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Abstract

Background: High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint

inhibitors and has been shown to be more significantly associated with response to PD-1 and PD-L1 blockade

immunotherapy than PD-1 or PD-L1 expression, as measured by immunohistochemistry (IHC). The distribution of

TMB and the subset of patients with high TMB has not been well characterized in the majority of cancer types.

Methods: In this study, we compare TMB measured by a targeted comprehensive genomic profiling (CGP) assay

to TMB measured by exome sequencing and simulate the expected variance in TMB when sequencing less than

the whole exome. We then describe the distribution of TMB across a diverse cohort of 100,000 cancer cases and

test for association between somatic alterations and TMB in over 100 tumor types.

Results: We demonstrate that measurements of TMB from comprehensive genomic profiling are strongly

reflective of measurements from whole exome sequencing and model that below 0.5 Mb the variance in

measurement increases significantly. We find that a subset of patients exhibits high TMB across almost all

types of cancer, including many rare tumor types, and characterize the relationship between high TMB and

microsatellite instability status. We find that TMB increases significantly with age, showing a 2.4-fold difference

between age 10 and age 90 years. Finally, we investigate the molecular basis of TMB and identify genes and

mutations associated with TMB level. We identify a cluster of somatic mutations in the promoter of the gene

PMS2, which occur in 10% of skin cancers and are highly associated with increased TMB.

Conclusions: These results show that a CGP assay targeting ~1.1 Mb of coding genome can accurately assess TMB

compared with sequencing the whole exome. Using this method, we find that many disease types have a substantial

portion of patients with high TMB who might benefit from immunotherapy. Finally, we identify novel, recurrent promoter

mutations in PMS2, which may be another example of regulatory mutations contributing to tumorigenesis.
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Background
In recent years, immunotherapies have shown great

promise as treatments for skin, bladder, lung, and kidney

cancers, and also for tumors which are mismatch repair

deficient, with extremely durable responses for some

patients [1–6]. These agents modulate the pathways that

control when and where immune responses are

mounted, increasing antitumor activity through immune

checkpoint blockade [7]. Inhibitors of cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4) [8, 9] and of

programmed cell death protein 1 (PD-1) receptor [10]

were the first drugs of this type, which promote T-cell

activation [2]. Other agents targeting immune check-

point pathways are now approved or in active preclinical

and clinical development [11–17].

While treating cancer with immunotherapy can be

highly effective, only some patients respond to these

treatments [18]. Given the promise these agents have

shown in treatment of refractory disease and the durable

responses that occur in some cases, there is great inter-

est in identifying patients who are most likely to derive

benefit from these therapies. Assays that measure PD-1/

PD-L1 protein expression by immunohistochemistry

(IHC) are approved as complementary or companion

diagnostics for some of these drugs; however, measure-

ment of PD-1/PD-L1 expression is technically challen-

ging, can be difficult to interpret, and is not always an

accurate predictor of response to immunotherapy [19].

An emerging biomarker for response to immunotherapy

is the total number of mutations present in a tumor spe-

cimen. This is termed the mutation load or tumor muta-

tional burden (TMB). It is hypothesized that highly

mutated tumors are more likely to harbor neoantigens

which make them targets of activated immune cells. This

metric has been shown, in several tumor types, to correl-

ate with patient response to both CTLA-4 and PD-1 in-

hibition [4, 20, 21]. In fact, in one clinical trial, TMB was

more significantly associated with response rate than

expression of PD-L1 by immunohistochemistry [6].

Neoantigen load has also been correlated with response

to immunotherapy [22]. However, no recurrent neoanti-

gens have been found that predict response to date [23].

Increased mutation rate is a well-characterized feature

of human cancer. Abnormal activity in several cellular

pathways, including DNA damage repair and DNA repli-

cation, can increase the overall rate of somatic mutations

in tumors, as can exposure to mutagens such as ultra-

violet light and tobacco smoke [24–28]. Defects in DNA

damage repair lead to the accumulation of mutations

caused by replicative errors and environmental damage

[29, 30]. The core DNA mismatch repair protein com-

plex is composed of two cooperative dimers: the PMS2

protein dimerizes with MLH1 to form the complex

MutL-alpha, which cooperates with the MSH2-MSH6

dimer, MutS-alpha, to repair single base pair mismatches

and small insertion–deletion loops [31–33]. Perturba-

tions in mismatch repair gene expression, both loss and

overexpression, can be deleterious to genomic stability

[34–36], and loss of function mutations in mismatch re-

pair pathway genes are known to correlate with high

TMB in tumors [37–39]. As such, tumors with defective

DNA repair mechanisms are more likely to benefit from

immunotherapy [4].

Mutations in DNA damage repair proteins occur as

both germline polymorphisms and de novo somatic

mutations. Several hereditary cancer syndromes are the

result of germline loss of function mutations in mis-

match repair pathway genes [40, 41]. In Lynch syn-

drome, mutations in MSH2 and MLH1 are most often

observed, with MSH6 and PMS2 mutations present in a

minority of patients [42]. In all cases, these germline var-

iants lead to the loss of DNA damage repair activity and

subsequent hypermutation. Typically, tumorigenesis in

these cells occurs after loss of the single functional wild-

type copy of the mutated gene. Somatic mutations in

DNA mismatch repair genes produce a similar cellular

phenotype to tumors with germline defects [43].

