
BioMed Central

Page 1 of 18

(page number not for citation purposes)

BMC Genomics

Open AccessResearch article

Analysis of 4,664 high-quality sequence-finished poplar full-length 
cDNA clones and their utility for the discovery of genes responding 
to insect feeding
Steven G Ralph†1,6, Hye Jung E Chun†2, Dawn Cooper1, Robert Kirkpatrick2, 
Natalia Kolosova1,3, Lee Gunter4, Gerald A Tuskan4, Carl J Douglas3, 
Robert A Holt2, Steven JM Jones2, Marco A Marra2 and Jörg Bohlmann*1,3,5

Address: 1Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada, 2British Columbia Cancer 
Agency Genome Sciences Centre, Vancouver, British Columbia, V5Z 4E6, Canada, 3Department of Botany, University of British Columbia, 
Vancouver, British Columbia, V6T 1Z4, Canada, 4Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, 
USA, 5Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada and 6Department of Biology, 
University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA

Email: Steven G Ralph - steven.ralph@und.nodak.edu; Hye Jung E Chun - echun@bcgsc.ca; Dawn Cooper - dmcooper@sfu.ca; 
Robert Kirkpatrick - robertk@bcgsc.bc.ca; Natalia Kolosova - kolosova@interchange.ubc.ca; Lee Gunter - gunterle@ornl.gov; 
Gerald A Tuskan - tuskanga@ornl.gov; Carl J Douglas - cdouglas@interchange.ubc.ca; Robert A Holt - rholt@bcgsc.ca; 
Steven JM Jones - sjones@bcgsc.ca; Marco A Marra - mmarra@bcgsc.ca; Jörg Bohlmann* - bohlmann@interchange.ubc.ca

* Corresponding author    †Equal contributors

Abstract

Background: The genus Populus includes poplars, aspens and cottonwoods, which will be

collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant

tree species in many forest ecosystems in the Northern Hemisphere and are of substantial

economic value in plantation forestry. Poplar has been established as a model system for genomics

studies of growth, development, and adaptation of woody perennial plants including secondary

xylem formation, dormancy, adaptation to local environments, and biotic interactions.

Results: As part of the poplar genome sequencing project and the development of genomic

resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated

CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and

cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as

insect-attacked leaves of the P. trichocarpa × P. deltoides hybrid. Following careful selection of

candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to

generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990

putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST

comparisons to previously predicted protein coding sequences in the poplar genome identified 39

FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173

FLcDNAs mapped to the genome sequence but were not included among the previously predicted

genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other

species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs

display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs

against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153
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FLcDNA clones for genes that were differentially expressed in poplar leaves attacked by forest tent

caterpillars.

Conclusion: This study has generated a high-quality FLcDNA resource for poplar and the third

largest FLcDNA collection published to date for any plant species. We successfully used the

FLcDNA sequences to reassess gene prediction in the poplar genome sequence, perform

comparative sequence annotation, and identify differentially expressed transcripts associated with

defense against insects. The FLcDNA sequences will be essential to the ongoing curation and

annotation of the poplar genome, in particular for targeting gaps in the current genome assembly

and further improvement of gene predictions. The physical FLcDNA clones will serve as useful

reagents for functional genomics research in areas such as analysis of gene functions in defense

against insects and perennial growth. Sequences from this study have been deposited in NCBI

GenBank under the accession numbers EF144175 to EF148838.

Background
Poplars are keystone tree species in several temperate for-
est ecosystems in the Northern Hemisphere. Poplars are
also intensively cultivated in plantation forestry for the
production of wood, pulp, and paper. Fast growing pop-
lars can serve functions in phytoremediation, as a sink for
carbon sequestration, and as a feedstock for biofuel pro-
duction. Poplar has also been firmly established as a
model research system for long-lived woody perennials
(reviewed in [1]). Advances in functional genomics of
poplar have been greatly enhanced by the availability of a
high-quality genome sequence from P. trichocarpa (Nis-
qually-1; [2]), combined with comprehensive genetic [3-
6] and physical genome [7] maps, as well as the availabil-
ity of several platforms for transcriptome analysis [8-11]
and genetic transformation. Large collections of expressed
sequence tags (ESTs) have also been developed from a
variety of poplar species and hybrids focussing on gene
discovery in wood formation, dormancy, floral develop-
ment and stress response [9,11-20]. These short, single-
pass EST reads have been a critical resource for gene dis-
covery, genome annotation, and the construction of
microarray platforms.

High-accuracy, sequence-verified FLcDNA sequences that
span the entire protein-coding region of a given gene can
advance comparative, functional, and structural genome
analysis. For example, the accuracy of ab initio prediction
of protein-coding regions in genome sequences is limited
by the difficulty of finding islands of coding sequences
within an ocean of non-coding DNA, and by the complex-
ity of individual genes that may code for multiple pep-
tides through alternative splicing. More robust
approaches that unambiguously identify protein-coding
regions in a genome sequence have used FLcDNA data, as
demonstrated for example in Arabidopsis thaliana [21-23].
Despite their immense value, sequence-verified FLcDNA
clones, where multiple passes verify the authenticity of
reads, have not been generated in most plant species sub-
jected to genomic analysis. Only a few large FLcDNA data

sets have been generated for plants; namely for rice [24],
Arabidopsis [25], and maize [26,27]. In contrast, as of
September 2007, there were only 1,409 complete
sequences from individual poplar FLcDNA clones in the
non-redundant (NR) division of GenBank, in addition to
a larger number of putative full-length sequences assem-
bled from EST reads of multiple cDNA clones.

Our poplar FLcDNA program in the areas of forest health
genomics and wood formation has focused on mecha-
nisms of defense and resistance against insects and genes
associated with xylem development. The forest tent cater-
pillar (Malacosoma disstria; FTC; [28]) is a major insect pest
that threatens the productivity of natural and plantation
forests. Poplars deploy an array of combined defense strat-
egies against herbivores that can be grouped as chemical
and physical defenses, direct and indirect defenses, consti-
tutive and induced defenses, as well as local and systemic
defenses (reviewed in [29]). Several recent studies have
been conducted on the molecular mechanisms underly-
ing inducible defenses against herbivores in poplar
[11,18,30-37].

In this paper, we report on the development of four
FLcDNA libraries from poplar that served as the starting
template for creating a substantial genomic resource of
4,664 sequence-verified FLcDNAs. We describe the overall
structural features of these FLcDNA clones, annotation
based on comparisons with other species, and the identi-
fication of 536 putative poplar-specific transcripts. Map-
ping the FLcDNA collection to the poplar genome
sequence confirmed the overall high quality of the assem-
bled genome sequence as well as the high quality of the
FLcDNA resource, while also identifying 39 expressed
poplar transcripts that appear to be derived from gap
regions of the current genome sequence assembly and 173
new poplar genes that have not previously been identified
in the genome assembly. By mapping 3,854 FLcDNAs to a
poplar 15.5 K cDNA microarray platform and performing
a comparison with existing transcriptome data, we identi-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144175
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148838
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fied 153 FLcDNAs that match transcripts differentially
expressed following insect attack by FTC on poplar leaves.

Results
Selection and sequence finishing of FLcDNAs

FLcDNAs are defined as individual cDNA clones that con-
tain the complete protein-coding sequence and at least
partial 5' and 3' untranslated regions (UTRs) for a given
transcript. This definition distinguishes bona fide FLcDNAs
from in silico assembled EST sequences derived from mul-
tiple cDNA clones. In the latter case, it is possible that
multiple, closely related genes or allelic variants of the
same gene are assembled into a single consensus
sequence. This problem is avoided when only sequences
derived from the same physical FLcDNA clone are assem-
bled. We prepared four FLcDNA libraries using the bioti-
nylated CAP trapper method [38]. Three libraries
constructed from xylem, phloem and cambium, and
green shoot tips and leaves were derived from the P. tri-
chocarpa Nisqually-1 genotype, for which the genome
sequence has been reported [2]. An additional library was
developed from the P. trichocarpa × P. deltoides hybrid
H11–11 genotype using leaves subjected to FTC herbivory
(Table 1).

To select candidate FLcDNAs for complete insert sequenc-
ing, we used a previously described bioinformatic pipe-
line for EST processing [11]. An initial set of 26,112 3'
ESTs derived from FLcDNA libraries was combined with
81,407 3' ESTs from standard EST libraries [11] to gener-
ate a starting set of 107,519 3'-end ESTs, which resulted in
90,368 high-quality ESTs after filtering to remove
sequences of low quality and contaminant sequences
from yeast, bacteria and fungi. These sequences were then
clustered using the CAP3 assembly program ([39]; assem-
bly criteria: 95% identity, 40 bp window) to identify a set
of 35,011 putative unique transcripts (PUTs; Figure 1). To
maximize the capture of complete open reading frames
(ORFs) and UTRs, only clones from full-length libraries
were considered further. Using this strategy, we identified
5,926 cDNA candidate clones for full insert sequencing,
which resulted in 4,664 sequence-verified poplar FLcDNA
clones (see Additional file 1 and Figure 2). Inserts of 2,672

clones were completely sequenced using end reads only,
with an average sequenced insert size of 735 ± 434 bp
(average ± SD) and required an average of 4.5 ± 1.3 end
reads to finish to high sequence quality. Using a combina-
tion of end reads and primer walking, inserts of an addi-
tional 1,992 clones were completely sequenced, with an
average insert size of 1,308 ± 567 bp requiring 5.9 ± 2.8
end reads and 3.4 ± 1.8 internal primer reads per clone.

