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ABSTRACT

The light curves of mutual eclipses and occultations between the natural satellites of a planet

allow us to obtain high-precision position and relative motion from differential photometry,

enough to detect weak orbital disturbing forces, such as tidal forces. The observations are

made during the equinoxes of the planet.

We studied 25 light curves observed in Brazil during the 2009 campaign of the Galilean

satellites’ mutual phenomena. A narrow-band filter centred at 890 nm was used, strongly

attenuating the Jupiter’s scattered light. We fitted the occultation and eclipse light curves using

semi-analytical models that take into account the gradual decrease of light over the shadow,

the solar limb darkening and the solar phase angle. The Oren–Nayar reflexive model was used

to map the inhomogeneous light scattering on the surface of the satellites. For the first time it

is used in a work about mutual events. Here, we include the study that made us decide for this

model.

We measured the impact parameter, relative velocity and central instant with average pre-

cisions of 7.46 km (2.2 mas), 0.08 km s−1 (0.02 mas s−1) and 0.42 s (6.13 km), respectively.

The fit precision of the normalized light-curve fluxes ranged between 0.4 and 4.4 per cent.

Key words: methods: analytical – methods: data analysis – techniques: photometric –

eclipses – occultations – planets and satellites: individual: Io, Europa, Ganymedes, Calisto.

1 IN T RO D U C T I O N

A thorough study of the nature of the giant planet systems involves

a refined comprehension of the dynamic evolution of their satellites.

This requires the use of more sophisticated orbital evolution models,

that take into account very weak disturbing forces, such as tidal

forces, for example. In turn, the study of such models demands

cinematic data bases (positions, velocities), which should cover

large periods of time and should contain highly accurate astrometric

measurements of the satellites (Aksnes & Franklin 2001; Vienne

2008; Lainey et al. 2009).

⋆ Based on observations made at the Laboratório Nacional de Astrofı́sica

(LNA), Itajubá-MG, Brazil.

†E-mail: aoliveira@obspm.fr

In this context, the photometric observations of mutual phenom-

ena have an important advantage over traditional astrometric obser-

vations. Although such observations can only be done from time

to time, during the equinox of the planet, they provide much bet-

ter precisions. Indeed, for the Galilean satellites, the precision ob-

tained with the current astrometric techniques, for a single satel-

lite position, ranges between 134 and 170 mas (milliarcsecond)

(Kiseleva et al. 2008). For relative distances between satellite pairs,

the 30 mas error level can be achieved (Peng et al. 2012). On the

other hand, for past mutual phenomena, the errors can easily reach

the 20–30 mas range, and many times not exceed 5 mas (Emelyanov

2009). In this work, the average precision was even better,

3.10 mas.

Mutual phenomena between the Jovian satellites were observed

for the first time in 1973 (Aksnes & Franklin 1976), and again in

C© 2013 The Authors
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226 A. Dias-Oliveira et al.

1979, followed by the observation of the mutual events of the Satur-

nian satellites in 1979–1980 (Aksnes et al. 1984). A detailed history

of all the past campaigns of mutual events between the satellites of

the giant planets, as well as a compilation of past reduction methods

and recent improvements in the fit of light curves can be seen in

Emelyanov (2009) and in the references therein.

Because of the importance of mutual phenomena, many re-

searchers have worked in their prediction and organized observa-

tional campaigns to study both of these systems (see Aksnes &

Franklin 1990; Thuillot & Arlot 1996; Arlot, Lainey & Thuillot

2006; Arlot & Thuillot 2006 for the more recent works). In 2007,

mutual phenomena between the Uranian satellites were observed

for the first time with CCD technology (since they occur every

42 yr), and provided important astrometric results (see, for example

Birlan et al. 2008; Assafin et al. 2009 and Christou et al. 2009).

Based on the prediction of the events between the Galilean satel-

lites for 2009 (Arlot 2008), a Brazilian campaign was organized,

involving researchers from four institutes. Observations were car-

ried out at the Observatório do Pico dos Dias (OPD), managed by

the Laboratório Nacional de Astrofı́sica (LNA), Itajubá, Brazil (IAU

code 874). We successfully observed and analysed 25 events (13

occultations and 12 eclipses). Here, we present the observational

procedures, the data reduction and the analysis of these events.

In Section 2, we describe the campaign’s programme and ob-

servations. In Section 3, we present the photometry and the light-

curve fitting procedure, with a complete description of the analyti-

cal models used. We give the results in Section 4. Section 5 brings

a discussion about the available light reflectance models, and the

introduction of the Oren–Nayar’s model, adopted in this work. Con-

clusions are set in Section 6. In Appendices A and B, we detail the

calculations involved in the light-curve fits, related to the adopted

analytical models. In Appendix C, we display the fits to the entire

set of 25 light curves analysed in this work.

2 PRO G R A M M E A N D O B S E RVAT I O N S

2.1 Programme

The observational campaign in Brazil was the result of a collab-

oration between four national institutes. The predicted events for

2009–2010 (Arlot 2008) were available at the portal of the ‘Insti-

tut de Mécanique Céleste et de Calcul des Éphémérides’ (IMCCE)1

from the Observatoire de Paris. We selected all the visible events for

the OPD/LNA observatory2 with a predicted non-zero flux drop and

elevation above 30 degrees. This resulted in 50 events distributed in

45 nights spread over nine months. We attempted observations for

all these events.

2.2 Observations

We lost 23 events due to bad weather conditions. Also, from the

remaining 27 mutual phenomena successfully observed in 23 nights,

two were quasi-simultaneous, superposed in the same light curve.

These two events will not be studied in this work. The resulting

25 events analysed in this work are divided into 12 eclipses and

13 occultations. The satellites Io, Europa and Ganymede were all

eventually observed in an occultation or in an eclipse and Callisto

was observed only in eclipses.

1 ftp://ftp.imcce.fr/pub/ephem/satel/phemu09/phemu09_132ts.txt
2 ftp://ftp.imcce.fr/pub/ephem/satel/phemu09/visibility/vtri-itajuba.txt

Figure 1. Image of Jupiter, Io, Europa and Calisto (left to right) obtained

with the 0.6 m diameter Zeiss telescope, equipped with a methane filter. The

planet and the satellites present about the same brightness. Due to the use of

this filter, centred at λ = 890 nm with 20 nm width, the scattered light from

Jupiter is severely minimized.

The events were observed at the OPD/LNA (λ = +450 32′ 57′′,

φ = −220 32′ 22′ ′, h =1860 m, IAU code = 874). The observations

were carried out using the 0.6 m diameter Zeiss telescope, f/12.5.

For one night (20/06), the 1.6 m diameter Perkim–Elmer telescope,

f/10, was used.

Owing to methane in the Jupiter’s atmosphere, the planet has a

strong absorption of light between 880 and 900 nm, which causes

the planet albedo to drop to 0.1 in this region (Karkoschka 1994,

1998). As it does not occur with the satellites, a narrow-band filter

at these wavelengths was used to strongly minimize the scattered

light of Jupiter. The effect is shown in Fig. 1. The planet and its

satellites present about the same brightness. This ‘methane’ filter is

centred at 890 nm with a bandwidth of 20 nm.

