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Abstract

A neural network architecture for size-invariant and local 
shape-invariant digit recognition has been developed. The 
network is based on known biological data on the structure 
of vertebrate vision but is implemented using more con-
ventional numerical methods for image feature extraction 
and pattern classification. The input receptor field struc-
ture of the network uses Gabor function feature selection. 
The classification section of the network uses back-propa-
gation. Using these features as neurode inputs, an imple-
mentation of back-propagation on a serial machine 
achieved 100% accuracy when trained and tested on a sin-
gle font size and style while classifying at a rate of 2 ms 
per character. Taking the same trained network, recogni-
tion greater than 99.9% accuracy was achieved when test-
ed with digits of different font sizes. A network trained on 
multiple font styles when tested achieved greater than 
99.9% accuracy and, when tested with digits of different 

font sizes, achieved greater than 99.8% accuracy. These 
networks, trained only with good quality prototypes, rec-
ognized images degraded with 15% random noise with an 
accuracy of 89%. In addition to raw recognition results, a 
study was conducted where activation distributions of cor-
rect responses from the network were compared against 
activation distributions of incorrect responses. By estab-
lishing a threshold between these two distributions, a re-
ject mechanism was developed to minimize substitutional 
errors. This allowed substitutional errors on images de-
graded with 10% random noise to be reduced from 2.08% 
to 0.25%.

1.0  Introduction

Neural network methods show great promise for providing 
highly accurate, noise-resistant, parallel algorithms and 
data organization of image recognition. One specific area 
of image recognition, the conversion of images of hand 
written and machine print characters to computer repre-
sentation, has been studied in detail in the past. Both spe-
cial purpose hardware [1] and software [2] approaches 
have been used on the character recognition problem with 
promising results.
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FIGURE 1. Layout of the combined network for feature detection and classification. For clarity, most connections are not 
shown.
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The usual method for designing character recognition sys-
tems has been a top down approach. A method of feature 
extraction is selected and the features produced are used 
for training and classification by a neural network. In this 
work, we have taken a different approach. The general 
form of input receptor fields which are used in tasks such 
as binocular vision have been modeled using parallel Ga-
bor functions [3]. The output of these receptor fields is 
coupled to small networks for detection of spatial position 
[4]. An approximation to this biological model was con-
structed as shown in Figure 1 and used for character recog-
nition. 

The model was not specifically designed for character rec-
ognition and could be taught any set of images which 
could be represented by the available set of Gabor func-
tions. Gabor functions are well suited to character recogni-
tion because they allow reasonable quality image 
reconstruction with small numbers of basis functions. Im-
age reconstruction using Walsh functions [5]of equivalent 
quality requires approximately 100 basis functions [2]. 
Any decrease in the basis function size reduces the number 
of connections needed in the classification network by the 
product of the basis function difference times the number 
of hidden nodes in the classification network.

The network in Figure 1 uses parallel processing for the 
feature extraction process. The image is transmitted to a 
set of Gabor receptor field (GRF) modules and the com-
bined optimal response is determined by least squares. 

This method of feature extraction is not known to be bio-
logical but is well understood in terms of conventional nu-
merical processing. The outputs of the GRF’s are the 
inputs to a multi-layered feed-forward network trained us-
ing back-propagation learning. The activation of the out-
put nodes of this network are used to classify the input 
images.

1.1  Previous Work

Both of the methods used in this paper [6,7] have been 
used for neural network image processing and recognition 
applications but have not previously been applied together 
for character recognition applications.

1.2  Gabor Function Image 
Representation

A set of incomplete nonlinear functions, Gabor functions, 
is used for input image feature extraction. These functions 
reduce random image noise and smooth irregularities in 
image structure by acting as spatially localized low-pass 
filters. John Daugman [6] has used Gabor functions for 
image compression and image texture analysis. In his pa-
per [6], the motivation for use of incomplete functions, 
which add considerable complexity to the representation 
problem, is discussed in detail. The most important con-
siderations for character feature extraction applications are 
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that the Gabor functions provide the minimum combina-
tion of uncertainty in position and spatial frequency reso-
lution[6], that the profiles of Gabor functions match the 
visual receptor field profiles of mammalian eyes[6], and 
that the resulting feature extraction process is well suited 
to the parallel data mapping of an array processor. For ma-
chine printed character recognition applications, an ap-
proximate image reconstruction using 16 8-bit Gabor 
coefficients is sufficient to represent a 1024 pixel image.

