longest piece without a junction sequence [46] (Fig. 1a,

blue box). For restriction enzymes that leave sticky ends,

the ligation junction sequence is a concatenation of two

filled-in restriction sites (for example, AAGCTAGCTT

for HindIII that cuts at A|AGCTT and GATCGATC for

MboI that cuts at GATC|).

Iterative mapping: Trim the reads to only keep the

25 bp-long 5′ portion. If this portion fails to map uniquely

then repeat the mapping attempt by adding 5 bp to the

read at each iteration until the full read length is reached

(Fig. 1a, pink box) [47].

Allow split alignments: For mapping use a short-read

aligner that allows split alignments within a read (such

as BWA’s bwa-sw mode [48]). Identify reads that fully

align and that align in split mode and post-process

the latter category to only keep the ‘unambiguous’

read pairs that have one end mapping to two loci A

and B and the other end mapping to either A or B

(Fig. 1a, green box) [18].

Split if notmapped: Attempt tomap all the reads at their

full lengths using the regular mode of an aligner (such as

BWA’s aln [48] or Bowtie [49]). Among the non-mapped

reads, identify the ones containing exactly one restriction

site, break such reads into two pieces and map each piece

independently back to the genome. This approach allows

the identification of simultaneous contacts among three

or four loci, which can then be broken into pairs [45].

Note that the search for a restriction site is valid only for

protocols that skip the end repair step or use a blunt end

restriction enzyme (such as AluI that cuts at AG|CT). For

traditional Hi-C libraries, this step needs to be replaced by

a search for the ligation junction sequence.

Read-level filtering

Once the individual reads are mapped to the genome, the

next step is to decide which of these mapped reads to

‘trust’. The first step is to apply standard filters on the

number of mismatches (usually none allowed), mapping

quality (MAPQ score), and uniqueness of the mapped

reads, similar to any other sequencing-based assay. The

second step is to create a list of all possible restriction

sites (not to be confused with ligation junction sequences)

in the reference genome and to assign each read to the

nearest restriction site. It is important to note that the

number of restriction sites can be high (for the human

genome > 800,000 and > 7 million for HindIII and MboI,

respectively), necessitating the use of scalable methods

such as binary search to find the nearest restriction site

for each read. In the third step, the distance between

each read’s start coordinate and the nearest restriction

site is used to filter out reads that do not agree with the

size-selection step (Fig. 1b).

Read-pair level filtering

In most Hi-C pipelines, read pairs for which both ends

successfully pass through the initial filters are further

segregated into several categories. The aim of this classi-

fication is to identify and proceed further with only the

pairs that provide information about three-dimensional

chromatin conformation beyond linear proximity among

regions. We will refer to these as ‘informative pairs’. These

read-pair level filtering approaches can be categorized

into two main groups, strand and distance filters (Fig. 1c).

Many Hi-C pipelines use a combination of the two

approaches to ensure stringent filtering of all possible

artifacts.
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(c)
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Fig. 1Overview of Hi-C analysis pipelines. These pipelines start from raw reads and produce raw and normalized contactmaps for further interpretation.

The colored boxes represent alternative ways to accomplish a given step in the pipeline. RE, restriction enzyme. At each step, commonly used file

formats (‘.fq’, ‘.bam’, and ‘.txt’) are indicated. a, The blue, pink and green boxes correspond to pre-truncation, iterative mapping and allowing split

alignments, respectively. b, Several filters are applied to individual reads. c, The blue and pink boxes correspond to strand filters and distance filters,

respectively. d, Three alternative methods for normalization
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Strand filters: De novo ligations introduced by the Hi-C

protocol should have no preference for a specific strand

combination or orientation and result in paired-end

reads with each end coming from a different restriction

fragment. Figure 2 of Lajoie et al. [50] provides a detailed

description of all possible orientation combinations aris-

ing from Hi-C read mapping. Briefly, there are two main

cases: either the read pair falls within the same restric-

tion fragment or in two distinct restriction fragments.

Regardless of the strand combination, a read pair coming

from a single restriction fragment is uninformative of

chromatin conformation and should be filtered out.

