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Analysis of 1:1 Matched Cohort Studies
and Twin Studies, with Binary Exposures
and Binary Outcomes
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Abstract. To improve confounder adjustments, observational studies are of-
ten matched on potential confounders. While matched case-control studies
are common and well covered in the literature, our focus here is on matched
cohort studies, which are less common and sparsely discussed in the lit-
erature. Matched data also arise naturally in twin studies, as a cohort of
exposure–discordant twins can be viewed as being matched on a large num-
ber of potential confounders. The analysis of twin studies will be given spe-
cial attention. We give an overview of various analysis methods for matched
cohort studies with binary exposures and binary outcomes. In particular, our
aim is to answer the following questions: (1) What are the target parameters
in the common analysis methods? (2) What are the underlying assumptions
in these methods? (3) How do the methods compare in terms of statistical
power?
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1. INTRODUCTION

A common goal of epidemiological research is to
estimate the causal effect of a particular exposure on
a particular outcome. The common tool is an obser-
vational study, utilizing, for example, hospital data,
cohort data or health register data. In observational
studies, the exposure-outcome association is invariably
confounded by factors that induce spurious (i.e., non-
causal) associations. For example, age may confound
an exposure-outcome association if older people are
more often exposed and more likely to develop the out-
come. Without adjustment for age, that is, if the con-
founding influence by age is not accounted for in the
analysis, there may be an association of exposure and
outcome, even in the absence of a causal effect. Hence,
the exposure-outcome association cannot, in general,
be given a causal interpretation, unless all confounders
are properly adjusted for.

There are several strategies to adjust for potential
confounders in the analysis, for example, stratifica-
tion or regression modeling. Essentially, these meth-
ods solve the problem of confounding by comparing
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the exposed and unexposed within levels of the con-
founders, thus balancing the confounders across lev-
els of the exposure and comparing “like with like.” If
there is a strong association between the confounders
and the exposure, or between the confounders and the
outcome, these strategies are often inefficient. In par-
ticular, some strata may contain few exposed subjects
or few cases (i.e., subjects that developed the outcome);
the lack of balance may lead to unstable estimates for
these strata.

One common method to increase the efficiency is
to match the study on potential confounders. For ex-
ample, matched case-control studies are constructed so
that for each case, a fixed number of controls are se-
lected, having the same confounder levels as the case.
When each case is matched to one control, we say
that the study is 1:1 matched. In case-control stud-
ies, matching forces the ratio of cases to controls to
be constant across all strata of the matched factors,
which implies that the association between the con-
founders and the outcome is broken. Matched case-
control studies are commonplace, and well covered in
the literature (e.g., Breslow and Day, 1980; Jewell,
2004; Woodward, 2005). A matched cohort study can
be constructed in a similar fashion; for each exposed
subject, a fixed number of unexposed subjects are se-
lected, having the same confounder levels as the ex-
posed. In cohort studies, matching forces the ratio of
exposed to unexposed to be constant across all strata
of the matched factors, which implies that the asso-
ciation between the confounders and the exposure is
broken. Matched cohort studies are relatively rare, and
the literature is sparse and typically rather brief (e.g.,
Cummings et al., 2003). The reason, we believe, is
mainly due to available data sources. Matched cohort
studies are suitable for situations where a researcher
has access to large population data sources with expo-
sure information.

Matched data also arise naturally in twin studies. By
nature, a large number of potential confounders are
shared (i.e., having constant levels) within each twin
pair, for example, genetic factors, maternal uterine en-
vironment, gestational age, etc. It follows that a cohort
of exposure–discordant twin pairs (i.e., pairs in which
one of the twins is exposed, and the other twin is un-
exposed) can be viewed as being 1:1 matched on all
shared confounders. In such a cohort there is no as-
sociation between the shared confounders and the ex-
posure. An attractive feature of twin studies is that
the shared confounders often include factors which are
normally very difficult to match on, or even to measure.

For example, monozygotic twins have identical genes
and can thus can be viewed as being matched on the
whole genome. However, a twin study is not simply
a special case of a regular 1:1 matched cohort study;
whereas the latter only contains exposure–discordant
pairs, the former also contains pairs which are concor-
dant in the exposure. Because of their unique and at-
tractive properties, twin studies will be given special
attention in this paper.

The aim of this paper is to give a detailed overview of
different analysis methods for matched cohort studies
with binary exposures and binary outcomes. In partic-
ular, our aim is to answer the following questions: (1)
What are the target parameters in the common analy-
sis methods? (2) What are the underlying assumptions
in these methods? (3) How do the methods compare in
terms of statistical power?

We illustrate the methods with two examples. The
first example is a register-based study on the effect
of hysterectomy on the risk for cardiovascular disease
(CVD) in Swedish women (Ingelsson et al., 2010). The
study is matched on birth year, year of hysterectomy
and county of residence at year of hysterectomy, so that
for each hysterectomized woman (exposed), three non-
hysterectomized women at same age and year were se-
lected from the general population. The second study
is a population-based twin study of the association
between fetal growth and childhood asthma (Örtqvist
et al., 2009).

The paper is organized as follows. In Section 2
we review the concepts of marginalization, condi-
tioning and standardization. In Section 3 we define
a matched cohort study. In Section 4 we describe
the most common analysis methods for matched co-
horts. These methods can also be used to analyze the
exposure–discordant pairs in twin studies. In Section 5
we demonstrate how these methods can be adapted
for inclusion of the exposure–concordant pairs in twin
studies as well. In Section 6 we carry out a simula-
tion study. In Section 7 we provide the two illustrating
examples. We will restrict our attention to 1:1 match-
ing, and we will not consider additional covariate ad-
justments. Extensions to other matching schemes and
adjustments for additional covariates are discussed in
Section 8.

2. MARGINALIZATION, CONDITIONING AND
STANDARDIZATION

We first establish the notations and briefly review
the concepts of marginalization, conditioning and stan-
dardization, which are crucial for the understanding of
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matching and confounder adjustment. More thorough
discussions can be found in standard epidemiological
textbooks (e.g., Rothman et al., 2008). Let X denote
the binary exposure of interest (0/1), let Y denote the
binary outcome of interest (0/1) and let Z denote a set
of potential confounders for the association between
X and Y . We use Pr(·) generically for both probabili-
ties (population proportions) and densities, and we use
E(·) for expected value (population average). We use
V1 ⊥ V2|V3 as shorthand for “V1 and V2 conditionally
independent, given V3.” We use (log) odds ratios to
quantify the X–Y association. Other possible options
would be risk differences or risk ratios. There are two
reasons for focusing on odds ratios. First, regression
models for odds ratios can be conveniently fitted with-
out restrictions; see Section 4.1.1. Second, in applied
scenarios, it is often desirable to make results compara-
ble with case control studies, in which only odds ratios
are estimable.

An unadjusted analysis targets the marginal (over Z)
association between X and Y , for example, through the
marginal odds ratio

ORm = Pr(Y = 1|X = 1)Pr(Y = 0|X = 0)

Pr(Y = 0|X = 1)Pr(Y = 1|X = 0)
.

We define ψm = log(ORm). In the presence of con-
founders Z, ORm fails to have a causal interpretation.
In particular, it may differ from 1 in the absence of a
causal effect.

The influence of Z can be eliminated by condition-
ing on Z, as in the conditional odds ratio

ORc(Z) = Pr(Y = 1|X = 1,Z)Pr(Y = 0|X = 0,Z)

Pr(Y = 0|X = 1,Z)Pr(Y = 1|X = 0,Z)
.

The conditional odds ratio ORc(Z) depends, in gen-
eral, on Z. If Z is the only confounder for the X–
Y association, then ORc(Z) can be interpreted as the
conditional causal effect of X on Y , given Z, on the
odds ratio scale. If there are additional confounders,
then ORc(Z) has no causal interpretation.