We used two back illuminated CCD detectors. The EEVCCD

detector (model 02-06-1-206) with 385 × 578 square pixels of

22 µm, hereafter CCD 301, was used in 23 out of the 25 events

studied in this work. The EDVCCD detector (model 47-20) with

1024 × 1024 pixels of 13.5 µm was used in the two events observed

at the Perkim-Elmer telescope (2006CeI-1 and 2006CeI-2, see

Table 1). Since mutual phenomena are short-term events (typically

a few minutes long) with relative satellite velocities above 6 km s−1,

they demand short exposures for achieving a time resolution cor-

responding to a spatial resolution of a few kilometres. In practice,

depending on the specific relative speed and on the weather condi-

tions, the exposure times ranged between 1 and 3 s. This granted

satellite’s ADU (analogic-to-digital unit) peak counts of about half

the CCD maximum, allowing for high signal-to-noise ratios (S/N)

at the optimal linear count ranges of the CCDs. The electronics of

the detectors were set to do simultaneous integration and charge

transfer (frame-transfer mode), eliminating the readout overhead

between acquisitions.

Observations were made in order to always keep the same photo-

metric calibrator in the field of view (FOV). In eclipses, sometimes

the eclipsing satellite was the calibrator. In the absence of suitable

satellites, Jupiter – and sometimes a spot on its surface – was used

instead. Yet, due to the large separation of the targets, two events

were observed without a calibrator: an occultation of Io by Europa

on August 07 and an occultation of Ganymede by Europa on August

12.
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Table 1. Mutual events and observation conditions.

Date Event Cal. Seeing No. of z Solar

(d-month) (arcsec) images (◦) phase (◦)

27-04 2704GoI E 2.3 1800 52.69 10.97

09-05 0905EoI C 1.7 1401 34.26 11.41

21-05 2105IoE G 1.9 1302 53.31 11.48

28-05 2805IoE G 1.9 802 14.70 11.33

10-06 1006GeC G 2.0 1301 9.81 10.64

16-06 1606GeI G, E 1.8 2701 22.54 10.18

19-06 1906CeE C 2.1 1201 29.21 9.90

19-06 1906CeI C, E 1.6 1201 22.12 9.89

20-06 2006CeI-1 S 1.2 2500 28.89 9.80

20-06 2006CeI-2 C 1.7 2273 28.65 9.78

22-06 2206IoE J 1.2 2500 50.29 9.59

29-06 2906IoE J 2.2 1000 14.83 8.73

04-07 0407IeG J 2.2 1801 9.85 8.02

06-07 0607IeE I 1.9 2000 9.9 7.72

06_07 0607IoE J 1.9 1200 27.54 7.71

08-07 0807GeI G, E 1.8 1800 39.05 7.40

13-07 1307IeE E 1.9 2000 40.75 6.56

07-08 0708IeE S 2.0 1800 23.67 1.64

07-08 0708IoE N 2.0 1700 28.82 1.64

12-08 1208GoE N 2.4 1400 7.45 0.63

22-08 2208IoE J 2.4 2500 23.33 1.62

16-09 1609IoE J 2.5 1400 6.15 6.57

16-09 1609IeE I 2.0 1100 22.19 6.57

24-10 2410GoE I 3.8 2600 34.33 10.94

25-10 2510IoE J 3.8 600 45.96 10.98

Note. All observations were made in 2009. For each event, we have the

day and month, the target satellites designated by their initials (capital

letters), and the event type (‘e’ and ‘o’ stand for eclipse and occultation,

respectively). Also indicated are the objects used as calibrators (Cal.) in the

differential photometry: J stands for Jupiter, S for a spot on Jupiter and N

means no calibrator available. We also give the seeing, the total number of

images used, the zenith distance z and the solar phase angle. There was no

prediction in (Arlot 2008) for the event 1208GoE.

The FOV was 4 arcmin × 4 arcmin, with a pixel of 0.6 arcsec

size. Seeing was typically in the range 1–2 arcsec.

Observations started 30 min before and ended 30 min after the

predicted instants provided, respectively, for the start and end of the

event. This procedure aimed to obtain well resolved images of the

satellites involved, with enough angular separation to measure their

individual fluxes, as close as possible to the event, to determine the

ratio of albedos (see discussion in Section 3.2).

Table 1 gives information for the 25 events analysed in this work,

indicating the targets, calibration object, seeing, zenith distance,

number of images and solar phase angle.

3 PH OTO M E T RY, L I G H T- C U RV E F I T T I N G

In this section, we will describe: (a) the differential aperture photom-

etry applied to generate the observed light curves; (b) the technique

used for determining the ratio of albedos; (c) the analytic models

and numerical computations utilized to fit the observed light curves.

3.1 Photometry

All images were corrected by bias and flat-field using the IRAF pack-

age (Butcher & Stevens 1981). Differential aperture photometry

was performed using the PRAIA package described in Assafin et al.

(2009). The flux of the target was measured relative to a calibra-

tor, usually another satellite or satellites, sometimes the eclipsing

one (in eclipses). The resulting measured target/calibrator flux ra-

tio is practically free from the sky transparency variations owing

to anomalous atmospheric extinction, as this affects all objects in

almost the same manner in the FOV. The S/N, the flux ratio error

and the seeing are calculated and stored together with the mid-time

instant of the measurements. After measuring the flux ratio for all

the images, we obtained the observed light curve of the event.

In order to maximize the S/N, for each event we tested the opti-

mum size of the aperture radius for the flux determination of each

object, and for the sky background annulus. We varied their sizes

for each series of observations, and plotted the resulting sets of

provisional light curves. We choose the aperture values and sky

background annulus which resulted in the light curve with the least

flux dispersion. Typically, the sky background annulus around the

objects had an internal radius 5 pixels larger than that of the aper-

ture circle, and a width of 5 pixels. We did not verify a clear linear

relation between the best aperture radius size and the seeing of the

night for the events of this campaign.

From Table 1, we notice that for some events, Jupiter or a spot

on its surface were used as calibrator. We verified the validity of

such calibrators by comparing the light curve of an event that had a

satellite as calibrator, with the light curve of the same event obtained

with Jupiter or a spot as the calibration object. Although we add a

certain amount of noise in the flux ratio, the procedure proved to be

effective.

In two cases, no calibrator at all was available in the FOV. For

these events, we fitted a polynomial to the light curve outside the

flux drop, and flatted the entire curve to eliminate the continuous

variation of the flux, due to the atmospheric extinction. The proce-

dure proved to be satisfactory, since the sky conditions were very

stable. In both cases, the light curves were thus directly obtained

from the fluxes of the targets.

As a final step, all observed light curves were normalized by

fitting a polynomial curve of nth degree (usually n = 1) outside the

flux drop, so that the flux ratio was set to 1 outside the events.

3.2 Ratio of albedos

The ratio of albedos is not relevant for eclipses when the satel-

lites’ photometric fluxes are separately measured, as is our case.

Therefore, the following discussion concerns only to occultations.

The ratio of albedos is a physical parameter that is related to the

reflectivity of the satellites. Since the albedo is the ratio between

the received and reflected light by the satellites, the ratio of albedos

has great influence on the flux ratio shape of the light curve of an

occultation. In particular, it has a high correlation with the impact

parameter, which is the minimum distance at apparent closest ap-

proach. Because of this correlation, it is highly recommended that

we determine the ratio of albedos independently from the reduction

process, instead of trying to fit it from the light curve, together with

the other parameters.

There are maps of albedos for the Galilean satellites provided by

the Voyager and Galileo probes (see, for example, Vasundhara et al.