For the second case, in which a read pair links two

distinct fragments, Fig. 1c illustrates all possible strand

(a)

(c)

(b)

(d)

Fig. 2 Impact of normalization on Hi-C contact maps. a, b Hi-C contact maps of chromosome 8 from the schizont stage of the parasite Plasmodium

falciparum [16] at 10 kb resolution before and after normalization. Blue dashed lines represent the centromere location. c, d Density scatter plots of

counts before (x-axis) and after (y-axis) normalization of Hi-C data from the human cell line IMR90 [15] at two different resolutions. Correlation values

are computed using all intra-chromosomal contacts within human chromosome 8. Only a subset of points are shown for visualization purposes
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combinations. In this case, if two read ends either point

towards (inward orientation (+/−)) or away from each

other (outward orientation (−/+)), the corresponding

pair is a valid pair that is informative of chromatin

conformation. The remaining same-strand pairs (+/+

or −/−) could either be valid pairs or artifacts that come

from undigested chromatin. Such pairs from undigested

chromatin will correspond to a distance between the

two mapping coordinates that is small and consistent

with the size of fragments that are selected by the size-

selection step. Detailed analyses of strand-related biases

suggest filtering inward and outward pairs separated

by < 1 kbp and < 25 kbp distances, respectively [42]. Sev-

eral recently published studies [18, 42] provide metrics

to quantify strand-related biases and suggest additional

filtering schemes for processing high-resolution Hi-C

data.

Distance filters: Most, if not all, of the read pairs dis-

carded by strand filters are intra-chromosomal pairs sep-

arated by short genomic distances. Therefore, one way

to achieve read-pair level filtering is to simply filter out

intra-chromosomal pairs below a certain distance thresh-

old. This distance-based filter was widely used for earlier

Hi-C data because it is fairly effective for low resolution

Hi-C studies [7, 8]. The distance threshold is empirically

set at 20–25 kb or larger. However, this approach dis-

cards, in addition to artifacts such as self ligation products

or undigested chromatin, potentially interesting contacts

occurring within this distance range (Fig. 1c). Another

downside of a simple distance threshold is its inability

to detect certain artifacts, such as self-ligations for very

long (> 25 kb) fragments.

One last filtering step is the identification and removal

of duplicated read pairs. Because reads produced by stan-

dard Hi-C assays come from a population of cells, these

duplicates may indeed be valid read pairs from different

cells or PCR duplicates of a read pair from one single cell.

Lacking a method to distinguish between these two cases,

current practice is to simply discard all but one pair from a

set of duplicates. This approach avoids any potential PCR

artifacts at the expense of losing some potentially informa-

tive read counts. However, because of the high complexity

of Hi-C libraries, the duplicate percentage is generally very

low. Duplicate removal can be carried out by Picard [51]

or a simple shell script.

Table 1 summarizes currently available Hi-C tools and

pipelines, and indicates which processing steps can be

performed with each tool. Comprehensive and up-to-date

lists of these tools are available from Omictools [52] and

the Structural Genomics group at CNAG, part of the

Spanish Center for Genomic Regulation [53]. Some of

these tools focus more on the initial steps such as map-

ping and filtering (such as HiCUP and HiC-inspector),

whereas others focus on downstream analysis tasks such

as normalization, visualization, and statistical confidence

estimation. The latter tasks are described below.

Normalization of Hi-C contact maps
Not long after the first Hi-C datasets became available

[7, 8], several sequence-dependent features were shown

to substantially bias Hi-C readouts [54]. These include

biases that are associated with sequencing platforms (such

as GC content) and read alignment (such as mappabil-

ity), and those that are specific to Hi-C (such as fre-

quency of restriction sites). Discovery of these biases led

to several normalization or correction methods for Hi-C

data [47, 54–59].

Before discussing these methods, it is necessary to

describe how the data are represented in matrix form. A

contact map is a matrix with rows and columns repre-

senting non-overlapping ‘bins’ across the genome. Each

entry in the matrix contains a count of read pairs that

connect the corresponding bin pair in a Hi-C experiment.

These bins can be either fixed-size genomic windows or

can correspond to a fixed number of consecutive restric-

tion fragments (Fig. 1d). The binning step consists of

determining the binning type (fixed-size or restriction-

fragment-based) and bin size that is appropriate given the

sequencing depth in hand, assigning each valid pair that

passed all filters to a specific bin pair, and incrementing

the count in the corresponding matrix entry. Determining

the appropriate bin size is an important task and involves

a tradeoff between resolution and statistical power. Sev-

eral published studies use multiple bin sizes to analyze a

single set of Hi-C data. Even though there are no clear

guidelines yet, a recent study suggests using a bin size that

results in at least 80 % of all possible bins havingmore than

1,000 contacts [18]. According to this criterion, approxi-

mately 300 million mapped reads are needed to achieve

10 kb resolution for the human genome, assuming that all

reads are uniformly distributed across the genome. How-

ever, this criterion suggests a linear relationship between

resolution and sequencing depth, which does not hold for

two-dimensional Hi-C data. An alternative would be to

use a similar cutoff-basedmeasure on the density of either

the cis- or the trans-contact matrices instead of total con-

tact counts per locus. Once the bin size is determined

and the binning is done, the resulting raw contact map

Fig. 2a serves as the input for the normalization methods

described below.