ORc(Z) is a subpopulation (i.e., Z-specific) effect.
The effect for the whole population can be obtained
through standardization. The standardized probability
of Y = 1 given X = x, is given by

EZ{Pr(Y = 1|X = x,Z)},(1)

where we have used subindex Z to highlight that
the expectation is taken over the marginal distribution
Pr(Z). We emphasize that the expression in (1) is not,
in general, equal to EZ|X=x{Pr(Y = 1|X = x,Z)|X =

x} = Pr(Y = 1|X = x), which is the marginal (unad-
justed) probability of Y = 1, given X = x. If Z is the
only confounder, then EZ{Pr(Y = 1|X = x,Z)} can be
interpreted as the hypothetical (counterfactual) proba-
bility of Y = 1, had everybody attained level X = x

in the source population (Hernán and Robins, 2006).
Pr(Y = 1|X = x,Z) can be standardized to any proper
distribution Pr∗(Z), not necessarily equal to Pr(Z). We
let E∗

Z(V ) denote the expected value of V , where the
expectation is taken over Pr∗(Z). If Z is the only con-
founder, then E∗

Z{Pr(Y = 1|X = x,Z)} can be inter-
preted as the hypothetical (counterfactual) probability
of Y = 1, had everybody attained level X = x in the
fictitious population where Z follows the distribution
Pr∗(Z). A standardized odds ratio is constructed as

ORs

= E{Pr(Y = 1|X = 1,Z)}E{Pr(Y = 0|X = 0,Z)}
E{Pr(Y = 0|X = 1,Z)}E{Pr(Y = 1|X = 0,Z)} .

We define ψs = log(ORs). In (1), Pr(Y = 1|X = x,Z)

is standardized to Pr(Z), that is, the distribution of Z

in the source population. In order to keep the nota-
tion simple, we use ORs and ψs , even if Pr(Z) is re-
placed by Pr∗(Z), and we let it be clear from the con-
text which distribution of Z these parameters are stan-
dardized to. If Z is the only confounder, then ORs can
be interpreted as the causal effect of X on Y in the
source/fictitious population, on the odds ratio scale. We
emphasize that although the numerical values of ORs

and ψs may depend heavily on which distribution of Z

they are standardized to, they are always, by construc-
tion, adjusted for Z.

In general, there is no ordering in the magnitudes of
ORc(Z), and ORs . An interesting special case occurs
when ORc(Z) is constant across levels of Z, that is,

log{ORc(Z)} = ψc.(2)

It can be shown (Neuhaus et al., 1991) that |ψc| ≥ |ψs |.
In general, there is no ordering in the magnitudes

of ORm and ORc(Z), or of ORm and ORs ; confound-
ing by Z can both inflate or deflate the association be-
tween X and Y . There are a few special cases though. If
Y ⊥ Z|X, then Pr(Y = 1|X,Z) = Pr(Y = 1|X) which
implies that ORm = ORc(Z) = ORs for all Z and all
standardization distributions Pr∗(Z). This would hap-
pen if the true causal structure between X, Y and Z is
as in Figure 1. If X ⊥ Z, then Pr(Z|X) = Pr(Z) which
implies that ORm = ORs for the particular distribution
Pr(Z), that is, the distribution of Z in the source pop-
ulation. This would happen if the true causal structure
is as in Figure 2.
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FIG. 1. A causal structure for which Y ⊥ Z|X.

We note that in Figures 1 and 2, Z is not a con-
founder, and ORm can be given a causal interpretation.
Thus, for these scenarios, adjusting for Z is not neces-
sary for causal inference. We further note that the struc-
ture in Figure 2 does not render ORm equal to ORc(Z),
even if ORc(Z) is constant across levels of Z. This is a
consequence of the noncollapsibility of the odds ratio.
For a more thorough discussion on (non)collapsibility
and the special properties of odds ratios, we refer the
reader to Greenland et al. (1999).

3. MATCHED COHORT STUDIES

3.1 Design

A cohort study that is 1:1 matched on Z consists of
n pairs of observations, each pair consisting of one ex-
posed subject (X = 1) and one unexposed subject (X =
0). The pairs are constructed so that the two subjects
within each pair have the same level of confounder Z;
that is, Z may vary between pairs, but not within pairs.
Thus, Z is equally distributed among exposed and un-
exposed in the matched cohort. The outcome Y is as-
sumed to be recorded for each subject. Ignoring Z, the
paired data can be conveniently represented as in Ta-
ble 1. In practice, 1:1 matched pairs are typically con-
structed by first drawing an exposed person from the
whole population, then drawing an unexposed person
with an equal or similar level of confounder Z; we refer
to this sampling scheme as exposure-driven matching.

We note that in twin studies Z is not directly ob-
served, but should be interpreted as all the unobserved
factors that are common within a twin pair.

3.2 Likelihood Construction

Before discussing the various analysis methods, we
construct the likelihood for the observed data. Let

FIG. 2. A causal structure for which X ⊥ Z.

Zi denote the common value of Z for pair i, i ∈
{1,2, . . . , n}. Let Y 0

i and Y 1
i denote the outcome Y for

the unexposed (X = 0) and the exposed (X = 1) sub-
ject in pair i, respectively. The matched data consists
of n i.i.d. observations (Y 0

i , Y 1
i ,Zi). We suppress the

index i when not needed, so that Yx denotes Y for the
subject with X = x, x ∈ (0,1), within an arbitrary pair.
We use Pr(Y = y,X = x,Z = z) to denote the pop-
ulation probability of (Y = y,X = x,Z = z), and we
will use Pr∗(Y 0 = y0, Y 1 = y1,Z = z) to denote the
probability for (Y 0 = y0, Y 1 = y1,Z = z) induced by
the matched sampling scheme. Under exposure-driven
matching, the design implies that

Pr∗(Y x = yx |Z) = Pr(Y = yx |X = x,Z)(3a)

and

Pr∗(Y 0 = y0, Y 1 = y1|Z)
(3b)

= Pr∗(Y 0 = y0|Z)Pr∗(Y 1 = y1|Z).

Equation (3a) “ties” the induced distribution to the
source population distribution, thus allowing for sam-
ples from the former to be used for inference on the
latter. Equation (3b) determines the correlation struc-
ture of the data, which is crucial for correct standard
error computations. In twin studies, (3a) and (3b) do
not necessarily hold (see Section 5), but are assumed
throughout the paper.

The induced marginal distribution of Z is deter-
mined by the type of matching. Under exposure-
driven matching, the induced marginal distribution
of Z equals the source population distribution of Z

among the exposed, that is, Pr∗(Z) = Pr(Z|X = 1).
In twin studies restricted to the exposure–discordant
pairs, we have that Pr∗(Z) = Pr(Z|discordant in X).

When Z is observed (as in regular matched studies),
the likelihood contribution for pair i is

Pr∗(Y 0
i = y0

i , Y 1
i = y1

i ,Zi)

=
1∏

x=0

Pr(Y = yx
i |X = x,Zi)Pr∗(Zi),

so that the likelihood for the whole data set becomes
equal to

n∏
i=1

1∏
x=0

Pr(Y = yx
i |X = x,Zi)Pr∗(Zi).

When Z is unobserved (as in twin studies), the likeli-
hood contribution for pair i is

E∗
Zi

{Pr∗(Y 0
i = y0

i , Y 1
i = y1

i |Zi)}

= E∗
Zi

{ 1∏
x=0

Pr(Y = yx
i |X = x,Zi)

}
,
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TABLE 1
Crude summary of matched 1:1 cohort data

Unexposed pair member (X = 0) Totals

Event (Y = 1) No event (Y = 0)

Exposed pair member (X = 1)
Event (Y = 1) T U T + U

No event (Y = 0) V W V + W

Totals T + V U + W n

so that the the likelihood for the whole data set be-
comes equal to

n∏
i=1

E∗
Zi

{ 1∏
x=0

Pr(Y = yx
i |X = x,Zi)

}
.

