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Abstract

We present a detailed statistical analysis of a 2-hour long em-

pirical sample of VBR video. The sample was obtained by

applying a simple intraframe video compression code to an

action movie. The main findings of our analysis are (1) the

tail behavior of the marginal bandwidth distribution can be

accurately described using “heavy-tailed” distributions (e.g.,

Pareto); (2) the autocorrelation of the VBR video sequence

decays hyperbolically (equivalent to long-range dependence)

and can be modeled using self-similar processes. We com-

bine our findings in a new (non-Markovian) source model

for VBR video and present an algorithm for generating syn-

thetic traffic. Trace-driven simulations show that statistical

multiplexing results in significant bandwidth efficiency even

when long-range dependence is present. Simulations of our

source model show long-range dependence and heavy-tailed

marginals to be important components which are not ac-

counted for in currently used VBR video traffic models.

1 Introduction

Packet switched communications technology has advanced sig-

nificantly in the past decade, most notably in local area net-

works, the Intemet and ATM technology. There are two great

advantages to packet switching. One is that the bandwidth of a

circuit is not restricted to a small set of allowed rates. The other

is the support of variable bit rate (VBR) connections, which

permits efficient statistical multiplexing of bursty traffic such

as computer data. Video coders are also variable rate sources;

however, the traffic is generally shaped and coded to accom-

modate the constant bit rate (CBR) channel of circuit-switched

networks. Forcing the transmission rate to be constant results

in delay, wasted bandwidth, and modulation of the video qual-

it y [ORTE93]. The availability y of packet networks raises the

question of whether real-time services (especially video due

to its high bandwidth) can be improved in both efficiency and

quality through variable rate transport.

To ensure a consistent and desirable quality of service (QOS)

for a VBR video connection, the network must correctly
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allocate and regulate bandwidth assigned to the service. Short

periods of congestion maybe handled gracefully through the

use of prioritization (layered coding) [PVW9 1], congestion no-

tification [GARR93], and intelligent scheduling algorithms at

the switch [CLAR92]. However, good design and analysis of

a network requires an understanding of the traffic itself. This

paper presents a long trace of VBR video with statistical analy-

ses and simulation results which address issues of both source

modeling and network performance.

Modeling of VBR video traffic is difficult, due to both the

complexity of the video bandwidth trace as a stochastic pro-

cess, and the problem of obtaining empirical data. To generate

the present trace required 6 weeks of CPU time (in late 1990),

which was arguably on the edge of practical computability.

Traditionally, video coding algorithms have been designed and

tested using short video sequences of 5–20 seconds that repre-

sent difficult scenes. As processor speed improves, we hope

to see the use of long test sequences become standard practice

for all video work.

In this study, we wish to develop an intuition about the

bandwidth process of a VBR video coder. The precise qual-

ity level, picture format, and code details are not important.

The distinction between intraframe and interframe coding is

significant, however. Greater compression, burstiness and

much stronger dependence on motion result from interframe

coding, i.e., coding frame differences or use of motion pre-

diction/compensation. Our main results do seem to extend

to interframe (MPEG) video as well [GARR93a]. (See also

[PANC94] for analysis of an MPEG VBR video trace.)

The next section describes the coding method and some in-

teresting characteristics of the time series. Section 3 describes

the basic statistics of the trace such as bandwidth distribution,

mean, variance, burstiness, autocorrelation, and Fourier spec-

trum. These measures are common for traditional models. We

examine the marginal distribution of the video bandwidth in

detail, and suggest a model with a hyperbolically decaying

tail. We measure the degree of long-range dependence, which

is evident in the trace, but is not captured by standard source

models. This allows us to construct a novel and accurate source

model for VBR video in Section 4. In Section 5, we use the

trace directly to drive network simulations, and explore the

issue of resource allocation for statistically multiplexed video

sources. Simulations using the source model are compared to

those using the trace itself.
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2 Video Code and Time Series

Description

Coding algorithms DCT, Run-length, Huffman

Duration 2 hours

Video frames 171,000

Frame dimensions 480 lines x 504 pels

Pel resolution 8 bits/pel (monochrome)

Frame rate 24 per second

“Slice” rate 30 per frame

Avg. bandwidth 5.34 Mb/s

Avg. compression ratio 8.70

Table 1: Parameters for generating VBR video trace.

Two hours of video material were coded using the movie

“Star Wars” as the source. This represents a realistic full-length

sample of entertainment video with a diverse mixture of mate-

rial ranging from low complexity/motion scenes to those with

very high action. The time series (or trace) of the bandwidth

was measured at both the frame and slice time resolutions.

Table 1 summarizes various statistics of the trace.

To generate such a long trace, we chose a relatively sim-

ple code. Only the luminance component is used, resulting in

monochrome video. The frame is partitioned into blocks of

8 x 8 pels, on which a Discrete Cosine Transform (DCT) is

computed. The DCT coefficients are uniformly quantized into

8 bits and compressed using run-length and Huffman coding.

These algorithms comprise essentially the same coding as the

JPEG standard [WALL91 ]. The quality of our coding is rea-

sonable, except that block boundaries are noticeable in some

cases. We assume that the fine tuning necessary for excellent

visual quality would not change the character of the bandwidth

statistics (for intraframe coding), other than slight shifting or

scaling.
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Figure 1: Time series of entire two-hour VBR video sequence.