Explicit-factor correction

Normalization methods of this type require a priori

knowledge of the factors that may cause bias in Hi-C

data. Yaffe and Tanay identify three such factors and

develop a joint correction procedure that models the

probability of observing a contact between two regions
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Table 1 Software tools for Hi-C data analysis

Tool
Short-read Mapping Read Read-pair

Normalization Visualization
Confidence Implementation

aligner(s) improvement filtering filtering estimation language(s)

HiCUP [46] Bowtie/Bowtie2 Pre-truncation � � − − − Perl, R

Hiclib [47] Bowtie2 Iterative �a � Matrix balancing � − Python

HiC-inspector [131] Bowtie − � � − � − Perl, R

HIPPIE [132] STAR �b � � − − − Python, Perl, R

HiC-Box [133] Bowtie2 − � � Matrix balancing � − Python

HiCdat [122] Subread −c � � Three optionsd � − C++, R

HiC-Pro [134] Bowtie2 Trimming � � Matrix balancing − − Python, R

TADbit [120] GEM Iterative � � Matrix balancing � − Python

HOMER [62] − − � � Two optionse � � Perl, R, Java

Hicpipe [54] − − − − Explicit-factor − − Perl, R, C++

HiBrowse [69] − − − − − � � Web-based

Hi-Corrector [57] − − − − Matrix balancing − − ANSI C

GOTHiC [135] − − � � − − � R

HiTC [121] − − − − Two optionsf � � R

chromoR [59] − − − − Variance stabilization − − R

HiFive [136] − − � � Three optionsg � − Python

Fit-Hi-C [20] − − − − − � � Python

aHiclib keeps the reads with only one mapped end (single-sided reads) for use in coverage computations
bHIPPIE states that it rescues chimeric reads. No details are given
cHiCdat reports no substantial improvement in successfully aligned read pairs when iterative mapping in Hiclib is used for Arabidopsis thaliana Hi-C data
dHiCdat provides three options for normalization: coverage and distance correction, HiCNorm and ICE
eHOMER provides two options for normalization: simpleNorm corrects for sequencing coverage only and norm corrects for coverage plus the genomic distance between loci
fHiTC provides two options for normalization: normLGF implements HiCNorm and normICE implements ICE algorithm from Hiclib
gHiFive provides three options - Probability, Express, and Binning - for normalization. The Express and Binning algorithms correspond to matrix balancing and explicit-factor

correction schemes, respectively

given their genomic features, such as GC content, map-

pability, and fragment length that are shown to affect

contact counts [54]. A later method, HiCNorm [55], pro-

vides a significantly faster explicit correction method

by using regression-based models (either negative bino-

mial or Poisson regression) while achieving similar nor-

malization accuracy to that of the Yaffe and Tanay

method.

Matrix balancing

Another approach to normalization is to correct for all

factors that may cause biases without explicitly modeling

them. Methods of this type rely on the important assump-

tion that if there were no bias then each locus in the

genome would be ‘equally visible’ or, in other words,

give rise to an equal number of reads in a Hi-C exper-

iment. This assumption, of which we will later discuss

the ramifications, transforms the normalization to a

matrix balancing problem where the aim is to find a

decomposition of the observed contact map O = �bT T
�b such that �b is a column vector of bias terms and T is

a normalized contact map in which all rows have equal

sums. This matrix balancing problem has been studied

for several decades in many different contexts (see the

Supplemental Information of [18] for a detailed discus-

sion). In the context of Hi-C, Imakaev et al. proposed an

iterative method abbreviated as ICE [47], which applies a

previously described algorithm [60] repeatedly to achieve

the desired decomposition. Cournac et al. also proposed

a very similar iterative correction method for Hi-C data,

which they named Sequential Component Normaliza-

tion. More recently, Rao et al. [18] used a much faster

matrix balancing algorithm by Knight and Ruiz [61] to

normalize their high-resolution Hi-C datasets sequenced

using billions of reads. Development of scalable and

memory-efficient tools for normalizing high-resolution

Hi-C contact maps using matrix balancing is still an

ongoing effort [57].

Joint correction

The strongest determinant of how many contacts are

observed between a pair of regions on the same chromo-

some is the genomic (one-dimensional) distance between

them. This is an unsurprising outcome of polymer
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looping, which dictates that regions adjacent to each other

in one dimension cannot be far away in three-dimensional

space. Although many methods consider this polymer

looping effect later in the Hi-C data analysis [18, 20, 62],

some others jointly ‘normalize’ for this one-dimensional

distance effect during the normalization for the above

mentioned biases. For instance, GDNorm extends the

Poisson regression framework of HiCNorm to include

spatial (three-dimensional) distances in normalization,

which the method achieves by restricting the space of

possible three-dimensional distances using genomic or

one-dimensional distance information [58]. In other work,

Jin et al. [42] adapt Yaffe and Tanay’s method [54] to cor-

rect for both the biases pointed out by the original method

and also for the genomic distance between two loci on the

same chromosome that are at most 2 Mb apart.