We note that marginally (over Z), Y 0 and Y 1 are as-
sociated through the common value of Z; the stronger
conditional association between Y and Z, given X, the
stronger marginal association between Y 0 and Y 1.

4. ANALYSIS METHODS

In this section we describe and compare the most
common analysis methods for matched cohorts. We
emphasize that all these methods can in principle be
used to analyze the exposure–discordant pairs in twin
studies as well. However, the explicit regression model
(Section 4.1) requires Z to be observed, which is typi-
cally not the case in twin studies.

4.1 Regression Model Explicitly Involving Z

A straightforward way to adjust for Z is to fit a re-
gression model for Y , given X and Z, for example,

logit{Pr(Y = 1|X,Z;ψc, γ )} = b(Z;γ ) + ψcX,(4)

where b(Z;γ ) is an explicitly specified parametric
function of Z, typically a linear function γ T Z for
continuous Z. We refer to a regression model for
Y , given X and Z, as “explicit.” Under model (4),
log{ORc(Z)} = ψc, so that the condition in (2) is met.
This restriction is not crucial though; in principle we
can add arbitrary interaction terms between X and any
of the components of Z. Maximum likelihood esti-
mates (MLEs) of (ψc, γ ) are obtained by maximizing
the conditional (given Z) likelihood

n∏
i=1

Pr∗(Y 0
i = y0

i , Y 1
i = y1

i |Zi)

(5)

=
n∏

i=1

1∏
x=0

Pr(Y = yx
i |X = x,Zi;ψc, γ ),

where the equality follows from (3a) and (3b). If (3b)
is violated, then Y 1 and Y 0 are not conditionally in-
dependent, given Z, and the right-hand side of (5) is
not a proper likelihood. However, if (3a) holds (and
model (4) is correct), then each separate term Pr(Y =
yx
i |X = x,Zi;ψc, γ ) in (5) equals the true marginal

(over Y 1−x
i ) likelihood Pr(Y x

i = yx
i |Zi). It follows that

the obtained estimate of ψc is consistent under (3a),
regardless of whether (3b) holds or not.

4.1.1 Disadvantages.

(1) If Z is high dimensional, it may be difficult to
well specify the function b(Z;γ ).

(2) If Z is not directly observed, as in twin studies,
explicit specification of b(Z;γ ) is not possible.

(3) In principle, explicit regression models can be
adapted for risk differences and risk ratios, by using
identity links or the log links, respectively. However,
absolute risks and logarithms thereof are, unlike log
odds, restricted to ranges (0,1) and (0,∞), respec-
tively. Thus, models utilizing identity links or log links
have to be fitted under these restrictions, which can
be rather inconvenient, or they may produce estimates
which are outside the supported ranges.

4.2 Conditional Logistic Regression

Conditional logistic regression mitigates the prob-
lems with an explicit specification of b(Z;γ ). In con-
ditional logistic regression, the function b(Z;γ ) in (4)
is replaced with a scalar pair-specific parameter b:

logit{Pr(Y = 1|X,Z)} = b + ψcX.(6)

Nothing is assumed about b, and thus the risk for model
misspecification in b(Z;γ ) is avoided. A MLE of ψc

is obtained by conditioning on Y 0
i + Y 1

i , for each pair
i, and maximizing the resulting conditional likelihood,
which under (3a) and (3b) is given by

∏
i:y0

i �=y1
i

eψcy
1
i

1 + eψc
.(7)
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Since the conditional likelihood (7) does not involve
b (or Z), it can be used, even if Z is not directly ob-
served, as in twin studies. The MLE of ψc obtained by
maximizing (7) is given by

ψ̂c.clr = log(U/V ),(8)

with standard error s.e.{ψ̂c.clr} = √
U−1 + V −1.

4.2.1 Disadvantages.

(1) The constant odds ratio assumption (2) is crucial
in conditional logistic regression. If an interaction term
is included between b and X in model (6), then b can-
not be eliminated by conditioning arguments. If (2) is
violated, then ψ̂c.clr converges to a weighted average of
the Z-specific odds ratios; see Section 4.4.

(2) ψ̂c.clr is generally inconsistent if (3b) is violated.
There is an important exception. Define the null hy-
pothesis

H0 : (2) holds, with ψc = 0.(9)

In Appendix B we show that ψ̂c.clr converges to 0 under
H0 and (3a), regardless of whether (3b) holds or not.

(3) Conditional logistic regression cannot be used
for other measures of association than the log odds ra-
tio, since for other links than the logit link, b cannot be
eliminated by conditioning arguments.

4.3 Mixed Model

In the mixed model approach, b is assumed to be ran-
dom, with a specified parametric distribution Pr∗(b; θ).
The MLE of (ψc, θ) is obtained by maximizing the
marginal (over b) likelihood

n∏
i=1

E∗
Zi

{Pr∗(Y 0
i = y0

i , Y 1
i = y1

i |Zi)}

(10)

=
n∏

i=1

E∗
bi

[{ 1∏
x=0

Pr(Y = yx
i |X = x, bi;ψc)

}
; θ

]
,

where the equality follows from (3a) and (3b), and
the expectation on the right-hand side is taken over
Pr∗(b; θ). Neuhaus et al. (1994) showed that the mixed
model estimate of ψc is identical to ψ̂c.clr, under mild
conditions. This implies that the two methods are
equally efficient, and that the mixed model is robust
against misspecification of Pr∗(b; θ).

4.3.1 Disadvantages.

(1) The constant odds ratio assumption (2) is crucial
in the mixed model. Neuhaus et al. (1994) showed that
the mixed model is saturated, under mild conditions, so
that an interaction term between b and X would lead to
identifiability problems.

(2) The mixed model estimate of ψc is generally in-
consistent if (3b) is violated.

(3) In principle, the mixed model can be adapted
for risk differences and risk ratios, by using identity
links or the log links, respectively. In practice, these
adaptations require that the model is fitted under re-
strictions, or it may produce estimates outside the sup-
ported ranges.

(4) Explicit maximization of the likelihood in (10)
requires numerical techniques. This makes the method
less transparent and relatively computer-intensive.

4.4 Exposure–Discordant Crude Analysis

The methods described in Sections 4.1–4.3 all target
the conditional odds ratio, ORc(Z). Matched data can
also be used to estimate a standardized odds ratio. Let
nyx denote the number of subjects in the sample with
Y = y and X = x, so that n00 = U + W , n01 = V +
W , n10 = V + T and n11 = U + T . Under (3a) we
have that Pr∗(Y x = yx) = E∗

Z{Pr(Y = yx |X = x,Z)},
that is, Pr∗(Y x = yx) equals the probability of Y = yx

given X = x, standardized to Pr∗(Z). Thus, under (3a)
a consistent estimate of ψs is given by the crude log
odds ratio

ψ̂s.crude = log
(

n11n00

n01n10

)
.(11)

The standard error of ψ̂s.crude (see Appendix A) is
given by√

n−1
11 + n−1

01 + n−1
10 + n−1

00 − 2n
nT − n11n10

n11n00n01n10
.(12)

The first four terms under the square root sign can be
recognized from the usual standard error formula for a
log odds ratio, and the fifth term is an adjustment for
non-i.i.d. observations.

We remind the reader that the interpretation of ψs

depends on what distribution of Z that ψs is standard-
ized to. Under exposure-driven matching, Pr∗(Z) =
Pr(Z|X = 1) so that ψs is standardized to the distribu-
tion of Z among the exposed. In a twin study, Pr∗(Z) =
Pr(Z|discordant in X) so that ψs is standardized to the
distribution of Z among the exposure–discordant pairs.

4.4.1 Advantages. One potential disadvantage of
the exposure–discordant crude analysis is that it esti-
mates a parameter that is rather nonstandard. In the
simple scenario that we consider (i.e., 1:1 matching
and no additional covariate adjustments) the exposure–
discordant crude analysis does not suffer from any of
the other disadvantages listed in Sections 4.1–4.3. The
relative advantages of the exposure–discordant crude
analysis are threefold:
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(1) The exposure–discordant crude analysis relies
on fewer assumptions than the other methods. Specifi-
cally, it does not rely on assumptions (2) and (3b).