The complete trace is shown in Fig. 1. The visible features

here include three unusually high peaks near the center. These

are due to visual special effects containing strong components

of high spatial frequency. The scenes corresponding to these

peaks are the “jump to hyperspace”, a planet explosion, and the

“jump from hyperspace”. Two significant and unusually wide
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Figure 2: Low frequency content of VBR video process.

peaks occur at the very beginning and five minutes from the

end, corresponding to an opening text sequence (42 seconds in

duration), and the “Death Star” explosion (10 seconds). The

low frequency content of the time series, shown in Fig. 2,

is obtained using a moving average filter with window size

of 20,000 frames (about 14 minutes), Note that the apparent

variance of the trace in Fig. 1 follows a pattern similar to the

moving average. This pattern also relates to the storyline of the

film: The action is intense in the introduction, then quite placid

in the second quarter as the protagonist is developed. The pace

picks up as the conflict progresses, pauses slightly and then

builds to a climactic (and bandwidth-rich) finale. Such strong

low frequency content is dramatic and accessible evidence of

long-range dependence.

3 Statistical Analysis

Several basic statistics for the trace are given in Table 2. These

describe distributional properties of the amount of information

generated per frame and per slice. An important traffic de-

scriptor is the burstiness, expressed here as the peak to mean

bandwidth ratio. This measure bounds the statistical multi-

plexing gain (SMG) because, while a single source must be

allocated approximately peak bandwidth, the allocation ap-

proaches the mean bandwidth as the number of combined

sources increases. The remaining analysis divides into two

categories: the marginal (or stationary) distribution of the pro-

cess, and the time-correlation structure.

Measured by:

Time unit, AT

Mean bandwidth, p

Standard deviation, u

Coef. of variation, a/p

Maximum bandwidth

Minimum bandwidth

Peak/mean bandwidth

Frame

41.67

27791

6254

0.23

78459

8622

2.82

926.4 bytes/AT

289.5 bytes/AT

0.31

3668 bytes/AT

257 bytes/AT

3.96

Table 2: Statistics of VBR video trace.
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3.1 Distributional Properties: Heavy ‘Mls
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Figure 3: Bandwidth distribution for five two-minute se-

quences and for the complete trace (bottom right).

Figure 3 compares the distribution of bandwidth per frame

for several two-minute segments of the movie, and the entire

trace. Note that two minutes is a short duration compared to

the complete trace, but very long compared to the amount of

data in the coder or network at one time. Clearly, for periods

that may seem long with respect to a queueing process, the

behavior deviates significantly from the long-term statistical

characterization.
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Figure 4 Log-log graph of complementary cumulative distri-

bution compared to several common models.

To study the tail behavior in detail, it is useful to plot the

complementary cumulative distribution function on a log-log

scale. We compare the data to several standard distributions

[LAW91, JOHN70]. While the Normal, Gamma and Lognor-

mal distributions all have generally bell-shaped density curves

and match the main body of the empirical distribution function

well, Fig. 4 shows that their (right) tails decay more rapidly

than the corresponding tail of the empirical distribution. We

notice that the Gamma curve matches the data best-except

in the extreme tail, that the Normal distribution falls off too

quickly, and that the Lognormal (chosen because it has a “heav-

ier” tail) is too heavy at first, and then falls off too rapidly. The

“heavy-tailed” Pareto distribution (which decays as a power

function rather than some form of exponential) yields a straight

line when plotted on log-log coordinates and matches the tail

behavior of the measured data very well.

We check the left tail behavior (which is not symmetrical to

the right tail) in Fig. 5 and find that the Gamma distribution

1
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Figure 5: Log-log graph of cumulative distribution (left tail)

of data compared to several common models,
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Figure 6 Probability density of trace data compared to

Gamma/Pareto model.

provides an adequate fit for the lower end of the empirical distri-

bution function. As a result, we can closely match the empirical

distribution as a whole with a hybrid Gamma/Pareto distribu-

tion (denoted Fr/p). The probability y densities are compared

in Figure 6. Formulas for the Gamma and Pareto distributions

and further details are given below in Section 4.

3.2 Time Correlation Structure and

Long-Range Dependence

We now examine the time-dependent properties of the trace.

We find strong evidence of long-range dependence (LRD),

which is not accounted for in any of the commonly used

stochastic models for VBR video traffic, and yet has been

found to be ubiquitous in VBR video traces [BERA93], and

may have important effects on performance. See [GARR93a]

for an extensive literature survey of VBR video statistical mea-

surements and models.
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Figure 7: Autocorrelation function for video trace.
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For the frame data, the empirical autocorrelation function

r(n) is shown in Fig. 7, with lag n ranging from O to 10,000

frames (about seven minutes). Notice that the initial part of the

curve can be accurately matched to an exponentially decaying

function, but only up to about 100-300 lags. Beyond that r(n)

decreases slower than exponentially, up to approximately lag

1200. It then adopts a quite erratic behavior with apparent

oscillations on all scales of time. The curve does decay toward

zero, but it does so extremely slowly. An autocorrelation func-

tion generally becomes inaccurate for lag values approaching

the data set size, because the number of data points separated

by that lag becomes small. This is not the cause of the erratic

behavior observed in Fig. 7; there are still 161,000 observa-

tions contributing to the value of T( 10000). The very slowly

decaying autocorrelations are indicative of LRD.

m18 7r14 3K18 Rr2 5n/8 3n/4 7n18 n

Frequency

Figure 8: Frequency spectrum (periodogram) of frame data on

log-linear coordinates.