Overall, these studies show that normalization is essen-

tial for Hi-C data. Normalized contact maps are visually

smoother than their raw versions, making it easier to spot

potentially interesting contact patterns (Fig. 2a, b). Fur-

thermore, normalization significantly improves the repro-

ducibility between replicates of a Hi-C library created with

two different restriction enzymes [47, 54, 55, 59]. In gen-

eral, the raw and normalized contact counts are highly

correlated for low resolution data. However, this corre-

lation drops with increasing resolution, suggesting that

normalization is even more important for high-resolution

Hi-C datasets (Fig. 2c, d).

Even though several different normalization methods

produce highly similar outputs [47, 55], each normaliza-

tion method requires invoking some debatable assump-

tions. For instance, explicit-factor correction methods

assume that only a predetermined set of biases exist

in the data and that these biases can be corrected

using a single-step visibility correction [54, 55]. In con-

trast, matrix balancing methods aim to eliminate all

biases, known or unknown, through an iterative cor-

rection of visibility that leads to a uniform cover-

age of each fixed-size genomic window. However, the

assumption that ‘equal visibility equals no bias’ can

be problematic when certain regions have mappability

issues or are inherently limited in their ability to form

long-range contacts [63, 64]. To alleviate these issues, a

pre-filtering step for loci with very low visibility and a

post-normalization visual inspection is usually necessary

to avoid occasional artifacts from matrix balancing-based

methods [47, 50].

Aside from these limitations, most current implemen-

tations of the normalization methods discussed here can-

not directly handle high-resolution human Hi-C data

below 10 or 50 kb resolution without using parallel com-

puting or graphics processing units (GPUs), which are

more powerful than standard central processing units

(CPUs) [18, 57].

Extracting significant contacts
A unique aspect of chromatin conformation capture

data is that it enables us to search for long-range

contacts, either between locus pairs that are on the

same chromosome but far from each other (long-

range intra-chromosomal) or on different chromosomes

(inter-chromosomal). Identifying statistically significant

inter-chromosomal contacts is straightforward because,

once biases are eliminated by normalization, in the

absence of any prior information on the pairwise dis-

tances among chromosomes, all possible pairs of inter-

chromosomal loci are expected to interact equally under

the null hypothesis. However, the number of contacts

between two intra-chromosomal loci depends heavily on

the genomic distance between the loci. This dependence is

mainly due to random looping of the DNA rather than for-

mation of specific chromatin loops. Therefore, one needs

to control for this random polymer looping when assign-

ing statistical significance to the observed contact counts.

Below we outline several approaches to significance esti-

mation that take into account the distance dependence of

contact counts.

Observed/expected ratio

One way to account for the distance dependence of con-

tact counts is to bin together all pairs of loci with the same

or similar genomic distances. Earlier Hi-C and 5C pro-

cessing methods used this approach to compute a ratio

[7], a p-value [8] or a z-score [65] for each contact count

with respect to the average number of contacts within

a genomic distance bin. Using a similar approach, more

recent methods create background models of contact

counts that take into account the distance scaling, domain

organization and other biases corrected by the normaliza-

tion methods [30, 62]. These background models are then

used to compute observed/expected ratios that are either

subjected to ad hoc enrichment cutoffs or are transformed

to p-values or z-scores.

Parametric fits

Another approach is to assume that a specific distribution

captures the distance dependence of contact counts and

to perform parameter estimation to find the best fit to the

data. Previously used distributions include power-law [7],

double-exponential [31], and negative binomial [42]. Once

a parametric fit to the data is found, these methods com-

pute either an enrichment score or statistical significance

for each locus pair using their genomic distance and their

contact count.

Nonparametric fits

Instead of assuming a specific distribution, one can infer

the distance-dependence relationship using nonparamet-

ric methods, such as splines, directly from the observed
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contact counts. Compared with parametric fits, nonpara-

metric fits are more general in capturing the distance

dependence, which changes substantially with varying

resolution, genomic distance range, and sequencing depth

[20]. A recent method, Fit-Hi-C, uses smoothing splines

to find an initial fit, refines the initial fit to account for

bona fide (non-random) contacts, and computes con-

fidence estimates using the refined fit while incorpo-

rating biases computed by the matrix balancing-based

normalization methods [20]. The resulting p-values are

subsequently subjected to multiple testing correction.

Figure 3 displays examples of long-range chromatin loops

identified by Fit-Hi-C.

Peak detection

Amore recent study approaches the problem of extracting

significant contacts as a two-dimensional peak detection

problem [18]. The method, called HiCCUPS, computes,

for each locus pair, the enrichment of its contact count

with respect to various neighboring regions. For high-

resolution contactmaps, this enrichment calculationmust

be carried out on the order of 1012 times. To over-

come this computational challenge, in addition to the

CPU implementation, HiCCUPS was also implemented

on GPUs. To overcome the statistical challenge of dealing

with such a large number of hypotheses, HiCCUPS

segregates these hypotheses into families and carries

out multiple testing correction within each hypothesis

family [18].