Analysis of the 4,664 FLcDNA sequences using the CAP3
clustering and assembly program ([39]; assembly criteria:
95% identity, 40 bp window) identified 3,505 FLcDNAs
as unique singletons, with the remaining 1,159 grouping
into 485 contigs, suggesting a total of 3,990 unique genes
represented with finished FLcDNA sequences. The high
percentage of unique transcripts (85.5%) within this set
confirms the successful clone selection strategy (Figure 1)
for establishing a low-redundancy clone set prior to
sequence finishing.

Sequence quality and "full-length" assessment of poplar 

FLcDNAs

All 4,664 finished FLcDNAs achieved a minimum of
Phred30 (i.e., one error in 103 bases) sequence quality at
every base. The majority of FLcDNAs were of even higher
quality with the minimum and average Phred values
exceeding Phred45 (i.e., one error in 3 × 104 bases) and
Phred80 (i.e., one error in 108 bases), respectively (Figure
3). We predicted the complete protein-coding ORFs for all
4,664 FLcDNAs. The distribution of 5' UTR, ORF and 3'
UTR lengths is illustrated in Figure 2 [also see Additional
file 1]. The average sequenced FLcDNA length (from the
beginning of the 5' UTR to the end of the polyA tail) was
1,045 ± 475 bp (mean ± SD), and ranged from 147 to
3,342 bp, whereas the average predicted ORF was 649 ±
429 bp and ranged from 33 to 2,935 bp. ORFs could not
be detected (i.e., 30 bp or less) for 96 FLcDNAs. The 5' and
3' UTRs averaged 109 ± 138 bp and 228 ± 152 bp, respec-
tively. These results are comparable to CAP trapper
FLcDNA collections from other plant species including
maize (cDNA insert 799 bp, 5' UTR 99 bp, 3' UTR 206 bp;
[27]), Arabidopsis (cDNA insert ca. 1.2 kb; [40]) and rice
(5' UTR 259 bp, 3' UTR 398 bp; [24]). Similarly, the aver-

Table 1: Libraries, tissue sources and species for sequences described in this study

cDNA Library Tissue/Developmental Stage Species (genotype)

PT-X-FL-A-1 Outer xylema. Populus trichocarpa (Nisqually-1)

PT-P-FL-A-2 Phloem and cambiuma. P. trichocarpa (Nisqually-1)

PT-GT-FL-A-3 Young and mature leaves, along with green shoot tipsa. P. trichocarpa (Nisqually-1)

PTxD-IL-FL-A-4 Local and systemic (above region of feeding) mature leaves harvested after continuous 
feeding by forest tent caterpillars, Malacosoma disstria. Local tissue was collected 4, 8 and 24 
h post-treatment and systemic tissue 4, 12 and 48 h post-treatmentb.

P. trichocarpa × deltoides (H11–11)

aHarvested May 15th, 2001 from eight year old trees within the Boise Cascade region of Washington state.
bOne or two year old saplings grown in potted soil under greenhouse conditions at the University of British Columbia.
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Schematic of clone selection and complete insert sequencing of 4,664 FLcDNAsFigure 1
Schematic of clone selection and complete insert sequencing of 4,664 FLcDNAs. CAP3 assembly of 90,368 high-
quality 3'-end ESTs identified 35,011 putative unique transcripts (PUTs) for the identification of candidate FLcDNAs. Only 
those PUTs containing at least one clone from a FLcDNA library were considered further. To maximize the number of FLcD-
NAs captured, candidate clones were excluded from further analysis if: (1) the 5' second strand primer adaptor (SSPA) was 
absent; (2) a polyA tail was absent; (3) 5'- and/or 3'-end ESTs had a Phred20 quality length (Q20) of < 100 nt; or (4) BLASTN 
(E < 1e-80) versus poplar ESTs in the public domain identified a candidate as potentially truncated (i.e., > 100 nt shorter) at the 
5' end of the transcript relative to a matching EST. Among the 5,926 candidates selected for sequencing, only 483 (8%) were 
aborted at various stages of the sequence finishing pipeline due to: (1) missing cloning structures; (2) errors in re-array of glyc-
erol stocks; (3) problematic sequencing such as hard stops; or (4) problematic clone features such as chimeric sequences. 
Through a combination of end reads and gap closing using primer walking, 4,664 (79%) sequence-verified FLcDNAs were com-
pleted. An additional 779 clones (13%) from the starting set of 5,926 will be finished in future work.
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age transcript length of the 45,555 poplar reference genes
predicted ab initio from the genome sequence was 1,079
bp and 5' and 3' UTRs averaged 92 bp [2], in close agree-
ment with our results obtained with FLcDNAs.

To further assess the quality of the 4,664 poplar FLcDNAs,
we performed reciprocal BLAST analysis against peptide
sequences in The Arabidopsis Information Resource
(TAIR) and against a set of 1,409 poplar sequences previ-
ously identified to be full-length (collected from the NR
division of GenBank). Reciprocal BLAST analysis was per-
formed with a stringent similarity threshold [% identity ≥
50%; expect (E) value ≤ 1e-20] and identified 2,774 and
288 pairs, respectively, with Arabidopsis and previously
published poplar FLcDNAs (Figure 4). Of the 288 homol-
ogous poplar transcript pairs (i.e., previously published
poplar sequences with high sequence similarity to FLcD-
NAs reported in this study), 228 (79.2%) agreed well with
regard to their ORF lengths and position of their start and
stop codons (± ten amino acids; Figure 4). For the remain-
ing pairs, the predicted 5' and/or 3' ORF ends did not
match suggesting alternative start or stop codons, splice
variants, or the possibility that one of the pair members

was either truncated or had an incorrectly predicted ORF.
When comparing the poplar FLcDNA collection to recip-
rocal matches from TAIR Arabidopsis peptides, we
observed a similar number of 2,151 (77.5%) pairs with
similar ORF lengths and positions of their starting
methionine and stop codons (± ten amino acids; Figure
4). These results indicate the majority of the 4,664 poplar
FLcDNAs represent true full-length transcripts with com-
plete ORFs and correctly annotated start and stop codons.

Mapping FLcDNAs to the poplar genome sequence to 

reassess gene prediction and to identify possible gaps in 

the genome assembly

As part of the poplar genome sequencing project [2], the
poplar FLcDNAs were used to train a series of gene predic-
tion algorithms to identify coding regions in the genome
sequence. To reassess the effectiveness of gene prediction
in the current genome assembly and to search for possible
genome sequence gaps, we took two approaches: 1) BLAT
[41] was utilized to map FLcDNAs to the assembled
genome sequence, and 2) BLASTN was applied to align
FLcDNAs with the 45,555 protein-coding gene loci pre-
dicted from the poplar genome sequence. Using BLAT, we

Distribution of open reading frame (ORF) and 5' and 3' untranslated region (UTR) sizes among the finished 4,664 FLcDNAs (A), and the mean ORF and UTR length (± standard deviation) (B)Figure 2
Distribution of open reading frame (ORF) and 5' and 3' untranslated region (UTR) sizes among the finished 
4,664 FLcDNAs (A), and the mean ORF and UTR length (± standard deviation) (B). Each finished FLcDNA 
sequence was examined for the presence of ORFs using either the EMBOSS getorf program (version 2.5.0; [55]) or an in-house 
BLAST-aided program. The getorf program identifies the longest stretch of uninterrupted sequence between a start (ATG) and 
stop codon (TGA, TAG, TAA) in the 5' to 3' direction for the predicted ORF. The BLAST-aided program detects ORFs by 
finding the starting methionine and stop codon in a poplar FLcDNA sequence relative to the same features in the most closely 
related Arabidopsis protein identified by BLASTX (E values < 1e-20). For this study, ORFs identified by the BLAST-aided 
method were utilized except in cases where the FLcDNA sequence did not show high similarity to an Arabidopsis protein, in 
which case the ORF identified by the getorf program was chosen. The presence and coordinates of the 5' second strand primer 
adaptor sequence (SSPA) and polyA tail were also noted. The regions between the 5'SSPA and the predicted ORF start and 
between the predicted ORF stop and the polyA tail were taken to be the 5' and 3' UTRs, respectively. The 5' SSPA and 3' 
polyA tail lengths were not included when determining UTR length.
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mapped 4,642 poplar FLcDNAs (99.5%) to the genome at
a minimum threshold (tile match length ≥ 11 bp, score ≥
30, sequence identity ≥ 90%; Figure 5). From this set,
3,847 (82.9%) mapped to the 19 linkage groups (i.e.,
chromosomes) whereas the remainder mapped to scaf-
fold segments that were not incorporated into the poplar
genome sequence assembly. Examination of the linkage
group location of FLcDNAs suggests a pattern of random
distribution when grouped by cDNA library/tissue of ori-
gin, with an approximately even distribution of FLcDNAs
throughout the genome (Figure 5). When we applied a
more stringent similarity threshold (sequence identity ≥
95%, alignment coverage ≥ 95%), the number of poplar
FLcDNAs matching to the genome was only slightly
reduced to 4,487 (96.2%).

