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Abstract: This article is devoted to establish the existence of solution of (a, 8)-order coupled implicit fractional
differential equation with initial conditions, using Laplace transform method. The topological degree theory is
used to obtain sufficient conditions for uniqueness and at least one solution of the considered system. Beside
this, Ulam’s type stabilities are discussed for the proposed system. To support our main results, we present an
example.
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1 Introduction

Fractional order derivatives are the generalized forms of integer order derivatives. The idea about the fractional
order derivative was introduced at the end of sixteenth century (1695) when Leibniz used the notation dd—:n fornth
order derivative. By writing a letter to him, L’Hospital asked the question that, what would be the resultifn = %?
Leibniz answered in such words, “An apparent Paradox, from which one day useful consequences will be
drawn” and this question becomes the foundation of fractional calculus, see [1]. In that time many mathe-
maticians like Fourier and Laplace contributed in the development of fractional calculus. After that when
Riemann and Liouville introduced Riemann-Liouville derivative which is a fundamental concept in fractional
calculus, then fractional calculus became the most interested area for researchers. Fractional order derivative
is a global operator, which is used as a tool for modeling different processes and physical phenomenon like
mathematical biology [2], electro-chemistry [3], control theory [4], dynamical process [5], image and signal
processing [6] etc. For more applications of fractional order differential equations, we refer the readerto[7, 8, 9,
10, 11, 12, 13, 14].

The most preferable research area in the field of fractional differential equations which received great
attention from the researchers is the theory regarding the existence of solutions. Many researchers developed
some interesting results about the existence of solutions of different boundary value problems, using different
fixed point theorems. For details we refer the reader to [15, 16]. Most of the time, it is quite difficult to find the
exact solutions of nonlinear differential equations, in such situation different approximation techniques were
introduced. The difference between exact and approximate solutions is now a days dealing with the help of
Hyers-Ulam(HU) type stabilities, which was first introduced in 1940 by Ulam [17] and then answered by Hyers
in the following year, in the context of Banach spaces. Many researchers investigated HU type stabilities for
different problems with different approaches, [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
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In the solution of fractional differential equations the Mittag—Leffler function naturally appears to play a
role analogous to that of the exponential function as in the ordinary case. The Mittag—Leffler function was
defined by Leffler [29]. In the last few decades, the Mittag—Leffler function has been the subject of general-
ization of many approaches, in finding the solutions of fractional differential equations [29, 30].

An effective and convenient method for solving fractional differential equations is needed. Methods in [31]
for rational order fractional differential equations are not applicable to the case of arbitrary order. Some
authors used the series method [32, 33, 34, 35], which allows solution of arbitrary order fractional differential
equations, but it works only for relatively simple equations. Podlubny [36] introduced a method based on the
Laplace transform technique, it is suitable for a large class of initial value problems for fractional differential
equations. However, we found that the existence of Laplace transform is taken for granted in some papers to
solve fractional differential equations see [37, 38]. In [39], Rezaei et al. presented HU stability of

n
u" (o) + Y qut(0) =d(0) V 0>0,
k=0
by applying Laplace transform method, where n be positive integer and ao, ai, ...,a, € R".
In [40], Kexue et al. studied the solution of the following fractional differential equations by Laplace
transform

{;&ﬁu(a) =Au(0)+®(0) 0<a<1,0>0,
u(0)=n,

where ng is the Caputo fractional derivative, A is a constant square matrix, ® (o) is a continuous forcing term.
In [41], Lin et al. obtained the solution by using Laplace transform of the fractional differential equation

{u”(o)+au“(0)+bu(o)=0 1<a<2, ¢>0,
u(0)=mny u(0)=mn

where « is the fractional order and a, b € R.
Recently in [42], using Laplace transformation Wang et al. studied the HU stability of following linear
fractional differential equation

‘D u(o) - & “DPu(o) = d(0),

wheren —1<a<n,m —1<fB<mand m<n,n,m € R. Motivated from the above results, we study the following
coupled fractional differential equations with the help of Laplace transform method

Dy (g) - &, D v(0) = ¥ (0, D" u(0), ‘D" v(0)) (1.1)

{ ‘D u(0) - &, D u(o) =00, D" u(0), D" v(0))
‘D u(0) =u, ‘D v(0) = v, k=01,...,p-1,

where §,¢, €R, p —1<a,a,<p, q —1<B,,5,<q, p,q€ Z*, g<p, 0<y, ¥, V3V, <1 The real functions
©:JxRP>Rand¥:J xR*>RV te[0,1]=J, u,v; € R" and a;, B, a, B, are the order of Caputo
fractional derivative. Using the method of Laplace transform [42] and the idea of Topological degree method
[43], we obtain our results.

The paper is organized as follow: In Section 2, we give some definitions, theorems, topological degree
theory and some necessary conditions. In Section 3 we focus on coupled fractional differential Equation (1.1),
and investigate the existence of solution by using Laplace transform, while uniqueness and at least one
solution with the help of topological degree method. In Section 4, we obtain the HU stabilities of system (1.1) by
taking some assumptions. The last section contain an example which strengthen our results.
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2 Preliminaries

In this Section, we present some helpful definitions and well known results of fractional calculus and theory of
topological degree.

The Banach spaces of all continuous functions are denoted by &/ = C(J,R),V=C(J,R)and W =U xV
with topological norms |ul;, = sup{lu(o)|:0 € T}, |Ivlly =sup{|v(o)|:0€ T} and | (V) = lully + Iviy,
respectively.