(2) The exposure–discordant crude analysis is com-
putationally simple.

(3) In the exposure–discordant crude analysis, the
standardized probabilities Pr∗(Y 0 = 1) and Pr∗(Y 1 =
1) can be estimated separately, and can subsequently be
used to construct any standardized measure of the X–
Y association, for example, risk difference or risk ratio.
For this reason, the exposure–discordant crude analysis
easily extends to nonbinary outcomes as well. For sur-
vival outcomes, for instance, an exposure–discordant
crude analysis can be used to produce standardized
Kaplan–Meier curves.

4.4.2 A closer comparison with conditional logistic
regression. Because ψs and ψc are different parame-
ters, it is not meaningful to compare the methods in
Sections 4.1–4.3 with the exposure–discordant crude
analysis in terms of efficiency of estimates. However,
we can make a meaningful comparison in terms of sta-
tistical power. Define the null hypothesis

H∗
0 : ψs = 0.(13)

It is easy to show that H0 in (9) implies H∗
0, regard-

less of whether (3a) and (3b) hold or not. If both
(3a) and (3b) hold, then a Wald test of H0 is based
on the statistic Tc = ψ̂c.clr/s.e.(ψ̂c.clr). If (3a) holds,
then a Wald test of H∗

0 is based on the statistic Ts =
ψ̂s.crude/s.e.(ψ̂s.crude). In Appendix B we show that Tc

and Ts are asymptotically equal. It immediately fol-
lows that the two Wald tests have the same asymptotic
power, for any fixed alternative.

One potential argument against the exposure–
discordant crude analysis is that it does not inform
us about the exposure effect in the source population.
Under exposure-driven matching (and no confounders
apart from Z), ψs is a causal effect in a fictitious popu-
lation where Z is distributed as among the exposed. In
a twin study restricted to the exposure–discordant pairs
(and no confounders apart from Z), ψs is a causal ef-
fect in a fictitious population where Z is distributed
as among the exposure–discordant pairs. The effect in
these fictitious populations may differ from the effect
in the source population, and it is not always obvious
whether these fictitious population effects are relevant
targets for inference. However, a closer examination
shows that a similar argument can be used against
the methods that target ψc as well, and in particular

against conditional logistic regression. Conditional lo-
gistic regression relies on the constant odds ratio as-
sumption (2). This is a very strong assumption, which
in any real scenario is most likely violated, to some
extent. Regardless of whether (2) holds or not, ψ̂c.clr

converges to

log
{

Pr∗(Y 1 = 1, Y 0 = 0)

Pr∗(Y 0 = 1, Y 1 = 0)

}

= log
[
E∗

Z{Pr∗(Y 1 = 1, Y 0 = 0|Z)}
E∗

Z{Pr∗(Y 0 = 1, Y 1 = 0|Z)}
]

(3a),(3b)= log
[
E∗

Z{Pr(Y = 1|X = 1,Z)Pr(Y = 0|X = 0,Z)}
E∗

Z{Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)}
]

= log[E∗
Z{W(Z)ORc(Z)}],

(14)

where

W(Z)

= Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)

E∗
Z{Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)} .

In (14), the average is taken over Pr∗(Z), that is, the
same distribution of Z as being standardized to in the
exposure–discordant crude analysis. Thus, if (2) is vi-
olated, then conditional logistic regression does not
inform the analyst about exposure effects outside the
fictitious population characterized by Pr∗(Z), to any
wider extent than the exposure–discordant crude analy-
sis. Furthermore, whereas ψs has a clear interpretation
as a population causal effect (when there are no con-
founders except Z), the weighted average in (14) does
not have any such simple interpretation.

An analyst is always at the liberty to assume a priori
that (2) holds. But equally well, the analyst may as-
sume that the effect in the fictitious population, charac-
terized by Pr∗(Z), is equal to the effect in the source
population, characterized by Pr(Z). Neither of these
assumptions is stronger than the other, since neither of
them implies the other. Furthermore, with paired data
and Z being unobserved (as in twin studies), these as-
sumptions are both untestable.

Although our focus is on cohort studies, we end this
section by making a comparison with case control stud-
ies. A matched case control study is designed analo-
gously to a matched cohort study, but the roles of ex-
posure and outcome are “switched” in the sampling
scheme; see Section 1. Thus, in a matched case con-
trol study the crude sample log odds ratio consistently
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estimates the standardized log odds ratio

log
[
E∗

Z{Pr(X = 1|Y = 1,Z)}E∗
Z{Pr(X = 0|Y = 0,Z)}

E∗
Z{Pr(X = 0|Y = 1,Z)}E∗

Z{Pr(X = 1|Y = 0,Z)}
]
,

(15)

where Pr∗(Z) = Pr(Z|Y = 1). In contrast to condi-
tional odds ratios, standardized odds ratios are not
symmetrical. That is, the log odds ratio in (15), in
which X appears to the left of the conditioning sign,
cannot be written as ψs , in which X appears to the
right of the conditioning sign. Hence, the log odds ratio
in (15) has no simple interpretation as a causal effect of
X on Y on the log odds ratio scale, even if there are no
confounders apart from Z.

5. ANALYSIS OF TWIN DATA

In contrast to a regular 1:1 matched cohort study, a
twin cohort also contains pairs that are concordant in
the exposure. In this section we describe three common
methods to incorporate the exposure–concordant pairs
in the analysis.

To deal with twin studies we extend the notation
slightly. Let Xij and Yij denote X and Y for twin j

in pair i, j ∈ (1,2). We suppress the index i when
not needed, so that Xj and Yj denote X and Y for
twin j , j ∈ (1,2), within an arbitrary pair i. As be-
fore, Zi represents all the unobserved factors that are
common within a twin pair. As discussed in Section 1,
the exposure–discordant pairs in a twin cohort can be
viewed as a 1:1 matched cohort. However, some care
must be taken. All methods discussed in Section 4
rely on assumption (3a), and conditional logistic re-
gression (Section 4.2) and mixed models (Section 4.3)
rely in addition on assumption (3b). For an exposure–
discordant twin pair we have that

Pr∗(Y 0 = y0, Y 1 = y1|Z)
(16)

= Pr(Yj = y0, Yj ′ = y1|Xj = 0,Xj ′ = 1,Z).

The right-hand side of (16) can be factorized into
Pr(Yj = y0|Xj = 0,Z)Pr(Yj ′ = y1|Xj ′ = 1,Z) if

Yj ⊥ Xj ′ |(Xj ,Z)(17a)

and

Y1 ⊥ Y2|(X1,X2,Z).(17b)

Thus, the analogs to (3a) and (3b) for twin data are
given by (17a) and (17b), respectively. Under (17a),
(3a) holds, so that the explicit model (Section 4.1)
and the exposure–discordant crude analysis (4.4) are

valid when applied to the exposure–discordant pairs.
We note though that it is typically not possible to fit
an explicit model to twin data, since Z is typically un-
observed. If, in addition, (17b) holds, then (3b) holds
as well, and all methods in Section 4 are valid when
applied to the exposure–discordant pairs.

Potentially, (17a) could be violated if Xj ′ has a
causal effect on Yj , that is, if the exposure for one twin
affects the outcome for the other twin. Similarly, (17b)
could be violated if Yj ′ has a causal effect on Yj , that
is, if the outcome of one twin affects the outcome for
the other twin.