Figure 8 displays the empirically measured power spectral

density (also called periodogram) for the frame data on log-

linear scale. This illustrates the frequency-domain interpreta-

tion of the observed slowly decaying autocorrelations: for low

frequencies, the frequency spectrum does not seem to approach

zero or a finite limit as is implied by exponentially decaying

autocorrelation coefficients. Instead, the frequency spectrum

observed in Fig. 8 exhibits a power law of the form w – a for low

frequencies which is one definition of long-range dependence.

3.2.1 Long-Range Dependence: Definition and

Implications

Intuitively, long-range dependence, also known as “persis-

tence” or the “Hurst effect,” is the phenomenon of obser-

vations of an empirical record being significantly correlated

to observations that are far removed in time. Formally,

LRD may be captured by two essentially equivalent detirti-

tions: (i) The sum over all lags n of the autocorrelation

coefficients r(n) is infinite, meaning that the autocotrela-

tions r(n) ultimately decay as a hyperbolic function (i.e., as

n ‘P, as n + co, O < ~ < 1) rather than a negative exponen-

tial (i.e., as pn, as n + co, O < p < 1). (ii) The periodogram,

or power spectrum, behaves like w – a for low frequencies, i.e.,

it increases without bound as the frequency w --+ O. When

plotting a time series, LRD manifests itself in the presence of

strong low frequency components, a property which is clearly

visible for our data (see Fig. 1). An LRD process plotted on a

graph of any time scale, appeam to have a dominant periodicity

with a few cycles fitting on the plot. If more data is plotted,

new dominant modes appem [MAND69a].

The increase of apparent amplitude with increased time scale

can be understood intuitively for video, especially movies.

Within each scene there is random movement and variation

of bandwidth. Changes of camera angle can alter the general

level of complexity more than the changes within the scene,

and occur on a longer time scale. Scenes themselves occur

in clusters of similar type as the plot evolves (recall Fig, 2).

On an even longer time scale there are different movies, and

different genres of movies. For each object defined on a larger

time scale, there is a larger variation of behavior.

LRD is quantified by a single parameter, H, after H. E. Hurst

who studied long-term storage in water reservoirs [HURS5 1].

H is related to the rate of decay ~ of the autocorrelation coef-

ficients and, equivalently, to the parameter a that characterizes

the power law behavior of the spectral density around the ori-

gin, We will employ several techniques for estimating H for

our data set.
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Figure 9: Estimation of mean bit rate from partial observations.

95% confidence intervals are shown for mean rate measured

on first n observations.

From a statistical point of view, LRD can have unexpected

and perhaps serious consequences. For example, the accuracy

of a statistical measurement generally depends on having a

large enough sample for the statistic to converge meaningfully.

Confidence intervals (CI) are used widely in performance anal-

ysis to gauge the accuracy of parameter estimates. The con-

ventional CI calculation not only assumes that measurement

errors are Normally distributed, but also that they are i.i.d. For

short-range dependent (SRD) processes (i.e., having an expo-

nentially decreasing autocorrelation fitnction), the correlations

become negligible after a finite and usuatly small lag, and con-

fidence intervals are reasonably accurate. For LRD processes,

however this is not the case. Consider the estimate of the mean

rate of the VBR video trace, taken on the first n observations.

These estimates are shown in Fig. 9 for several values of n,

together with the corresponding 9570 CIS. Although the es-

timates gradually converge, the confidence intervals (derived

under the assumption of i.i.d. or SRD) converge much more

quickly than is warranted, and for most cases, the final mean

value at n = 171000 is not even contained in the interval.
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This disturbing feature will disappear when taking LRD into

account, because the resulting 959Z0CI will be wider and will

converge at a much slower rate.

3.2.2 Stationarity and Self-Similarity

It has often been claimed that VBR video is a non-stationary

process. Fortheoretical stochastic processes thenotionofsta-

tionarity is well defined, However for empirical processes,

non-stationarity may mean that one has simply not yet found a

satisfactory description of the process. For example, a process

can be truly non-stationary if it has an explicit time-dependent

trend, This can be treated by subtracting the trend and then

characterizing the remaining stationary random process. How-

ever, this procedure only works if the underlying cause of the

trend can be identified. It is not useful to remove the very low

frequency component of our data (and model the remainder

as a SRD process), because it is not deterministic, and will

occur differently in another sample.. Long-range dependent

processes provide a convenient theory within the framework

of stationarity that accounts for the observed low-frequency

modulation of the statistics.

The Hurst parameter H implies a certain relationship of

autocomelations over all time scales. (If it were not the same

relation for all time scales, we would need more than one

parameter to describe it !) Thus, the “ideal” LRD process (the

kind that comes out of LRD models having H as the only time-

correlation parameter), is a (second-order) exactly self-similar

process [COX84]. A covariance stationary process X is said

to be (second-order) exactly self-similar if the corresponding

“aggregated” processes X~ml have the same autocorrelation

function as X, for all m > 1, where the processes X(m) are

obtained by averaging the original process X over successive

non-overlapping blocks of size m. (For more formal definitions

of long-range dependence and self-similarity see [LELA93,

BERA93].)