Definition 2.1. [1] For a function u: 7 — R, the Caputo fractional integral of order p — 1< a; < p is defined as:

“I%u(o) =

1 ¢ a;-1
—s5) ds.
) g (0 —8)"u(s)ds

Definition 2.2. [1] For a functionu : 7 — R, the Caputo fractional derivative of order p — 1< a; < pis defined as:

‘D u(o) = ﬁ I (0 - sy (s)ds

where p = [a;] + 1 and [a;] denote the integer part of the real number a;.
A function u € C(J, R) is said to be of exponential order if there are constants a, b € R such that |u(0)| < ae®®
for all o > 0. For each function u of exponential order, the Laplace transform of u (o) is defined by

Lu(0)}(s): = [ e*u(o)do, seC. 2.1
0
If the integral (2.1) is convergent at sy € C, then it converges absolutely for s € C such that R(s) > R (sp) . The
convolution property of Laplace transform is given by
Lu(0)*v(0)}(s) = Lu(o)}L{v (0)}(s),
where u(0)*v (o) = Jg u(o - Qv({)dq, see [44].

Results related to Laplace transform in the framework of Caputo fractional derivatives are as follows:

Lemma 2.3. [1] Let a; >0, p —1<a; <p, p € Z* be such that u and u” are of exponential order functions, the
Laplace transforms of u (o) and °D? u (o) exist, and tlim Dfu(o)=0fork=0,1,..., p - 1. Then the following
relation holds:

LD u(0))(5) = s Lu(0)}(5) - T 57 (DFu) (0).
k=0

If p =1 then
D" u(o)}(s) = s* u (o)} (s) —s*1u(0).
The Mittag—Leffler function E,, g is defined as:

oo Zk

s @ = 2 vk By

when a; = 8, = 1, we can see that E;; (z) = e*. For more properties of the mentioned function see [1].

z,B,€C, R(ay)>0,

Lemma 2.4. [1] If R(s) > 0, §; €C, |&; 5| <1, then
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o -Py
o B (00 = S
1

where E,, g (£, 0%) is the Mittag—Leffler function.

Let K be a family of all bounded sets of B()V), where W is a Banach space.

Definition 2.5. [43] The Kuratowski measure of non-compactness u : K — R, is defined as

u(K) = inf{d >0 : admits a finite cover by sets of diameter <d},

where K € K.

Proposition 2.6. [43] The Kuratowski measure y satisfies the following properties:

(D u(K) = 0 iff K is relatively compact.

(I) p is a semi norm, i.e., u(nK) = |n|u(K), n € R and p(K; + K>) < p(Ky) + u(K>).

(1) K; € K> = p(Ky) < u(Ka); u(Kq UKz) = max{u(Ky), u(Ka)}.

(IV) u(convK) = u(K).

(V) u(K) = u(K).
Definition 2.7. [43] Consider F:A — )V is a continuous and bounded operator, where A ¢ W. Then F be
p-Lipschitz if 3 L = 0 such that

U(F(K)) <Lu(K), for all K cA.

Along this, F will be strict p-contraction if L < 1.

Definition 2.8. [43] A function F is y-condensing if
U(F(K)) <u(K), for all K c A bounded, with u(K)>0.

another way, p(F (K)) = u(K) = u(K) = 0.

The class of all strict u-contractions and p-condensing of F:A — W is denoted by 9C, (A) and C, (A),
respectively.

Remark 2.9. [43] 9C,, (A) c C,, (A) and every F € C, (A) is p-Lipschitz with constant L = 1.
Furthermore, we recalled that F : A — W is Lipschitz if there exists L > 0 such that

IF(u,v) -F WV | <L|(u,v) — (W, V)|, forall (u,v), (w,v)eA,

and that if L < 1, then F is a strict contraction.

Proposition 2.10. [43] If F, G : A — W are p-Lipschitz with constants L and L’, respectively, then F + G: A - W
is p-Lipschitz with constants L + L.

Proposition 2.11. [43] If F : A — W is compact, then F is y-Lipschitz with constant L = 0.

Proposition 2.12. [43] If F : A — Wis Lipschitz with constant L.. ., then ... is y-Lipschitz with the same constant L.
The following theorem, due to Isaia [45] plays an important role for our main result.

Theorem 2.13. [43] Let F: W — W be p-condensing and
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Y ={(u,v) e W:3n € [0,1] suchthat (u,v)=nFu,v)}

If Y is a bounded set in W, i.e., there exists r > 0 such that Y c K, (0), then the degree
D(1-nF, K,(0),0)=1, V ne[0,1].
Consequently, F has at least one fixed point and the set of the fixed points of [ lies in K, (0).