In addition to BLAT analysis, we also compared the FLcD-
NAs with the 45,555 predicted protein-coding gene loci
identified in the genome sequence using BLASTN and
observed 4,452 (95.5%) matched at an E value < 1e-50 (see
Additional file 1). In order to identify possible sequence
gaps in the 7.5× coverage genome, we searched for FLcD-
NAs lacking a stringent BLAT to the genome match and a
BLASTN match (E value ≥ 1e-50) to the predicted gene
models. This approach identified only 39 candidates, of
which 20 (0.4%) FLcDNAs also had a strong match by

BLASTN (E value < 1e-50) to one or more poplar ESTs in
the public domain, excluding ESTs reported in this study
(Table 2 and see Additional file 1), suggesting that these
FLcDNAs represent expressed poplar genes that likely map
to gap regions within the current genome draft. We cannot
exclude the possibility that the remaining 19 FLcDNAs
represent sequences from bacterial, fungal or insect spe-
cies present on poplar tissues harvested for cDNA library
construction, which were not filtered as contaminant
sequences in our EST and FLcDNA processing procedures.

To identify expressed genes that were not predicted in the
original genome annotation [2], we searched among the
set of 4,487 FLcDNAs with a stringent BLAT match to the
genome that did not match to any of the 45,555 predicted
gene models (E value ≥ 1e-50). This analysis revealed 173
FLcDNAs, 79 of which also showed strong similarity (E
value < 1e-50) to one or more poplar ESTs in the public
domain (see Additional file 1), suggesting that these 79
FLcDNAs represent expressed genes and possibly non-
coding RNAs, that were missed by gene prediction soft-
ware during the annotation of the poplar genome. The
fact that these poplar transcripts had been missed could
be due in part to the relatively short lengths of these 79
FLcDNAs (average FLcDNA and predicted ORF length of
555 bp and 67 bp, respectively; see Additional file 1).

Validation of sequence quality of FLcDNAsFigure 3
Validation of sequence quality of FLcDNAs. Sequence accuracy was measured as the percentage of the 4,664 FLcDNAs 
which, with 100%, 95.0–99.9%, 90.0–94.9% or < 90.0% of their sequence length, exceeded Phred30, Phred40, Phred50 or 
Phred60 sequence quality thresholds. All 4,664 FLcDNAs exceeded the Phred30 quality thresholds (calculated as less than 1 
error in 103 sequenced nucleotides) over 100% of their sequence length. Even at the threshold level of Phred60 (calculated as 
less than 1 error in 106 sequenced nucleotides) the majority (61.2%) of the FLcDNA sequences met this very high sequence 
quality score over > 90.0% of their length.
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Comparative sequence annotation of poplar FLcDNAs 

against Arabidopsis and other plants identifies proteins 

unique to poplar

Despite the growing research interest in poplar as a model
angiosperm tree species and the recent completion of the
poplar genome sequence, poplar still represents a difficult
experimental system with relatively few functionally char-
acterized proteins, compared to other established model
systems such as Arabidopsis. Therefore, our effort of in sil-
ico annotation of poplar FLcDNAs was largely based on
comparison with Arabidopsis together with the NR data-
base of GenBank containing sequences from all plants,
among other species. Using BLASTX, we found that the
proportion of FLcDNAs with similarity to TAIR Arabidop-
sis proteins was 87.5% (4,081) at E value < 1e-05 and
55.5% (2,590) at E value < 1e-50 (Figure 6A). Similar val-
ues were obtained when using BLASTX to compare against
peptides from other species in the NR division of Gen-
Bank (88.0% matches at E value < 1e-05 and 56.9%

matches at E value < 1e-50) (Figure 6A). As expected, the
proportion of poplar FLcDNAs with sequence similarity
to previously published poplar ESTs (i.e., ESTs available
in the dbEST division of GenBank, excluding ESTs from
this study) by BLASTN was very high, with 96.3% (4,496)
and 94.3% (4,401) of FLcDNAs having matches with E
values < 1e-05 and < 1e-50, respectively (Figure 6A).

To identify genes that are potentially unique to poplar, we
next examined the relationship of sequence similarity
among the poplar FLcDNAs and best matching sequences
in the TAIR Arabidopsis proteins, other NR database pro-
teins (which includes all plant species), and previously
published poplar EST datasets. Of the 4,664 poplar FLcD-
NAs, 3,994 (85.6%) had at least low sequence similarity
to sequences in all three databases (E values < 1e-05; Figure
6B). Only 95 FLcDNAs had no similarity (E values ≥ 1e-05)
to sequences in any of these databases; however, 87 of
these strongly matched to the poplar genome using BLAT

Validation of poplar FLcDNAs by comparison to reciprocal BLAST matches against Arabidopsis peptides and previously pub-lished poplar FLcDNAsFigure 4
Validation of poplar FLcDNAs by comparison to reciprocal BLAST matches against Arabidopsis peptides and 
previously published poplar FLcDNAs. The set of 4,664 poplar FLcDNAs were compared using BLASTX to both The 
Arabidopsis Information Resource (TAIR) non-redundant Arabidopsis peptide set (28,952 sequences [56]) and a collection of 
1,409 previously published poplar sequences from the non-redundant (NR) division of GenBank ([57], the NR release of 
December 19th, 2006) annotated as full-length (excluding predicted proteins derived from genomic DNA). FLcDNAs were 
excluded from the analysis when the in-house BLAST-aided ORF detection software identified a FLcDNA as problematic 
according to the following categories: truncation at the 5'-end (319), truncation at the 3'-end (50), frameshift (12), stop codon 
in the middle of an ORF (9), or inverted insert (3) [see Additional file 1]. No problematic features were identified in the 
remaining 4,271 FLcDNAs. This comparison identified 2,774 homologous Arabidopsis-poplar pairs and 288 homologous poplar 
transcript pairs. A FLcDNA pair was considered homologous if (1) the top BLASTX match exceeded a stringent threshold (% 
identity ≥ 50%; expect value ≤ 1e-20) and (2) the reciprocal TBLASTN analysis identified the same poplar FLcDNA with a score 
value equal to or within 10% of the top match. ORF lengths for Arabidopsis and public poplar sequences were extracted from 
the TAIR and NR records, respectively, and poplar ORF lengths from this study were predicted using either the EMBOSS get-
orf or in-house BLAST-aided programs (see Figure 2 legend). The greyscale shading of each hexagon represents poplar 
FLcDNA abundance. ORF lengths for three Arabidopsis-poplar pairs and eight homologous poplar transcript pairs differed by 
more than 500 aa and are not included in the figure.
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(sequence identity ≥ 95%, alignment coverage ≥ 95%).
Our results suggest that these 87 genes that are repre-
sented with FLcDNAs and with poplar genomic sequences
are new genes that have not previously been identified in
other poplar EST collections or among genes in Arabidop-
sis and other plant species (see Additional file 1).

In addition, we also identified 536 poplar FLcDNAs
(including the 95 FLcDNAs with no similarity to
sequences in the three databases examined) with no sim-
ilarity to Arabidopsis or NR proteins (E values ≥ 1e-05), of
which 346 FLcDNAs matched with high similarity to both
the poplar genome by BLAT and to previously published
poplar ESTs by BLASTN (E values < 1e-50; Figure 6B and
see Additional file 1). These poplar FLcDNAs could repre-
sent genes that were gained and then rapidly diverged in
sequence since the recent whole genome duplication in

poplar, or they may also represent non-coding RNAs or
small peptides in poplar that share limited sequence sim-
ilarity with other plants. The fact that these putative pop-
lar-specific FLcDNAs do not share similarity with existing
plant sequence data may also reflect the limited availabil-
ity of sequence data from Salicaceae species closely related
to poplar in the current NR database. To test these puta-
tively poplar-specific FLcDNAs for known functional
domains, we performed a search of the Pfam database
[42]. At a threshold of E values < 1e-05, we identified 2,908
(62.3%) poplar FLcDNAs with similarity to a Pfam
domain; however, among the collection of 346 putatively
poplar-specific genes only 8 FLcDNAs in this set matched
a Pfam domain (see Additional file 1). Domain matches
included PF05162.3/ribosomal protein L41
(WS0112_A21, WS0116_F12, WS0124_J06,
WS01230_B01, and W01118_I11), PF05160.3/DSS1/

Mapping FLcDNAs to the poplar genomeFigure 5
Mapping FLcDNAs to the poplar genome. 4,664 poplar FLcDNAs were aligned to the genome using BLAT with default 
parameters (match length ≥ 11 bp, BLAT score ≥ 30, sequence identity ≥ 90%). Prior to alignment, the 5' second strand primer 
adaptor sequences (SSPA) and polyA tails were removed. Among 4,642 poplar FLcDNAs that exceeded the minimal criteria 
for a match to the genome, 3,847 mapped to chromosomes whereas the remainder mapped to scaffold segments. Colored 
bars indicate the cDNA library of origin for those FLcDNAs mapping to one of the 19 poplar chromosomes. Applying a higher 
stringency threshold (sequence identity ≥ 95%, alignment coverage ≥ 95%), 4,487 or 96.2% of poplar FLcDNAs could be 
mapped to the genome.

10

1

Scale (Mb)

PT-X-FL-A-1

PT-P-FL-A-2

PT-GT-FL-A-3

PTxD-IL-FL-A-4



BMC Genomics 2008, 9:57 http://www.biomedcentral.com/1471-2164/9/57

Page 9 of 18

(page number not for citation purposes)

SEM1 family (WS0123_P21), PF06376.2/unknown func-
tion (WS0112_B13), and PF04689.3/DNA binding pro-
tein S1FA (WS01110_K04).