DNA replication is another key pathway in which

defects can lead to increased somatic mutation rate. Rec-

ognition and removal of errors during replication are

critical functions of DNA polymerases [44]. POLD1 and

POLE are involved in removal of errors during lagging-

and leading-strand replication, respectively [44], and

mutations in these genes can result in high TMB. The

exonuclease domain in both genes is responsible for

proofreading activity, and mutations in this domain are

associated with hypermutation and tumorigenesis [45,

46]. Somatic loss of function mutations in POLE and

POLD1 lead to hypermutation [47, 48]. Loss of TP53

DNA damage checkpoint activity, by somatic mutation,

copy number loss, or epigenetic silencing, increases

DNA damage tolerance and can also be associated with

increased mutation frequency [49]. Loss of function mu-

tations in TP53 are very common in cancer and are a

somatic marker of elevated mutation rate [50]. Muta-

tions in a number of other genes have also been

linked to increased TMB [28, 51], but their function

is less well understood. Further understanding the

factors associated with increased TMB is important

for better understanding this key driver of cancer

progression and for understanding the molecular

mechanisms which lead to high TMB.

Whole exome sequencing (WES) has been previously

used to measure TMB, and TMB levels measured by

WES and, in some cases, smaller gene panels have been

shown to be associated with response to immunotherapy

[52, 53]. The Cancer Genome Atlas (TCGA) project and

several other studies have used WES to measure TMB
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across cancer types and found a wide distribution of

TMB across ~20–30 cancer types [28, 51, 54]. Studies

focusing on single disease types have shown that high

TMB measured from whole exome data is associated

with better response rates to immunotherapies in

melanoma [21] and non-small cell lung cancer co-

horts [20]. Recent studies have also shown that TMB

can be accurately measured in smaller gene assays

encompassing several hundred genes and that looking

at such a panel of genes, the same stratification of

patient response based on TMB level exists for some

indications [52, 53]. This suggests that a diagnostic

assay targeting several hundred genes can accurately

measure TMB and that these findings will be clinic-

ally actionable.

We sought to better understand the landscape of

TMB across the spectrum of human cancer based on

data from comprehensive genomic profiling (CGP) of

more than 100,000 patient tumors of diverse type.

Our analysis expands significantly upon existing data

that quantify mutation burden in cancer [28, 51],

providing data for many previously undescribed can-

cer types. We provide new data supporting rational

expansion of the patient population that could bene-

fit from immunotherapy and which will allow in-

formed design of clinical trials of immunotherapy

agents in untested cancer types. We identify somatic-

ally altered genes associated with significantly in-

creased TMB and identify a novel mutation hotspot

in the promoter of the PMS2 gene, which is mutated

in ~10% of skin cancers and is associated with

greatly increased TMB.

Methods

Comprehensive genomic profiling

CGP was performed using the FoundationOne assay

(Cambridge, MA, USA), as previously described in detail

[55, 56]. Briefly, the pathologic diagnosis of each case

was confirmed by review of hematoxylin and eosin

stained slides and all samples that advanced to DNA ex-

traction contained a minimum of 20% tumor cells.

Hybridization capture of exonic regions from 185, 236,

315, or 405 cancer-related genes and select introns from

19, 28, or 31 genes commonly rearranged in cancer was

applied to ≥50 ng of DNA extracted from formalin-

fixed, paraffin-embedded clinical cancer specimens.

These libraries were sequenced to high, uniform median

coverage (>500×) and assessed for base substitutions,

short insertions and deletions, copy number alterations,

and gene fusions/rearrangements [55]. Data from all ver-

sions of the FoundationOne assay were used in the ana-

lysis. Hybridization capture baits for PMS2 are identical

across all assay versions.

WES analysis of TCGA data

WES was performed on 29 samples as previously de-

scribed [57] for which CGP had also been performed.

Briefly, tumors were sequenced using Agilent’s exome

enrichment kit (Sure Select V4; with >50% of baits above

25× coverage). The matched blood-derived DNA was

also sequenced. Base calls and intensities from the Illu-

mina HiSeq 2500 were processed into FASTQ files using

CASAVA. The paired-end FASTQ files were aligned to

the genome (to UCSC’s hg19 GRCh37) with BWA

(v0.5.9) [58]. Duplicate paired-end sequences were re-

moved using Picard MarkDuplicates (v1.35) to reduce

potential PCR bias. Aligned reads were realigned for

known insertion/deletion events using SRMA (v0.1.155)

[59]. Base quality scores were recalibrated using the

Genome Analysis Toolkit (v1.1-28) [60]. Somatic substi-

tutions were identified using MuTect (v1.1.4) [61].

Mutations were then filtered against common single-

nucleotide polymorphisms (SNPs) found in dbSNP

(v132), the 1000 Genomes Project (Feb 2012), a 69-

sample Complete Genomics data set, and the Exome

Sequencing Project (v6500).

TCGA data were obtained from public repositories

[54]. For this analysis, we used the somatic called vari-

ants as determined by TCGA as the raw mutation count.

We used 38 Mb as the estimate of the exome size. For

the downsampling analysis, we simulated the observed

number of mutations/Mb 1000 times using the binomial

distribution at whole exome TMB = 100 mutations/Mb,

20 mutations/Mb, and 10 mutations/Mb and did this for

megabases of exome sequenced ranging from 0–10 Mb.

Melanoma TCGA data were obtained from dbGap

accession number phs000452.v1.p1 [62].

Cohort selection

From an initial clinical cohort of 102,292 samples, dupli-

cate assay results from the same patient were excluded,

and samples with less that 300× median exon coverage

were excluded to make an analysis set of 92,439 samples.

For analyses by cancer type, they must contain a mini-

mum of 50 unique specimens following sample level

filtering.