These methods attempt to distinguish between func-

tional contacts and contacts that are due to random

polymer looping or other confounding factors. Most of

these methods aim to find pairs that interact much more

than expected in the overall data. HiCCUPS, on the other

end, is more stringent and finds only the contacts that

appear as peaks in the contact maps within the surround-

ing region. These contacts usually correspond to precise

anchoring points of highly stable chromatin loops. In

either case, accomplishing the task of confidence esti-

mation has important implications in identifying func-

tional interactions among enhancers and promoters, and

between pairs of CTCF binding sites that form chromatin

loops [11, 14, 18, 20, 65].

Testing three-dimensional colocalization of
functionally associated loci
Another important benefit of having genome-wide

proximity information is that it allows the testing of

hypotheses related to the nuclear localizations of a given

set of loci. The most common scenario is when one

wants to test whether a set of loci (for example, cen-

tromeres, housekeeping genes, or DNA breakpoints)

colocalize beyond ‘expected’ in three dimensions. Early

methods to test whether the colocalization of a set is

statistically significant used the hypergeometric approach

that computes the probability of observing the number of

pairwise interactions within the set among all observed

pairwise interactions [8, 66]. However, Witten and Noble

Fig. 3 Visualization of Hi-C data. An Epigenome Browser snapshot of a 4 Mb region of human chromosome 10. Top track shows Refseq genes. All

other tracks display data from the human lymphoblastoid cell line GM12878. From top to bottom these tracks are: smoothed CTCF signal from

ENCODE [130]; significant contact calls by Fit-Hi-C using 1 kb resolution Hi-C data (only the contacts >50 kb distance and − log(p-value)≤25 are

shown) [20]; arrowhead domain calls at 5 kb resolution [18]; Armatus multiscale domain calls for three different values of the domain-length scaling

factor γ [87]; DI HMM TAD calls at 50 kb resolution [15]; and the heatmap of 10 kb resolution normalized contact counts for GM12878 Hi-C data [18].

The color scale of the heatmap is truncated to the range 20 to 400, with higher contact counts corresponding to a darker color
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subsequently pointed out certain issues with the hyper-

geometric approach and proposed a resampling-based

approach that produces uniformly distributed significance

estimates when randomly generated sets of loci are used

for benchmarking the statistical accuracy [67]. Witten and

Noble revisited the claims made previously using hyper-

geometric tests and demonstrated that some of the sup-

posedly colocalized sets of loci, such as target gene sets

of certain transcription factors [66], are not colocalized

more than expected when the resampling-based approach

is used [67].

One limitation of all the tests described above is

their inability to handle intra-chromosomal contacts. To

address this shortcoming, Paulsen et al. propose a test

that handles intra- and inter-chromosomal interactions,

both separately and jointly [68]. This method relies on

randomly selecting sets of regions that share the same

structural properties as the query set. In addition to

controlling for one-dimensional distance (or lack of it

for inter-chromosomal contacts), Paulsen et al. develop

a stricter null model that also controls for compart-

mental structure and the domain organization along

the chromosomes. These statistical tests, together with

others, are made available through a web-based tool,

HiBrowse [69].

All of the hypergeometric and sampling-based

approaches we have discussed so far perform the sig-

nificance tests using contact counts, and, usually, by

dichotomizing the pairs as ‘close’ or ‘far’ depending

on the contact’s statistical significance. Capurso et al.

suggest discarding this dichotomy by using pairwise

distances from the three-dimensional reconstructions of

chromosomes instead of contact counts [70]. However,

this approach depends on the ability to generate accu-

rate three-dimensional models, which is itself a topic of

ongoing research as we elaborate below.

Whether it is the two-dimensional contact maps or the

three-dimensional reconstructions used for testing spa-

tial colocalization, it is an important task to reveal clus-

tered elements, some of which serve as the hallmarks of

genome organization such as telomeres and centromeres

in yeasts [8, 28, 29, 31], virulence genes in Plasmodium

[16], and heterochromatic islands inArabidopsis [39]. Fur-

ther developments in this line of computational work may

allow de novo identification of significantly colocalized or

dispersed sets of regions.