Annotation of poplar FLcDNA transcripts affected by FTC 

herbivory

A major emphasis of the program that motivated the
development and analysis of poplar FLcDNAs is the dis-
covery of genes affected by insect attack. To identify her-
bivore-responsive genes among the poplar FLcDNAs, we
first mapped the FLcDNA set onto a poplar 15.5 K micro-
array based on BLASTN comparison to ESTs spotted on
the array. This microarray platform was previously used
for profiling of the poplar leaf transcriptome affected by
FTC larvae feeding [11]. Using a stringent similarity
threshold of ≥ 95% identity over ≥ 95% alignment cover-
age, we identified 3,854 FLcDNAs that matched with
3,974 EST elements on the array (see Additional file 2).
Although we did observe some cases of individual FLcD-
NAs mapping to multiple array elements, as well as mul-

tiple FLcDNAs mapping to the same array element, it
should be noted that the in silico match stringency applied
here is likely higher than the capability of cDNA microar-
rays to discriminate among highly similar transcripts by
actual DNA hybridization. Next, we identified poplar
FLcDNAs with a role in the response to insect attack by
screening the 3,854 FLcDNAs against existing transcrip-
tome data of differentially expressed (DE) genes in leaves
that were exposed for 24 hours to FTC feeding [11]. This
approach resulted in the identification of 129 and 24
FLcDNAs that were induced or repressed, respectively, in
FTC-treated leaves compared to untreated control leaves
(Tables 3 and 4) using the DE criteria of fold-change ≥ 2.0-
fold, P value < 0.05 and Q value < 0.05. A complete list of
expression data is provided [see Additional file 2]. Each of
the 153 FLcDNAs was translated and evaluated for the
presence of ORFs, and annotation was assigned based on
manual examination of the highest scoring and most
informative BLASTX matches in NR.

Table 2: Expressed FLcDNAs that identify possible gaps in the genome sequence assembly

Clone ID GenBank ID FLcDNA length (bp) FL status/ORF size (aa) NR BLASTP best match dbEST BLASTN best match

GenBank accession, gene 
name, species

BLAST Score GenBank accession, 
species

BLAST Score

WS0138_J20 EF148816 1444 FL/340 AAB39877.1, NMT1 protein, 
Uromyces fabae

1572 DN493922.1, Populus 
tremula

770

WS01313_D10 EF148323 1439 FL/363 At3g20790, oxidoreductase, 
Arabidopsis thaliana

1233 DN501083, P. trichocarpa 1318

WS0127_P01 EF148143 1237 FL/299 AAD01907, 
methenyltetrahydrofolate 
dehydrogenase, Pisum sativum

1213 CV131075.1, P. deltoides 1511

WS01231_K20 EF147482 1207 FL/256 At5g20060, phospholipase/
carboxylesterase family, A. 
thaliana

1026 DV464443.2, P. fremontii 
× P. angustifolia

1479

WS0135_G15 EF148633 992 n.a. No matches n.a. BU891205, P. tremula 240

WS01312_F21 EF148269 946 n.a. No matches n.a. BI122644.1, P. tremula × 
P. tremuloides

729

WS01315_I11 EF148467 836 n.a. No matches n.a. BU824948.1, P. tremula × 
P. tremuloides

339

WS01312_H02 EF148274 835 n.a. No matches n.a. BU791223.1, P. 
trichocarpa × P. deltoides

779

WS01212_B01 EF146690 821 FL/88 BAB68268.1, drought-
inducible protein, Saccharum 
officinarum

147 BU879805.1, P. 
trichocarpa

595

WS0122_E05 EF147284 739 FL/131 CAB80775.1, proline-rich 
protein, A. thaliana

340 BU866461.1, P. tremula 890

WS0122_O15 EF147357 736 FL/162 At4g10300, hypothetical 
protein, A. thaliana

444 CX181869.1, Populus × 
canadensis

1215

WS0113_C11 EF145750 722 FL/136 At3g12260, complex 1/LVR 
family protein, A. thaliana

426 BU879375.1, P. 
trichocarpa

1223

WS0125_P18 EF147919 596 3' trunc./70 AAF71823.1, pumilio domain 
protein, P. tremula × P. 
tremuloides

167 CX187487.1, Populus × 
canadensis

722

WS01123_K15 EF145357 483 n.a. No matches n.a. CK319617.1, P. deltoides 268

WS01231_G04 EF147458 416 5' trunc./62 At3g18790, hypothetical 
protein, A. thaliana

200 CX184264.1, Populus × 
canadensis

543

WS0124_L22 EF147751 360 n.a. No matches n.a. BI128250.1, P. tremula × 
P. tremuloides

494

WS0126_O09 EF148027 342 n.a. No matches n.a. CF228572.1, P. tremula × 
P. alba

410

WS01118_P04 EF144846 300 n.a. No matches n.a. CX184524.1, Populus × 
canadensis

242

WS0136_N09 EF148717 278 n.a. No matches n.a. CX179364.1, Populus × 
canadensis

458

WS0138_I14 EF148811 231 n.a. No matches n.a. CX170421.1, P. deltoides 228

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148816
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148323
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148143
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147482
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148633
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148269
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148467
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148274
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147284
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147357
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145750
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147919
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145357
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147458
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147751
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148027
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148717
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148811


BMC Genomics 2008, 9:57 http://www.biomedcentral.com/1471-2164/9/57

Page 10 of 18

(page number not for citation purposes)

Among FTC-induced transcripts represented with FLcD-
NAs, we identified a large number of defense-related and
stress response proteins such as chitinases, Kunitz pro-
tease inhibitors, dehydrins, beta-1,3-glucanases, patho-
genesis related protein PR-1, and glutathione-S-
transferase (Table 3). Several classes of transcription fac-
tors (TFs) were also strongly affected by FTC feeding such
as bZIP domain TFs, NAC domain TFs, NAM domain TFs
and ethylene response factor TFs. A number of genes asso-

ciated with signaling were also strongly affected by FTC
feeding, including allene oxide cyclase involved in jas-
monate formation and calreticulin associated with cal-
cium signaling. We also observed a substantial number of
FLcDNAs annotated as involved in phenolic metabolism,
particularly flavonoid biosynthesis, including isoflavone
reductase, EPSP synthase, flavonoid 3-O-glycosyl trans-
ferase and flavanone 3-hydroxylase, along with several
cytochrome P450s of unknown function (Table 3).
Among the FTC-repressed transcripts represented with
FLcDNAs, we observed photosystem II proteins associated
with photosynthesis, malate dehydrogenase and thiamine
biosynthesis enzyme associated with primary metabo-
lism, several zinc finger TFs, and stress-responsive pro-
teins such as small heat shock and universal stress
proteins (Table 4). Twenty two of the 153 FTC-responsive
genes represented with FLcDNAs matched to hypothetical
proteins of unknown function and nine have no obvious
similarity to any proteins in the NR database.

Discussion
Previous studies using the biotinylated CAP trapper
method for FLcDNA library construction have demon-
strated this technique to be highly effective for capturing
predominantly true full-length clones in large-scale
projects [24,25,27]. In this study, we generated a set of
4,664 FLcDNAs, which represents the third largest plant
FLcDNA resource published to date, behind only Arabi-
dopsis and rice. CAP3 clustering and assembly indicates
that more than 85% of the FLcDNAs are non-redundant
within this collection. The average sequence length, ORF
and UTR sizes of the poplar FLcDNAs were comparable to
those observed with the CAP trapper-derived FLcDNA col-
lections for maize [27], Arabidopsis [40] and rice [24],
and were also very similar to the ab initio predicted refer-
ence genes in the poplar genome sequence [2]. Applying a
reciprocal BLAST strategy, we demonstrated that among
FLcDNAs with high sequence similarity to known Arabi-
dopsis peptides and/or previously published poplar
FLcDNAs, nearly 80% had similar ORF lengths and start-
ing methionine and stop codon positions. Collectively,
these data show that the poplar FLcDNA libraries are of
high quality and that our clone selection strategy com-
bined with the CAP trapper method was effective in cap-
turing bona fide FLcDNAs from poplar.

Comparison of poplar FLcDNAs and the poplar genome
sequence assembly confirmed both the overall high accu-
racy of the current genome assembly, as well as the quality
of the FLcDNA resource described here. However, as has
been previously demonstrated with efforts to identify the
complete catalogue of genes in Arabidopsis and rice, gene
prediction and genome assembly is an iterative process.
The results reported here for the mapping of FLcDNAs to
the poplar genome sequence reveal opportunities for

Sequence annotation of 4,664 high-quality poplar FLcDNAs against published databasesFigure 6
Sequence annotation of 4,664 high-quality poplar 
FLcDNAs against published databases. Panel A shows 
the percentage of FLcDNAs with similarity to entries in 
three databases using expect (E) value thresholds of < 1e-05 

and < 1e-50: matches to previously published poplar ESTs 
(i.e., ESTs available in GenBank, excluding ESTs from this 
study) identified by BLASTN; amino acid sequences in the 
non-redundant (NR) division of GenBank identified by 
BLASTX; and The Arabidopsis Information Resource (TAIR) 
non-redundant Arabidopsis peptide matches identified by 
BLASTX. Panel B shows a Venn diagram of distinct and over-
lapping patterns of sequence similarity against the three data-
bases (public poplar ESTs, TAIR, NR) at a BLAST E value 
threshold of < 1e-05. At this threshold, 95 poplar FLcDNAs 
had no similarity to sequences in any of the databases exam-
ined.
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Table 3: FLcDNAs corresponding to transcripts most strongly induced by forest tent caterpillar (FTC) feeding [fold-change (FC) ≥ 2.0, 