Tumor mutational burden

TMB was defined as the number of somatic, coding,

base substitution, and indel mutations per megabase of

genome examined. All base substitutions and indels in

the coding region of targeted genes, including synonym-

ous alterations, are initially counted before filtering as

described below. Synonymous mutations are counted in

order to reduce sampling noise. While synonymous mu-

tations are not likely to be directly involved in creating

immunogenicity, their presence is a signal of mutational

processes that will also have resulted in nonsynonymous
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mutations and neoantigens elsewhere in the genome.

Non-coding alterations were not counted. Alterations

listed as known somatic alterations in COSMIC and

truncations in tumor suppressor genes were not

counted, since our assay genes are biased toward genes

with functional mutations in cancer [63]. Alterations

predicted to be germline by the somatic-germline-

zygosity algorithm were not counted [64]. Alterations

that were recurrently predicted to be germline in our

cohort of clinical specimens were not counted. Known

germline alterations in dbSNP were not counted. Germ-

line alterations occurring with two or more counts in

the ExAC database were not counted [65]. To calculate

the TMB per megabase, the total number of mutations

counted is divided by the size of the coding region of the

targeted territory. The nonparametric Mann–Whitney U-

test was subsequently used to test for significance in

difference of means between two populations.

Microsatellite instability

Microsatellite instability calling was performed on

62,150 samples, and analyses comparing MSI to TMB

were limited to samples where both MSI status and

TMB were determined.

To determine MSI status, 114 intronic homopolymer

repeat loci with adequate coverage on the CGP panel

were analyzed for length variability and compiled into an

overall MSI score via principal components analysis.

The 114 loci were selected from a total set of 1897

that have adequate coverage on the FMI FoundationOne

bait set. Amongst the 1897 microsatellites, the 114 that

maximized variability between samples were chosen.

Each chosen locus was intronic and had hg19 reference

repeat length of 10–20 bp. This range of repeat lengths

was chosen such that the microsatellites are long enough

to produce a high rate of DNA polymerase slippage,

while short enough such that they are well within the

49-bp read length of next-generation sequencing to fa-

cilitate alignment to the human reference genome.

Translation of the MSI score to MSI-H or MSS (MSI-

Stable) was established using a training data set.

Using the 114 loci, for each training sample the repeat

length in each read that spans the locus was calculated.

The means and variances of repeat lengths across the

reads were recorded, forming 228 data points per sam-

ple. We then used principal components analysis to pro-

ject the 228-dimension data onto a single dimension

(the first principal component) that maximized the data

separation, producing a next-generation sequencing-

based “MSI score”. There was no need to extend beyond

the first principal component, as it explained ~50% of

the total data variance, while none of the other principal

components explained more than 4% each. Ranges of

the MSI score were assigned MSI-High (MSI-H), MSI-

ambiguous, or microsatellite stable (MSS) by manual un-

supervised clustering of specimens for which MSI status

was previously assessed either via IHC if available or ap-

proximated by the number of homopolymer indel muta-

tions detected by our standard pipeline.

Statistical association testing

To test for statistical association between genes and

tumor mutation burden, we counted known and likely

functional short variants in each gene, excluding mu-

tations that occurred in homopolymers of length 6 or

greater. We tested for association for all genes with

six or more specimens with mutations that passed

our filtering. We added a pseudo-count to each TMB

value. We then fit a linear model of the type

log10(TMB) ~ functional mutation status + disease type.

We used the factor loading coefficient to determine

the genes with the greatest effect size. This coefficient

gives the change in log10(TMB) between samples with

presence or absence of a functional mutation in that

gene, while holding the disease type constant. We

chose an effect size (factor loading) cutoff of 0.5,

which when converted back from log space is equiva-

lent to a 3.1-fold increase in TMB compared to wild-

type TMB (3.6 mutations/Mb).

To test for association between alterations and tumor

mutation burden, we tested all short variants occurring

at a frequency of greater than 1 per 2000 specimens, ex-

cluding mutations that occurred in homopolymers of

length 6 or greater and filtering out mutations present in

dbSNP. We then fit a linear model, as above, of the type

log10(TMB) ~ alteration status + disease type. For both

tests, we corrected for multiple testing using the false

discovery rate (FDR) method [66].

Co-occurrence

We tested for co-occurrence of functional gene muta-

tions with PMS2 promoter mutations using logistic re-

gression. We fit a model of the type: status of PMS2

promoter mutations in melanoma ~ gene functional mu-

tation status + TMB. We then corrected for multiple

testing using the FDR method [66].

Results

TMB can be accurately measured by a targeted

comprehensive genomic profiling assay

We first sought to determine whether TMB, as mea-

sured by a comprehensive genomic profiling (CGP) assay

targeting 315 genes (1.1 Mb of coding genome), could

provide an accurate assessment of whole exome TMB.

We performed targeted CGP and WES on the same bi-

opsy specimen for a cohort of 29 tumors. From both the

WES and targeted CGP samples, we calculated the num-

ber of somatic, coding, base substitution, and indel
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mutations per megabase of interrogated genome (see

“Methods”). For the WES samples, tumor and normal

tissue were each sequenced in order to distinguish germ-

line polymorphisms from somatic mutations. For the

targeted CGP samples, no matched normal material was

sequenced; rather, genomic variants were stringently

filtered to eliminate germline polymorphisms (see

“Methods” for details). We found that the tumor muta-

tion burden calculated by these two methods was highly

correlated (R2 = 0.74; Fig. 1a).

We also assessed the reproducibility of our method for

calculating TMB using targeted CGP. For 60 samples for

which CGP was performed more than once, we com-

pared the TMB between replicates. We found that these

values were highly correlated (R2 = 0.98), indicating that

this method for measuring TMB has high precision

(Fig. 1b).