In the sequel, we required the following assumptions:

(Hy).Let®,¥ : 7 x R? > R are continuous functions, then there exist constants Lep;, Ly > 0and 0 < Lay, Ly <
1such that 0 € 7 and V uy, up, v1, v, € R, the following holds

|D (0, uy, Uy) — D (0,1, v2)| < Kol — V1| + Laoltty — V2
and

[V (0, up, ) = ¥ (0, V1, V)| < Lyl = vi| + Lyt — vl

(H,). With the given continuous functions we1, Wa), W3, Wy, Wy, wys € C(J, R) foru €U, v € V, the nonlocal
functions @, ¥ satisfy the following growth conditions:

|D (0, us (0), U (0))] £ Wt (0) + Wan (0) U] + Wa3 (0) o]
and
[¥(0,v1(0),v2(0))| < Wy (0) + Wz (0) V1] + W3 (0) V2
with  wg, = it:gqu(o), Wa, = S;g})wm(a), Was = SUp Wos (0), wy = SUp Wy (0), wy,= SUp Wy2 (0),

Wy = suy wys; (0) are positive constants.
(S

3 Existence and uniqueness results
We prove the existence and uniqueness as follows.

Theorem 3.1. Let @ be a continuous and linear function. The solution of

{ ‘D% u(0) - & D u(o) = d(0) 6)
‘D u(0) = u}, k=012..p-1,
is given as:
pl AN S AN
u (0) = kgo o Ea1—51>k+1(€1 o 1)uk - 'sl kgo on Ea1—ﬁ1’a1—ﬁ1+k+1({l o 1)uk (32)

+ €03 (0 - )" Egy_p, (£, (0 = )P )D(5)ds,

where §,,&,eR,p —1<a;<pandq -1<f,<qasp,qe Z" and g <p.

Proof. Applying Laplace transform on fractional differential Equation (3.1) and using Lemma 2.3, we obtain
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D™ u(0) - & ‘D u(0)} (s) = LD (0)} (5)
LD u(0)}(s) - & L DA u(0)} (s) = LD (0)} (5)

s L{u(0)}(s) - 2s“'“* & P Qu(o)}(s) - ¢ zos’““ LD (0)}(s) 63

(s - & ") u (o)} (s) = ZS“‘“ 625“1 Uy + LD (0)}(s)

zpl k-1 {qusﬁl —k-1 *+Q{(D(0)}(S)

Lu(a)}(s) = (s — &, h)

Now by applying inverse Laplace transform to (3.3), we have

N Ru(o)} (8)) = {Z’”s"“’” ;} 21{512%&“ *}+8_1{2{®(a)}<s)}

(S“l 51 sﬂl) (Stxl _ {1 5ﬁ1) (sm — {1 Sﬁl)
pr o sk ol sh
u(o) = kgo w L {(S“l & Sﬁl)} & ; ¥ {m} .

» 1
+& {—(sal _‘Slsﬂl)}*q)((f).

Lemma 2.4 help to find some inverse Laplace transforms that is

_ stlrkfl
¢ 1{m} = 0" Eoy-pia(§,0%7), (3.5)
1 Sﬁl k-1 oo ,
U m = gah Eal—ﬁl,al—ﬁ1+k+l(§1 g% 1) and 5.6)
- 1
b 1{(50“_61531)} =gn! Ea1ﬂ31,al(£1 Uarﬂl). -

Substituting (3.5), (3.6) and (3.7) in (3.4), we get

p-1 q-1
u (0) = kz ok Eﬂrﬁplﬂl({l 0“1*/31)uk - {1 kz Oﬂrﬁﬁk Eal ’B]xal’ﬂ1+k+1(€l O-arﬁl )uk
=0 =0
+o%! Eal_ﬁl,al(fl aal’ﬁl)*d)(o) )
From Theorem 3, we achieved that (u,v) € W is the solution of system (1.1), where

- p-1 q-1
u (0) = kzo Uk Eﬁ1*ﬁ1vk+1('{l 0a17ﬂ1 )u;: - fl kzo Oﬂrﬂﬁk Eﬂrﬁparﬁﬁkﬂ({l 0arﬂl )ult

o
+ [ (0= 8)"" Eqyppe (&1 (0= 9 P)D(s,°D" u(s), D2 v (s)) ds,
) (1)7—1 g-1 (38)
14 (0) = kZ:O Uk Eaz—ﬁz,k+l(£2 00{27‘82 )V; - 52 IZ:O Uarﬂﬁk Eaz—ﬁp az—ﬁz*'k*l(é’Z 0-0(2*.32 )VIZ

+ j (0= 8)%" Eay p,,0(&, (0= 5)" ) ¥ (s,°D" u(s), ‘D" v (s)) ds.
0

Define the operators F; : U/ —» U, F,: V — V), as follows
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p-1 q-1
Fi (0) = 3 0 Eapyon(§0°P oy = &1 T 0% P Euyopar-proe(§10 7 Ju
p-1 X g-1 .
Iy (v) (0) = kgo 0 Eay-p, k(8,072 )V = &, kgo 0" P By g 0 prn(§,0% 7P )i
and the operators G;, G, : W — W as

Gy (u,v) (0) = T (0= 8)"" Egp.a(&, (0 =" P)D(s, D' u(s), D v(s))ds
. (3.9)
Gy (V) (0) = [ (0= 5)* " Eqyp, 0,8, (0 = )2 )W (s,°D" u(s), ‘D v(s)) ds.

0

Moreover, we define F = (F;,FF;), G = (G,G,) and T = F + G. Then the system (3.8) can be written as an
operator equation of the form

(u,v) =T(uv) =FWw,v)+Gu,v) (3.10)

and solution of the system (3.8) is a fixed point of T.