Identifying domains in Hi-C contact maps
In the genomics literature many types of regulatory

domains have been identified on the basis of specific

epigenetic marks [12, 71–73], DNA replication timing

[19, 21, 74], lamina associations [75, 76], nucleolus asso-

ciations [77], or a joint analysis of some of these factors

[78–83]. All of these domains are defined by specific

patterns of one-dimensional signal tracks. With the avail-

ability of genome-wide Hi-C data, several novel domain

types have been identified that appear as specific patterns

in contact maps. These include open/closed chromatin

compartments identified by eigenvalue decomposition

[7, 47], subcompartments of these open/closed compart-

ments identified by clustering [18], and topologically asso-

ciated domains (TADs) identified as densely interacting

squares on the diagonal of the contact map [15, 84]. TADs

are of particular interest recently, and a variety of methods

have been developed to identify and characterize these

domains. Below we briefly discuss these methods to iden-

tify TADs from Hi-C data. For further discussion of other

domain types, see [63, 85, 86].

Directionality Index Hidden Markov Model (DI HMM)

A TAD creates an imbalance between the upstream and

downstream contacts of a region. This imbalance is an

indicator of whether a region is in the inside, at the

boundary, or far away from a TAD. Dixon et al. quan-

tify this imbalance in a statistic named directionality index

(DI) and use an HMM to determine the underlying bias

state for each locus (upstream, downstream, none) [15].

They then use these HMM state calls to infer TADs

as continuous stretches of downstream bias states fol-

lowed by upstream bias states. A region in between

two TADs is either called a boundary or unorganized

chromatin depending on the region’s length. Other stud-

ies also use directionality bias-based statistics to deter-

mine domain presence and domain coordinates in mitotic

human cells [43] and in fission yeast [32].

Domain borders as peaks of the distance-scaling factor

TADs also create unexpectedly low numbers of contacts

crossing the boundary regions. Sexton et al. use this

property to infer a distance-scaling factor for each restric-

tion fragment, which is high if the fragment insulates its

upstream regions from the downstream, effectively acting

as a much longer fragment than its actual size [30]. The

peaks in these distance-scaling factors then correspond

to boundaries of what they call physical domains for the

Drosophila melanogaster genome.

Multiscale and hierarchical domains

It is clear from visual inspection of contact heatmaps that

there are sub-structures within TADs that may also cor-

respond to hierarchical units of gene regulation or other

functions. Filippova et al. propose a dynamic program-

ming method called ‘Armatus’ to identify optimal and

near-optimal domains for a given resolution [87]. From

the resulting sets of resolution-specific domains, they

then identify a consensus set that consists of the domains

that are consistent across different resolutions. Both the

resolution-specific domains and the consensus domains
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are then used as TAD calls for downstream analysis.

Another dynamic programming method, HiCseg, com-

putes the optimal segmentation into TADs via amaximum

likelihood formulation [88]. However, HiCseg does not

readily allow identification of multiscale or hierarchical

domains.

Arrowhead algorithm

To make use of very high resolution contact maps, Rao

et al. propose a heuristic method to find the corners of

domains in the human and mouse genomes that are 4-5

times smaller than previously identified TADs [18]. This

method first transforms a contact map to an arrowhead

matrix in which each entry Ai,i+d corresponds to the

directionality bias of locus i at only the exact distance d.

This matrix results in arrowhead shaped patterns at the

corners of domains. Rao et al. then heuristically search

for these arrowhead patterns using criteria derived from

known TADs.

Figure 3 plots the TAD calls from three of the above

methods for an approximately 1 Mb locus on chromo-

some 10 using Hi-C data for the human GM12878 cell

line. Some of these methods find substantially differ-

ent numbers of TADs with different length distributions

compared to the others. This difference is partly due to

the differences in the resolutions of the contact maps

used or the length of the flanking regions considered

in the algorithms (see [18] and [87] for comparisons of

Arrowhead algorithm and Armatus with DI HMM). How-

ever, these differences also indicate that using a single set

of non-overlapping domains may be a simplification, both

because of the potential heterogeneity of domain organi-

zation in the underlying cell population and because of

the hierarchical and dynamic organization of chromatin

that allows efficient folding and unfolding. For further

information on why TAD organization and its changes

are important in gene regulation and genome function,

see [89–91].

Three-dimensional modeling of chromatin
structure
In the absence of chromatin conformation capture data,

three-dimensional modeling of genome architecture can

be carried out using polymer physics simulations that rely

on a limited number of physical assumptions and param-

eters. Rosa et al. refer to such polymer models as ‘direct’

models of genome architecture, because they do not rely

on indirect measurements of chromatin structure such as

Hi-C [92]. These polymer approaches represent chromo-

somes as self-avoiding polymer chains that move within

the constrained nuclear space. Some of these approaches

use Hi-C data to validate their inferred structures for

well studied genomes such as budding yeast [93–97].

Detailed discussions of the various polymer models in

the context of genome architecture, which is beyond the

scope of this review, can be found in several review

articles [90, 92, 98].