We finally sought to determine the effects of sequen-

cing different amounts of the genome and how that

might affect our ability to accurately determine TMB.

We sampled the number of mutations that we would ex-

pect to see at different TMB levels (100 mutations/Mb,

20 mutations/Mb, 10 mutations/Mb) and at different

amounts of megabases sequenced, from 0.2 to 10 Mb,

1000 times for each TMB level and sequencing amount.

For each sample, we then measured the percentage devi-

ation from the whole exome TMB (Fig. 1c). We found

that, as expected, the percentage deviation is lower for

high underlying TMB, meaning that specimens with

high TMB can be effectively identified by targeted se-

quencing of several hundred genes. In contrast, for inter-

mediate levels of TMB, the percentage deviation starts

to increase, especially with less than 0.5 Mb sequenced

(Fig. 1c).
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Fig. 1 Accuracy and precision of comprehensive genomic profiling for assessing tumor mutation burden. a Comparison of tumor mutation

burden measured by whole exome sequencing versus comprehensive genomic profiling. Tumor mutation burden (mutations/Mb) was measured

in 29 samples by whole exome sequencing of matched tumor and normal samples and by comprehensive genomic profiling (see “Methods” for

more details). The line y = x is plotted in red. b Tumor mutation burden measured by comprehensive genomic profiling in 60 pairs of replicates.

The line y = x is plotted in red. c Results of simulations of percentage deviation from actual TMB when sampling different numbers of megabases

sequenced. Median observed deviation is shown in black and 10% and 90% confidence interval are shown in grey. Lines are smoothed using a

cubic smoothing spline with smoothing parameter = 0.6. Left: results of simulations with TMB equal to 100 mutations/Mb. Center: results of

simulations with TMB equal to 20 mutations/Mb. The median line was smoothed with smoothing parameter = 0.8. Right: results of simulations

with TMB equal to 10 mutations/Mb. The median line was smoothed with smoothing parameter = 0.8
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We also analyzed whole-exome sequencing data from

35 studies, published as part of TCGA, examining a total

of 8917 cancer specimens [54]. We determined the

number of mutations in total and compared that to the

number of mutations in the 315 genes targeted by our

assay. As expected, these results were also highly corre-

lated (R2 = 0.98). These results demonstrate that CGP

targeting the entire coding region of several hundred

genes can accurately assess whole exome mutational

burden.

The landscape of mutation burden across cancer types

We next examined the landscape of TMB across the co-

hort of patients profiled in our laboratory. CGP was per-

formed in the course of routine clinical care for 102,292

samples (see “Methods”). The unique patient cohort

contained 41,964 male and 50,376 female patients. Me-

dian patient age at the time of specimen collection was

60 years (range <1 year to >89 years), and 2.5% of cases

were from pediatric patients under 18 years old. This

body of data provided 541 distinct cancer types for ana-

lysis. Notably, the majority of specimens were from pa-

tients with significantly pre-treated, advanced, and

metastatic disease. Across the entire dataset, the median

TMB was 3.6 mutations/Mb, with a range of 0–1241

mutations/Mb. This agrees well with previous estimates

of mutation burden from whole exome studies [28, 51].

We found a significant increase in TMB associated with

increased age (p < 1 × 10–16), though the effect size was

small (Additional file 1: Figure S1). Median TMB at age

10 was 1.67 mutations/Mb, and median TMB at age 88

was 4.50 mutations/Mb. A linear model fit to the data

predicted a 2.4-fold difference in TMB between age 10

and age 90, consistent with the median TMB differences

at these ages. There was no statistically significant differ-

ence in median TMB between female and male patients

(Additional file 2: Figure S2).

We examined TMB for 167 distinct cancer types for

which we had tested more than 50 specimens (Fig. 2;

Additional file 3: Table S1). The median TMB ranged

widely, from 0.8 mutations/Mb in bone marrow myelo-

dysplastic syndrome to 45.2 mutations/Mb in skin squa-

mous cell carcinoma. As expected, we found that

pediatric malignancies (patient age less than 18 years)

had lower TMB (median 1.7 mutations/Mb) than adult

malignancies (median 3.6 mutations/Mb). Disease

types common in pediatric patients, such as leukemia,

lymphoma, and neuroblastoma, had low TMB, as did

sarcomas (Additional file 3: Table S1). The relation-

ship between TMB and age also differed across dis-

ease types (Additional file 4: Figure S3).

Diseases known to have significant mutagen exposure,

such as lung cancers and melanoma, were more highly

mutated (median TMB 7.2 mutations/Mb and 13.5

mutations/Mb, respectively). Disease indications in

which immunotherapies are currently approved, includ-

ing melanoma, non-small cell lung cancer (NSCLC), and

bladder, had high TMB, as expected (Additional file 3:

Table S1). Identifying additional cancer types with high

TMB may represent an opportunity to expand the list of

indications that respond favorably to immune check-

point blockade. These include skin squamous cell carcin-

oma, lung small cell undifferentiated carcinoma, diffuse

large B cell lymphoma, as well as many other types of

cancer (Fig. 1). In addition to identifying additional can-

cer types with high overall TMB, we also found cases

with high TMB across nearly every cancer type (Table 1;

Additional file 3: Table S1). This raises the possibility

that patients with high TMB who may benefit from im-

munotherapy can be identified in nearly every type of

cancer. For example, in soft tissue angiosarcoma, while

the median mutation burden was 3.8 mutations/Mb,

13.4% of cases had more than 20 mutations/Mb. Overall,

we identified 20 tumor types affecting eight tissues with

greater than 10% of patients who had high TMB and 38

tumor types affecting 19 tissues with greater than 5% of

patients with high TMB (Table 1).