The most important of these justifications is the biological 
one. Characters in all languages have been developed so 
that they can be distinguished by human vision. The 
known properties of the vision system can provide vital 
clues about the recognition process used to distinguish 
characters. The Gabor function approach provides a math-
ematically concise method for performing feature extrac-
tion on image data.

1.3  Back-Propagation

Back-propagation networks provide a very effective meth-
od for performing supervised nonlinear classification [7]. 
As is common in pattern classification problems, the effi-
ciency of the network is strongly affected by the quality of 
the input features used to train the network. In back-propa-
gation networks, the number of weights in the fully con-
nected network increases as the product of the number of 
the input neurodes and the hidden neurodes plus the prod-
uct of the hidden neurodes and the output neurodes. In the 
present network, effective character recognition can be 
performed with as few as five hidden nodes maintaining a 
reasonable balance between network connectivity and re-
quired computation.

1.4  Outline of Paper

The character recognition process presented in this paper 
uses two steps. First, each character image has features ex-
tracted using a Gabor image reconstruction. Next, the fea-
ture values are sent to a back-propagation module and the 
classification of the characters is determined by the activa-
tion strength which has been learned from the training im-
ages. Finally, a test sample of characters, different from 
the original character set, is processed and compared to the 
learned images to measure the effectiveness of the recog-
nition.

In section 2, the construction of adaptive least squares op-
timal feature extraction, which uses matrices of Gabor 
functions as independent basis functions, is discussed. 
Section 3 discusses the construction of the back-propaga-
tion network. In section 4, the experimental methods for 

training and recognition testing are discussed. And finally 
in section 5, results of character classification experiments 
with varying amounts of noise and with different combina-
tions of fonts are presented.

2.0  Least Squares Feature 
Extraction of Character Images

The information presented in this section was originally 
documented by Charles Wilson [3] and has been incorpo-
rated into the work represented in this paper.

2.1  Normalization of Character 
Images

The majority of segmented character images used in this 
work were originally produced on a laser printer, and all 
were digitized at 300 dots per inch binary. Spatial normal-
ization is used to provide limited scale invariance to each 
character image. Each image initially is represented by a 
picture area greater than 32 by 32 pixels. In the normaliza-
tion process the active image area is scaled so that the larg-
est dimension of the image is 32 pixels, and centered so 
that the image has equal numbers of empty pixels on either 
side of the image in the other dimension. This process ei-
ther replicates pixels to enlarge the image or it deletes pix-
els to reduce image size. The aspect ratio of the image is 
maintained as accurately as possible.

The SIMD (Single Instruction Multiple Data) architecture 
used for this study was a Active Memory Technology 510 
Distributed Array Processor, DAP5101. This machine con-
sists of a 32 by 32 grid of 1 bit processor elements. This 
processor configuration is capable of performing 1010 bi-
nary operations per second and is well suited for both vec-
tor and matrix operations. By using this highly parallel 
computer, typical normalization time is 730 μs per charac-
ter.

2.2  Gabor Functions

The Gabor feature extraction is accomplished using a least 
squares fit of each image on the same parallel computer 
that was used for spatial normalization. The kernel func-
tions used are Gabor functions. The least squares fitting of 
the image reconstruction is necessitated by the non-or-

1.  Certain commercial equipment may be identified in or-
der to adequately describe the subject matter of this work. 
In no case does such identification imply endorsement by 
the National Institute of Standards and Technology.
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thogonal nature of the Gabor functions. Adopting the con-
vention that bold upper case variables represent array 
processor matrices and bold lower case variables represent 
array processor vector data types, the Gabor functions are 
defined as:

where the matrix variables R, X', and Y' are given by:

and T[] is a scalar transformation matrix function. The X 
and Y matrices in the array processor are row and column 
expanded in the form: 

Gj X Y,( ) exp R2−( )
ω

j
X'( )sin

ω
j
X'( )cos

{= (1)

R2 X'2 Y'2+( ) σ
j
2⁄=

X'
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A typical scalar transformation applied to each element of 
the matrix is a rotation of the form:

The matrix function Gj is then expressed as a function of 
the scalar variables: ωj, which is the spatial frequency of 
the function; σj, the spatial extent of the function; (x0j,y0j), 
the origin of the function; and θj, the orientation of the 
function.