2003). But they were not generated in the same bandpass (filter) as

our observations. And there is no reliable process to convert these

albedos to our methane bandpass, or to other wavelengths, because

of photoclinometry effects, such as shadows cast by the relief at

the time of the probe’s measurements, which are not present in the

ground-based observations, and vice-versa.

Instead, using the procedure first mentioned in Assafin et al.

(2009) (see Section 5), also followed by Emelyanov et al. (2011),

we determined the ratio of albedos directly from the observations,
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228 A. Dias-Oliveira et al.

using images before and after the occultations, with the involved

satellites fully resolved in the images. Since the albedo is the ratio

between the satellite’s photometric flux and area, we can write the

ratio of albedos of satellites 1 (A1) and 2 (A2) as:

A1

A2

=
F1S2

F2S1

, (1)

where F1 and F2 are the photometric flux of occulted and occulting

satellites, respectively, obtained from the images taken near the

event, and S1 and S2 are their areas. We did not use the generalized

form of equation (1) proposed by Emelyanov et al. (2011), because

it increases the error in the determination of the albedo ratios, by

(unnecessarily) introducing one more flux quantity (the sum of

satellite fluxes F12 or F21 measured together), which in turn cannot

be measured without avoiding large contributions of sky background

and Poisson noise.

3.3 Light-curve fitting procedure

We rigorously reproduced the geometry of the mutual events by

formulating theoretical models and performing numerical compu-

tations. We then could determine the apparent configuration of the

satellites and of the Sun (including shadows), and thus be able to in-

fer the amount of light received by the observer at any instant. This

flux in turn was compared and fitted to the observed light curves

in an iterative procedure. As a result, we determined the observed

apparent relative orbital paths of the target satellites, described in

terms of known parameters: the impact parameter (the minimum

apparent distance between the geometric centre of the satellites,

at the apparent closest approach in the sky plane), the relative ve-

locity (tangent to the point associated with the impact parameter,

measured in the sky plane) and the central instant (instant of time

associated with the impact parameter). It is important to emphasize

that the impact parameter is defined by using the geometric centre

of the satellites which, unlike the photocentre, do not depend on the

solar phase angle. The satellites’ ephemeris can also be represented

by these parameters, so that we could compare the results from the

observations with the current established ephemeris for the Galilean

satellites.

We assume an apparent linear path for the relative motion be-

tween the target satellites, during the short time interval of the

events. We model the light curves of the events based on a rigorous

formulation of the geometry of the relative orbits and of the effects

of light reflectance over the satellites’ surfaces. The normalized flux

ratio cannot be directly expressed in terms of a simple analytical

function. For each instant of observation, we calculate the flux by

numerically simulating the two-dimensional luminosity profile of

the satellites’ discs, projected on to the sky plane perpendicular to

the line of sight. These profiles depend on the type of the event

(occultation or eclipse), and on the positions of the satellites and

of the Sun. As a result, we derive a simulated light curve, which

works as the model. This light curve is parametrized by the relative

orbital parameters described above. The observed light curve is then

fitted to this simulated light-curve model by an iterative non-linear

least-squares procedure, which follows the Levenberg–Marquardt

method. The derivatives of the simulated light-curve model with re-

spect to the orbital parameters are numerically computed by varying

the parameters. In the process, as the flux of the simulated light-

curve model converges to the flux of the observed light curve, so do

the values of the orbital parameters being adjusted. After a conver-

gence of 1 per cent is reached in the chi-square (flux) between the

simulated and observed light curves, we obtain the desired orbital

parameters. The spatial resolution of the luminosity profile is set

(limited) by the time resolution and photometric measuring errors

of the observations, thus at the same time avoiding loss of precision,

and optimizing computation speed. Typically, we used resolutions

corresponding to 10 × 10 km areas in the sky plane.

We fit the projected relative velocity, the central instant, and

the impact parameter with this procedure. Initial guess values for

these parameters are necessary to start the procedure. They are

solely obtained from the observed light curve itself, which makes

the process ephemeris independent. On the other hand, we use the

formalism above to rigorously compute relative velocity, central

instant and impact parameter, based on a given ephemeris. This

translation allows for a direct and unbiased comparison between

the ephemeris-based and the fitted parameters, which model the

observed light curves of the mutual events (see Section 3.4).

The initial guess values are calculated from the observed light

curve as follows. The central instant is obtained from the instant

associated with the observation with minimum flux. The rela-

tive velocity is computed by considering the diameter of the oc-

culted/eclipsed body and the time interval from ingress to egress,

estimated from the observed light curve. The impact parameter is

derived in an iterative process. We increment the impact param-

eter values from zero to a given limit, which is the sum of both

satellites’ radius for occultations, or the penumbra size plus the

radius of the eclipsing satellite, in the case of eclipses. For each

incremented value, we compute the simulated flux associated with

the estimated central instant and to four other points, uniformly

located between ingress and egress. Then, we store the chi-square,

which is the square root of the ratio between the sum of the differ-

ences between the computed and observed fluxes, and the degrees

of freedom (N points minus the number of parameters). We keep

the impact parameter value corresponding to the least chi-square

found.

In the following, we detail the modelling and calculations nec-

essary for the numerical simulation of the light curves, separately

carried out for occultations and eclipses.

3.3.1 Light-curve simulation for occultations

Three factors have great importance on the theoretical modelling

of occultations: the ratio of albedos, the reflectance law and the

solar phase angle. The first two determine the luminosity intensity

profile of each point in the projection, while the third one shapes

the apparent discs at the sky plane.

We adopt the simplified version of the model proposed by Oren

& Nayar (1994), which consists of a generalization of Lambert’s

law, with the surface roughness seen as a set of facets with different

inclinations. We use the simplified version because, according to

the authors, it describes well the problem and, for the purposes of

this work and achieved precisions, there was no need to consume

the additional processing time, required to use the complete version.

The Oren–Nayar’s model has been used in works on three-

dimensional reflective surfaces since its formulation (see Yinlong

2007). This model is close to the actual reflection profile of an il-

luminated curved surface, providing a satisfactory fit to the light

curves. To our knowledge, it is the first time that this model is used

in a work about occultations and eclipses in mutual events.

We must know the geometric orientations of the incident and

reflected (emergent) rays, respectively Li and Le, which are deter-

mined by four angles, as shown in Fig. 2. Here, ψi and ψe represent

the angles between the normal vector η1 to the surface, respectively,
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Figure 2. The spacial orientation of the incident and reflected (emergent)

radiances, geometrically represented by the light rays Li and Le, for a point

in the satellite’s surface. ψi and ψe represent the angles between the normal

vector to the surface, η1, respectively, with Li and Le. φi and φe are obtained

by projecting the rays at the plane tangent to the satellite’s surface and taking

the angles between these projections and the vector η2, parallel to the tangent

plane and in the north–south direction (see Appendix A and Fig. A1).

with Li and Le. φi and φe are obtained by projecting the radiances

at the plane tangent to the satellite’s surface, and taking the angles

between these projections and the vector (η2), parallel to the tan-

gent plane and in the north–south direction (see Appendix A and

Fig. A1).