Lemma 3.2. The operator F satisfies the y —Lipschitz condition and the following growth condition:

[IF (w, V)|l < Lel| (w, V)|l for every (u,v)eW, (3.11)
where
pl&| + a8 p|€z|+q€§}
Ly = : .
’ ma"{rml—ﬁl) M(a-5,)

Proof. For Lipschitz condition of F, applying norm, we get

IF (u, v) = F @ V)l < |[Fy (W) - Fr @)l + [F2 (v) - F2 W)lly

< suppil'o" Eopi1(&y U“l’ﬁl)"u; - ﬂk‘
0eJ k=0

_B,+k _ —
0P By ay-pokn(§0%7) up — g

q-1
+suplé;| ¥
oeJ k=0

(3.12)

= k P, * —%
+sup ‘0 E,,Z_,;Z,kﬂ(fz g 2) vy =V,
0eJ k=0

B 1k _ _
g% B+ Eazfﬁz,az—ﬁﬁkﬂ(fz g% /32) ” V;; _ V;:

q-1
+sup|é,| ¥
oeJ k=0

2 2
Splgll + qfl”u —ll, +p|£2| + quIIV—VIIV

I'(a - B,) I'(az-B,)

<Lyl (u,v) = (@)]]y.

By Proposition 2.12, T is also p-Lipschitz with constant Ly. Now for the growth condition of F, also applying
norm, we obtain
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1T (, )1l < [1F1 @)y + [F2 (V)lly

p-1
<sup ¥ |0* Eq,_p, k1(€,07) 114y
0eJ k=0

gl Pk Ea1—ﬂ1,arﬁ1+k+1( & O-m—ﬁ]) Il ug

q-1
+sup|¢,| ¥
0eJ k=0

p-1
+sup Y '0" Eoypyiea(&,0%7%) 1 v;
0eJ k=0

q-1
" So??l%' kgo gt E"‘Z*ﬁz,“z*ﬁﬁk*l({z Oﬂrﬁz) I Vk|

plel+as bl e
B gy M < Lell Gl

Lemma 3.3. Under the assumptions (H;) and (H,), the operator G is continuous and the following growth
condition holds:

1G (u, V)l < Agll (U, V)l + Ag forevery (u,v) e W, (3.13)

EE

A% _ * * * *
where Ag = AL + AL, Ag = wi Ay + wiy AS,

. Wy Ay, Wa A Wi Ay, Wiz A,
Ay = max{ A yz) , AL = max A Lt

L2-y)T(2-V, T(2-y3)T(2-vs)

‘A; = Su};aal Em*ﬁpal*l({l Uﬂrﬁl)’ ‘A; = su};OﬁZ Eaz’ﬂ2>d2+1(€2 0-0(27132) >
o€ o€

4 oo g’; ok (a1=By)+a-y, B ’
* = su _ 2-v, k(a; - +a;),
T ATk B ey PO KA a)

A = X gk(ap)ar 5 )
- su - 2- , ot — ra),
" 06? kgo T(k(ay—By) + ) -y k(s =B;) + )

oo k sk (a-B,)+oa-y3
A5 =sup Y. 5,0

n T ver ST (k(az - B,) + ) B(2-y; k(a-B,) +a,) and

. oo {’; ok (02-B2)+a2-y,4
.A = Su —_—
=S 2 F k(@ - ) + )

where B(-,-) is beta function.

B(2-y, k(a-B,) + ),

Proof. Consider sequence {(uy,v,)} from a bounded set X, = {|| (u, V)|l <7: (4,v) € W} such that (u,,v,) —
(u,v) € X, as n — oo. For proving the continuity of G use (H;) and (3.9), it is enough to show that |G (up, v,,) —
G (u,v) | =0 as n — oo. First we find the continuity of Gy, i.e.,
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G1 (tp, Vi) = Gy (U, W)y

ssu? ” (0 —s)8" Eal—ﬁl,al(fl (0- S)arﬂl) | D(s, D" Uy (s), D" vy (5)) — D (s, ‘D" u(s), D" v(s))| ds
0T

o
ssup [|(0= 9% Eqy_p (&1 (0 = )| [Lanl D" = “Dul + Lo D"t v, - D2 v dis
o€ 0

g
<sup | (0= 9" Eay (&1 (0 = )7 )| Qo D" i, — “D"'ui| ds
oeJ

s sup [0 9 Eu a6, (0 - 9% )| Lonf D v - D2 ds

0eJ o

ds|u, — u|

Lo T ) ]
St~ Sup [ 171 (0 - 8) 7 By, g —s)h
F(Z—Yl) ae‘g)! |( ) a ‘31’011(‘{1( ) )

0 gup T '] (0= )" Eayopy ai(£1 (0 = )| dslvn - v

L(2-Y,) 0e7

+

0o L &X gk (a1-By)+ar-yy
ssup Y @11
0eJ k=0 r(z - Y1)r(k (al - Bl) + al)
oo Qo & gk (a=p1) -y,
+sup Y @24}
0eJ k=0 F(Z - YZ)r(k(al - ﬁl) + al)
itis clear thatu, »uandv, > vasn — oo = [|G; (Un, V) — G; (1, V)||,, = 0 as n — oo. For G, we use the same
steps as above we can get |G, (Uy, Vi) — G, (1, V)|l,y — 0 as n — oo. Hence G is continuous.