2.3  Tiling

Since the Gabor basis functions are an infinite set, it is 
necessary to select a specific subset of them to be used as 
the image reconstruction elements which cover the charac-
ter image. This selection process is referred to as tiling the 
image and the functions defining this process are listed in 
Table 1.

For the class of image reconstruction discussed here, each 
set of image origins has twice the sample density of the 
previous level and the number of directions selected, nθ, is 
fixed. This results in an image reconstruction with direc-
tional sensitivity and positional sensitivity determined by 
the choice of the level parameter, i. The character images 
used in this study are 32 by 32 so that using large values of 
i would result in massive over-sampling of the image. The 
Gabor image reconstruction for the lowest value of i, on 
the other hand, is approximately a directional bar detector 
and adds little to the image reconstruction’s spatial resolu-
tion. At each level the frequency and spatial resolutions, 
ωi and σi, are adjusted to allow small overlaps in extent 
and provide octave spatial frequency response.

T
θ
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j
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θ
j

sin− θ
j
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= (6)

TABLE 1.  Table of possible Gabor functions used to tile the image. Each level, i, contains 2i
2nθ possible Gabor functions. 

The values of di are obtained by dividing the image as shown in Figure 2; di+1 = di/2.
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After extensive experimentation, it was found that a rea-
sonably good approximation to the image could be ob-
tained by using only level 2 Gabor functions. Reasonable 
directional selectivity was obtained with four fold symme-
try, nθ = 4. When the even and odd frequency components 
are included, this results in a Gabor function set with 32 
functions. In this study, only the even frequency compo-
nents generating 16 reconstruction coefficients are used as 
features in training the neural network.

The results of the experiments are easily explained. For i = 
1, the Gabor functions form a directional image recon-
struction and provide only field-centered spatial location. 
As i increases the resolution of the image reconstruction 
increases. At level 3 the spatial and frequency resolution 
exceed the stroke size (line width) of the character and 
provide limited improvement in resolution. All experi-
ments also suggest that, given the complex structure of 
equations (1)-(5), sampling an image containing less than 
16 pixels for each di interval is not an efficient use of Ga-
bor functions.

FIGURE 2. Location of the first two levels of tiling points 
for the Gabor functions. The full set of locations is given 
in Table 1; in general di+1 = di/2.

2.4  Feature Extraction by Image 
Reconstruction

The features needed for neural network input are derived 
from image reconstruction. Once the Gabor functions are 
selected, the image reconstruction operation starts by con-
verting the binary image to an 8-bit image, q, with a step 
height between levels of  and with the sum of the 
pixels equal to zero (zero mean image). Since the set of 
Gabor functions is non-orthogonal, the image reconstruc-
tion must be performed by least squares optimization. On 
the small images discussed here, direct methods are far 
more efficient for this operation than the neural net method 
proposed for data compression [6]. Given n different Gj’s 
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the image reconstruction operation is based on obtaining a 
least squares fit to the image q by forming the matrix A, 
each component of which is the inner product of the form:

and the vector:

and solving

for the image reconstruction coefficients, c. Since the ma-
trix A is the same for any given set of n Gabor functions, 
the matrix is factored once, and only generation of b and 
back substitution of the factored A matrix is required to 
obtain each c. The image is converted to its reconstructed 
form:

and then thresholded at zero making the image binary 
again. 

FIGURE 3. Gabor Reconstruction of a character image.

The effect of the image reconstruction can be seen in Fig-
ure 3. The input image is converted to the gray level image 
shown in the upper left quadrant of the figure. This input 
image contains 1024 8-bit elements. Using equations (7)-
(10), the reconstructed image q', shown in the upper right 

aij Gi Gj⋅= (7)

bi q Gi⋅= (8)

b Ac= (9)

q' cjGj
j 1=

n

∑= (10)
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quadrant is produced. This image is constructed using 32 
8-bit values of cj. The image is then thresholded at zero to 
yield the reconstructed image shown in the lower right 
quadrant of Figure 3. The residual error in the image fit, q-
q', is shown in the lower left quadrant of Figure 3. It is in-
teresting to note that the residual output from the Gabor 
image reconstruction is similar in form to the output of an 
edge detector. This suggests that the Gabor image recon-
struction is a body-detecting image reconstruction.