With the availability of genome-wide contact maps,

the reconstruction of the three-dimensional chromatin

structure that underlies the observed contacts became

a fundamental problem. These observed contact maps

made it possible to generate detailed three-dimensional

models using the contact counts as soft ‘restraints’ (in

contrast to hard constraints) on the relative locations of

loci with respect to each other. Fittingly, these models are

referred to as restraint-basedmodels [90, 99]. Other terms

used for these models include probabilistic, statistical,

or ‘inverse’ models, in contrast to polymer-based direct

models [92]. These restraint-based models can be fur-

ther divided into two groups. The first group of methods

aim to find a consensus three-dimensional conformation

that best describes the observed Hi-C data. However, the

standard Hi-C protocol pools millions of cells for library

creation (bulk); therefore, the readout represents a mix-

ture of potentially different conformations. To account for

this cellular heterogeneity, the second group of methods,

instead infer an ensemble of structures from the bulk Hi-C

data. Both of these approaches, consensus and ensem-

ble, have given rise to reconstruction methods that have

been reviewed previously [50, 90, 92, 98–102] and are also

briefly outlined below.

Consensus methods

One of the most commonly used methods to infer

consensus three-dimensional models from conforma-

tion capture data is multi-dimensional scaling (MDS)

[8, 16, 31, 101, 103–106]. MDS is a classical statistical

method that, given all pairwise distances between a set of

objects, aims to find an N-dimensional embedding such

that the pairwise distances are preserved as well as possi-

ble [107]. In this context, objects are beads that represent

chunks of DNA, and pairwise distances are computed

by applying a transfer function on contact counts.

Several studies use metric MDS augmented with addi-

tional constraints on the polymer characteristics, hence

intersecting with polymer models, or on the genome

organization (such as clustering of centromeres) to find

a consensus structure [8, 16, 31]. With or without these

additional constraints, the MDS formulation gives rise to

a non-convex optimization problem requiring heuristic

optimization methods such as gradient descent, conju-

gate gradient, and simulated annealing. A recent method

applies a semidefinite programming (SDP) approach to

three-dimensional genome reconstruction [103]. This

method uses a relaxation of the solution space of each

bead from R
3 to R

n, where n is the number of beads,

to transform certain MDS formulations into convex

semidefinite programs. The SDP approach guarantees
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perfect three-dimensional reconstruction if the input

pairwise distances are noise-free. However, a major draw-

back of SDP, as opposed to classical MDS-based solutions,

is computational expense on datasets with realistic res-

olutions. Furthermore, all MDS-based methods depend

on a transfer function that converts contact counts to

pairwise spatial distances, and the methods are very sen-

sitive to the selection of this transfer function [101, 103].

Several methods use non-metric MDS that avoids any

assumptions about the transfer function and calculates

the count-to-distance relationship through isotonic

regression [101, 104]

Ensemble methods

For inference of an ensemble of three-dimensional mod-

els, several probabilistic methods have been proposed

that produce a set of structures representative of the

observed contact data. These methods can be further

divided into two depending on whether they aim to find

multiple solutions, each of which fits the bulk Hi-C data,

or to find a ‘true’ ensemble that, in aggregate, optimally

describes the bulk data. The first case is similar to the

consensus approach, but instead of inferring one locally

optimal model, the optimization is run with multiple ini-

tializations resulting in multiple different models [105].

The variability among these models depends heavily on

the problem structure and on the random initializations,

making it difficult to link the resulting models to the

cellular variability of chromatin structure in the bulk

sample. Rousseau et al. develop a similar method that

uses Markov Chain Monte Carlo (MCMC) sampling to

approximate the posterior probability of each model given

the data from a large number of models that are inde-

pendent of random initialization [108]. Giorgetti et al.

use a very similar MCMC-based approach for ensem-

ble modeling of mouse chromosomes [109]. The second

case is more challenging because it requires coordinated

inference of a large number of models. Hu et al. use

MCMC with a mixture model component to determine

whether a mixture of structures better explain the confor-

mation of a locus than a single consensus structure [110].

Kalhor et al., on the other hand, develop a method that

truly mimics the bulk nature of the Hi-C experiment [9].

They simultaneously infer, in a single optimization, thou-

sands of structures, each of which are fully consistent with

the constraints derived from the bulk data and which,

in aggregate, best explain the bulk contact counts. Many

other ensemble methods have been developed in the past

3 years [102, 111, 112] to characterize the cell-to-cell

variability of chromatin structure in the bulk Hi-C data.

Furthermore, Nagano et al. demonstrate the feasibility of

generating single-cell Hi-C data, leading to a more direct

characterization and modeling of the cellular variation of

chromosome structure [24].

Visualization of Hi-C data
Visualization of genomics data is crucial for both hypothe-

sis generation and detection of potential artifacts. Several

genome and epigenome browsers are used heavily for

visualizing thousands of data tracks for human, mouse

and other organisms [113–116]. However, these browsers

are mainly designed for visualization of one-dimensional

signals and are not easily extensible to visualizing

two-dimensional Hi-C or any conformation capture data.