Thus, considering the albedo A of the body, and given the incom-

ing and reflected radiances, geometrically represented by the light

rays Li and Le, according to this model we have

Le =
A

π
cos ψi(B + (C max[0, cos(φi − φe)] sin αtanβ))Li, (2)

where

B = 1 − 0.5
σ 2

σ 2 − 0.33
(3)

C = 0.45
σ 2

σ 2 − 0.09
(4)

α = max(ψi, ψe) and β = min(ψi, ψe). (5)

The surface roughness is represented by the variable σ , which

is the aperture angle between the facets. It ranges between 0 (per-

fectly smooth surface) and π/2 (entirely rough surface). Here, we

used σ = π/2. In Section 5, we discuss the choice of the re-

flectance model, and the choice of σ in the fitting of the light

curves.

The Oren–Nayar’s model requires the determination of the spatial

orientation of the incident and reflected radiances stated in equation

(2). This requires the computation of the angles shown in Fig. 2.

To determine these angles, we used state vectors V , consisting

of the topocentric and heliocentric position and velocity of the

satellites and of the Sun (see Fig. 3). They were generated using the

DE418, combined with the file NOE–5–2010–GAL.a.bsp through

the SPICE information system (Acton 1996). This file, available on

Figure 3. The state vectors of the topocentric position and velocity of the

satellites and of the Sun. V1 is the occulted satellite 1 topocentric position

vector. V2 is the occulting satellite 2 topocentric position vector. VST is

the Sun’s topocentric position vector. VS1 = (VST − V1) is the satellite 1

heliocentric position vector. VS2 = (VST − V2) is the satellite 2 heliocentric

position vector. For clarity, the velocity components were omitted.

the web,3 provided the IMCCE’s ephemeris (theory NOE–5–2010)

used in this work for the four Galilean satellites (Lainey et al. 2009).

Note that the errors in the state vectors from the current ephemeris

have a negligible propagation effect in the computed quantities, and

can be virtually ignored.

From Figs 2 and 3, we have Lij = VS j and Lej = V j , where j

is 1 for the occulted satellite (satellite 1), and 2 for the occulting

satellite (satellite 2). Thus, from the cross product and dot product

between the state vectors, we have

ψij = arccos
VS j · η1 j

|VS j · η1 j |
(6)

ψej = arccos
V j · η1 j

|V j · η1 j |
(7)

φij = arccos
(η1 j × η2 j ) · (VS j × η1 j )

|(η1 j × η2 j ) · (VS j × η1 j )|
(8)

φej = arccos
(η1 j × η2 j ) · (V j × η1 j )

|(η1 j × η2 j ) · (V j × η1 j )|
. (9)

We show in Appendix A how to compute the normal and tangent

vectors η1 and η2. The topocentric and heliocentric state vectors

provide, for each instant, the direction of the incident and scattered

light rays (radiances). The orientation of the vectors η1 and η2

depends of the position of the point in the satellite’s surface.

We use these expressions with the Oren–Nayar model to deter-

mine the luminous intensity of each point of the disc projected in the

sky plane. Note that the effect of the solar phase angle in the projec-

tion is naturally accounted for by the reflectance model. Also, the

procedure easily identifies when a point in the disc of the occulted

satellite lays behind a point in the occulting satellite in front of it.

The integration of the (normalized) flux over the two discs gives

the total simulated flux of the target satellites for a given instant.

We then have the flux of a single point in the simulated light curve.

3 ftp://ftp.imcce.fr/pub/ephem/satel/galilean/L2/
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230 A. Dias-Oliveira et al.

We finally obtain the entire simulated light curve by repeating the

procedure for all the instants corresponding to an actual observation.

Importantly, all geometry involving state vectors takes place in a

timeless space. Thus, the instants used to generate the state vectors

of each satellite and the sun are the instants of each image corrected

by the light travel time for each position.

3.3.2 Light-curve simulation for eclipses

The shadow of an eclipse is composed by two regions, the umbra and

the penumbra. The flux is zero for points inside the umbra. Inside

the penumbra, the flux is attenuated, as compared to a ‘no-eclipse’

situation. Therefore, it is fundamental to rigorously determine the

umbra and penumbra regions, for a very precise fitting to the ob-

served light curve of an eclipse.

We geometrically determined the radius of the umbra and penum-

bra, and semi-analytically derived the gradual decrease of light

along the penumbra.

The radii of the umbra (RU) and penumbra (RP) at the path of

the eclipsed satellite were determined from the state vectors, using

basic geometry (see Fig. 4):

RU =
RS|VS2|(|VS2| − VS1VS2) − R2VS1VS2

|VS2|
√

|VS2|2 − (R2
S − R2

2)2
(10)

RP =
VS1VS2(RS − R2) − RS|VS2|

2

|VS2|
√

|VS2|2 − (RS + R2)2
, (11)

where RS and R2 are the radii of the Sun and of the eclipsing satellite,

respectively.

Figure 4. Geometric layout illustrating the radius of the penumbra and

umbra, defined at the path GEO1 of the eclipsed satellite. Here, EF = RU

(umbra radius), EG = RP (penumbra radius) and OSA = OSB = RS (Sun

radius). OSO2 = |VS2| and OSO1 = |VS1|, so that the angle between the

heliocentric vectors VS1 and VS2 (see Fig. 3) is arccos
VS1·VS2
|VS1·VS2|

. Also, OSE =

VS1·VS2
|VS2|

. The solar plane along AOSB contains the Sun, and is normal to

the heliocentric vector of the eclipsing satellite. See also the discussion in

Appendix B.

Figure 5. Geometry of a partial occultation. The discs SSS and SS, with

radii RSS and RS, respectively, separated by the distance d, overlap each

other by the common area Sc.

We obtained the flux profile of the penumbra by determining the

fraction of extinct sun’s light along the path of the eclipsed satellite.

This was made in two steps.

First, we consider a fictitious observer placed at a point in the

penumbra looking towards the Sun, and analytically determine

the fraction of the disc of the Sun, which is covered by the disc of

the eclipsing satellite. For that, we used the expressions from

Assafin et al. (2009), which determine the common area (Sc) be-

tween two discs of radii RS and RSS overlapping each other, as a

function of the distance d between their centres (see Fig. 5):

Sc = R2
SSαSS + R2

SαS − dRS sin αS, (12)

where

cos αSS =
R2

SS − R2
S + d2

2RSSd
and cos αS =

R2
S − R2

SS + d2

2RSd
. (13)

Here, RS (the Sun radius) and RSS are taken at the solar plane,

which is the plane containing the Sun, perpendicular to the helio-

centric vector of the eclipsing satellite (see Fig. 4). RSS is the radius

of the eclipsing satellite, projected at this plane from the fictitious

observer point of view at the penumbra. The calculation of RSS, and

the use of RSS, RU and RP in the determination of the actual eclipse

shadow cast in the observation plane, including the effect of solar

phase, are explained in Appendix B.

The second step consists in taking into account the solar limb

darkening, at the uncovered fraction of the solar disc, to calculate

the amount of light that is actually received by the satellite. For that,

the uncovered solar disc radial profile is numerically represented

by rings. Each ring has a light intensity value coherent with the

darkening profile proposed by Hestroffer & Magnan (1998). The

number of rings was chosen so that the light intensity difference

between two consecutive rings was less than 1 per cent, resulting in

a smooth limb darkening profile.

Thus, from the obtained penumbra light profile, we determined

the incoming and outcoming fluxes Li and Le with the reflectance

model, for any point of the eclipsed satellite in the sky plane.