B(2-y,, k(a1 —pB,) +ar)lu, —ul

B(2 —Y» k(al —Bl) + 0(1)|Vn -vl,

Next to show the growth bound condition of G, we use (H,) and (3.9), we achieve as
Gy (u, V)]l

<sup [ (0= 8)"" Eq,_p, a(&, (0= ) 7)|D(s,°D"'u(s),’D" v (s))| ds

0eJ o

[
WiySup [ (0= 9" Eup(§(0 9" P) ds
0

(Uc*pz"u"u T 1-y. a-1 a-p
< Sup | § 1 (0 - 8)"" Egp.a(§1(0-5)"")ds
G-y ep) poel )

w;:@”VHV T 1-y. a1 P,
+—=——sup|s 2(o-s E._ o-5s)"")ds
T2-y,) ae% (0 =9" Eapa(§1(0 -9 )

<Wg,SUpo” Eal—ﬁpal+l(§1 Uarﬂl)
oeJ

wapllully | & oLty

sSu
T2—y,) ves BT (k(o = B) +

)B(Z_YI’ k(ay = By) +ay)

W VIl oo gﬁak(al—m)ml—n

F2-y)) sex T k(@ - By) + @)

W, lully wys VIl
<w: sup A (0) +=—2"Y sup A, (0)+—2"sup A, (o
cmoe[ol,)u 1@ F(Z_YI)UE[OI,JH () F(Z—Yz)aem% (@)

B(2-yyk(a - B,) + 1)
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Wi Al @iy A, VI
+
F(Z—yl) F(Z_YZ)

AGI (W V)ly + why Ay

Wy Ay +

and
1G2 V)l < AZ 1 W V)l + Wiy A
by the similar steps as for G,. Hence, it follows that

NG ()l < 1Gy (W V) + 1G2 (u, v) Iy
<AL V)l + AL (W V) [y + wgy Af + Wi, A
Al (uv)llw + Ag .

Lemma 3.4. Under the bounds s' 1 < ¢, s'™"2 < ¢, s' 7> < ¢, and s’ < ¢, , the operator G : W — W is compact.
Consequently, G is p-Lipschitz with zero constant.
Proof. Take a bounded O c y, € W and {(uy, vn)} € © be a sequence, then (3.13) can be written as:

GW,Vv),, <Agr + Ag forevery (u,v)eW.

So G (0) is bounded. Now for equi-continuity and for given € > 0, take § = {6;, 6>}, where

1

345 +cy, Al 345 +cy, A} a-y1
€ * 111 * y2 Y2
s+ | W + W,
N (wor Py + o'ty )
1=
4wy, A
347 A 345 A L
+¢ +C 573
€ % ly3 Tz w2y Tt
=+ + W r
5, = 2 ( ¥2 1(2-y3) 3 T(2-y,) )
h =

4wy, A
For each (uy,v,) € ©, we claim that if 0,7 ¢ 7 and 0 < T — 0 < §;, then

€
suglGl (Uns V) (0) = Gy (U, V) (T)] < 3

Now consider

suylGl (Uns> V) (0) — Gy (Un, V) (7))

= sup

[ (0= Eay_p, (£, (0 = )P )D(s5,°D" u(s), ‘D" v (5)) ds
oeJ

0

- j (T =8)"" Eappy a0 (€1 (T = )P D (5,°D" u(s), ‘D" v (s)) ds
0

[ (0. _ S)k(a1—ﬁl)+a1—1 _ (T _ S)k(al—ﬁ1)+a1_1:|
I'(k(ay —B,) + 1)

g aAy

T(k(a —p,) + )

[ (0. _ S)k (m—ﬁl)-Hh—l _ (T _ S)k(al—ﬁ1)+a1_1:|

T (k (a1 = By) + o)

|D(s, D" u(s), D2 v(s))| ds

|D (s, D" u(s), D2 v(s))|ds

|~

oo

k
SWg,Sup Y &)
0eJ k=0

ds

O—q
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o (0. _ S)k(ﬂlrﬂl)mrl _ (T _ S)k(a17ﬂ1)+a171:|517y1

I2-y)l(k(a-B) + )

(0 - S)k(m -By)+aa-1 —(T- S)k (m—ﬁl)m]—l]sl,yz

ds

S gk
+ Wy, UySUp Y, &
oeJ k=0

O —

ds

+WaslMhsup kzo i j T(2-y,)L (k(an - By) + o)
) o (T—S)k(aﬁgl)mrl . oo T (T- s)k(m By )+m-1 s
+ a)(msup z 'fl des + wq;zllu”uili?kgo{ _([ T(2- Y1 ( a _Bl) + al)

ds
oeT k=0 = 5T

T (T - S)k(arﬂl)“"l’l slr2
FuiplMbsup 3 6 o S ey &

Tk=0 g
Sw‘“?}e{? [0 Earﬁpaﬁl(floarﬁl) +T4 Earﬁpaﬁl({l‘rarﬂl) +(1-0)" Eﬂrﬁpﬂﬁl({l (T~ 0)0(17[31)]

- {’1‘ [o‘k (a-)rary gk (@-Pr)ray _ (7 - o)k (m—ﬁl)ml—y]]

+ Woallullusup 3 T(2-y,)(k(a - B,) +a +1)

xB(2-y;, k(e -p;) +a)
- glf [Gk (a-B)rary, | pk(@-Br)ra-y, _ (T - O—)k(arﬁl)mr}’z]

+Wos WSUD 2, FE-y) k(@ —B) v a + 1)

xB(2-y, k(a-B,)+a)