TMB and microsatellite instability

Microsatellite instability is another marker of genomic

instability. We characterized microsatellite instability in

a subset of our cohort and classified samples as MSI-

High (microsatellite instability high) or MS-Stable

(microsatellite stable) (see “Methods”; n = 62,150). We

found that microsatellite instability (MSI-High) generally

occurred as a subset of high TMB (Fig. 3a). The vast ma-

jority of MSI-High samples also had high TMB (83%),

and 97% had TMB ≥10 mutations/Mb. However, the

converse was not true; only 16% of samples with high

TMB were classified as MSI-High. The co-occurrence of

these two phenotypes was highly dependent on the can-

cer type. In gastrointestinal cancers such as stomach

adenocarcinoma, duodenum adenocarcinoma, and small

intestine adenocarcinoma, MSI-High and high TMB

almost always co-occur, while in melanoma, squamous

cell carcinoma, and lung carcinoma, high TMB was fairly

common but MSI-High was very uncommon (Fig. 3b).

Identifying known genes and alterations associated with

increased TMB

In order to investigate the molecular basis of high TMB

across our samples, we performed statistical analysis to

identify the genes or specific mutations whose presence

was associated with increased TMB. We first tested

whether the presence of any functional alterations (base

substitutions or short indels) in each of the targeted

genes was associated with TMB (see “Methods”), con-

trolling for cancer type. We found 257 genes which were
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significantly associated with TMB at FDR = 0.0001. This

is not entirely surprising, as specimens with high TMB

would be expected to have a greater number of func-

tional oncogenic mutations. Many of these genes were

associated with relatively small increases in TMB after

controlling for disease type (Fig. 4a). Consequently, we

focused on the statistically significant effects with the

greatest magnitude. We identified 48 genes significantly

associated and with factor loading >0.5 (see “Methods”;

Fig. 4a; Additional file 5: Table S2).

Genes associated with large increases in TMB include

known DNA mismatch repair pathway genes (MSH2,

MSH6, MLH1, PMS2) and DNA polymerases (POLE)

(Fig. 4a–c). (Additional file 5: Table S2). Across the co-

hort, functional mutations in these mismatch repair

genes and DNA polymerase occur in 13.5% of the cases

Fig. 2 The landscape of tumor mutation burden. For all disease types with greater than 100 samples, the median mutation burden is plotted for

each disease type. The left and right edges of the boxes correspond to the 25th and 75th percentiles. Whiskers extend to the highest value that is

within 1.5 × IQR of the hinge, where IQR is the inter-quartile range, or distance between the first and third quartiles. Points beyond this are plotted

individually. Tissue types of interest are shown in color, as follows: skin, green; lung, orange; bladder, purple; kidney, pink; other, white. The area above 20

mutations/Mb, which we have designated as high TMB, is colored in grey
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Table 1 Disease indications with greater than 5% of specimens showing high TMB (>20 mutations/Mb)

Disease type Specimen count Median mutations/Mb Percentage cases with >20
mutations/Mb (95% CI)

Skin basal cell carcinoma 92 47.3 70.7 (60.7–79)

Skin squamous cell carcinoma (SCC) 266 45.2 67.3 (61.4–72.7)

Skin melanoma 879 14.4 39.7 (36.4–42.9)

Skin merkel cell carcinoma 206 4.3 37.9 (31.5–44.7)

Unknown primary melanoma 1324 12.6 37.6 (35–40.2)

Head and neck melanoma 59 6.3 25.4 (14.7–36)

Lung large cell carcinoma 74 12.2 24.3 (14.9–33.7)

Unknown primary squamous cell carcinoma (SCC) 606 7.6 21.6 (18.4–24.9)

Lung large cell neuroendocrine carcinoma 288 9.9 19.8 (15.6–24.8)

Lung sarcomatoid carcinoma 130 7.2 19.2 (12.7–26)

Stomach adenocarcinoma intestinal type 58 5.0 19 (10.9–30.9)

Uterus endometrial adenocarcinoma endometrioid 459 4.5 18.5 (15–22.1)

Lymph node lymphoma diffuse large B cell 348 10.0 18.4 (14.7–22.8)

Lung non-small cell lung carcinoma (NOS) 2636 8.1 17 (15.6–18.5)

Unknown primary sarcomatoid carcinoma 64 5.4 15.6 (7.6–24.6)

Unknown primary malignant neoplasm (NOS) 491 3.8 14.9 (12–18.3)

Uterus endometrial adenocarcinoma (NOS) 743 4.5 14.7 (12.3–17.4)

Bladder carcinoma (NOS) 77 8.1 14.3 (8.2–23.8)

Unknown primary urothelial carcinoma 188 7.2 13.8 (9.2–18.9)

Soft tissue angiosarcoma 157 3.3 13.4 (8.9–19.6)

Lung adenocarcinoma 11855 6.3 12.3 (11.7–12.9)

Lung adenosquamous carcinoma 154 5.4 12.3 (7.5–17.7)

Skin adnexal carcinoma 74 3.6 12.2 (6.5–21.5)

Bladder urothelial (transitional cell) carcinoma 1218 7.2 11.9 (10.1–13.8)

Lymph node lymphoma B-cell (NOS) 88 6.3 11.4 (6.3–19.7)

Lung squamous cell carcinoma (SCC) 2102 9.0 11.3 (10–12.7)