5.1 All-Pair Crude Analysis

Let ryx denote the number of subjects in the full (i.e.,
both exposure–concordant and exposure–discordant
pairs) sample with Y = y and X = x. One simple way
to make use of all twin pairs in the analysis is to com-
pute the crude sample log odds ratio

ψ̂m.crude = log
(

r11r00

r01r10

)
,(18)

which consistently estimates the marginal log odds ra-
tio ψm. Thus, unlike the exposure–discordant crude
analysis (Section 4.4), the all-pair crude analysis does
not adjust for confounding by Z. The standard error
of ψ̂m.crude is rather complicated, due to the paired
nature of the data. In Appendix A we provide an an-
alytic expression for the standard error. We note that
the standard error can also be computed numerically,
through Generalized Estimating Equation (GEE) pro-
cedures, which are implemented in most common sta-
tistical softwares.

5.2 Decomposition into Within- and
Between-Effects

In twin studies with continuous exposures and out-
comes, a popular regression model is

E(Yj |Xj,Xj ′) = β0 + βW(Xj − X̄) + βBX̄
(19)

= β0 + βWXj + β ′
BX̄,

with X̄ = X1+X2
2 and β ′

B = βB − βW (Carlin et al.,
2005). In (19), the pair-specific mean X̄ is thought
of as conveying information about the confounders Z,
which are not observed, but constant within each pair.
Thus, the parameter βB is thought of as quantifying the
strength of confounding, a “between effect,” and the
parameter βW is thought of as quantifying the adjusted
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X–Y association, a “within effect.” When X and Y are
binary, a natural analog to (19) is

logit{Pr(Yj = 1|Xj,Xj ′)}
(20)

= β0 + βWXj + β ′
BX̄.

To see the connection with the methods described in
this paper, note that

βW = logit{Pr(Yj = 1|Xj = 1,Xj ′ = 0)}
− logit{Pr(Yj = 1|Xj = 0,Xj ′ = 1)}

= logit[E{Pr(Yj = 1|Xj = 1,Xj ′ = 0,Z)|
Xj = 1,Xj ′ = 0}]

− logit[E{Pr(Yj = 1|Xj = 0,Xj ′ = 1,Z)|
Xj = 0,Xj ′ = 1}]

= logit[E∗{Pr(Yj = 1|Xj = 1,Z)}]
− logit[E∗{Pr(Yj = 1|Xj = 0,Z)}]

= ψs,

where Pr∗(Z) = Pr(Z|X1 �= X2), and the third equality
follows from assumption (17a). Thus, the within-effect
βW is identical to the log odds ratio standardized to
the distribution of Z among the exposure–discordant
pairs. This argument shows that the decomposition
into within- and between-effects is a legitimate method
for binary exposures, which was questioned by Carlin
et al. (2005).

When X is binary, X̄ can only take values 0, 0.5
and 1. Thus, it is feasible to replace the linear term
β0 + β ′

BX̄ in (20) with one parameter for each level
of X̄, that is,

logit{Pr(Yj = 1|Xj,Xj ′)} = βWXj + m(X̄),(21)

with

m(X̄) = β01(X̄ = 0)
(22)

+ β0.51(X̄ = 0.5) + β11(X̄ = 1).

It is easy to show that the model in (21) is saturated
(i.e., imposes no restrictions on Pr(Yj |X1,X2), which
implies that the MLE of βW based on (21) is identical
to the crude sample log odds ratio in (11).

5.3 Mixed Model

The model in (6) can be fitted to all pairs, assuming
a parametric distribution of b indexed with θ . Parame-
ter estimates are obtained by maximizing the marginal

(over b) likelihood
n∏

i=1

E∗
Zi |Xi1,Xi2

{Pr(Yi1 = yi1, Yi2 = yi2|Xi1,Xi2,Zi)|

Xi1,Xi2}
(23)

=
n∏

i=1

E∗
bi |Xi1,Xi2

[{ 2∏
j=1

Pr(Yij = yij |Xij , bi;ψc)

}∣∣∣

Xi1,Xi2; θ
]
.

This approach, however, is associated with a severe
problem which is often overlooked. Typically, the dis-
tribution of b is specified to not depend on (X1,X2),
for example, a normal distribution with fixed but un-
specified mean and variance. However, from the ex-
pression in (23) it is clear that this procedure only
produces a proper likelihood under the additional as-
sumption that b ⊥ (X1,X2). In standard textbooks, this
assumption is often stated without justification or in-
terpretation (e.g., Fitzmaurice et al., 2004, page 329).
Since b is supposed to represent the potential con-
founders Z, we would not generally expect that b ⊥
(X1,X2). Indeed, if Z (and thus b) is independent of
(X1,X2), it cannot be a confounder, and there is no
need to adjust for Z in the first place. We note that
in matched cohort studies, (X1,X2) is constant and
equal to (0,1) for all pairs, so that an association be-
tween b and (X1,X2) is ruled out by design. When b

is associated with (X1,X2), the aforementioned proce-
dure can yield severely biased estimates (Neuhaus and
Kalbfleisch, 1998; Neuhaus and McCulloch, 2006). In
general, the proper marginal likelihood is obtained by
averaging over a specified distribution Pr(b|X1,X2)

for each pair. This procedure can be very computer in-
tensive, and cannot be carried out with standard soft-
ware. As noted by Neuhaus and Kalbfleisch (1998) and
Neuhaus and McCulloch (2006), there is a simple so-
lution to this problem. Suppose that given (X1,X2), b

has a normal distribution where the mean, but not the
variance, depends on (X1,X2). Without loss of gener-
ality, we can formulate this as

b = d + m(X̄),(24)

where m(X̄) is defined in (22) and d|X1,X2 ∼ N(0,

σ 2). Under (24), model (6) translates to

logit{Pr(Yj = 1|Xj,Z)} = d + ψcXj + m(X̄),(25)

where d ⊥ (X1,X2) by construction. The model in
(25) can be fitted with standard mixed model soft-
ware. By comparing the model in (25) with the model
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in (21), we see that the solution proposed by Neuhaus
and Kalbfleisch (1998) and Neuhaus and McCulloch
(2006) can be thought of as combining a mixed model
with a within-between decomposition.

Neuhaus and Kalbfleisch (1998) and Neuhaus and
McCulloch (2006) observed that for various scenar-
ios, the estimate of ψc obtained by combining a mixed
model with a within-between decomposition is nearly
identical to ψ̂c.clr. Neuhaus and McCulloch (2006)
gave a theoretical motivation for this observation. We
note that there are situations when the two estimates
may differ; see Brumback et al. (2010) for an example.

6. SIMULATIONS

6.1 Part I: Efficiency and Power

In this section we compare the performance of the
methods described in Sections 4 and 5, in terms of
efficiency and power. To enable a fair comparison,
we analyze the simulated data so that all assumptions
hold, for each method respectively. In these simula-
tions, twin pairs were generated. We emphasize that
this simulation scheme covers matched data as well,
since the exposure–discordant twin pairs can be viewed
as a matched cohort. For each twin pair, the random
variables (X1,X2, b, Y1, Y2) were generated from the
model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(X1 = 1|X2 = 0)

Pr(X1 = 0|X2 = 0)
= Pr(X2 = 1|X1 = 0)

Pr(X2 = 0|X1 = 0)

= ρ = 1

2
,

Pr(X1 = 1,X2 = 1)Pr(X1 = 0,X2 = 0)

Pr(X1 = 1,X2 = 0)Pr(X1 = 1,X2 = 0)
= φ,

b|X1,X2 ∼ N{θX̄,1},
Y1 ⊥ Y2|(X1,X2, b),

Yj ⊥ Xj ′ |(Xj , b),

logit{Pr(Yj |Xj,b)} = b + ψcXj .

(26)

We highlight a few aspects of the model in (26):

(1) Under model (26), assumptions (2), (17a), (17b)
and (24) all hold.

(2) The restriction Pr(X1 = 1|X2 = 0) = Pr(X2 =
1|X1 = 0) in the first row of (26) follows by symmetry.

(3) It may appear natural to first specify a marginal
distribution of b, then specify a conditional distribution
of (X1,X2), given b. The reason for doing it the other
way around is twofold. First, it allows us to directly
control the rate of exposure-discordance through φ.
Second, it allows us to easily formulate the distribution
of b given (X1,X2) in such a way that (24) holds.