A process which has a hyperbolically decaying autocorrela-

tions can always be approximated using SRD models. This is

equivalent to, and has the problems associated with, approx-

imating a power function by a sum of exponential. For a

specific time scale this may be done accurately, but there is

always a longer time scale where the model breaks down. To

model the behavior over a wide range of time scales at once

requires a large number of parameters.

The present VBR video trace appears to be self-similar over

a large range of time scales. In Fig. 10 we demonstrate this by

comparing three processes formed by aggregating frames over

blocks of size 100,500 and 1000 frames. For an SRD process

(with a reasonable number of parameters) such aggregation

would result in uncorrelated white noise. The graphs in Fig. 10

not only retain significant correlations, but are quite similar in

appearance. At either extreme in time scale we expect this self-

similarity to break down. For short time scales (S 200 frames

w 10 see) the behavior is different from that of the ideally
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Figure 10 Self-similarity of VBR video.

self-similar process, and may be captured by augmenting the

LRD model with SRD techniques such as ARIMA processes,

Markov chains, etc. For this reason, our measurement of H is

taken from approx. 200 frames to the longest time scale for

which we can accurately estimate the behavior. At much larger

time scales we may expect LRD to break down. However, since

it holds over such a wide range of relevant time scales (i.e., 10

seconds to hours) it can be claimed as appropriate for traffic

modeling. The assumption that self-similarity continues to

hold as w + O, then becomes an approximation of the model.

3.2.3 Methods for Estimating H

For an i.i,d. process the variance of the sum of m ob-

servations increases in proportion to the number of points

added, i.e., Var Em Xi = m VarX = mu$. In terms of

the aggregated processes X(m) introduced above, we have

Var(X[m)) = m-lc+. Asymptotically, this property still

holds for SRD processes, i.e., Var(X(mJ ) w m-1& (for m

large). However, for LRD processes the variance of the aggre-

gated series behaves for large m like [COX84],

with O < ,B < 1. The “variance-time plot” is a graphical

method for distinguishing between SRD (~ = 1) and LRD

(O< /? < 1) in a given empirical record. To estimate ,B, which

is related to H by/? = 2 – 2H, we plot the normalized variance

of the aggregated series Var(X(mJ ) la~ as a function of block

size m, on log-log coordinates, yielding/3 as the limiting slope

as m + co. Figure 11 shows that ~ can be consistently

measured over a substantial range of m, yielding an estimate

of H of about 0.78. The slope of the dotted line in Fig. 11 is

@= – 1.0, corresponding to an H-value of 0,5.

Another graphical method for estimating the Hurst param-

eter from a given empirical record is called the “R/S anal-

ysis”. This method has been used to model a wide variety

of geophysical phenomena [MAND69b] and is based on the
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Figure 11: Variance-time plot for VBR video trace.

resealed adjusted range statistics R/S, originally introduced

by H. E. Hurst [HURS5 1]. The heuristic behind the R/S’

statistic is to capture the fluctuations in a given time series

in order to size, for example, a dam so that it neither under-

flow nor overflows given a (finite) empirical record. Formally,

it is calculated as follows. From the sequence of observa-

tions, {XI, XZ, .X~ }, we define a sequence of a_djustedpar-

tial sums, W~ = (XI + X2 + ~~~+ XJ) – jX(n), j =

1,2,3, . . . . n, where X(n) denotes the arithmetic mean of

the first n observations. Normalizing the adjusted range

R(n) = max(O, WI, W2, ...Wn) – min(O, WI, W2, ...Wn) by

the sample standard deviation, S(n) of the observations

Xl, X2, . . . . Xn, we obtain the resealed adjusted range statis-

tic, R(n )/S(n). Hurst showed empirically that for many nat-

urally occurring time series the expected value of R/S asymp-

totically follows a power law [HURS5 1], i.e.,

E [R(n) /S(n)] w nH, as n --+ cm, (2)

with typical H-values of around 0.7. Others have since shown

that (2) holds for short-range dependent processes with H =

0.5 [FELL51, MAND68], and for increment processes of self-

similar models, where 0.5 < H < 1 [MAND79]. When

working with empirical data, a practical implementation of the

R/S analysis has been proposed by [MAND69a] (see also

[MAND79]) and consists of plotting R(n)/S(n) versus n, for

different lags n and for different partitions of the observations.

For our video trace, the resulting data is plotted in a “Pox

diagram of R/S” in Fig. 12. H can be measured ideally as the

asymptotic slope of a straight line. Using the points highlighted

in the figure, the slope is estimated by a simple least squares

regression as H w 0.83. In order to avoid possible distortions

of the R/S analysis due to the presence of a particular shoti-

range dependence structure, we also perform the R/S’ analysis

on a number of aggregated processes X(m). Moreover, the size

of the current data set allows us to investigate the robustness

of these Hurst parameter estimates with respect to different

partitions of the observations (i.e., density of points in vertical

direction) and with respect to the number of lags (i.e., density

of points in the horizontal direction). We find that our estimates

are indeed very robust against these variations in the estimation

procedure. (See Table 3.)
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Figure 12: Pox diagram of R/S for VBR video trace.