Unknown primary carcinoma (NOS) 1405 4.5 10.7 (9.2–12.4)

Head and neck squamous cell carcinoma (HNSCC) 1184 5.0 10.1 (8.5–11.9)

Lung small cell undifferentiated carcinoma 913 9.9 9 (7.3–11)

Nasopharynx and paranasal sinuses squamous cell Carcinoma (SCC) 67 4.5 9 (4.2–18.2)

Ovary endometrioid adenocarcinoma 105 3.6 8.6 (4.6–15.5)

Unknown primary undifferentiated small cell carcinoma 117 6.3 8.5 (4.1–14)

Brain oligodendroglioma 321 2.7 8.4 (5.6–11.6)

Small intestine adenocarcinoma 277 4.5 8.3 (5.3–11.7)

Soft tissue malignant peripheral nerve sheath tumor (MPNST) 134 2.5 8.2 (4.1–13.2)

Soft tissue sarcoma undifferentiated 260 2.5 8.1 (5.3–12)

Uterus endometrial adenocarcinoma clear cell 62 3.6 8.1 (3.5–17.5)

Prostate undifferentiated carcinoma 91 3.6 7.7 (3.8–15)

Salivary gland mucoepidermoid carcinoma 55 2.7 7.3 (2.9–17.3)

Unknown primary adenocarcinoma 2751 3.6 6.9 (6–7.9)

Ureter urothelial carcinoma 88 5.4 6.8 (2.5–12.6)

Cervix squamous cell carcinoma (SCC) 284 5.4 6.7 (4.3–10.2)
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with high TMB (858 cases with known functional

mutations in mismatch repair or POLE out of the 6348

cases with high tumor mutation burden). Many of the

mutations found were inactivating frameshift alterations,

and MSH6 was the most frequently mutated (Additional

file 6: Figure S4). We found mismatch repair mutations

to be particularly common in skin squamous cell carcin-

oma (6.7%), uterus endometrial adenocarcinoma, sub-

type not otherwise specified; (6.0% of cases), and uterus

endometrial adenocarcinoma endometrioid (5.8%). Our

results are consistent with the known role of alterations

in mismatch repair genes in leading to hypermutation.

In order to identify potential novel mutations associ-

ated with increased mutation rate, we also tested for

association between TMB and all genomic alterations in

our dataset (see “Methods”). We identified 117 somatic

mutations significantly associated with increased tumor

mutation burden at FDR = 0.05 and with factor loading

>0.15 (Additional file 7: Table S3). As expected, many

statistically significant mutations occurred in mismatch

repair genes, and POLE P286R, a genomic alteration that

is known to cause hyper-mutant cancers [67], was the

second most significant (p = 1.1 × 10–72).

Novel promoter mutations in PMS2 are associated with

high mutation burden and occur frequently in melanoma

In addition to previously known mutations, we identified

a cluster of somatic mutations in the promoter region,

Table 1 Disease indications with greater than 5% of specimens showing high TMB (>20 mutations/Mb) (Continued)

Penis squamous cell carcinoma (SCC) 60 4.5 6.7 (2.6–15.9)

salivary gland carcinoma (NOS) 160 3.6 6.3 (3.4–11.1)

Kidney urothelial carcinoma 224 5.4 6.3 (3.8–10.2)

Unknown primary undifferentiated neuroendocrine carcinoma 674 2.7 6.1 (4.5–8.1)

Duodenum adenocarcinoma 249 3.6 6 (3.4–9.2)

CI confidence interval, NOS not otherwise specified

All specimens

n = 62,150
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Fig. 3 The relationship between tumor mutation burden and microsatellite instability. a Specimens for which we measured both TMB and

microsatellite instability. MSI calls were only available for 62,150 samples from the most recent versions of the assay. Specimens with TMB low

and called as MSI-Stable are shown in light grey, specimens with high TMB (mutations/Mb >20) are shown in blue, and specimens called as

MSI-High are shown in dark grey. b The proportion of samples called as MSI and TMB high (dark blue), TMB high and MSI-Stable (light blue),

and TMB low and MSI-High (grey) for each of the disease types with greater than 0.3% of samples called as either TMB or MSI-High
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~50–100 bp upstream of the transcription start site of

the PMS2 gene that were significantly associated with a

large increase in TMB. The most statistically significant

mutation was a chr7:6048788:C > T (p = 1.2 × 10–49).

Melanoma specimens harboring this mutation showed a

5.3× increase in median TMB compared to specimens

that did not harbor this mutation. In total, we identified

12 positions within the promoter of the PMS2 gene

which were recurrently mutated and associated with

increased mutation burden (Fig. 5a; Additional file 8:

Table S4). The original mutation identified was

frequently mutated as part of a dinucleotide substitution

(chr7:6048788-6048789:CC > TT). The presence of any

one of the PMS2 promoter alterations was associated

with a 5.3-fold increase in median TMB when compared

with PMS2 promoter wild-type samples in melanoma

specimens (Fig. 5b). This increase in the median TMB of

samples harboring promoter mutations is comparable in

magnitude to the increase in mutation burden in speci-

mens with functional mutations in the coding region of

DNA repair pathway genes MSH2, MSH6, MLH1, and

PMS2 (Fig. 3). Mutations in the coding regions of PMS2

were less frequent (0.2%, 191/92438) than mutations in

the promoter region.