The points of the eclipsed satellite disc projected in the sky, bathed

by the umbra, have zero flux. The projected satellite points inside

the penumbra have intermediate fluxes, computed by the procedure

explained in this section and in Appendix B. Those satellite points

outside the penumbra (if any) have fluxes computed by the same

procedure described in the previous section. In this way, we derive

the luminosity intensity at each point of the satellite disc projected

in the sky plane. Integration of all fluxes furnish the (normalized)

simulated flux for a given instant. Similarly as before, after consid-

ering all the instants, we obtain the entire simulated light curve for

the eclipse.
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Analysis of the Galilean mutual events 231

Figure 6. Light-curve fit for the eclipse of Europa by Io in 2009 July 06.

Top: the observed light curve (dots), the fitted light curve (solid line) and the

computed ephemeris-based light curve (dashed line). Bottom: the difference

between the observed and the fitted curves (O − C), showing the quality of

the adjustment. Time is in UTC.

3.4 Ephemeris offsets and ephemeris-based light curves

From state vectors, applying basic plane geometry, we can obtain

the impact parameter, the central instant and the relative velocity

between two given satellites. Since the state vectors are generated

from the ephemeris, these values may be regarded as ephemeris

based, and can be compared to the values obtained from actual fits

to the observed light curves. A simple transformation translates the

differences found into right ascension and declination ‘observed

minus ephemeris’ offsets. In fact, this information is stored in the

fitting procedures.

The fitting software constructs a light curve from values for the

impact parameter, relative velocity and central instant. This allows

for a visual inspection during the fitting procedure, from starting

values to the final results themselves. The ephemeris-based com-

puted values are also used to generate ephemeris-based light curves,

that can be compared to the observed and fitted ones.

All this allows for both a qualitative and quantitative comparison

between observation and ephemeris.

4 R ESULTS

We fitted the light curves of 25 events and obtained the values and

error estimates for the impact parameter, the relative velocity and the

central instant, following the procedures described in Section 3. We

also calculated these parameters from the ephemeris, as explained

in Section 3.4. This allowed us to compare the expected results from

the ephemeris with the observed ones. Figs 6 and 7 illustrate two

examples of adjustment of light curves from an eclipse and from an

occultation. The ephemeris-based light curves are also displayed. In

Appendix C, we illustrate all the events. Figs C1 to C3 (occultations)

and C4 to C6 (eclipses) sample the events according to the quality

of the observations and adjustments, i.e. ‘excellent’, ‘good’ and

‘regular’.

We show in Table 2 (for occultations) and in Table 3 (for eclipses)

the parameters and respective errors obtained from the light-curve

fits of all the events. For the impact parameter and the velocity,

values are listed in kilometres and kilometres per second, and in

milliarcseconds and milliarcseconds per second, respectively. For

Figure 7. Light-curve fit for an occultation of Europa by Io in 2009 June

29. Top: the observed light curve (dots), the fitted light curve (solid line)

and the computed ephemeris-based light curve (dashed line). Bottom: the

difference between the observed and the fitted curves (O − C), showing the

quality of the adjustment. Time is in UTC.

the central instant, in UTC (Universal Time Coordinated), the label

of each event indicates the day and month. We list the instant in

hours, minutes and seconds, and the error in seconds and in kilome-

tres (by the use of the relative velocity in kilometres per second).

We also list in Tables 2 and 3 the photometric error, based on the

dispersion of light-curve points outside the events, and the mean

error in flux ratio, computed from the light-curve fits. The ratio

of albedos (and errors) used for the light-curve reduction of the

occultations (see Section 3.2) are also given in Table 2.

We compared the results with the ephemeris published by the

IMCCE, currently considered the most accurate representative for

the Jovian system. We list in Tables 2 and 3 the differences be-

tween the fitted and the ephemeris-based parameter values. We also

list the (	αcos δ, 	δ) orbital offsets in the sense ‘observation −

ephemeris’.

5 T H E R E F L E C TA N C E L AW

The choice of the reflectance law has great influence in the light-

curve fit of the mutual events. This is because the satellite’s pho-

tocentre is significantly offset relative to its geometric centre, if

the solar phase angle is not negligible. Therefore, the choice of the

reflectance model affects the relationship between the impact pa-

rameter and the light-curve’s depth. Another possible side effect is

the bad determination of the central instant. Thus, the choice of a

simple or incorrect reflectance model may lead to a less precise, pos-

sibly inaccurate determination of the parameters, depending on the

photometric quality of the light curve. As a consequence, the mean

error of the fits in flux ratio may increase. We used the computed

mean errors of some selected light curves as a guide to measure the

adequateness of some tested reflectance models. The final choice

was made according to the quality of the fit obtained from these

light curves.

Knowing that the Poisson noise is proportional to the square root

of the intensity of the object’s light flux, a decrease in brightness, as

observed close to the central instant of some events (mostly central

eclipses), causes a decrease in the noise, and hence, in the dispersion

of the points near the bottom of the light curve. A narrowing is

observed in the light curve near the central instant for such events.

Fig. 8 displays an example.
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232 A. Dias-Oliveira et al.

Table 2. Results for the occultations.

Event Impact 	IP Relative 	RV Central 	MI 	αcos δ 	δ Photo. σ fit Ratio of

parameter velocity instant error Albedos

(km) (km) (km s−1) (km s−1) (h m s) (s) (km) (km) ×10−2 ×10−2

(mas) (mas) (mas s−1) (mas s−1) σMI(km) (km) (mas) (mas)

2704GoI 381.2 (33.2) −93.5 23.77(0.08) −0.025 06 42 43.24(0.22) −6.89 146.7 −118.5 1.09 1.11 1.67(0.08)

99.8 (8.7) −24.5 6.22(0.019) −0.01 5.22 −164.0 38.4 −31.8

0905EoI 2060.7 (10.4) 46.97 28.86(0.37) 1.48 07 21 48.34(0.56) −8.03 37.6 −220.9 4.46 1.5 0.88(0.01)

554.5 (2.7) 12.7 7.81(0.10) 0.4 15.7 −230.0 10.2 −59.9

2105IoE 229.2 (29.1) 183.83 22.65(0.10) 0.10 05 29 35.71(0.29) −10.6 −82.4 −290.5 2.29 1.51 1.04(0.14)

64.5 (8.2) 51.8 6.38(0.029) 0.03 6.6 −240.6 −23.2 −81.8

2805IoE 602.2 (6.1) −15.28 21.95(0.05) 0.31 07 44 08.73(0.16) −10.9 101.7 −213.7 1.12 0.8 1.01(0.01)

173.5 (1.8) −4.41 6.32(0.015) 0.09 3.5 −239.6 29.3 −61.6

2206IoE 1805.6 (8.9) 13.3 19.27(0.18) 1.00 03 27 46.91(0.60) −8.05 42.10 −141.7 0.11 1.3 0.98(0.007)

562.9 (2.8) 4.1 6.01(0.054) 0.31 11.6 −155.3 13.1 −44.1

2906IoE 1867.6 (2.9) −27.5 17.44(0.053) 0.19 05 38 20.71(0.22) −10.2 90.2 −153.1 0.07 0.4 0.97(0.005)

594.2 (0.9) −8.8 5.54(0.017) 0.06 3.9 −177.4 28.7 −48.7

0607IoE 1861.2 (4.0) −38.5 15.55(0.064) −0.66 07 48 27.18(0.34) −6.32 73.3 −81.3 0.05 0.6 1.00(0.006)