While variance-time plots and R/S analysis are graphical

methods that produce a single point estimate of H, techniques

for estimating H based on the asymptotic properties of the

periodogram are known and yield confidence intervals for the

estimated value of H. In particular, for Gaussian processes

Whittle’s approximate maximum likelihood estimator (MLE)

has been studied extensively and has been shown to have many

desirable statistical properties (see [BERA93, GARR93a] and

references therein). In the case at hand, we consider the trans-

formed series, {log(X~ ) }, which typically results in approxi-

mately Normal looking distributions (especially for the corre-

sponding aggregated processes) and exhibits the same H-value

as the original series. In addition, to filter out the influence of

the high frequency components (since in practice, the empirical

process is not exactly self-similm over all time scales), we com-

bine the Whittle estimator with the method of aggregation and

plot (not shown here) the Whittle estimator H(m) with the the

corresponding 95% confidence intervals fitm) + 1.96&fi (~,

(where b~(m) is given by a well known central limit result

for the Whittle estimator) againstam. This procedure suggests

a Hurst parameter estimate of H = 0.8 + 0.088, taken at

m w 700.

As shown in Table 3, the estimates of H from the different

methods mentioned above rdl fall well within the confidence

intervals provided by Whittle’s method. We note that other

types of video generally have different values of H, and it

appears that H can be used as a rough indication of scene

activity. For video conferencing, for example, H tends to be

smaller, typically between 0.60-0.75 [BERA93]. Computer

traffic can be much more active, with measured H-values often

close to unity [LELA93].

4 VBR Video Model Construction and

Traffic Generation

We can now construct a source model for use in computer

simulations that captures two important aspects from our anal-

ysis of the VBR video trace in the previous section a precise

marginal distribution with a heavy tail, and an autocorrelation
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Method

Variance-Time

R/S Analysis

R/S’ Aggregated

R/S with n, M varied

Whittle estimate

H

0.78

0.83

0.78

0.81-0.83

0.8*0.088

Table 3: Estimates of H from all methods.

function with long-range dependence. Whhout both of these

features, the occurrence of and persistence of “bad states” in a

realization will be under-represented, The SRD structure is by

default self-similar to the long-term structure. An additional

set of short-term correlation parameters may be included by

combining this model with an ARMA filter or modulating it

with the state of a Markov chain. The accurate and meaning-

ful modeling of short-term effects, however, is a complicated

problem that we must leave for future work. Even without

explicit SRD components, this model is still quite useful, and

may be sufficiently accurate to represent VBR video traffic.

4.1 Generation of Fractional Noise

Realizations exhibiting long-range dependence may be ob-

tained through a process called j?actional differencing, which

we will motivate briefly. Some stochastic processes, such as

a discrete random walk or Brownian motion, tend to wan-

der far from their origins with high probability. It is usually

easier to describe these processes indirectly in terms of their

increments. The incremental process may be written using

a dijjerencing OpWitOr, Vxk = (Xk – Xk _ 1), which may

be iterated as, V2Xk = (Xk – X~-l) – (X~-l – x~-z) =

Xk – 2Xk-1 + Xk-z, etc. In general,

VnXk = ~ (:)(-l)aX~_i, n= 1,2,3, . . . . (3)

8=0

Just as the factorial function n! is generalized to non-integer

arguments by the Gamma function, we can similarly generalize

Vn as afractional differencing operator,

()
‘d

Vdxk = ~ ~ (–l)*Xk_, – 1/2< d< 1/2 (4)

i =0

where we now interpret the fractional binomial coefficient as,

(): (-1)’ = ‘(-d+i)
r(–d)r(t + 1)’

(5)

This generalization from integer to real functions, gives rise

to the term fractional noise processes. Similarly, the term

fractal is used in the context of self-similar geometric objects

which can be characterized using the notion of a fractional

dimension [MAND83].

Hosking provides an algorithm for generating a long-range

dependent process called fractional ARIMA(O, d, O), where the

zeros indicate there are no autoregressive (AR) and moving

average (MA) parameters specified. The basic equations for

Hosking’s algorithm areas follows (adapted from [HOSK84]).

The process X~ has Gaussian marginals with zero mean

and variance VO, and fractional differencing parameter d =

H – 1/2. The autocorrelation function has an asymptotically

hyperbolic shape, and is determined from d as

d(l+d)(k-l+d)

‘k=(l-d)(2- d)(k- d)’
(6)

X. is chosen from the Normal distribution iV(O, VO). Set

No = O and Do = 1. Then generate n points by iterating

the following for k = 1 . . . n:

k-1

Nk = fk – ~dk-1,~ Pk-j

jnl

Dk = Dk-1 – N:_l/Dk-l

tikk = Nk/Dk

dkj = ~k-l,j – ~kkdk-l,k-j
j=l,

~k = ~~kjxk-j

jzl

?)k = (1 – &k)?&l

(7)

(8)

(9)

,k–1 (lo)

(11)

(12)

Choose each X~ from N(mk, v~). Since each point depends

on every previous point, this algorithm requires o(n2) compu-

tation time. We found that 171,000 points could be generated

in about 10 hours on an current engineering workstation.

4.2 Marginal Distribution Model

Given a realization of the fractional ARIMA(O, d, O) process

{Xh }, we can transform the marginal distribution by mapping

each point as,

Yk = ~;;p(h(xk)) k>o (13)

where FN is the cumulative probability function of the Normal

distribution, and F;~P is the inverse cumulative probability

function of our Gamma/Pareto model. (A similar technique

for distorting the marginals is used where the original process

is distributed Uniformly rather than Normally [JAGE92].)