P value < 0.05, Q value < 0.05]

NR BLASTP best match FTC feeding @ 24 h

15.5 K Array ID Matching FLcDNA ID GenBank ID FL status/ORF size (aa) GenBank accession, gene name, species BLAST score FC P Q

WS0151_M13 WS0131_K04a EF148503 FL/202 BAB85998.1, Kunitz trypsin inhibitor, Populus 
nigra

396 60.4 <0.001 <0.001

WS0132_F23 WS0133_O14a EF148554 FL/202 BAB85997.1, Kunitz trypsin inhibitor, P. nigra 380 50.2 <0.001 <0.001

WS0134_B13 WS0134_B13 EF148557 FL/212 AAQ84217.1, Kunitz trypsin inhibitor, 
Populus trichocarpa × deltoides

387 46.2 <0.001 <0.001

WS0133_N23 WS0133_N23 EF148553 FL/197 CAJ21341.1, Kunitz trypsin inhibitor, P. nigra 383 38.8 <0.001 <0.001

WS0124_G12 WS0124_G12 EF147703 FL/159 AAQ08196.1, translation initiation factor 5A, 
Hevea brasiliensis

316 29.0 <0.001 <0.001

WS01223_D01 WS01223_D01 EF146918 FL/359 At1g74320, choline kinase, Arabidopsis 
thaliana

537 28.4 <0.001 <0.001

WS0134_E16 WS0134_E16 EF148571 5' trunc./124 AAA16342.1, vegetative storage protein, P. 
trichocarpa × deltoides

239 27.4 <0.001 <0.001

WS01120_O24 WS01120_O24 EF145143 3' trunc./56 At4g07960, putative glucosyltransferase, A. 
thaliana

72 26.4 <0.001 <0.001

WS01211_H19 WS01211_H19 EF146657 FL/337 CAN72815, hypothetical protein, Vitis vinifera 253 26.0 <0.001 <0.001

WS0121_J16 WS0122_N13 EF147347 FL/339 AAK01124.1, vegetative storage protein, P. 
trichocarpa × deltoides

509 25.4 <0.001 <0.001

WS0141_P05 WS0132_K10a EF148516 FL/202 AAQ84216.1, Kunitz trypsin inhibitor, 
Populus trichocarpa × deltoides

386 22.7 <0.001 <0.001

WS01118_D16 WS01118_D16 EF144781 n.a. No protein matches n.a. 16.8 <0.001 <0.001

WS0168_C17 WS01119_J20 EF144899 FL/285 AAY43790.1, hypothetical protein, 
Gossypium hirsutum

77 16.0 <0.001 <0.001

WS01119_E18 WS01119_E18 EF144877 3' trunc./67 At5g61770, brix domain-containing protein, 
A. thaliana

85 15.7 <0.001 <0.001

WS0133_B24 WS0133_K20a EF148543 FL/202 CAH59150.1, Kunitz trypsin inhibitor, 
Populus tremula

351 15.5 <0.001 <0.001

WS0155_D02 WS0138_H02a EF148810 FL/251 BAB21610.2, mangrin/allene oxide cyclase, 
Bruguiera sexangula

336 14.4 <0.001 <0.001

WS0152_M24 WS0128_J15 EF148194 FL/91 At5g24165, hypothetical protein, A. thaliana 72 13.7 <0.001 <0.001

WS01118_N14 WS01118_N14 EF144837 frameshift/47 At4g27960, ubiquitin conjugating enzyme 9, 
A. thaliana

96 13.2 <0.001 <0.001

WS01212_M19 WS0128_D22 EF148166 FL/509 ABA01477.1, cytochrome P450, Gossypium 
hirsutum

726 12.3 <0.001 0.002

WS01211_N06 WS0118_O23a EF146529 FL/225 ABS12347.1, dehydrin, P. nigra 167 11.8 <0.001 <0.001

WS0132_A15 WS01313_N19 EF148368 FL/396 At4g18550, lipase class 3 family protein, A. 
thaliana

385 11.6 <0.001 0.001

WS01212_B20 WS0128_L03 EF148205 FL/318 CAA73220.1, isoflavone reductase, Citrus × 
paradise

469 10.4 <0.001 <0.001

WS0122_C03 WS0122_C03 EF147271 FL/133 CAN82925.1, hypothetical protein, V. vinifera 114 9.2 <0.001 0.001

WS0113_H20 WS0113_H20 EF145803 n.a. No protein matches n.a. 8.8 <0.001 <0.001

WS0134_J14 WS0134_J14a EF148597 FL/202 AAQ84216.1, Kunitz trypsin inhibitor, P. 
trichocarpa × deltoides

380 7.9 <0.001 <0.001

WS01120_N21 WS01120_N21 EF145138 n.a. No protein matches n.a. 6.9 <0.001 <0.001

WS0114_H12 WS0114_H12 EF145947 FL/252 At4g01470, major intrinsic family protein, A. 
thaliana

364 6.3 <0.001 <0.001

WS0126_E15 WS0126_E15 EF147963 FL/325 At1g30910, molybdenum cofactor sulfurase 
family protein, A. thaliana

444 6.2 <0.001 <0.001

WS0168_F14 WS01123_O20 EF145380 FL/217 At3g18030, phosphopantothenoyl cysteine 
decarboxylase, A. thaliana

350 6.2 <0.001 <0.001

PX0019_C05 PX0019_C05 EF144379 FL/214 AAF64453.1, heat-shock protein 90, 
Euphorbia esula

330 5.7 <0.001 <0.001

WS0205_K16 WS01214_G11 EF146815 FL/387 CAN71454.1, hypothetical protein, V. vinifera 682 5.6 <0.001 <0.001

WS0152_N17 WS0114_F10a EF145928 FL/70 BAA03527.1, ATP synthase epsilon subunit, 
Ipomoea batatas

120 5.6 <0.001 0.001

WS01118_A11 WS0113_M04 EF145848 FL/97 At1g77710, ubiquitin-fold modifier 
precursor, A. thaliana

150 5.5 <0.001 <0.001

WS0132_L23 WS0132_L23 EF148518 FL/372 AAP87281.1, beta-1,3-glucanase, Hevea 
brasiliensis

540 5.4 <0.001 0.002

WS0124_C22 WS0124_C22 EF147658 5' trunc./142 CAA42660.1, luminal binding protein, 
Nicotiana tabacum

213 5.4 <0.001 <0.001

WS01116_C06 WS01123_N20 EF145376 FL/250 At4g38210, expansin A20 precursor, A. 
thaliana

351 5.2 <0.001 <0.001

WS0114_D04 WS01211_M02a EF146676 FL/414 AAB71419.1, calreticulin, Ricinus communis 556 5.0 <0.001 <0.001

WS01117_O15 WS01117_O15 EF144759 FL/230 At4g11150, Vacuolar ATP synthase subunit 
E1, A. thaliana

295 4.7 <0.001 <0.001

WS0133_J24 WS0133_J24 EF148541 FL/177 At1g01250, AP2 transcription factor, A. 
thaliana

303 4.6 0.001 0.004

WS0148_P02 WS0127_F13 EF148073 5' trunc./283 At1g64660, methionine gamma-lyase, A. 
thaliana

424 4.5 <0.001 0.001

WS02010_D02 WS0126_C10a EF147943 FL/68 NP_001066879.1, hypothetical protein, 
Oryza sativa

175 4.4 <0.001 <0.001

WS0155_H06 WS0125_E23 EF147828 FL/215 CAN69111.1, glutathione-S-transferase, V. 
vinifera

415 4.3 <0.001 <0.001

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148503
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148554
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148557
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148553
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147703
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146918
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145143
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146657
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147347
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148516
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144781
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144899
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144877
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148543
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148810
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148194
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144837
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148166
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146529
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148368
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148205
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147271
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145803
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148597
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145138
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145947
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147963
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145380
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144379
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146815
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145928
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145848
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148518
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147658
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145376
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146676
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144759
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148541
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147943
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147828


BMC Genomics 2008, 9:57 http://www.biomedcentral.com/1471-2164/9/57

Page 12 of 18

(page number not for citation purposes)

WS01119_L18 WS01119_L18 EF144906 FL/56 NP_001068325.1, 40S ribosomal protein, O. 
sativa

182 4.3 <0.001 <0.001

WS0134_F23 WS0134_F23 EF148579 FL/312 CAN79077.1, annexin, V. vinifera 575 4.2 <0.001 <0.001

WS0117_C05 WS0124_M24 EF147756 FL/538 AAA80588.1, calnexin, Glycine max 1231 4.1 <0.001 <0.001

WS0175_A23 WS01125_H02a EF145504 FL/181 AAT08648.1, ADP-ribosylation factor, 
Hyacinthus orientalis

587 4.0 0.004 0.014

WS0153_O15 WS0135_A12 EF148616 FL/388 At4g24220, vein patterning 1, A. thaliana 711 4.0 <0.001 <0.001

WS0141_G12 WS01312_A02 EF148234 FL/273 At1g19180, hypothetical protein, A. thaliana 160 4.0 <0.001 0.003

WS0168_D23 WS01230_E07 EF147385 FL/420 ABD32854.1, hypothetical protein, Medicago 
truncatula

670 4.0 <0.001 0.001

WS0154_B02 WS01228_N21 EF147184 5' trunc./186 At5g07340, calnexin, A. thaliana 251 3.9 <0.001 <0.001