(4) It follows from results in Chen (2007) that the
joint distribution of (X1,X2) is completely defined by
ρ and φ. It also follows that ρ and φ are variation inde-
pendent (i.e., the value of ρ does not restrict the value
of φ, and vice versa).

(5) The values of φ and θ determine the degree of
conditional association of X1 and X2, given b. It can be
shown (see Appendix C) that for θ = 2

√
log(φ), X1 ⊥

X2|b. For convenience, we have used θ = 2
√

log(φ)

throughout. We note though that none of the methods
presented relies on this restriction.

In the first set of simulations, we used φ = 4 and ψc =
0, that is, the data were generated under H0 in (9). For
these values, ψs = 0 and ψm = 1.28, which implies a
severe degree of confounding. Further, Pr(X1 �= X2) =
0.33, and Pr(X1 �= X2, Y1 �= Y2) = 0.11. We generated
5000 samples, each of size n = 2000. Each sample was
analyzed with 6 different methods:

(1) Explicit regression model logit{Pr(Y = 1|X,

b)} = γ0 + γ1b + ψcX (Section 4.1). We remind the
reader that for twin data, b (or rather, Z) is typically un-
observed, which rules out the use of an explicit model.
For a regular matched cohort, the explicit model is a
viable choice. Thus, the model was only fitted to the
exposure–discordant pairs.

(2) Conditional logistic regression (Section 4.2).
(3) Mixed model fitted to the exposure–discordant

pairs (Section 4.3). We used the model Pr(Y = 1|X,

b) = b + ψcX, with b|X1 �= X2 ∼ N(θ,σ 2).
(4) Exposure–discordant crude analysis (Sec-

tion 4.4).
(5) All pair crude analysis (Section 5.1).
(6) Mixed model fitted to all pairs (Section 5.3).

We used the model Pr(Y = 1|X,b) = b + ψcX, with
b|X1,X2 ∼ N(θX̄, σ 2).

Table 2 displays the mean (over samples) point esti-
mate, the empirical standard error and the mean the-
oretical standard error for each analysis, respectively.
We note that all methods yield virtually unbiased es-
timates of their target parameters. For all methods the
mean theoretical standard error is identical to the em-
pirical standard error, to the second decimal.

To compare the methods in terms of their power to
reject H0, we carried out a second set of simulations.
We used φ = 4 and varied ψc over the range (0,0.6).
For each value of ψc, we drew 5000 samples of 2000
pairs each. Each sample was analyzed using methods
1, 2, 3, 4, 6. Figure 3 displays the empirical rejection
probability (i.e., the power) for a Wald test at 5% sig-
nificance level, for each method as a function of ψc.
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TABLE 2
Simulation results for ψc = 0, φ = 4

Analysis method Target parameter Mean est Emp s.e. Th s.e.

1. Explicit ψc = 0 0.00 0.13 0.13
2. Cond log reg ψc = 0 0.00 0.13 0.13
3. Mixed discordant ψc = 0 0.00 0.13 0.13
4. Crude discordant ψs = 0 0.00 0.11 0.11
5. Crude all ψm = 1.28 1.28 0.08 0.08
6. Mixed all ψc = 0 0.00 0.12 0.12

We observe that the all methods have almost identical
power, for the simulated scenarios.

In a third set of simulations, we used ψc = 0.4 and
varied φ over the range (4,22). These values corre-
spond to the range (0.33,0.13) for Pr(X1 �= X2), and
the range (0.11,0.03) for Pr(X1 �= X2, Y1 �= Y2). For
each value of φ, we drew 5000 samples of 2000 pairs
each. Each sample was analyzed using methods 1, 2, 3,
4, 6. Figure 4 displays the power for each method as a
function of φ. Again, we observe that there is almost
no difference between the methods, in terms of power,
even when the discordance rate is very low.

Some care must be taken when interpreting power
curves. In small samples, parameter estimates can be
biased, which may lead to an increased probability of
rejection, both under the alternative hypothesis and un-
der the null hypothesis. Thus, an increased power un-
der the alternative hypothesis may come at the cost of
a violated significance level under the null hypothe-
sis. Figure 3 shows that the nominal significance level
(= 5% at ψc = 0) is preserved for all methods when
φ = 4. To confirm that the nominal significance level
is preserved across the range φ ∈ (4,22), which gen-
erated the power curves in Figure 4, we carried out a

FIG. 3. Simulation results for ψc ∈ (0,0.6), φ = 4.
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FIG. 4. Simulation results for ψc = 0.4, φ ∈ (4,22).

fourth set of simulations, using ψc = 0 and varying φ

over the range (4,22). For each value of φ, we drew
5000 samples of 2000 pairs each. Each sample was an-
alyzed using methods 1, 2, 3, 4, 6. Figure 5 displays
the rejection probability for each method as a function
of φ. We observe that the rejection probability is close
to 0.05, for all methods and all values of φ in the sim-
ulated range.

Table 2 and Figure 3 indicate that methods 1–4, and
6 are unbiased under the null hypothesis. Additional si-
multions have confirmed that the methods are unbiased
under various alternative hypotheses as well (data not
shown).

6.2 Part II: Sensitivity to Underlying Assumptions.

In this section we demonstrate through examples that
the explicit model, conditional logistic regression and
the mixed model, can yield biased estimates, if their
underlying assumptions are violated.

We first consider the assumption that b ⊥ (X1,X2),
which is often made for mixed models; see Section 5.3.
Toward this end we reanalyzed the 5000 simulated
samples which generated Table 2, now fitting the mixed
model Pr(Y = 1|X,b) = b + ψcX to all pairs, with
b|X1,X2 ∼ N(θ,σ 2). We obtained a mean estimate of

ψc equal to 1.32, which is indeed biased as an estimate
of the true value ψc = 0. We note that this mean esti-
mate is very close to the ψ̂m.crude (= 1.28) in Table 2.
This further demonstrates that ignoring the association
between b and (X1,X2) produces an estimate which is
not adjusted for Z.

Next, we consider the independence assumption
(3b)/(17b), which is a prerequisite for conditional lo-
gistic regression and mixed models. Toward this end
we consider a simple scenario for which

(Y1, Y2) ⊥ Z|(X1,X2),(27)

so that ψc = ψs = ψm; see Section 2. We define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pr(Yj = 1|Yj ′ = 0,Xj = 1,Xj ′ = 0) = p,

Pr(Yj = 1|Yj ′ = 0,Xj = 0,Xj ′ = 1) = q,

Pr(Yj = 1, Yj ′ = 1|Xj = 1,Xj ′ = 0)

· Pr(Yj = 0, Yj ′ = 0|Xj = 1,Xj ′ = 0)

/
(
Pr(Yj = 0, Yj ′ = 1|Xj = 1,Xj ′ = 0)

· Pr(Yj = 1, Yj ′ = 0|Xj = 1,Xj ′ = 0)
) = c.

(28)

It follows from results in Chen (2007) that the joint dis-
tribution of Yj and Yj ′ among the exposure–discordant
pairs, Pr(Yj , Yj ′ |Xj = 1,Xj ′ = 0), is completely de-
fined by the variation independent parameters p, q

and c. c quantifies the degree of deviation from (17b);
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FIG. 5. Simulation results for ψc = 0, φ ∈ (4,22).

in particular, (17b) is violated when c �= 1. It is easy
to show that assumption (17a) is logically compati-
ble with all joint values of (p,q, c). Thus, we proceed
by assuming that (17a) holds, so that the exposure–
discordant crude analysis consistently estimates ψs =
ψc. Combining (27) and (28), and using results in Chen
(2007), gives that ψ̂c.clr converges to

log
{
p(1 − q)

q(1 − p)

}
,(29)

whereas the true value of ψc(= ψs = ψm) is given by

log
{
p(1 − q)

q(1 − p)

}
+ log

{
1 − q + qc

1 − p + pc

}
.(30)

Thus, the true value of ψc depends on the associ-
ation between Y1 and Y2 through the second term
in (30), whereas the asymptotic limit of ψ̂c.clr does
not. We used p = 0.3, q = 0.1, and c = 4. For these
values, ψc = 0.97, whereas the asymptotic limit of
ψ̂c.clr equals 1.35, for conditional logistic regression.
We generated 5000 samples, each consisting of n =
2000 exposure–discordant twin pairs. For each pair,
the random variables (Y1, Y2) were generated from the
model in (28). Each sample was analyzed with condi-
tional logistic regression (method 2), the mixed model

(method 3) and the exposure–discordant crude analysis
(method 4). For these methods, we obtained an average
estimate of ψc equal to 1.35, 1.26 and 0.97, respec-
tively. Thus, both conditional logistic regression and
the mixed model produced biased estimates, whereas
the exposure–discordant crude analysis estimate was
unbiased.