Frlp requires only three parameters, and is constructed as

follows: The Gamma distribution has the probability density

function,

(14)

The shape and scale parameters, .sand A respectively, maybe

determined conveniently from the mean and variance.
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The Pareto probability density function [JOHN70] is given

by,

.fP(z) = ~ X>k (15)

with a convenient closed-form expression for the cumulative

distribution,

()

a

Fp($) = 1 – : (16)

The two parameters are easily interpreted graphically. The

first, k, is the minimum allowed value of z, and the second, a,

is the slope of the tail on a log-log graph (see Fig. 4). We can

eliminate one of these in the hybrid distribution by matching

the slope and position of the two functions. The (constant)

slope of the Pareto tail in Fig. 4, and the (varying) slope of the

Gamma distribution match at a threshold point denoted zt~.

The complete Gamma/Pareto distribution model can be de-

termined from three parameters, pr, ar, nur, that are estimated

from the empirical trace. PI- and or, are the equivalent mean

and standard deviation of the Gamma portion of the distribu-

tion. For the present trace, it is sufficiently accurate to take the

sample mean and standard deviation, because the heavy tail

contains only 370 of the data. Where the tail is more signifi-

cant, (as with MPEG coding [GARR93a]), these can be esti-

mated either by graphically matching the distribution curves,

or with some more elaborate estimation procedure, such as a

least squares regression taken only on the Gamma part of the

distribution. The value of T?LT is found as the slope of the

straight-line that best fits the Pareto tail. (See [GARR93a] for

further details.)

We have designed and implemented a model for variable

rate video with only four parameters ( PIT, or, and mT for the

marginal distribution, and H for the time correlation). The

realizations were tested and found to agree with the model

parameters, both in marginal distribution and the value of H.

There is an issue here with regard to how well the empirical

distribution will converge to the model. For an LRD process

the convergence is slower than for an SRD process, and this

will certainly affect simulation results. (See discussion below

in Section 5.2.)

To simulate the aggregation of multiple sources, we imple-

mented a convolution of the Gamma/Pareto distribution using

a table of 10,000 points to describe the distributions. Simula-

tion results using this model are given below in Section 5.2.

The empirical autocorrelation of the realization (not shown)

has a slow hyperbolic decay, although it does not (nor should

it) exhibit the erratic behavior evident in Fig, 7. The measured

value of H is not affected by the distortion of the marginal

distribution, as expected.

The (intraframe) trace data exhibits a wide variety of short-

range behaviors, including periods with practically constant

level, This is due to the “scene” structure of the movie, where

the camera shows a scene with little change for a time, and

then switches to another one. It is also common for the camera

to switch between two scenes (e.g., two faces) many times,

resulting in an long period of simple alternation between two

levels, We have not attempted to explicitly model such scene-

dependent structure, and it remains an open question whether

this is necessary, and if so, how to measure and represent the

scenes.

5 Trace-Driven and Model-Based

Simulations

The most important reason for studying the characteristics of

VBR video traffic is to determine what network resources are

necessary to transport the service reliably. Also, any compar-

ison of different methods for providing the service (such as

CBR vs. VBR, or different types of VBR, etc.) must include

an assessment of the resource allocation needed to provide a

given quality of service.

5.1 Trace Driven Simulation

In this section we use a trace driven simulation to examine the

relation between network resource allocation and performance

for intraframe coded video. This is a reasonable alternative to

simulation from a source model because the VBR video trace

is extensive, diverse, and (hopefully) representative. The sim-

ulation also provides a useful tool for evaluating the accuracy

of our source model by directly comparing its behavior to that.-
of the trace.

N
m I

I I m I I

1 I I [

r m I I I I i I

,Q c

Tp

1

Figure 13: System modeled in trace driven simulation.

The simulation measures the performance of a single FIFO

queue with a finite buffer of size Q, and fixed channel capacity,

L’ (Fig. 13). A number of sources, N, are multiplexed to

form the incoming traffic. This is implemented by combining

several copies of the VBR trace that are offset by a random

number of frames. Upon reaching the end of the trace, each

source wraps around to the beginning, so all 171,000 frames

are used once for each. The lag for each copy is chosen to

be at least 1000 frames apart from each of the others. Imng-

range dependence implies that the cross-correlation between

sources may be significant even for such long lags. For N >2

therefore, we choose six different random lag combinations of

the N sources and average the resulting loss rates.

In the simulation, the aggregate traffic is run through the

queue, and the performance is measured as either the overall

cell loss rate (Pr), or the cell loss rate in the worst errored
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second (P(_ wEs ). The simple loss probability is a very gen-

eral measure of quality. However, a viewer’s perception will

be sensitive to loss events that are localized in time, and are

not apparent in the long-term average. The use of Pi– wES

introduces a more sensitive measure.

For our results, we fix a target level of performance and

measure the tradeoff between resources (Q and C) necessary

to achieve the desired loss rate. Our goal is to understand how

the resources are related rather than the absolute quantity of

the resources needed. Given a more accurate or appropriate

performance measure, this approach can be extended quite

naturally.