WS01116_D23 WS01116_D23 EF144634 FL/84 At3g60540, sec61beta family protein, A. 
thaliana

92 3.8 <0.001 <0.001

WS0117_O22 WS0117_O22a EF146403 FL/68 At1g27330, hypothetical protein, A. thaliana 103 3.5 <0.001 <0.001

WS0122_A01 WS01227_N20 EF147117 FL/399 At1g74210, glycerophosphodiester 
phosphodiesterase, A. thaliana

606 3.5 <0.001 <0.001

WS0144_K08 WS01119_H21 EF144889 FL/358 ABQ10199.1, cysteine protease, Actinidia 
deliciosa

594 3.5 <0.001 <0.001

WS0147_I02 WS0125_D08 EF147814 FL/444 AAS79603.1, prephenate dehydratase, 
Ipomoea trifida

653 3.3 <0.001 0.001

WS0111_C18 WS0125_B22a EF147800 FL/395 P47916, S-adenosyl methionine synthetase, P. 
deltoides

785 3.3 <0.001 0.001

WS0151_N14 WS0127_M05 EF148121 FL/485 Q01781, S-adenosylhomocysteine hydrolase, 
Petroselinum crispum

939 3.3 <0.001 <0.001

WS01212_P09 WS01212_P09 EF146734 FL/161 ABC47922.1, pathogenesis-related protein 1, 
Malus × domestica

236 3.2 0.005 0.016

PX0015_M10 PX0015_M10 EF144335 n.a. No protein matches n.a. 3.2 <0.001 <0.001

WS0111_A20 WS0111_A20 EF144935 FL/360 CAN67616.1, cupin family protein, V. vinifera 474 3.2 <0.001 <0.001

WS0117_P18 WS0117_P18 EF146411 FL/93 NP_001047293.1, hypoxia-responsive family 
protein, O. sativa

122 3.2 <0.001 <0.001

WS0131_J08 WS0131_J08 EF148502 FL/452 AAA70334.1, omega-3 fatty acid desaturase, 
Sesamum indicum

708 3.1 <0.001 <0.001

WS0173_J22 WS01229_P15 EF147254 frameshift/441 CAH05011.1, alpha-dioxygenase, Pisum 
sativum

679 3.1 <0.001 0.002

WS0151_H21 WS01314_F07a EF148393 FL/505 AAB05641.1, protein disulphide isomerase, 
R. communis

786 3.1 <0.001 <0.001

WS0141_E06 WS0128_M17 EF148216 FL/338 CAN79663.1, hypothetical protein, V. vinifera 284 3.0 <0.001 <0.001

WS01211_D15 WS01211_D15 EF146643 FL/258 NP_001061550.1, 60S ribosomal protein 
L7A, O. sativa

398 3.0 0.004 0.012

WS01110_A05 WS01110_A05 EF144530 5' trunc./46 AAT45244.1, EPSP synthase, Conyza 
canadensis

87 3.0 <0.001 <0.001

WS0122_A21 WS0122_A21 EF147261 FL/349 At3g62600, DNAJ heat shock family protein, 
A. thaliana

542 3.0 <0.001 <0.001

WS0154_D16 PX0019_K19 EF144475 FL/172 ABL67655.1, cyclophilin, Citrus cv. Shiranuhi 303 3.0 <0.001 <0.001

WS0114_N12 WS0114_N12 EF146003 5' trunc./243 AAU08208.1, chloroplast ferritin precursor, 
Vigna angularis

357 3.0 0.001 0.007

WS0153_O16 WS0136_K07a EF148708 FL/113 CAA40072.1, hypothetical protein, P. 
trichocarpa × deltoides

225 2.9 <0.001 <0.001

WS01117_D04 WS01117_D04 EF144703 FL/137 CAN73155.1, hypothetical protein, V. vinifera 110 2.9 <0.001 <0.001

WS01120_A02 WS01120_A02 EF145080 5' trunc./105 At1g03010, phototropic-responsive NPH3 
family protein, A. thaliana

177 2.8 <0.001 0.001

WS0178_L06 WS01211_M01 EF146675 FL/415 NP_001064428.1, no apical meristem 
transcription factor, O. sativa

98 2.8 <0.001 0.001

WS0143_C23 WS01228_M23a EF147179 FL/212 ABB89210.1, dehydroascorbate reductase, S. 
indicum

343 2.7 <0.001 <0.001

WS0127_I09 WS0127_I09 EF148095 FL/235 CAB77025.1, Rho GDP dissociation 
inhibitor, N. tabacum

294 2.7 0.003 0.012

PX0015_K10 PX0015_K10 EF144326 3' trunc./65 At2g15590, hypothetical protein, A. thaliana 39 2.7 0.001 0.004

WS0152_M05 WS01111_A23 EF144570 FL/125 At1g69230, nitrilase-associated protein, A. 
thaliana

80 2.7 0.001 0.006

WS0134_H19 WS0134_H19 EF148589 FL/461 At5g28237. tryptophan synthase, A. thaliana 579 2.7 <0.001 0.001

WS0122_P22 WS0122_P22 EF147367 5' trunc./46 AAS89832.1, flavonoid 3-O-
glucosyltransferase, Fragaria × ananassa

47 2.6 0.009 0.023

WS0113_E03 WS0113_E03 EF145764 5' trunc./130 At1g73600, phosphoethanolamine N-
methyltransferase, A. thaliana

198 2.6 <0.001 0.001

WS02012_L20 WS01212_L02a EF146720 FL/440 AAV50009.1, N-hydroxycinnamoyl/
benzoyltransferase, Malus × domestica

451 2.5 <0.001 0.001

WS0116_I22 WS01119_O01a EF144919 FL/212 ABB89210.1, dehydroascorbate reductase, S. 
indicum

360 2.5 <0.001 0.001

WS0128_C01 WS0128_C01 EF148156 FL/205 CAC85245.1, salt tolerance protein, Beta 
vulgaris

246 2.5 0.001 0.005

PX0011_E19 PX0011_C19 EF144204 FL/341 At1g10840, eukaryotic translation initiation 
factor subunit 3, A. thaliana

573 2.5 <0.001 0.002

WS0128_M01 WS0128_M01 EF148209 5' trunc./197 ABN08481.1, homeodomain-related, M. 
truncatula

103 2.4 <0.001 0.003

WS01126_B13 WS01126_B13 EF145551 3' trunc./136 CAN77060.1, ubiquitin activating enzyme, V. 
vinifera

239 2.4 0.017 0.035

WS01125_E14 WS01125_E14a EF145493 FL/207 NP_001058535.1, cyclophilin, O. sativa 340 2.4 <0.001 0.001

Table 3: FLcDNAs corresponding to transcripts most strongly induced by forest tent caterpillar (FTC) feeding [fold-change (FC) ≥ 2.0, 

P value < 0.05, Q value < 0.05] (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144906
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148579
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147756
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148616
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147385
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147184
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144634
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146403
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147117
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144889
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147814
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147800
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148121
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146734
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144335
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144935
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146411
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148502
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147254
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148393
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148216
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144530
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147261
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144475
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146003
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148708
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144703
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145080
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146675
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147179
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148095
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144326
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144570
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148589
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147367
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145764
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146720
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144919
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148156
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144204
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148209
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145551
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145493
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WS01218_P22 WS01120_G07a EF145102 FL/170 NP_001050870.1, glycine-rich RNA-binding 
protein, O. sativa

144 2.4 0.004 0.013

WS01117_L06 WS01117_L06 EF144744 frameshift/136 NP_001046690.1, ribosomal protein L10A, 
O. sativa

171 2.4 <0.001 <0.001

WS01117_E15 WS01117_E15 EF144711 n.a. No protein matches n.a. 2.4 <0.001 0.001

WS01110_A14 WS0122_K19 EF147330 FL/476 AAF18411.1, integral membrane protein, 
Phaseolus vulgaris

897 2.4 <0.001 <0.001

WS0156_A21 WS0127_G12a EF148080 n.a. No protein matches n.a. 2.4 0.017 0.035

WS0127_G19 WS0127_G19 EF148082 frameshift/251 At4g11640, serine racemase, A. thaliana 354 2.4 <0.001 0.002

WS0112_O04 WS0112_O04 EF145713 5' trunc./566 ABS01352.1, methionine synthase, Carica 
papaya

1073 2.4 <0.001 0.001

WS0155_E17 WS01212_I06a EF146705 FL/363 ABM67589.1, flavanone 3-hydroxylase, V. 
vinifera

645 2.4 0.003 0.012

WS0168_M07 WS0137_H13a EF148760 FL/62 ABF98145.1, hypothetical protein, O. sativa 57 2.4 <0.001 0.003

WS0119_H18 WS0117_P08 EF146405 5' trunc./188 CAN83141.1, hypothetical protein, V. vinifera 218 2.3 <0.001 0.003

WS0157_L22 WS0128_B17 EF148154 5' trunc./388 CAN76057.1, glucosyltransferase, V. vinifera 411 2.3 0.002 0.008

WS0185_E12 WS0124_A18 EF147646 FL/285 CAH60723.1, aquaporin, P. tremula × 
tremuloides

488 2.3 0.001 0.007

WS0125_I01 WS0125_I01 EF147858 FL/477 BAA36972.1, flavonoid 3-O-galactosyl 
transferase, Vigna mungo

442 2.3 0.003 0.011

PX0019_C07 PX0019_C07 EF144380 5' trunc./222 CAN74465.1, hypothetical protein, V. vinifera 369 2.3 0.015 0.033