Next, we consider misspecification of the function
b(Z;γ ), in the explicit model. We generated 5000 sam-
ples, each consisting of n = 2000 twin pairs. For each
twin pair, the random variables (Z,X1,X2, Y1, Y2)

were generated from the model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z = (V ,W),

V ⊥ W,

V ∼ N(0,1),

W ∼ Ber(0.5),

X1 ⊥ X2|Z,

logit{Pr(Xj = 1|Z)}
= α0 + α1V + α2W + α3V W,

Y1 ⊥ Y2|(X1,X2, b),

Yj ⊥ Xj ′ |(Xj , b),

logit{Pr(Yj = 1|Xj,Z)} = b(Z;γ ) + ψcXj ,

b(Z;γ ) = γ0 + γ1V + γ2W + γ3V W,

(31)

with α0 = 2, α1 = α2 = 1, α3 = −1.5, γ0 = −2,
γ1 = γ2 = −1, γ3 = 1.5, ψc = 1.3. Each sample
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was analyzed with the misspecified explicit model
logit{Pr(Yj = 1|Xj,Z)} = γ0 + γ1V + γ2W + ψcXj .
We obtained an average estimate of ψc equal to 0.69,
which is severly biased.

Finally, we consider the assumption that the random
effect b(Z;γ ) is normally distributed, which is com-
monly made for mixed models. Toward this end we
reanalyzed the 5000 samples generated from model
(31), now fitting the mixed model Pr(Y = 1|X,b) =
b+ψcX to the exposure–discordant pairs, with b|X1 �=
X2 ∼ N(θ,σ 2). Under the data generating model, the
conditional distribution of b(Z;γ ), given X1 �= X2
is rather complicated, and, in particular, not normal.
We obtained an average estimate of ψc equal to 1.30,
which is identical to the true value, to the second dec-
imal. This finding supports the theoretical results in
Neuhaus et al. (1994), which state that the mixed model
is robust against the normal random effect assumption.

7. REAL DATA EXAMPLES

7.1 Matched Cohort Data

The first example is taken from a matched cohort
study that aimed to investigate the effect of hysterec-
tomy on risk for CVD (Ingelsson et al., 2010). A com-
mon surgery among perimenopausal women, hysterec-
tomy is often performed on benign indications, but
its long-term consequences are not fully understood.
The study is based on the Swedish Inpatient Regis-
ter, where all women who underwent hysterectomy be-
tween January 1973 and December 2003 (227,389 in-
dividuals) were identified. For each hysterectomized
woman, three women who never had hysterectomy
were randomly selected from the Register of Total Pop-
ulation. The three unexposed women were individually
matched to the exposed woman by birth year, year of
hysterectomy, and county of residence at year of hys-
terectomy.

Information on CVD status was obtained from
the Inpatient Register and information of follow up
through record linkage to the Cause of Death Regis-
ter, Emigration Register and Cancer Register. To avoid
bias from CVD events occurring in relation to the hys-
terectomy surgery, the exposed women started their
risk time from 30 days after hysterectomy; they were
then followed until CVD, heart failure, cervical, corpus
or ovarian cancer, death, emigration or end of study
(Dec 31, 2003). Similarly, unexposed women started
their risk time 30 days after the date of matching, that
is, the date of hysterectomy of the corresponding ex-
posed woman. For further details on the study, see
Ingelsson et al. (2010).

TABLE 3
Analysis results for the 1:1 matched subset of the

hysterectomy-CVD data

Analysis method Target parameter Point est 95% CI

1. Explicit ψc 0.03 −0.02, 0.08
2. Cond log reg ψc 0.03 −0.02, 0.08
3. Mixed discordant ψc 0.03 −0.02, 0.08
4. Crude discordant ψs 0.03 −0.02, 0.07

In the current analysis we focus on 1:1 matched
studies with binary outcomes. We constructed a bi-
nary outcome by defining Y = 1 for women who de-
veloped CVD during follow-up, and Y = 0 for the re-
maining women. We constructed a 1:1 matched sam-
ple by matching each exposed woman to one unex-
posed woman, which was randomly selected from
the three unexposed women in the same set. Af-
ter the exclusions described above, we ended up
with 52,814 1:1 matched pairs, of which 6712 were
discordant in both the exposure and the outcome.
The data were analyzed with methods 1–4 described
in Section 6. For method 1 we used the explicit
model logit{Pr(Y = 1|Z,X)} = γ0 + γ1[birth year] +
γ2[year at hysterectomy] + γ3[county] + ψcX, where
γ3 is a factor parameter with one level for each county.

Table 3 displays the results. For all three meth-
ods, there is a significant (at 5% level) association be-
tween hysterectomy and CVD. The point estimates ob-
tained by conditional logistic regression and exposure–
discordant crude analysis are almost identical, whereas
the point estimate obtained from the mixed model is
twice as large. According to theory (Neuhaus et al.,
1994) we would expect the mixed model estimate to
be identical to the estimate obtained from conditional
logistic regression. Indeed, methods 1–4 all give iden-
tical estimates to the second decimal.

Although our focus is on 1:1 matching, all methods
in this paper generalize directly to m:n matching (see
Section 8). Table 4 displays the results when the whole
1:3 matched data is analyzed, using methods 1–4 de-
scribed in Section 6.

7.2 Twin Data

The second example is from a twin study of the as-
sociation between fetal growth and asthma (Örtqvist
et al., 2009). Several studies have shown that there is an
association between asthma and low birth weight. This
association could potentially be explained by a causal
effect of impaired fetal growth on asthma, but may also
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TABLE 4
Analysis results for the full 1:3 matched hysterectomy-CVD data

Analysis method Target parameter Point est 95% CI

1. Explicit ψc 0.06 0.02, 0.09
2. Cond log reg ψc 0.06 0.02, 0.09
3. Mixed discordant ψc 0.06 0.02, 0.09
4. Crude discordant ψs 0.05 0.02, 0.09

be explained by confounding factors. In particular, ges-
tational age is correlated with both birth weight and
asthma, and may confound the birth weight-asthma as-
sociation (Örtqvist et al., 2009). Twins provide an ex-
cellent opportunity to separate the causal effect of birth
weight from the confounding effect of gestational age,
and at the same time adjust for other shared familial
factors.

All twins born in Sweden in June 1992 to June 1998
were identified through the Swedish Twin Register at
the age of 9 or 12 years. Information on asthma and
zygosity was collected in telephone interviews with
their parents. Birth weight was retrieved from the Med-
ical Birth Register (MFR). Of the 15,808 eligible twins
69% (10,918 individuals) had information on asthma
and could also be securely linked to the MFR. In total,
there were 3107 MZ pairs. 1087 pairs were discordant
in birth weight (exposure), where discordance was de-
fined as a difference greater than 400 grams or 15%,
and 175 pairs were discordant on both birth weight and
asthma (outcome).