In the longer presentation of this work [GARR93a], sim-

ulations are compared using both slice and frame data, and

using uniform and random spacing of cells within the slice or

frame. Note that in no case do all the cells of a frame arrive

together, as is sometimes assumed. The instantaneous arrival

of a whole frame would imply that the data is collected in the

coder before being released to the network. This introduces un-

necessary delay. We would expect real coders to be pipelined,

producing cells as soon as they are ready, subject to some very

small buffering, such as a DCT block, macroblock, or a row of

blocks.

i N=20 N.5 N=2 N=l
50

20

10

1 C/N(nomaked m nwirr)

Figure 14 Behavior of statistically multiplexed video sources.

Queueing delay vs. allocated bandwidth per source for several

cases of multiplexed sources and target loss rate.

Figure 14 shows the basic simulation results. The maxi-

mum buffer delay, l’l~ac = Q/( NC) is plotted against the

allocated bandwidth per source, C’/N. These are meaning-

fully normalized measures of Q against C’ (so we will refer to

this plot as a “Q-C curve”). The number of sources is cho-

sen as N = 1,2,5, and 20. Curves are given for loss rates,

~( = O, 10-4, 3 X 10-6 and P/-wE,s = 10-3, 3 X 10-2.

As shown here, the bandwidth requirement is quite insensitive

to the buffer size until the buffer delay is decreased to a few

milliseconds. The ability to trade-off bandwidth for delay im-

proves as the curve becomes less steep for smaller allowed loss

rates. The zero-loss curves have a relatively shallow slope, and

thus abetter tradeoff between Q and C over a wider range. The

difference in C between the curves for P1 = Oand Pi = 10-4

is substantial, especially for a single source. This means that

if the video coding and transport system is designed to tolerate

moderate loss, it will require much less resources than one that

relies on engineering an effectively loss-free channel.

\

Although the QOS is specified in two ways (worst-errored-

second and overall loss rates), all of the curves fall into the same

general family. Note that the two types of curves lie in the same

order for all values of N and C/IV. This test allows us to infer

that the overall loss is a good predictor of worst-errored-second

loss, and is an equivalent specification of QOS, in the sense

that there is a uniform, monotonic mapping from one to the

other. It may often be the case that the overall packet loss rate

hides information and is not a good indicator of user-perceived

performance. By comparing Q-C curves for two performance

measures we can develop a reasonably rigorous understanding

of the equivalence of performance measures. This is useful

when the value of one measure is in question, but a preferable

measure is more difficult to implement (as is the case here).

All of these Q-C curves demonstrate a very strong “knee”.

This transition represents a natural operating point for the sys-

tem, because at all other points, one of the resources is very

sensitive to a slight change in the other. The problem of pin-

pointing the knee in the curve can be deceptive, and is analysed

in detail in [GARR93a]. Given this point for each curve, how-

ever, we can examine C as a function of N.

I
5

Figure 15: Required capacity

sources multiplexed. Buffers

msec.

10 15 20

N

allocation against number of

are allocated for T“ac = 2

In Fig. 15 we show the statistical multiplexing gain (SMG)

that is achievable for this type of VBR video coding. The

allocated bandwidth per source is shown against the number

of sources for several values of acceptable loss rate (including

zero). The capacity is very close to the peak rate for one source,

and drops to very close to the mean rate for 20 sources. With

5 sources we have realized 72% of the possible gain, which is

the difference between the peak and mean rates. (This is the

average over the five curves, which are all within 4?Z0of this

figure.)

For very small loss rates in Figs. 15, 14, we find two or

three curves which are very close and sometimes cross, e.g.

for PI = O, N = 2. These represent an operating region on

the threshold between zero and non-zero observed loss, Here,

the resources are sufficient to avoid loss, or suffer loss only in

the most extreme peaks in traffic. This indicates that it may be

impossible in real traffic situations, to distinguish between the
IZ 10–9 or 1()-6, because the differencescases of PI = O, 10– , ,

in allocated resources are negligible.
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5.2 Simulation of VBR Video Source Model

This simulator was used to evaluate the VBR video source

model developed in Section 4. We compare the full model to

the trace driven simulation results for N = 1,2,5,20. We also

check two variations which include only one of the two im-

portant features (the heavy-tailed distribution and long-range

dependence). The Q-C curve provides a sort of “engineering

test” of the model because the results are directly related to the

network quality of service and resource allocation.

The Q-C curves shown Fig. 16 compare the trace to the

models. Although we see the same general shape, there is

a significant offset in capacity between the trace and model

driven simulations. The full model performs consistently better

than the two variations, indicating that both the Pareto tail

and the high value of H are important components. As N

increases, the marginals in all cases become more Gaussian and

the special short-range time correlation effects (which account

for some of the difference) are randomized. The agreement

improves with N, however the distinction between the three

models also diminishes.

We did find an indication that the model could, in fact, be

much more accurate than these curves indicate. A comparison

of the marginal distribution of the realizations show that the

model does not hold the Pareto tail, but that it decays too rapidly

for very high values of frame bandwidth. By slightly perturb-

ing the parameters of the Gaussian to Gamma/Pareto mapping

table, we were able to get somewhat better distribution agree-

ment. This resulted in better agreement for T~o~ s 2 msec

(N = 1). This illustrates an important open problem for LRD

processes. Without a good theory of confidence intervals, it

is impossible to know how well the extreme tail of an empiri-

cally generated trace will reflect the modeled tail shape. This

discrepancy can be exaggerated when measuring simulation

results which may be very sensitive to rare occurrences.