WS01111_E24 WS0113_P06 EF145877 FL/290 AAN32641.1, short-chain alcohol 
dehydrogenase, Solanum tuberosum

399 2.3 <0.001 0.003

WS01212_B14 WS01214_D06a EF146806 FL/363 ABM67589.1, flavanone 3-hydroxylase, V. 
vinifera

644 2.3 0.003 0.011

WS0181_A04 WS01312_M14 EF148294 frameshift/232 CAN74806, bZIP transcription factor, V. 
vinifera

152 2.3 0.002 0.009

WS0116_F22 WS0116_F22 EF146228 frameshift/239 At3g05290, mitochondrial substrate carrier 
protein, A. thaliana

283 2.3 0.004 0.013

WS01121_C12 WS01121_C12 EF145159 FL/216 At2g25110, MIR domain-containing protein, 
A. thaliana

349 2.3 <0.001 <0.001

WS01214_P11 WS01214_P11 EF146849 FL/219 ABL84692, glutathione S-transferase, V. 
vinifera

345 2.3 0.002 0.009

WS0128_G16 WS01228_N10 EF147182 FL/207 AAN03471.1, hypothetical protein, G. max 99 2.2 <0.001 <0.001

WS0209_J01 WS0135_O22 EF148667 FL/318 AAG23965.1, endochitinase, Vigna 
sesquipedalis

461 2.2 0.001 0.004

WS01119_M12 WS01110_H18 EF144553 FL/118 At5g04750, F1F0-ATPase inhibitor protein, 
A. thaliana

52 2.2 <0.001 <0.001

WS0205_L05 WS01228_D08 EF147142 frameshift/233 AAX85981.1, NAC4 protein, G. max 362 2.2 0.019 0.038

WS0123_D13 WS0137_E08 EF148737 FL/533 At5g58270, STARK1 ATPase, half ABC 
transporter, A. thaliana

642 2.2 <0.001 <0.001

WS0112_P02 WS0116_L21 EF146273 FL/145 At5g27670, histone 2A, A. thaliana 196 2.2 <0.001 0.002

WS01214_A14 WS01225_E15 EF146945 FL/330 At5g07010, sulfotransferase family protein, A. 
thaliana

394 2.2 0.002 0.009

WS01211_G15 WS01211_G15 EF146653 FL/507 AAL24049.1, cytochrome P450, Citrus 
sinensis

677 2.2 <0.001 0.002

WS0123_E09 WS0123_E09 EF147535 FL/210 ABB89210.1, dehydroascorbate reductase, S. 
indicum

332 2.2 <0.001 <0.001

WS0114_N11 WS0114_N11 EF146002 5' trunc./313 AAF73006.1, NADP-dependent malic 
enzyme, R. communis

450 2.1 <0.001 <0.001

WS0154_G22 WS0122_L10 EF147335 5' trunc./381 CAN74204.1, hypothetical protein, V. vinifera 535 2.1 0.001 0.005

WS0181_N15 WS0133_H05 EF148536 FL/283 ABG73415.1, chloroplast pigment-binding 
protein, N. tabacum

496 2.1 <0.001 0.001

WS0131_L08 WS0137_P12a EF148792 FL/214 NP_001060368.1, emp24/gp25L/p24 
transmembrane protein, O. sativa

288 2.1 <0.001 <0.001

WS0124_N24 WS0124_N24 EF147765 FL/584 NP_001048852.1, acyl-activating enzyme 11, 
O. sativa

750 2.1 0.017 0.036

WS0116_E14 WS0116_E14 EF146213 n.a. No protein matches n.a. 2.1 0.001 0.004

WS0128_N06 WS0128_N06 EF148221 FL/257 At4g18260, cytochrome b-561, A. thaliana 294 2.1 0.005 0.016

WS01122_N10 WS01122_N10 EF145286 FL/91 At1g62440, leucine-rich repeat extensin, A. 
thaliana

107 2.0 0.010 0.025

WS01214_M13 WS01214_M13 EF146841 FL/378 At5g45670, GDSL-motif/hydrolase family 
protein, A. thaliana

298 2.0 <0.001 0.001

WS01213_H17 WS01213_H17 EF146756 FL/597 At4g34200, phosphoglycerate 
dehydrogenase, A. thaliana

884 2.0 <0.001 0.003

WS01122_N02 WS01231_J04a EF147472 FL/196 XP_001334748.1, hypothetical protein, 
Danio rerio

59 2.0 0.003 0.010

WS0156_F12 WS0118_O10 EF146525 FL/102 At2g18400, ribosomal protein L6, A. thaliana 165 2.0 <0.001 <0.001

aMultiple FLcDNAs match to the same microarray EST, a complete list of matching FLcDNAs is provided elsewhere [see Additional file 2].

Table 3: FLcDNAs corresponding to transcripts most strongly induced by forest tent caterpillar (FTC) feeding [fold-change (FC) ≥ 2.0, 

P value < 0.05, Q value < 0.05] (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145102
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144744
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144711
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147330
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148080
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148082
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145713
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146705
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148760
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146405
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148154
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147646
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147858
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144380
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145877
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146806
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148294
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146228
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146849
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144553
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147142
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148737
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146273
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146945
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147535
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146002
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147335
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148536
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148792
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147765
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146213
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148221
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145286
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146841
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146756
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147472
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146525
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improvement of the genome sequence assembly (i.e., tar-
geting apparent gaps for re-sequencing), as well as oppor-
tunities to further improve tools for the in silico prediction
of genes. To address the discovery of apparent gaps in the
genome assembly, the availability of 39 FLcDNAs that are
not covered in the current assembly could be used to tar-
get BAC clones for re-sequencing and filling of gap
regions. Similarly, the discovery of 173 FLcDNAs that do
not have corresponding gene predictions in the current
genome annotation may provide an opportunity to fur-
ther improve gene prediction tools for poplar. Algorithms
used for gene prediction in the poplar genome sequence
assembly could be tested with these 173 FLcDNAs to find
out why they may have initially been missed. If this leads
to an improvement of prediction tools, the assembled
genome sequence could be tested with the modified tools
to identify additional genes.

The comparative sequence annotation of poplar FLcDNAs
against Arabidopsis, the NR database, and previously pub-

lished poplar ESTs revealed that ca. 88% of poplar FLcD-
NAs showed similarity to sequences in Arabidopsis or
other plants. Many of the ca. 11.5% of poplar FLcDNAs
without significant sequence similarity in Arabidopsis or
other plants are supported with evidence of gene expres-
sion in the form of previously published poplar ESTs and
matching the poplar genome sequence, thus excluding the
possibility that they are artifacts of cDNA library construc-
tion. The discovery of poplar FLcDNAs without matches
in other plant species is also in agreement with previous
analysis of the poplar genome sequence where 11% of
predicted proteins had no similarity to proteins in the NR
database and 12% had no similarity to Arabidopsis pro-
teins [2]. For comparison, only 64% of the 28,444 ORFs
derived from rice FLcDNAs showed significant similarity
to coding sequences predicted from the Arabidopsis
genome and conversely, only 75% of Arabidopsis coding
sequences had similarity to rice FLcDNAs [24]. These find-
ings suggest that a substantial proportion of protein-cod-
ing sequences are not conserved among all plant species.

Table 4: FLcDNAs corresponding to transcripts most strongly repressed by forest tent caterpillar (FTC) feeding [fold-change (FC) ≥ 

2.0, P value < 0.05, Q value < 0.05]

NR BLASTP best match FTC feeding @ 24 h

15.5 K Array ID Matching FLcDNA ID GenBank ID FL status/ORF size (aa) GenBank accession, gene name, species BLAST score FC P Q

WS0162_B18 WS01227_D07 EF147075 FL/465 AAX84673.1, cysteine protease, Manihot 
esculenta

782 0.33 <0.001 <0.001

WS0112_D20 WS0112_D20 EF145637 FL/99 At1g67910, hypothetical protein, Arabidopsis 
thaliana

69 0.34 <0.001 0.001

WS0126_C06 WS0126_C06 EF147942 FL/121 At2g45180, protease inhibitor/lipid transfer 
protein, A. thaliana

108 0.34 0.018 0.038

WS0131_P03 WS0131_P03a EF148510 FL/303 CAN63090.1, zinc finger transcription factor, 
Vitis vinifera

135 0.36 <0.001 0.001

WS0178_F11 WS01228_M08 EF147174 5' trunc./106 At1g22770, gigantea protein, A. thaliana 150 0.38 <0.001 0.002

WS0127_F15 WS0127_F15 EF148074 FL/173 CAN68427.1, hypothetical protein, V. vinifera 207 0.40 <0.001 0.001

WS0121_B24 WS0128_M21 EF148217 FL/139 AAU03358.1, acyl carrier protein, 
Lycopersicon esculentum

119 0.41 <0.001 <0.001

WS0147_J04 WS0134_M10 EF148605 n.a. No protein matches n.a. 0.41 0.004 0.014

WS0158_G10 WS0128_E13 EF148173 5' trunc./628 At1g56070, elongation factor, A. thaliana 1239 0.41 0.001 0.005

WS0152_E14 WS0112_O08a EF145715 FL/252 ABH09330.1, aquaporin, V. vinifera 375 0.42 <0.001 0.003

WS0143_B24 WS01227_O15 EF147121 FL/267 At1g06460, small heat shock protein, A. 
thaliana