The data were analyzed using methods 2–6 de-
scribed in Section 6. Table 5 displays the results. The
estimates obtained from conditional logistic regression
and the exposure–discordant crude analysis are both
smaller than estimate obtained from the all-pair crude
analysis. This finding suggests that the birth weight-
asthma association is inflated by shared confounding.
Methods 2, 3 and 6 gave very similar results, as pre-
dicted by theory (Neuhaus et al., 1994; Neuhaus and
Kalbfleisch, 1998).

TABLE 5
Analysis results for the birth weight-asthma twin data

Analysis method Target parameter Point est 95% CI

2. Cond log reg ψc 0.29 −0.01, 0.59
3. Mixed discordant ψc 0.29 −0.01, 0.59
4. Crude discordant ψs 0.18 −0.01, 0.37
5. Crude all ψm 0.33 0.16, 0.50
6. Mixed all ψc 0.30 0.00, 0.60

8. DISCUSSION

We have given an overview of the most common
analysis methods for matched cohort studies. We have
identified the target parameters in each method, out-
lined the underlying assumptions and compared the
methods in terms of statistical power. The analysis
methods that we have considered do not estimate
the same parameter; the exposure–discordant crude
analysis and the within–between model estimate a
standardized odds ratio, whereas the explicit method,
conditional logistic regression, and the mixed model
estimate a conditional odds ratio. Thus, the choice be-
tween these methods should primarily be guided by the
research question being asked. In addition, it is also
important to consider the statistical power, underlying
assumptions, computer intensity and flexibility of the
methods. Theoretical arguments suggest that when all
underlying assumptions hold, all methods that we have
considered have the same statistical power. This was
confirmed in our simulation study. In terms of underly-
ing assumptions, the methods differ significantly. The
exposure–discordant crude analysis relies on fewer as-
sumptions than the other methods. In terms of com-
puter intensity, the mixed model requires numerical
optimization, and is far more time consuming than
the other methods. In terms of flexibility, all methods,
except the exposure–discordant crude analysis, most
naturally target odds ratios. The exposure–discordant
crude analysis however, can easily be used to target
any measure of the exposure-outcome association.

We have considered 1:1 matching. Frequently, m:n
matching is employed, that is, each set is constructed
by matching m exposed subjects to n unexposed sub-
jects. All methods in this paper generalize directly to
m:n matching. Specifically, the underlying assump-
tions and the interpretation of the target parameters re-
mains the same under m:n matching. We conjecture
that many of the theoretical properties that we have de-
rived for 1:1 matching carry over to m:n matching as
well, for example, the asymptotic equivalence in terms
of power. However, a stringent treatment of m:n match-
ing is more difficult. For instance, under violation of
(2) the probability limit of ψ̂c.clr has no longer an ana-
lytic expression, which hampers a theoretical compari-
son with the exposure–discordant crude analysis. Com-
paring the methods under m:n is a topic for future re-
search.

In practice, it is often desirable to adjust the analy-
sis for additional covariates which are not matched on.
In the model-based methods (i.e., all methods except
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the exposure–discordant crude analysis), adjustment
for additional covariates can easily be accomplished
by adding the covariates as a regressor in the model.
It is not obvious though, how to adjust for additional
covariates in the exposure–discordant crude analysis.
Extensions of the exposure–discordant crude analysis
for additional covariate adjustments is a topic for fu-
ture research.

APPENDIX A

Define px = Pr(Y = 1|X = x), q = Pr(X = 1),
q00 = Pr(X1 = X2 = 0), q11 = Pr(X1 = X2 = 1),
qd = Pr(X1 �= X2), c00 = cov(Y1, Y2|X1 = X2 =
0), c11 = cov(Y1, Y2|X1 = X2 = 1), cd = cov(Y1,

Y2|X1 �= X2), ψ0 = logit(p0), ψm = logit(p1) −
logit(p0) and ψ = (ψ0,ψm)T . ψ̂m.crude in (18) can
be expressed as the second element of the solution to∑

i Ui(ψ) = 0, where

Ui(ψ)

=
{

(1 − Xi1)(Yi1 − p0) + (1 − Xi2)(Yi2 − p0)

Xi1(Yi1 − p1) + Xi2(Yi2 − p1)

}
.

It follows from standard theory that n1/2(ψ̂ − ψ) is
asympotically normal with mean 0 and variance[

E

{
∂Ui(ψ)

∂ψT

}]−1

var{Ui(ψ)}
[[

E

{
∂Ui(ψ)

∂ψT

}]−1]T

,

where, after some algebra,

E

{
∂Ui(ψ)

∂ψT

}
=

(−2p0(1 − p0) 0
−2p1(1 − p1) −2p1(1 − p1)

)

and

var{Ui(ψ)}
=

(
2(1 − q)p0(1 − p0) + q00c00 qdcd

qdcd 2qp1(1 − p1) + q11c11

)
.

After additional algebra, the asymptotic variance for
n1/2(ψ̂m.crude − ψm) is obtained as

1

2(1 − q)p0(1 − p0)
+ 1

2qp1(1 − p1)

+ q00c00

4{p0(1 − p0)}2 + q11c11

4{p1(1 − p1)}2(32)

− qdcd

2q(1 − q)p0(1 − p0)p1(1 − p1)
.

Replacing the population parameters in (32) with
their sample counterparts gives the standard error for
ψ̂m.crude.

To derive the standard error formula in (12) we note
that a regular 1:1 matched cohort can be obtained by
setting q = 0.5, q00 = q11 = 0 and qd = 1. The ex-
pression in (32) then simplifies to

1

p0(1 − p0)
+ 1

p1(1 − p1)
(33)

− 2cd

p0(1 − p0)p1(1 − p1)
.

Replacing the population parameters in (33) with their
sample counterparts gives the standard error formula
in (12).

APPENDIX B

Define ψ†
c = log{Pr∗(Y 1=1,Y 0=0)

Pr∗(Y 0=1,Y 1=0)
}, H†

c :ψ†
c = 0, ψ†

s =
log{Pr∗(Y 1=1)Pr∗(Y 0=0)

Pr∗(Y 1=0)Pr∗(Y 0=1)
}, H†

s :ψ†
s = 0. H†

c can be tested
using the likelihood ratio test (LRT) statistic

T
†
c,LR = −2 log

{supH†
c
(pW

00p
U
01p

V
10p

T
11)

sup(pW
00p

U
01p

V
10p

T
11)

}
,

and H†
s can be tested using the LRT statistic

T
†
s,LR = −2 log

{supH†
s
(pW

00p
U
01p

V
10p

T
11)

sup(pW
00p

U
01p

V
10p

T
11)

}
,

where py0y1 = Pr∗(Y 0 = y0, Y 1 = y1), and the suprema
are taken under the restrictions 0 < py0y1 < 1 and∑

y0y1 py0y1 = 1. Regardless of whether (2), (3a) and

(3b) hold or not, ψ̂c.clr and ψ̂s.crude are the nonpara-
metric MLEs of ψ†

c and ψ†
s , respectively. Thus, T

†
c,LR

and Tc are asymptotically equal, and T
†
s,LR and Ts are

asymptotically equal. It is easy to show that H†
c and H†

s

are equivalent (i.e., H†
c holds if and only if H†

s holds),
which implies that T

†
c,LR and T

†
s,LR are identical, which

then in turn implies that Tc and Ts are asymptotically
equal.

It is easy to show that H0 and (3a) together im-
ply H†

s , and thus also H†
c . Because ψ̂c.clr converges to

ψ†
c , it then follows that ψ̂c.clr converges to 0 under H0

and (3a).

APPENDIX C

Under (26), we have that

Pr(X1,X2, b)

= 1√
2π

e{b−θX̄}2/2 Pr(X1,X2)

= h(X1, b)h(X2, b)e−θ2X1X2/4 Pr(X1,X2),
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for some function h(·, ·). X1 ⊥ X2|b now implies that

e−θ2X1X2/4 Pr(X1,X2) = k(X1)k(X2)

for some function k(·), which in turn implies that θ =
2
√

log(φ).
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