603.3 (1.3) −12.4 5.04(0.021) −0.21 5.3 −98.3 23.7 −26.3

0708IoE 818.7 (4.4) −87.1 10.45(0.022) −0.52 05 37 45.58(0.31) −7.25 109.5 −44.3 0.56 0.8 0.93(0.011)

279.4 (1.5) −29.7 3.56(0.007) −0.2 3.2 −75.8 37.3 −15.9

1208GoE 3132.4 (2.5) −27.8 7.94(0.031) 0.12 2 11 2.54(0.63) 14.3 −15.0 114.4 0.46 0.4 1.68(0.000)

1066 (0.8) −9.5 2.70(0.011) 0.04 5.0 113.6 −5.1 39.1

2208IoE 1938.7 (2.0) −19.7 5.45(0.012) 0.18 04 07 55.99(0.52) 6.85 4.75 40.8 0.05 0.5 0.93(0.011)

661.1 (0.7) −6.7 1.84(0.004) 0.06 2.8 37.4 1.6 13.9

1609IoE 1685.2 (5.9) −68.6 11.04(0.059) −0.19 00 46 13.50(0.64) 5.38 42.9 80.8 0.01 1.1 1.01(0.008)

556.2 (1.9) −22.6 3.64(0.019) −0.06 7.0 59.4 14.2 26.6

2410GoE 2259.9 (4.6) −58.2 13.72(0.049) −0.20 00 35 47.84(0.42) 19.2 −34.4 271.4 13.5 0.8 1.68(0.087)

670.5 (1.3) −17.2 4.07(0.015) −0.01 5.8 263.3 −10.2 80.5

2510IoE 1892.0 (17.1) −55.7 19.47(0.358) 1.48 01 21 43.70(1.20) 14.1 −34.8 258.0 0.01 1.4 1.01(0.008)

558.9 (4.7) −16.5 5.70(0.105) 0.44 23.4 275.3 −10.3 76.3

Note. The results are arranged in two rows for each event. The values in parentheses are their respective errors. The impact parameter and the relative velocity

are listed in the first line, respectively, in kilometres and kilometres per second, and in the second line in milliarcseconds and milliarcseconds per second. For

the central instant, in UTC, the label of each event indicates the day and month, and the first line gives the instant in hours, minutes and seconds. The second

line (σMI) lists the mid-time instant error in kilometres, by the use of the relative velocity in kilometres per second. 	IP, 	RV and 	MI are the respective

differences between the fitted parameters and the ephemeris-based values in the sense ‘observation − ephemeris’. In columns 8 and 9, we also list the (	αcos δ,

	δ) orbital offsets in the sense ‘observation − ephemeris’. The photometric errors are based in the dispersion of the light-curve points outside the events.

The σ fit values are the mean error in the flux ratio, computed from the light-curve fits. The listed ratio of albedos were computed following the procedures

described in Section 3.2. For 1208GoE, the ratio of albedos was not directly determined from observations before and after the event. Instead, we computed it

by multiplying the values of the ratio of albedos of the event 2704GoI, and the average value for Io/Europa ratio of albedos obtained from the events 0708IoE,

2208IoE and 1609IoE. These events were observed close to the 1208GoE occultation.

In the Poisson noise regime (as is the case of our observations),

we should expect that the photometric error is minimum at the

bottom of the light curve, thus making this part of the light curves

suitable for the analysis of the reflectance model. If the reflectance

model does not provide a good fit, the bottom part of the theoretical

light curve should be slightly offset from the observed one, due to

the bad determination of the impact parameter and, possibly, also

of the central instant. This effect is shown in Fig. 9. Therefore,

besides the inspection of the mean error of the flux ratio, computed

from the light-curve fits, this behaviour is another factor that helps

in the choice of the reflectance model.

The most basic and commonly used light scattering model is

the simple Lambert’s scattering law. It assumes an infinite-sized

source of light, and a reflecting surface that scatters the incident

light equally in all directions. Therefore, the satellite’s surface

luminosity can be represented by a homogeneous grey disc. In

this case, one way to account for the solar phase angle is to de-

scribe the format of the apparent disc as a combination of a semi-

circle with a semi-ellipse. However, the high photometric qual-

ity of the observed events makes this model too simplistic and,

therefore, inappropriate to provide a high-quality fit to our light

curves.

In this work, we considered the most complex and complete

reflectance models used in the literature, that take into account the

direction of the incident light for a finite-sized source, for example.

First, we studied the generalized version of Lommel-Seelinger’s

law, where the ratio between the radiance of the incident light (Li)

and the observed object’s radiance (Le) is given by (Buratti &

Veverka 1984)

Le

Li

= A
cos ψi

cos ψi + cos ψe

f (α) + (1 − A) cos ψ. (14)

Here, f(α) = 1 + Bα + Cα2 is the phase function of the surface,

where α is the phase angle, ψi and ψe are the same as in Fig. 2,

A is a function of α and the parameters B and C depend of the

satellites surface features. Unfortunately, in the literature, there was

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
3
2
/1

/2
2
5
/1

1
1
7
4
2
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Analysis of the Galilean mutual events 233

Table 3. Results for the eclipses.

Event Impact 	IP Relative 	RV Central 	MI 	αcos δ 	δ Photo. σ fit

parameter velocity instant error

(km) (km) (km s−1) (km s−1) (h m s) (s) (km) (km) ×10−2 ×10−2

(mas) (mas) (mas s−1) (mas s−1) σMI(km) (km) (mas) (mas)

1006GeC 1151.5 (5.5) 85.7 14.62(0.02) 0.19 07 29 40.25(0.21) 14.9 −160.9 166.39 0.57 1.0

345.6 (1.7) 25.7 4.39(0.005) 0.06 3.1 217.9 −48.3 50.0

1606GeI 3422.8 (1.8) 108.2 5.50(0.016) 0.08 08 45 4.17(0.73) −41.6 14.83 249.7 0.79 0.9

1050 (0.5) 33.2 1.69(0.005) 0.02 3.0 −228.8 4.5 76.6

1906CeE 1783.0 (2.6) −23.6 19.09(0.026) −0.55 05 11 37.02(0.14) 5.46 −16.65 102.74 1.53 0.7

551.0 (0.8) −7.3 5.90(0.008) −0.17 2.7 104.4 −5.14 31.7

1906CeI 3393.2 (3.0) 8.3 18.94(0.072) −0.39 08 32 50.77(0.34) 6.50 −55.3 113.3 0.95 0.6

1049 (0.9) 2.5 5.85(0.022) −0.12 6.4 123.2 −17.1 39.9

2006CeI 1926.4 (1.6) −1.5 4.89(0.005) 0.36 05 09 49.65(0.38) −20.4 −36.9 84.7 2.06 0.9

597.9 (0.5) −0.5 1.52(0.002) 0.11 1.9 −99.9 −11.4 26.3

2006CeI 1517.4 (3.9) −15.5 5.06(0.007) 0.008 09 37 20.90(0.51) 22.0 −27.4 109.2 4.69 1.4

471.1 (1.1) −4.8 1.57(0.002) 0.002 2.6 111.6 −8.5 33.8

0407IeG 1486.9 (6.3) −15.42 26.70(0.068) 0.07 06 25 14.90(0.19) 1.97 −5.49 54.4 0.08 0.7