. Wan Gy Ul was Cyz||V||V> a B
+| w sup (1 — 0)" Eg_p, a;+1( &1 (T — )"
(s g (=00 Eop§ )

* ® - * A, + Cy A* % AI
540)@1 'Al 6;‘1 " + a)(DZ FY1(2 _ y ) r(z _ yzz) "V”V
o 34, +¢, A \ 34, +cy,A; N

” F(Z ") ” F(2-y,)

“uly + @y

<bwi, A6 + < =5

Similarly for G,, we assert that if t,7 € 7 and 0 <t — 0 < 65, then

3A* +c,. A 3AF +¢, A
1G3 (Uns Vi) (0) = Gy (i, Vi) (Dl < ey, A 6527 + ( D2 4wy 2) =

€
wy +w =—,
v F(2—y3) P T(2-y,) 2
Hence, we have
"G(um Vn) (0) - G(um Vn) (T)"W <E.

Thus G (0) is equi-continuous. In view of the Arzela -Ascoli Theorem G(©) is compact. In addition, by
Proposition 2.11 the operator G is u —Lipschitz with constant zero.

Theorem 3.5. Under the assumptions (H;)—(H>), the system (1.1) has at least one solution (u,v) € W provided
Lr + Ag < 1. Moreover, the set of solutions of (1.1) is bounded in W.

Proof. By Lemma 3.2 and 3.3, F is p —Lipschitz with constant L € [0, 1) and G is u —Lipschitz with constant zero,
respectively. Proposition 2.10 implies that T is strict u —contraction with constant L. Define

W ={(u,v) e W: thereexists A€ [0,1] suchthat (u,v) = AT (u,v)}.

We have to show the boundedness of W in W. For this, choose (u, v) € W, then from the growth conditions on F
and G in Lemma 3.2 and 3.3, we get

1wy = IAT WVl = A1 T (W)l <AITF@v)lw +A LG W)y
<ALl (u, V)l + ADgll (u, V)l + ADg
A(Lp + Ag)|| (V)| + Ag
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implies that W is bounded in W. Thus, by Theorem 2.13 we get that T has at least one fixed point and the set of
fixed points is bounded in W.

Theorem 3.6. Assume that (H;) hold and

oy Stk Sad, Snd
F2-y) T@2-v) T@2-ys) T(2-v)

then system (1.1) has a unique solution.

Ly + <1, (3.14)

Proof. For (u,v), (,v) € R x R, we use Banach contraction theorem and (3.12), we get

¥ (u, v) = F (@ V)l < Lell (0, v) = (@ V)llyy - (3.15)

Using (Hy) and (3.9), we have
Gy (w,v) = Gy (@, V)l

<sup H (0= 5)"" Eap (&1 (0 = )P | @ (s, D" u(s), D2 v (s)) - D(s, D" u(s), ‘D" 17(5))| ds
(43 0

o
$g?I“o—QMAEM%M&Q(U—QM%QMEQVD”u—qYWL+Q@VD“v—TWﬂhﬁ
0eJ

o
ssu; ” (o0 —s)8! Eal,ﬂl,m(éy1 (0- s)“"ﬁl)lﬁqnch”lu - D"y ds
g€, 0

#5up [ (0= B g0 (£ (0~ 9 ) Ll D2y - D"l ds

(3.16)
o No sup T '] (0 = )" Eqy-p, (£ (0 = )| dslu -
r(z - YI) o0eJ o
+ &sup T s (o - s)“l’lEm,ﬁl,m(.fl (0 - s)“rﬁl) ds|v - V|
T (2-y,) oes 0
E(plA; 53,(1)2 A;
s lu - Ully + =5—5llv - Vl|
1-‘(2_)’1) “ 1"(2—y2) Y
Lo A, Lo A )
< s+ =W v) = W)y
(r(z_)’l) T(2-y,) v
On the same way, we can achieve
Ly A Ly A)
G2 (u,v) = G, (w, V)| 5< <+ . )II(M,V)— @Y. (3.17)
’ PETIVERL2-ys) TR2-v,) Y
From (3.16) and (3.17), it gain that
IG (u,v) = G W@ V)lIw < 11G1 (4, V) = Gy (U, V) )y + G2 (1, v) = G2 (4, V)l
(3.18)

(ko nk |t
\I'2-y) TQ2-v) T@2-y;) T(2-v,
Hence, by combining (3.15) and (3.18), we attain

)>II(H,V)— @)l -
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IT(w,v) - T@@V)lw < IFwv) -F@ V)l + G W v) - G @)y
Lo A R A Ly A, Rn A
<< P+ @1y, + @2y, + WIAVB + \IIZA}%
IT2-y)) T@2-v) TQ-y;) T(2-vs)

which implies that T is a contractive operator. By the Banach contraction principle, the system (1.1) has a
unique solution.

>|I(u>V)— @)l

4 Hyers—-Ulam stability
In this fragment, we state and prove four types of HU stabilities.

Definition 4.1. [46] The coupled fractional differential Equation (1.1) is said to be HU stable if there exists
K, v = max{K,, K,} > 0 such that, for p = max{p,, p,} > 0 and for every solution (i1, 7) € W of the inequality

{ |'D* &1(0) - &, ‘DPrit(0) - ®(0,°D" 1(0), D" 7(0))| s T €T, @)

|'D%¥(0) - &,°DP 7(0) - ¥ (0,°D" it(0), D" ¥(0))| <@, T €T,
there exists a unique solution (u,v) € W with

I(wv) - @)y <K@, 0€J.