These PMS2 promoter mutations occurred frequently in

melanoma, in 10.0% of cases (173/1731). They were also

found frequently in skin basal cell carcinoma (23%, 17/72

specimens) and skin squamous cell carcinoma (19%, 39/

203 specimens) and less frequently in several other tumor

types (Additional file 9: Table S5). We tested for co-

occurrence of PMS2 promoter mutations with mutations

in other genes in melanoma. After controlling for TMB

(see “Methods”), we found that no other mutations signifi-

cantly co-occurred (Additional file 10: Table S6).

To confirm that PMS2 promoter mutations were som-

atic in origin, we carried out several analyses. We first

looked in TCGA whole exome data from 50 melanoma

patients and confirmed the somatic status of three of the

mutations found in our cohort (chr7:6048723,

chr7:6048760, and chr7:6048824) [62]. In this dataset,

the frequency of the three PMS2 promoter mutations

listed above is similar to the frequency of all PMS2 pro-

moter mutations found in our data and significantly as-

sociated with TMB (4/50, 8.0%, 95% confidence interval

(CI) 3.1–18.8%, and 10.0%, 95% CI 8.6–11.5%, respect-

ively). We also queried public germline databases

dbSNP142 and ExAC, and none of the PMS2 promoter

mutations associated with high mutation burden were

found in either database. Finally, we used an algorithm

that uses the mutation allele frequency and genome-

wide copy number model of genomic alterations to

determine their germline or somatic origin (see

“Methods”). We found that of the variants which were

able to be called as somatic or germline, 274 of the vari-

ants out of 294 (93.1%) were called as somatic (Add-

itional file 11: Table S7). Furthermore, the median allele

frequency of PMS2 promoter mutations in melanoma is

0.26 (range 0.05–0.85), which is lower than that for

BRAF V600 mutations occurring in the same tumor type

(median 0.37, max 0.97; Additional file 12: Table S8).

These data demonstrate that these PMS2 promoter mu-

tations are most frequently somatic in origin. Finally, we

used several computational methods to assess the func-

tional impact of these mutations [68–70], using methods

which integrate conservation information as well as

multiple functional genomics data from ENCODE such

as DNase I patterns and transcription factor binding

(Additional file 13: Table S9). Interestingly, these

methods agree in terms of which of the mutations we

identified are most likely to be functional; chr7:6048760

and chr7:6048824 consistently had the most significant

functional scores.

A

B C

Fig. 4 Associating mutations in cancer genes with tumor mutational

burden. a Coefficient from linear model. Genes are sorted by this

ratio. Genes involved in mismatch repair (MSH2, MSH6, MLH1, PMS2)

are highlighted in blue. DNA polymerase ε (POLE) is highlighted in

orange. b Plot of mutation burden in specimens with known or

likely driver mutations in any of the mismatch repair genes listed

above (MMR+), n = 859, and of specimens without such a mutation

(MMR−), n = 91,579. c Plot of mutation burden in specimens with

known or likely driver mutations in POLE (n = 102) and specimens

without such mutations (n = 92,336)
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Discussion

We have shown that tumor mutation burden calculated

using a 1.1-Mb CGP assay agrees well with whole exome

measures of mutation burden. This indicates that CGP,

targeting the entire coding region of several hundred

genes, covers sufficient genomic space to accurately as-

sess whole exome mutational burden. We found that fil-

tering out germline alterations and rare variants was

important to obtaining accurate measurements of TMB,

and this will especially be important in patients from

ethnic backgrounds not well represented in sequencing

datasets. These findings indicate that CGP is an accur-

ate, cost-effective, and clinically available tool for meas-

uring TMB. The results of our downsampling analysis

show that the variation in measurement due to sampling

when sequencing 1.1 Mb is acceptably low, resulting in

highly accurate calling of TMB at a range of TMB levels.

This sampling variation increases as the number of

megabases sequenced decreases, especially at lower

levels of TMB. While targeted CGP can be used to

accurately assess TMB, it is not currently suited for

identification of neoantigens, which might occur in any

gene.

We characterized and provide extensive data describ-

ing tumor mutational burden across more than 100,000

clinical cancer specimens from advanced disease, includ-

ing many previously undescribed types of cancer. These

data should help to guide design of immunotherapy clin-

ical trials across a broader range of indications. Cur-

rently, immunotherapies targeting CTLA-4, PD-1, and

PD-L1 are approved in a small number of indications,

melanoma, bladder, NSCLC, and renal cell carcinoma.

Not surprisingly, we observe that melanoma and NSCLC

represent some of the highest mutation burden indica-

tions. We identified several novel disease types with high

TMB which may be good targets for immuno-oncology

treatment development. In addition, we observed a wide

range of TMB across many cancer types, similar to find-

ings from previous studies [28, 51]. We have found that

there may be many disease types with a substantial

Fig. 5 Recurrent PMS2 mutations are associated with increased mutation burden and are stratified by disease type. a Location of

recurrent PMS2 promoter mutations upstream of the transcription start site. Locations showing multiple dinucleotide events are marked

with a blue box. b Mutation burden in PMS2 mutant versus wild-type specimens. For the indicated disease and selected mutation or

collection of mutations, tumors were classified as Mut + or Mut−. Mutation burden for these two sample populations is plotted. Whiskers

extend to the highest value that is within 1.5 × IQR of the hinge, where IQR is the inter-quartile range, or distance between the first and

third quartiles. Points beyond this are not shown. c Percentage of specimens with PMS2 promoter mutations in select disease types. The

percentage of specimens with any of the PMS2 promoter mutations is plotted
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portion of patients who might benefit from these therap-

ies. Overall, we identified 20 tumor types affecting eight

tissues where greater than 10% of patients had high

TMB.