Furthermore, as we discussed above, Hi-C data can be

used for three-dimensional modeling, which requires

tools not only for two-dimensional but also for three-

dimensional visualization.

To address this need, several existing tools, such as

the WashU Epigenome Browser, now allow browsing of

long-range contact data [117]. Figure 3 shows a snapshot

from this browser in which one-dimensional data tracks

are overlaid with contact information from Hi-C data as

either long-range arcs or rotated heatmaps. Certain one-

dimensional aspects of Hi-C data, such as the total contact

count per locus, principal components, directionality of

contact preference, and topological domain boundaries,

can also be overlaid with other data. Another visualiza-

tion tool, the Hi-C Data Browser [118], uses the UCSC

Genome Browser [113] to allow simultaneous viewing

of rotated Hi-C heatmaps and UCSC tracks. A more

recent desktop application, Juicebox, allows users to view

heatmaps of multiple human and mouse Hi-C datasets

together with other features such as domain calls, peak

calls fromHiCCUPS, and CTCF binding sites [18]. Several

tools are currently under development for visualiza-

tion of three-dimensional models of chromatin, including

Genome3D [119] and TADkit [120].

Outlook
We have discussed here the major steps in analyzing Hi-

C datasets and outlined currently available computational

tools and methods to perform each step. Although the

diversity of available methods provides alternative ways

to explore Hi-C data, it is becoming clear that converg-

ing to a common set of tools will be useful to compare

and consolidate results from the increasing number of

publications. We also believe that reaching a similar con-

sensus on the quality control metrics and the terminol-

ogy used for Hi-C data will be beneficial for the field.

For instance, the term ‘normalization’ may refer to the

correction of sequencing-related factors in Hi-C contact

counts [18, 47] or to the correction of genomic distance

effect [62, 121]. Similarly, multiple different terms, such as

TADs [15, 84], physical domains [30], and loop domains

[18], may refer to a single type of pattern observed in

contact maps.

On the other hand, this diverse set of computational

methods falls short of fully exploiting the power of
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Hi-C data. For instance, very few tools perform

comparative analysis, visually or statistically, of two

Hi-C contact maps [59, 62, 69, 122], and none of these

tools allow joint analysis of more than two datasets

that come from multiple time points, conditions, or cell

types. Also, many of the existing methods, specifically

the three-dimensional reconstruction algorithms, do not

scale to high-resolution Hi-C data from large genomes

such as human and mouse. Deconvolution of Hi-C

data from a large number of cells into subpopulations

with similar chromatin organizations and estimation

of the density of each subpopulation is still largely

unexplored [123, 124]. Similarly, integration of two-

dimensional Hi-C data or three-dimensional chromatin

models with the vast quantity of available one-

dimensional datasets, such as replication timing, histone

modifications, protein binding and gene expression, is

also understudied. One study that integrates Hi-C data

with many types of genomics and epigenomics data tracks

uses a technique called graph-based regularization (GBR)

to perform semi-automated genome annotation [86]. This

study encouragingly shows that the integration of Hi-C

data improves the annotation quality and allows identi-

fication of novel domain types. However, GBR assumes

that regions that are close in three dimensions should

be assigned the same annotation label, which may only

makes sense for large-scale domain annotations (greater

than approximately 100 kb). Another method integrates

low resolution Hi-C data (1 Mb) with transcription-factor

binding, histone modification and DNase hypersensi-

tivity information and identifies 12 different clusters of

interacting loci that fall into two distinct chromatin link-

ages (co-active and co-repressive) [125]. Most recently,

Chen et al. present a unified four-dimensional analysis

framework (three space plus one time dimension) that

uses adaptive resolution contact maps to perform gene-

level analysis [44]. They use this framework to interrogate

the dynamic relationship between genome architecture

and gene expression of primary human fibroblasts over

a 56-hour time course. Concurrent advances in such

computational integration efforts and in experimental

data generation have the potential to transform our

understanding of the structure-function relationship and

help translational biomedical research. Several intriguing

studies suggest that alterations in chromatin conforma-

tion and in gene regulation are tightly linked in cancer

[22, 23, 126, 127], cellular differentiation [128], and

development [129].

Other challenges in the field that require partly

computational and partly experimental advances are:

(i) characterizing the cell-to-cell variability of chromatin

structure using large numbers of single cells, (ii) inferring

haplotype-specific contact maps and three-dimensional

chromosome structures, and (iii) distinguishing direct

DNA-DNA contacts between two loci from indirect,

bystander, or protein-mediated interactions. Recent

advances in technology development suggest that we

are not far away from overcoming the experimental

bottlenecks surrounding the above-mentioned challenges

[17, 18, 24]. Therefore, it is essential to forge ahead with

the development of computational methods that are both

theoretically sound and practically scalable, in preparation

data.
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