479.1 (2.0) −4.97 8.59(0.021) 0.02 5.1 52.6 −1.7 17.5

0607IeE 2487.8 (3.4) −167.8 19.01(0.122) 1.33 06 17 16.94(0.39) 0.16 154.8 64.9 0.56 0.6

806.3 (1.1) −54.3 6.16(0.040) 0.43 7.4 3.00 50.2 21.0

0807GeI 777.8 (4.1) −58.4 22.23(0.018) 0.28 08 31 15.12(0.07) 9.2 −21.9 208.7 0.15 0.7

253.5 (1.4) −19.0 7.25(0.006) 0.09 1.6 204.2 −7.13 68.0

1307IeE 2312.8 (3.9) 21.9 17.04(0.104) 0.54 08 38 47.04(0.43) 1.02 −26.6 7.63 1.19 1.2

762.1 (1.3) 7.2 5.62(0.003) 0.01 7.3 17.5 −8.7 2.51

0708IeE 1656.7 (5.2) 178.9 11.21(0.052) −0.21 05 14 55.88(0.58) 3.16 −180.1 −29.4 0.02 2.3

568.6 (1.7) 61.0 3.77(0.017) −0.07 6.5 35.5 −61.5 −10.0

1609IeE 576.2 (14.0) −67.6 13.34(0.065) 0.36 02 15 9.96(0.54) −0.66 66.3 15.7 0.60 4.4

190.1 (4.5) −22.3 4.40(0.022) 0.11 7.2 −8.84 21.9 5.2

Note. Read definitions in Table 2. We do not list the ratio of albedos, as this is not used in the reductions of eclipses.

Figure 8. Bottom part of the light curve of the event 0807GeI (from Fig. C4)

showing the narrowing observed due to a noise reduction, as a consequence

of the flux drop from the target, due to the passage of the shadow (central

eclipse).

no information about these parameters for the Galilean satellites

(except for Europa), for the wavelength range covered by this study.

Therefore, this model could not be further tested.

We then tested the non-generalized version of Lommel-

Seelinger’s law (equation 15) (Aksnes, Franklin & Magnusson

1986), in an attempt to eliminate the need of information about

the features of the satellites. The law can be described as

d(Le/Li) = B
cos ψi cos ψe

cos ψi + cos ψe

ds (15)

where, d(Le/Li) is the amount of radiance scattered from a sur-

face element ds, ψi and ψe are the same as in Figs 2 and B is

Figure 9. Light-curve fit for the eclipse of Io by Ganymedes in 2009 July

08 using the Lommel-Seelinger reflectance model (0807GeI - LS). Top: the

observed light curve (dots) and the fitted light curve (solid line). Bottom:

the difference between the observed and the fitted curves (O − C), showing

the failure to determine the central instant which causes a horizontal offset

between the fitted and the observed light curve. Time is in UTC.

a normalization constant that, for this work, is assumed to be the

value of the ratio of albedos, aiming to maintain the aspect ratio

between the satellites fluxes. This alternative did not satisfacto-

rily solve the problem of the poor determination of the central
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Figure 10. Small zoom near the mid-time instant in the curve (O − C) of

the event 0807GeI comparing the three reflection models tested. Top: (a)

Lambert’s simple law and (b) Lommel-Seelinger’s law in the right. Bottom:

(c) Oren–Nayar’s model. Time is in UTC.

instant, evidenced by Fig. 9 and, therefore, a different model was

needed.

Hapke’s scattering law (Hapke 1981, 1984) is a sophisticated

model that has been used in some works. Unfortunately, we

could not apply it, due to the severe lack of information on

many of the parameters of that law, for the wavelength band

of our observations – as was the case with the generalized

version of Lommel-Seelinger’s law. We notice, however, that

Emelyanov (2009) (see Section 4, table 2 in that article), reports

that both the Hapke’s and Lommel-Seelinger’s laws have a similar

performance.

We finally found the solution as a generalization of Lambert’s law

(Oren & Nayar 1994), that takes into account not only the direction

of the radiances, like the other models, but also the surface rough-

ness. The roughness is represented by a factor of σ , which ranges

between 0 and π/2, with π/2 equivalent to the surface roughness

of a full Moon. The Oren–Nayar’s model proved to be efficient in

describing the profile of spherical surfaces illuminated by a finite

source, and then we decided to test it.

The first test was to verify the model’s capacity to solve the

problem pointed out in Fig. 9. The results were highly satisfactory,

as shown in Fig. 10.

We then verified if there were a strong dependence of the model

with the parameter σ describing the surface roughness. If we found

a high dependence, we should consider fitting this parameter too.

However, changing the value of σ did not produce significant

changes in the parameters of the light curve. Also, no significant

changes occurred in the mean error of the flux ratio (σ fit). This

indicates that the Oren–Nayar’s model is a very robust reflectance

model, even for high-precision photometric light curves. One ad-

vantage of this model is that no ad hoc albedo-wavelength-related

parameters need to be set for the satellites, as is the case of other re-

flectance laws used in the literature. Thus, the Oren–Nayar’s model

is a very interesting alternative, that can be used in the light-curve

fit of mutual events of any giant planet, without a priori photometric

knowledge in the satellites. Taking into account the recommenda-

tions in Oren & Nayar (1994), we used σ = π/2 in our fits. The

simplified version of the model was used. Due to our photometric

precision, it furnishes the same results as the complete model, in

much less computing time.

6 C O N C L U S I O N S

We presented the results obtained from the observation, reduction

and analysis of 25 mutual events registered during the Brazilian

campaign for the observation of mutual phenomena between the

Galilean satellites.

The narrow-band filter at 890 nm, combined with the differential

photometry and the refined procedures in the fitting of the light

curves developed in this work, resulted in average precisions of

80.1 m s−1 (0.023 mas s−1) and 7.46 km (2.19 mas) for the relative

velocity and impact parameter (relative positions), respectively, and

0.42 s (6.13 km) for the central instant.

The extensive use of numerical procedures with analytical and

semi-analytical models, allowed for a complete, rigorous imple-

mentation of the complex geometry involved in describing the flux

drop in occultations and eclipses. The modelling of the solar limb

darkening and the implementation of the computation of the grad-

ual decrease of light over the shadow in an eclipse are examples.

This also allowed for the analysis of different reflective laws and

models in a fast and direct way. Through this analysis, we were able

to highlight and study the relation between the impact parameter

and the reflective model. From this study, we could finally adopt

a generalized reflectance model – the Oren–Nayar’s model, used

for the first time in a work on occultations and eclipses in mutual

events. This model is well suited for fitting high-precision light

curves, and does not depend on wavelength and other a priori pho-

tometric knowledge of the satellites, contrary to some reflectance

models currently in use. We emphasize that our developed light-

curve fitting procedures are ephemeris-independent, thus allowing

for an unbiased comparison with the current orbit implementations

available for the Galilean satellites.

The tools and techniques developed and used in this work, al-

lowed for a comprehensive analysis of the many factors inherent

to the nature of these events. They will be of great utility in fu-

ture campaigns, not restricted to the Jupiter system. The use of

more powerful detectors will possibly make it easier to study new

refinements in the analysis.
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A P P E N D I X A : C O M P U T I N G V E C TO R S η1 A N D

η2 F O R SI M U L AT I N G L I G H T C U RV E S

In the occultation case, and outside the umbra and penumbra in the

eclipse case, we sweep the two-dimensional sky plane, integrating

the reflected (emergent) radiance Le, in order to determine the flux

value at each (x, z) point in that plane. In this way, we obtain the

light intensity profile of the satellite discs projected in the sky plane

– a necessary step in the simulation of the light curves. We obtain

Le by equation (2), following the Oren–Nayar’s reflectance model.