Definition 4.2. [46] The coupled fractional differential Equation (1.1) is said to be generalized HU stable if there
exists ¢ € C(R", R*) with ¢ (0) = 0 such that, for any approximate solution (i, ¥) € W of inequality (4.1), there
exists a unique solution (u,v) € W of (1.1) satisfying

1w v) = (@)l <P(e), oeJ.
Denote ¢, , = max{p,,p,} € C(J,R)and K, o = max{K, ,K,}>O0.
Definition 4.3. [46] The coupled fractional differential Equation (1.1) is said to be HU-Rassias stable with

respect to ¢, , if there exists a constant K, o, such that, for some p = max{gy, ,} > 0 and for any approximate
solution (i, 7) € W of the inequality

D" i(0) - §, ‘DA it(0) - @ (0, D" 1(0), ‘D" 7 (0))] < 9, (O)@w €T, 4.2)
'D%¥(0) - &, D27 (0) — ¥ (0,°D" i1(0), D" ¥(0))| <@, (0)er, 0€T, ’
there exists a unique solution (u,v) € W with

1 @) = (@ P)lhy <Ky, g, 0, (000 T€T.

Definition 4.4. [46] The coupled fractional differential Equation (1.1) is said to be generalized HU-Rassias
stable with respect to ¢, , if there exists a constant K, ,,, such that, for any approximate solution (i1, V) € W of
inequality (4.2), there exists a unique solution (u,v) € W of (1.1) satisfying

1w, v) = (@, V)l <Kp,.g, @y, (0), O€T.

Remark 4.5. We say that (i, v) € W is a solution of the system of inequalities (4.1) if there exist functions O,
Oy € C(J, R) depending upon u, v, respectively, such that

(@ 180 (0)] < ou, |By (0)| <0y, 0 € T;
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(W) {D* i1 (o) - &, “DPri1(0) = ® (0, D" ii(0), °D" 7 (0)) + O (),
D%V (0) - &, DP 7 (0) = ¥ (0,°D" i1(0), ‘D" 7 (0)) + Oy (0).

Theorem 4.6. If assumption (H;) and inequality (3.14) are satisfied and
Cor Lo 4, A,

Lar Ay, (pé1-a47) LA (pér-a3)
(1 T T(a-p)T (2—y1))<1 T T(aBy)r (2—y3)>r(2 -¥)T(2-v.)

F=1- >0,

then the unique solution of the coupled fractional differential Equation (1.1) is HU stable and consequently
generalized HU stable.

Proof. Let (i1, 7) € YW be an approximate solution of inequality (4.1) and let (u,v) € W be the unique solution of
the coupled system (1.1). By Remark 4.5, we have

{ ‘D% i1(0) - &, ‘DP it (o) = D (0,°D" i1 (0), ‘D" 7(0)) + O (0)°D* 7 (0) - &, DP2 ¥ (0)

=¥ (0,°D" it (0), D" 7 (0)) + Oy (0). (4.3)

By Equation (3.8), the solution of problem (4.3) is
- pl k ~ ! k Y
((U(0) = kz o Eal—ﬁ1’k+1(£10al_ﬁl)u; -& kz ou P Eal-ﬂpal—ﬂl’fk*l('flo-al_ﬁl)u;
=0 =0
o
+ [ (0= Eay_pa (£, (0 = )" P)D(5,°D" i1 (5),°D"2 V(s)) ds
0

[
+ [ (0= Eqp, (&1 (0 - 5)" )00 (s) ds
10 - (4.4)
v(0) = kZ 0" Eey g ka(&, 0% )0 - &, kZ 0" By pyoin(§,0% 77
=0 =0

+ T (0= 9)" Eayp, 0 (&, (0 = $)°P)W (s,°D" 11 (5), ‘D" ¥ (s)) ds
0

[+ [ (09" Eqyp, a(£&,(0 = 5)2)Oy () ds.
0

With the help of Theorem 3.5, we consider
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llu — 2l

<Su}; kz UkElX1 8., kﬂ({loﬂl ﬁl)luk _ ukl + Sup|£1| Z o ﬁﬁkEal B Bl+k+1(€l ay ﬁ1)|uk —
o€ 0

+sup j (0= 8)" " Eqypy.0,(£1(0 = )P D (s, D" u(s), ‘D2 v (s)) - D (s, D" ii(s), ‘D" ¥(s))| ds

0eJ o
(4.5)
+ supf (0= 8)" " Enyp, (&1 (0 = 8)"7) |0 (5)| ds
0eJ o
_pé - aé oAy o R, .
" lu @ 7‘u—uu+42||v—v|| +A[p
r(al ) ur (2 Y1) F(Z—yz) Y t
pé-dé | fuA, ) o Re A .
< + lu-d|ly, +=—=—%llv-7ll, + A/ p
<r(a1—ﬁ1) r2-y) “ I'(2-y,) Y L
and
T A o NwA .
[lv-7|| s< + lv-"7ly + ——|u-1il|, +A,p,- (4.6)
Y I'(a,-B,) (2_ Y3) Y r2-vy,) “ 2
From (4.5) and (4.6), we have
Lan Ay, Al
Y _ W — v 1
[lu—ull, 1 1l B Yo Ay, 1"(2_ )||V V“V < L i L’cmA;]pu
T p)  T(n) V2 T(wh)  T(En)
and
Ly A At
Iy _ V4 Ny — 17 2
lv -7l (1 _ pia tud, )F(Z_ )uu iy, < - Pl B\ylA;a’oV’
F(arhy)  T(27) Va T(a-p)  T(2)
respectively. Let G, = Wand G, = ﬁ Then the last two inequalities can be written in matrix
TP T Ty T
form as
1 Lo A,