5.3 Quality of Service
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The choice of a performance measure is central to system de-

sign, as well as modeling and performance evaluation. If we

expect to make and keep guarantees of quality of service, the

specification of the QOS has to be meaningfully associated

with the traffic description, resource allocation, etc. The dis-

crepancy between the QOS indicated by objective measures

such as R and that perceived by the end user represents an

important weakness in our ability to produce well-designed

systems.

The overall expected loss rate captures no information about

the correlation of losses, and since we have found Pi_ WE,9 to

follow Pi, it appears not to be an improvement. To illustrate the Figure 16: Comparison of simulations using VBR video trace

problem of correlated loss, consider the two traces of Fig. 17. data, fractional ARIMA model (with Gaussian marginal),

Here a window of 1000 frames is used to measure the running- fractional ARIMA model with transformed Gamma/Pareto

average packet lost rate for one and twenty sources. The marginal distribution, and an i.i.d. process with Gamma/Pareto

buffer delay is chosen at T~am = 2 msec for both, and the m~gin~s. (PJ = O for ~1 cases.)

278



—————————+———— —_N_=j _ _ _ 1-

20WU mlnm 1000oo 14Gixm 171m3

Time (fmmes)

.7 L N=201————————— .—— ——T— ——— ——A–

2Gfnh2 60W IGtx21m 141nnm 17101m

Time (frames)

Figure 17: Error processes resulting from simulation of VBR

video trace over the full two-hour interval for A’ = 1, N = 20

with PF = 10–3 in each case.

channel capacity is adjusted to give each an overall loss rate of

Pi = 10-3. (Since these are given on log scale, the apparent

area under each curve is not meaningful.) Using FI as a QOS

measure, both cases have the same quality.

The question of which error process is better cannot be deter-

mined a priori even from the time-dependent loss rate shown.

A viewer’s perception will have a non-linear threshold effect,

which is not captured by an additive measure like PI. A large

number of error events may be tolerable if they are always

below the threshold of perception (or some measure of annoy-

ance). Conversely, once a error crosses the threshold, it may

not matter how severe it is. It seems reasonable to assume that

these two traces would be perceived differently by a viewer,

indicating that Fl does not sufficiently capture the QOS. Also,

if packet loss degradations were concerded by using “layered”

coding with a priority queueing discipline, then the QOS mea-

sure would have to account for this appropriately.

6 Conclusions

We have investigated the statistical properties of the stochastic

traffic process generated by applying an intraframe variable

rate compression code to a full-length movie. The interest-

ing characteristics, which are not well captured by common

analytic source models include a long-range dependent time

correlation structure, and a heavy-tailed marginal distribution

of the information content per time interval.

The trace itself can be used as a source model for this type of

VBR video traffic through trace-driven simulation. Although

the present dataset was generated by fixing the quantizer step

size, it is probably very close to what a more sophisticated

intraframe coder would produce. A video coder designed and

optimized for VBR packet transport would vary the quantizer,

not so much to avoid buffer overflow, but to approximate a con-

stant quality picture. This results in a slightly higher degree of

burstiness, compared to constant quantization [ORTE93]. A

few extremely high peaks exist in the data, which are problem-

atic for the network. We recommend that a realistic VBR coder

should clip such peaks, rather than send them into the network.

It will be much better trade-off for the coder to optimize its use

of the available bandwidth and degrade the qualit y slightly, than

for the network to accommodate such exceptional bursts. A

realistic packet video coder will use layered coding[GARR93],

which is not included here. The present trace, however should

be a good prediction of the total information content, since the

layering overhead is small.

The demonstration of long-range dependence in this trace,

as well as in computer communications traffic [LELA93], has

strong ramifications for the theory and practice of traffic mod-

eling and performance analysis. The use of SRD models when

inappropriate, will result in overly optimistic estimates of per-

formance, insufficient allocation of resources and difficulty in

achieving the quality of service expected by network users. Al-

though long-range dependence exists with a significantly high

value of H, the statistical treatment of the traffic and resource

allocation is still possible. The statistics do converge, albeit

slower than for i.i.d. data. Multiplexed sources are statistically

better behaved than single sources, although the heavy tail of

the marginals will converge to Normality only very slowly.

The value of H is not reduced with traffic aggregation (due to

the self-similar nature of the traffic). LRD is a relation of the

frequency components of the process, not the distribution of

bandwidth requirements. If the marginal distribution is (rel-

atively) compressed because Cu = cr/IA + O as N ~ co,

then the traffic, for high N, is confined within narrower (sta-

tistical) bounds. The behavior within those bounds continues

to be long-range dependent with parameter H. In the range

where u/fl << p, or for heavy tails, when the quantile of

interest is close to the mean, then the traffic is, for all purposes,

quite smooth regardless of H. Thus, H is necessary for char-

acterizing burstiness, but not sufficient. All four parameters

of our model (at least) are necessary to describe traffic which

has a heavy marginal tail and LRD. (Note, that these remarks

are only valid where the central limit theorem holds, i.e., a is

finite, For some cases, where a = cm is a reasonable model

[LELA93], the tail behavior never converges to Normality.)

An obvious extension of this work will be to analyse more

movies of the same and different types to determine the con-

sistency and generality of these results. Many more details

and related ideas are provided in a longer version of this work

[GARR93a]. This VBR dataset is available via anonymous

ftp. The ftp site is thumper.bellcore.tom, under directory,

vbr.video.trace.
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