The angles in equation (2) are computed from equations (6) to 9,

which depend on the normal and tangent vectors η1 and η2. Here,

we show how we obtained η1 and η2 using spherical geometry.

Let us consider a spherical coordinate system with origin at the

centre of the satellite (Fig. A1). The xz plane of the associated

Cartesian coordinate system coincides with the sky plane (Fig. A2).

Thus, a point (x, y, z) in the spherical surface of the satellite has

spherical coordinates:

θ = arccos
z

R
(A1)

ϕ = arccos
x

R sin θ
(A2)

r =
√

x2 + (R sin θ sin ϕ)2 + z2, (A3)

where R is the satellite’s radius. The Cartesian components of the

vectors η1 (r̂) and η2 (θ̂ ) are, thus:

η1 = r = xx̂ + R sin θŷ + zẑ (A4)

η2 = θ = cos θ cos ϕx̂ + cos θ sin ϕŷ + sin θ ẑ. (A5)

Now, we conveniently write η1 and η2 in topocentric coordinates,

using the state vectors defined in Section 3.3.1. First, we define the

x-axis parallel to the projection of the relative velocity vector on

the sky plane. Then, we set the y-axis antiparallel to the satellite’s

Figure A1. The spherical coordinate system with origin at the centre of the

satellite. The vectors η1 and η2, from Fig. 2, point in the direction of r̂ and

θ̂ , respectively.

Figure A2. The xz plane of the associated Cartesian coordinate system of

Fig. A1 coincides with the sky plane. x̂, ŷ and ẑ are the unitary vectors in x,

y and z directions, respectively.

position vector, to ensure the perpendicularity to the sky plane (see

Fig. A2). Finally, the z-axis results from the cross product between

them. Thus, for each satellite j (j = 1, 2), we have

η1 j = x

(

V j × VRel × V j

|V j × VRel × V j |

)

+ R sin θ

(

−
V j

|V j |

)

+ z

(

VRel × V j

|VRel × V j |

)

(A6)

η2 j = cos θ cos ϕ

(

VRel

|VRel|

)

+ cos θ sin ϕ

(

−
V j

|V j |

)

+ sin θ

(

VRel × V j

|VRel × V j |

)

, (A7)

where VRel is the relative velocity vector, obtained from the dif-

ference between the topocentric velocity vectors of the satellites.
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Equations (A6) and (A7) allow for computing the (x, y, z) Cartesian

components of the vectors η1 and η2, as a function of topocentric

state vectors, and by inputting (x, z) values. This allows for sweep-

ing the (x, z) coordinates of the satellite’s circular discs projected in

the sky plane. This sweeping is done by choosing a (x, z) resolution

for the construction of the light profile of the discs, in a compromise

between computational efficiency and accuracy.

A P P E N D I X B : C O M P U T I N G T H E FR AC T I O N

O F S U N L I G H T I N E C L I P S E S

We compute the fraction of sunlight in eclipses by solving equation

(12). For that, we must determine the radius RSS of the eclipsing

satellite disc projected in the solar plane, for a fictitious observer

placed at a point within the penumbra. We also need to calculate

the distance d between the centres of this disc and the Sun’s disc.

For that, we use the shadow cones represented by the triangles

AHpEBHp and IDJ (see Fig. 4; see also the discussion at the end of

this appendix). Thus, we have

RSS =
R2VS1VS2

VS1VS2 − |VS2|2
(B1)

d =
RCP|VS2|

2

VS1VS2 − |VS2|2
, (B2)

where RCP is the distance of the fictitious observer to the umbra

centre, along the path of the eclipsed satellite. It is convenient to

express this distance as a function of the corresponding projected

(x, y) coordinates in the observation plane, which is the sky plane

perpendicular to the topocentric vector and containing the umbra

centre. For that, it is necessary to consider two key angles. One is the

solar phase angle  between this plane and the solar plane. The other

is ̟ , the angle between the observation plane coordinate system

(x, y) and the relative orbital plane of satellites containing VRel (see

Fig. B1). Thus, in terms of these observation plane quantities, RCP

can be expressed as

RCP = [x2(cos2 ̟ cos2  + sin2 ̟ )

+ y2(sin2 ̟ cos2  + cos2 ̟ )]1/2 (B3)

where,

 =
|V1 × VS1|

|V1||VS1|
and ̟ =

|(VS1 × V1)(VRel × V2)|

|VS1 × V1||VRel × V2|
. (B4)

The (x, y) are the coordinates of a point in the penumbra with

respect to the umbra centre at the observation plane. Using equations

Figure B1. Coordinate system at the observation plane where the y-axis is

normal to the plane containing the solar phase angle.

(B1) to B4, we sweep the (x, y) coordinates of this plane, considering

the regions delimited by the computed umbra and penumbra radii,

RU and RP. Taking the solar limb darkening into account, we then

determine the effective light Li received by the eclipsed satellite, for

each point in the sky. We then use the reflectance model to obtain

the reflected light Le.

Comparing the shadow cones represented by the triangles

AHpEBHp and IDJ in Fig. 4, we note that, for a fictitious observer

located inside the umbra and penumbra (point D), the radius RSS

of the disc projected in the solar plane undergoes a small variation,

as we move along the segment EG. The amount of this variation

depends on the distance between the satellites and the Sun, and on

their radii. For all the events of this work, the maximum variation

of RSS remained below 0.15 per cent, after considering the two ex-

treme cases: observer located at the centre of the umbra (point E),

and located at the edge of the penumbra (point G). This negligible

effect was thus ignored, and we adopted the simple calculation of

RSS using the triangle AHpEBHp alone (see Fig. 4).

A P P E N D I X C : L I G H T C U RV E S

O F T H E E V E N T S

Here, we present the reduced light curves of the events treated in

this work. The figures are divided by the quality of the light curves

and respective events’ codes are indicated in each figure.
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Analysis of the Galilean mutual events 237

Figure C1. Five occultations’ light curves classified as excellent. For each curve, Top: the Observed light curve (dots) and the fitted curve (solid line). Bottom:

the difference between the observed and fitted curves (O − C), showing the quality of the adjustment. The x-label of each curve indicates the time unit (in

UTC), where P.M.I stands for predicted central instant.
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Figure C2. Four occultations’ light curves classified as good, with the same layout of Fig. C1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
3
2
/1

/2
2
5
/1

1
1
7
4
2
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Analysis of the Galilean mutual events 239

Figure C3. Four occultations’ light curves classified as regular, with the same layout of Fig. C1.
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Figure C4. Six eclipses’ light curves classified as excellent. For each curve, Top: the Observed light curve (dots) and the fitted curve (solid line). Bottom: the

difference between the observed and fitted curves (O − C), showing the quality of the adjustment. The x-label of each curve indicates the time unit (in UTC),

where P.M.I stands for predicted central instant.
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Figure C5. Three eclipses’ light curves classified as good, with the same layout of Fig. C4.
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Figure C6. Three eclipses’ light curves classified as regular, with the same layout of Fig. C4.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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