F@-4) I2-»n

B\PZ A;a 1
—g&2 LZn A
(1_ p$2 sz i Y3))1—~(2_y4)

e A
QA

) -l | _ [ Gupa

-7y | *| G, |

F(@-B) T2-vs

[uu—anu]
lv-vly,
1 Lo A,
F _pgl_qﬁ _ 8@1A;1 )1“ _
(1 Ca ) Ty @7 Gup,
) [gvpv ] 47

Ly, A; . 1

p‘fz B qu Q\Pl A: ?
F<1‘r<a2—ﬁz)‘wz—b)mm)

where
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Con s A5, 4

F=1- .
pé—g82 Mo Ay pé—qss  SwAy
(-2 - (- 2 - r@-yIr@-v)

From system (4.7), we have

3 Gup, Lo Ay Gvp,
= iy < 24P 4 2 Ay, 9l :
F F(l— p&-a5 5~®1Ay1)r(2_ )
T(a-B) T(2n) &
L A Gup,
Wil < 2P 2y, GuP ,
F F(l _ phahs  SwAy )F(Z—y )
I(a-B;) T(2-13) 4
which implies that
~ ~ gu u gv v 2‘:1:'2 *2 ngv
ot = il + v = Py < 2L Py 4

T(a-B) T2-y
Ly A;,4 gupu

) |
pé,— g MwmA
F<1‘r<az—m)‘r(z—y;))r‘z‘y")

Lo Ay Gy Ly A), Gy

+
§-qiy _ oA 6-qfy _ Ynd
F(1- B - s JTe-v) F(1- R - s )re-v.)

F F F(l— 123 _Q‘ff Lo A;l))r( ~y,)

If max{p,,p,} = p and % + % + = Gu,v, then

1w, v) = (@ V)l < Guvp-
This shows that system (1.1) is HU stable. Also, if
I (w,v) = (@ V)l < Guv (),
with ¢ (0) = 0, then the solution of (1.1) is generalized HU stable.

Theorem 4.7. If assumption (H;) and inequality (3.14) are satisfied and

ot 4, g
_ p5g8 Sal Ay _ phg tnA B B ’
(-2 - (- 2% - r@-rIr @-v)

then the unique solution of (1.1) is HU-Rassias stable and consequently generalized HU-Rassias stable.

F=1-

Proof. Using Definition 4.3 and 4.4, we can get our result by performing the same steps as in Theorem 4.6.

5 Example
Here, we present an example to verify our results.

Example 5.1. Consider
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3+ Diu(o) + ‘Div(o) ®)

Dzu (0) - D‘u( ) =
d 75¢19(1+ ‘Dhu(o) + D}

tcos(cD%u(a)) + ‘DEv(0)sin (o) ‘Diu(o) (5.1)
+
40 35+ ‘Diu(o)
[ u(0)=u'(0)=u"(0)=u"(0)=v(0) =V (0) =V (0)=v"(0) =1,

"DFv(0)~ &, Div(o) =

where o € [0,1] and &, = {2 3. From system (5.1), we can see that p = 4, ¢ = 3and y,, y,, 5, Y, > 0. Also we can

easily find ¥q; = Lo = 75810, L\yl Ry = % Here Ly = 4.59, which is calculated from

4 15 4 sk 4 15
u(o) = Z o Ez,i k+1(§az 2) 3 Z o Ers z,;+k+1(—02 Z)M"

k=0

T 4 s\ 3+ Dzu(s)+ ‘Db v(s)
+ a—szlEz,§z<f(0—s“ - v(s)) ds,
[ (o= Egy 9 : >75es+10(1+ ‘Diu(s) + D8 ()
] (5.2)

3 4 4 2 4
x 108\ 10 8,1 108\
= — 3 J— 373 —03 3
v(0) 200 E@g,m( o )v 9 kEOU E%%%%M(go )v

o 10 (4 " 3) scos( DSu(s)) + ‘Dév(s)sin(s) . Diuz(s) i
40 35+ Diu(s)

With the help of Theorem 3.5, we have

Q Q Ly A L A
ke adk,  Kndy,  Ked, o oeuse<r.
re2- yl) T2-y) T@-y) T2-vs)

F +

Hence (5.1) has a unique solution. Also,
. Qan L Ay, A,
(- rs) -y e rre v
Hence by Theorem 4.6 the system (5.1) is HU stable and thus generalized HU stable. Similarly, we can verify the
conditions of Theorem 3.6 and 4.7.

=0.967672>0,

6. Conclusion

In this manuscript, we studied an implicit coupled (a,8)—-order fractional differential equation with initial
conditions. We obtained the existence of solution by Laplace transform method. For uniqueness of solution we
used contraction principle. We also presented at least one solution of (1.1) with the help of topological method.
We set few conditions to obtained the HU stable, generalized HU stable, HU-Rassias stable and generalized
HU-Rassias stable of (1.1). With the help of an example, we illustrated existence, uniqueness and stabilities of
system (1.1).
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