146 0.42 <0.001 0.001

WS0127_G18 WS0127_G18 EF148081 n.a. No protein matches n.a. 0.43 <0.001 <0.001

WS0182_D02 WS01226_N23 EF147055 FL/335 CAN75691.1, methyltransferase, V. vinifera 534 0.43 0.001 0.005

WS0124_D16 WS0124_D16 EF147668 FL/164 At3g62550, universal stress protein, A. 
thaliana

188 0.44 <0.001 0.001

WS0163_G24 WS0115_E02 EF146059 FL/341 AAD56659.1, malate dehydrogenase, Glycine 
max

566 0.45 0.003 0.010

WS0175_O14 WS01313_J01a EF148349 FL/239 CAN63226.1, hypothetical protein, V. vinifera 313 0.45 <0.001 0.001

WS0178_N22 WS01111_H24 EF144589 FL/161 ABG27020.1, SKP1-like ubiquitin-protein 
ligase, Medicago truncatula

219 0.46 <0.001 <0.001

WS0121_H19 WS0121_H19 EF146882 FL/350 AAW66657.1, thiamine biosynthetic enzyme, 
Picrorhiza kurrooa

539 0.48 0.005 0.016

WS0206_B21 WS0131_B11 EF148494 FL/133 CAA59409.1, photosystem II reaction center 
protein, Spinacia oleracea

140 0.48 0.001 0.006

WS0155_M12 WS0136_E20 EF148683 FL/234 CAN60736.1, hypothetical protein, V. vinifera 313 0.48 0.001 0.007

WS0152_F02 WS01117_K24 EF144742 FL/384 CAN83255.1, CCCH-type zinc finger 
protein, V. vinifera

432 0.49 <0.001 0.002

WS01224_P10 WS0124_L08a EF147742 FL/137 CAA28450.1, photosystem II 10 kDa 
polypeptide, Solanum tuberosum

191 0.49 <0.001 0.003

WS0115_N05 WS0115_N05 EF146146 FL/250 AAM21317.1, auxin-regulated protein, 
Populus tremula × tremuloides

449 0.50 0.005 0.016

WS0125_F02 WS0125_F02 EF147829 FL/516 At1g60590, polygalacturonase, A. thaliana 715 0.50 0.001 0.005

aMultiple FLcDNAs match to the same microarray EST, a complete list of matching FLcDNAs is provided elsewhere [see Additional file 2].

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147075
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145637
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147942
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147174
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148074
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148217
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148605
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148173
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF145715
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147121
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148081
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147055
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147668
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146059
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148349
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144589
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146882
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148494
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF148683
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF144742
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147742
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF146146
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF147829
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The putative poplar-specific genes could be the product of
past local or whole genome duplications in the lineage
that led to extant poplar species [2,43] followed by
sequence divergence [44,45]. Furthermore, ca. 2% of pop-
lar FLcDNAs did not contain a predicted ORF suggesting
these putative poplar-specific genes likely encode non-
coding RNAs (i.e., rRNAs, tRNAs, snoRNAs etc.).

Conclusion
We developed a large FLcDNA resource of high sequence
quality and low-level redundancy that facilitated the dis-
covery of a substantial number of genes not present
among the published sequences of other plant species,
and that also facilitated the discovery of several hundred
insect-affected genes in the poplar leaf transcriptome that
were represented by FLcDNAs. The newly established
poplar FLcDNA resource will be valuable for further
improvement of the poplar genome assembly, annotation
of protein-coding regions, and for functional and compar-
ative analysis of poplar genes. Specifically, the identifica-
tion of FLcDNAs that are not covered in the current
genome assembly or that were not predicted during the
genome annotation provides opportunities to further
refine the current genome assembly. The availability of a
large collection of FLcDNAs that show altered gene
expression following insect herbivory affords more rapid
characterization of the role of these genes in poplar biotic
interactions.

Methods
Full-length cDNA libraries

Plant materials used in the construction of cDNA libraries
are described in Table 1. Isolation of total and poly(A)+

RNA are described elsewhere (see Additional file 3).
FLcDNA libraries were directionally constructed (5' SstI
and 3' XhoI) according to published methods [46,47],
with modifications described in detail elsewhere (see
Additional file 3).

DNA sequencing and sequence filtering

Details of bacterial transformation with plasmids, clone
handling, DNA purification and evaluation, and DNA
sequencing are provided elsewhere (see Additional file 3).
Sequences from each cDNA library were closely moni-
tored to assess library complexity and sequence quality.
DNA sequence chromatograms were processed using the
PHRED software (versions 0.000925.c and 0.020425.c)
[48,49]. Sequences were quality-trimmed according to the
high-quality (hq) contiguous region determined by
PHRED and vector-trimmed using CROSS_MATCH soft-
ware [50]. Sequences with less than 100 quality bases
(Phred 20 or better) after trimming and sequences having
polyA tails of ≥ 100 bases were removed from analysis.
Also removed were sequences representing bacterial, yeast
or fungal contaminations identified by BLAST searches

[51,52] against E. coli K12 DNA sequence (GI: 6626251),
Saccharomyces cerevisiae [53], Aspergillus nidulans (TIGR
ANGI.060302), and Agrobacterium tumefaciens (custom
database generated using SRS, Lion Biosciences).
Sequences were also compared to the GenBank NR data-
base using BLASTX. Top ranked BLAST hits involving
other non-plant species and with E values < 1e-10 were
classified as contaminants and removed prior to EST
assembly.

Selection of candidate FLcDNA clones and sequencing 

strategy

All 3'-end ESTs remaining after filtering were clustered
and assembled using CAP3 [39] (assembly criteria: 95%
identity, 40 bp window). The resulting contigs and single-
tons were defined as the PUT set. PUTs with a cDNA clone
from a FLcDNA library were selected as candidates for
complete insert sequencing (Figure 1). Candidate clones
from FLcDNA libraries were single-pass sequenced from
both 3'- and 5'-ends and both sequences were used for
subsequent clone selection. Next, clones were screened for
the presence of a polyA tail (3'-end EST) and the second-
strand primer adaptor (SSPA; 5'-ACTAGTTTAATTAAAT-
TAATCCCCCCCCCCC-3'; 5'-end EST). Clones lacking
either of these features were eliminated. A polyA tail was
defined as at least 12 consecutive, or 14 of 15 "A" residues
within the last 30 nt of the 3'-end EST (5' to 3'). The pres-
ence of the SSPA was detected using the Needleman-Wun-
sch algorithm limiting the search to the first 30 nt of the
5'-end EST (5' to 3'). The SSPA was defined as eight con-
secutive "C" residues and a > 80% match to the remaining
sequence (5'-ACTAGTTTAATTAAATTAAT-3'). In each
case, the algorithms used to detect the 5' and 3' clone fea-
tures were set to produce maximal sensitivity while main-
taining a 0% false positive rate, as determined using test
data sets. Candidate clones for which either of the initial
5'-end or 3'-end EST reads had a Phred20 quality length of
< 100 nt were also excluded. Finally, candidate clones
were compared to poplar ESTs in the public domain
(excluding ESTs from this collection; BLASTN match E <
1e-80) to identify candidate FLcDNAs potentially trun-
cated at the 5' end of the transcript relative to a matching
EST. Any clone with a 5' end that was > 100 nt shorter than
the matching public EST was excluded. For each PUT rep-
resented by multiple candidate clones after filtering, the
clone with the longest 5' sequence was selected for com-
plete insert sequencing. Insert sizing performed on 4,848
of 5,926 candidate clones using colony PCR with vector
primers and standard gel electrophoresis revealed an aver-
age insert size of ca. 1,085 bp. Based on this information,
a sequencing strategy emphasizing the use of end reads
was chosen.
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Sequence finishing of FLcDNA clones

FLcDNA clones selected for complete sequence finishing
were rearrayed into 384-well plates, followed by an addi-
tional round of 5'-end and 3'-end sequencing using vector
primers. All end reads from an individual clone were then
assembled using PHRAP (version 0990329) [48-50]. To
meet our sequence quality criteria, the resulting clone
consensus sequence was required to achieve a minimum
average score of Phred35, with each base position having
a minimum score of Phred30. Each base position also
required at least two sequence reads, of minimum
Phred20, that were in agreement with the consensus
sequence (i.e., no high-quality discrepancies). Clones that
did not meet these finishing criteria after two rounds of
end read sequencing were then subjected to successive
rounds of sequencing using custom primers designed
using the Consed graphical tool version 14 [54] until the
required quality levels were achieved. Regardless of the
finishing strategy, all clones that did not meet the mini-
mum finishing criteria according to an automated pipe-
line were flagged for manual examination. Clones were
aborted if they were manually verified to lack the mini-
mum finishing criteria after three rounds of custom
primer design, were identified as chimeric sequences, or
were refractory to sequence finishing due to the presence
of a "hard-stop". FLcDNA sequences have been deposited
in the NR division of GenBank [EF144175 to EF148838].

Gene expression meta-analysis of FLcDNAs

Poplar FLcDNA sequences were mapped to a cDNA
microarray containing 15,496 poplar ESTs [[11]; Gene
Expression Omnibus (GEO) platform number GPL5921]
using BLASTN with a stringent threshold of ≥ 95% iden-
tity over ≥ 95% of alignment coverage. To identify FLcD-
NAs that were DE following FTC feeding, FLcDNAs
mapping to the microarray were matched to an existing
microarray dataset that examined gene expression in
hybrid poplar leaves 24 hours after continuous FTC feed-
ing ([11]; GEO series number GSE9522).
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