Understanding the factors associated with genomic

instability is also important to better understand car-

cinogenesis and progression. We characterized the dis-

tribution and prevalence of coding mutations in known

genes involved in mismatch repair and DNA replication.

However, overall mutations in these genes accounted for

less than 10% of cases with high TMB. We also identi-

fied several other genes associated with high TMB.

Alterations in TOP2A were associated with a large in-

crease in TMB, although we only identified eight cases

of single nucleotide substitutions in this gene. TP53BP1,

another of the genes showing large effect size, is in-

volved in double-stranded break repair and also impli-

cated in resistance mechanisms [71, 72].

Non-coding mutations have increasingly been

found to have a functional role in cancer [73–75].

Our analysis of mutations that are significantly asso-

ciated with increased tumor mutation burden re-

sulted in the discovery of novel recurrent mutations

in the promoter region of mismatch repair pathway

gene PMS2. We have not definitively shown that

these mutations are causal, and additional experi-

ments will be needed to elucidate the function of

these promoter mutations. PMS2 promoter mutations

are present in ~10% of melanoma samples and ~8%

of squamous cell carcinomas, meaning that, if func-

tional, these mutations may comprise a meaningful

subset of alterations in both of these diseases.

Conclusions

These results show that CGP targeting ~1.1 Mb of cod-

ing genome can accurately assess TMB compared with

sequencing the whole exome. Using this method, we find

that many disease types have a substantial portion of pa-

tients with high TMB who might benefit from immuno-

therapy. Finally, we identify novel, recurrent promoter

mutations in PMS2 which may be another example of

regulatory mutations contributing to tumorigenesis.

Additional files

Additional file 1: Figure S1. TMB increases with age in adult patients

(pdf). TMB values are plotted versus age. The red line shows the fit from a

linear regression model. (PDF 1455 kb)

Additional file 2: Figure S2. TMB by gender (pdf). TMB for female (left)

and male (right). The bottom and top edges of the boxes correspond to

the 25th and 75th percentiles. Whiskers extend to the highest value that

is within 1.5 × IQR of the hinge, where IQR is the inter-quartile range, or

distance between the first and third quartiles. Points beyond this are

plotted individually. (PDF 23 kb)

Additional file 3: Table S1. Summary of TMB properties by disease

(xls). Specimen count, median TMB, maximum TMB, percentage of cases

with TMB >20 mutations/Mb, and 95% binomial confidence intervals on

the percentage of cases with TMB >20 are provided. (XLSX 18 kb)

Additional file 4: Figure S3. TMB by age in select disease types (pdf).

TMB versus age is plotted for select disease types, lung adenocarcinoma,

skin squamous cell carcinoma, and colon adenocarcinoma. The red

line shows the fit from a linear regression model for that disease

type. (PDF 940 kb)

Additional file 5: Table S2. TMB association results by gene (xls).

P value, factor loading coefficient, and the number of specimens with

a known or likely functional mutation in the gene are provided.

(XLSX 40 kb)

Additional file 6: Figure S4. Location of known or likely functional

mutations in mismatch repair and POLE genes (pdf). For the genes MSH6,

MLH1, MSH2, PMS2, and POLE, the count of mutations at each position in

the transcript is plotted. (PDF 37 kb)

Additional file 7: Table S3. TMB association results by mutation (xls).

The effect of the mutation on the transcript, p value, factor loading

coefficient, and number of times the mutation was found are provided

for each mutation tested for association with TMB for which the

corrected p value was <0.05. (XLSX 81 kb)

Additional file 8: Table S4. Summary of PMS2 promoter mutations

(xls). For each PMS2 promoter mutation which was found to be

significantly associated with TMB, the genomic coordinate, number of

observations, and median TMB in specimens with that mutation is

provided. (XLSX 42 kb)

Additional file 9: Table S5. Disease distribution of PMS2 promoter

mutations (xls). The frequency of PMS2 promoter mutations in disease

types with frequency greater than 0.1. Frequency, binomial 95%

confidence interval on the frequency, number of specimens in that

disease type, and number and specimens with promoter mutations is

provided. (XLSX 31 kb)

Additional file 10: Table S6. Co-occurrence of PMS2 promoter

mutations with alterations in genes (xls). Results of logistic regression

test for co-occurrence of alterations with PMS2 promoter mutations

in skin melanoma. The mutation count (number of specimens with

known or likely functional mutation in the gene), gene mutation

frequency in PMS2+ (frequency of known or likely functional mutations in

the gene in specimens with PMS2 promoter mutation), gene mutation

frequency in PMS2− (frequency of known or likely functional mutations

in the gene in specimens without PMS2 promoter mutation), odds ratio,

and p value are provided. (XLSX 48 kb)

Additional file 11: Table S7. Somatic/germline calls for PMS2 promoter

mutations (xls). Results of algorithm to call mutations as somatic,

germline, or ambiguous (see “Methods”). For each PMS2 promoter

mutation, the number of times it was called somatic, ambiguous, or

germline is provided. (XLSX 34 kb)

Additional file 12: Table S8. Allele fraction of PMS2 promoter

mutations and selected mutations in melanoma (xls). For selected

mutation in melanoma (NRAS Q61K and BRAF V600E), and for each of

the PMS2 promoter mutations, the median, minimum, and maximum

allele fraction (fraction of reads at that position showing the mutation)

and number of specimens with that mutation are provided. (XLSX 40 kb)

Additional file 13: Table S9. Functional scores for PMS2 promoter

mutations. For each of the PMS2 promoter mutation locations, the scores

for three functional prediction methods are provided. See “References”

section. (XLSX 36 kb)
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