An additional benefit of the feature enhancement proper-
ties of the Gabor image reconstruction can be seen in Fig-
ure 4. The input to the image reconstruction is the same as 
that shown in Figure 3 but with large quantities of random 
noise added, as shown in the upper left quadrant of Figure 
4. The reconstructed image is shown in the upper right 
quadrant of the figure. The same thresholding procedure is 
used to produce the output shown in the lower right quad-
rant of Figure 4. The image in the lower left quadrant con-
tains the residual and is a good image of the random noise 
in the image.

FIGURE 4. Gabor Reconstruction of a character image 
with severe noise.

The image reconstructions shown in these Figures 3 and 4 
use 32 8-bit adaptive coefficients. Note that for the pur-
pose of training the back-propagation network in this pa-
per, only the even frequency components were used, i.e. 
16 8-bit adaptive coefficients. Over a set of 1000 character 
images, 16 Gabor coefficients can be generated on average 
in 6.8ms per image.

3.0  Back-Propagation Network

Back-propagation networks, with a multilayer network ar-
chitecture, evolved from the perceptron and utilize super-
vised learning [7]. A back-propagation network has three 
or more layers: an input layer, one or more hidden layers, 
and an output layer. Digit recognition using Gabor features 
with back-propagation classification is accomplished by 
presenting the network with a 16-element input vector de-
rived from Gabor image reconstruction. These network in-
puts are distributed to a fully connected hidden layer and 
combined into an internal representation. Signals from the 
hidden layer are transferred using a sigmoid function to 
the output layer and network activations are produced. The 
output neurode with the greatest activation is deemed the 
winner and the character image from which the input pat-
tern was derived is identified as the digit to which the win-
ning output neurode represents.

The training of the network is done through error back-
propagation. With each training pattern presented to the 
network a reference target value is provided with which an 
error measure can be made between the network’s re-
sponse and the correct target value. The error is then prop-
agated back through the network by updating 
interconnection weights in order to minimize the error of 
the network the next time the same or similar input pattern 
is presented. The implementation used in the following 
work was taken from the software implementation, 
“Batchnet” [8]. The following describes the fundamental 
components of a back-propagation model.

3.1  Three Layer Architecture

The network used in this study has three layers with ni 
neurodes in the input layer, nj neurodes in the hidden layer, 
and nl neurodes in the output layer. The subscript variables 
i, j, and l reference the input, hidden, and output layers re-
spectively. For this paper ni = 16 and nl = 10 while nj will 
vary. Each neurode in a lower layer is fully connected to 
each neurode in the layer above. The input and hidden lay-
ers have a bias neurode, a neurode which is always on. 
Each connection has a weight associated with it. The 
weights from the input to the hidden layer are signified by 
Wji and from hidden to output layer are Wlj and represent 
two independent matrices identified by their subscript 
variable pairs. The inputs to the network are the sixteen 
Gabor coefficients derived from equations (1)-(5). The 
network has ten outputs, one for each possible digit class. 
Figure 5 illustrates this network topology and notation 
used throughout this paper.
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FIGURE 5. Network topology and notation for a back-
propagation network.

3.2  Network Training

A back-propagation network requires a set of referenced 
input prototypes for training. As each input prototype is 
presented to the network, an error measure is calculated 
between the network’s response and the input’s correct tar-
get value. The network in this study uses the sum of the 
squared error which is accumulated over each complete set 
of prototype presentations or epoch, and is used to modify 
the connection weights of the network. The training set is 
repeatedly presented to the network until either the error 
from the most recent training epoch drops below a thresh-
old or a maximum allowable number of epochs has been 
exceeded. If the overall error of the network becomes ac-
ceptably low, then network learning has converged. This 
training process can therefore be broken into two stages, 
feedforward calculations and error back-propagation.

3.2.1  Feedforward Calculations

Given inputs to the network, ii, the output from the input 
layer, oi, is simply oi=ii. The input to the hidden layer, ij, is 
defined as:

Note that the bias term from the input layer and hidden 
layer, o0, always has a value of 1 and must be included in 
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Wlj
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ij wjioi
i 0=

ni

∑= (11)1 j nj≤ ≤

the calculation of equations (11) and (13). Bias neurodes 
are used as a threshold mechanism in the layers to which 
they are connected.

Before any inputs can be presented to the network and out-
puts calculated, the weights Wji and Wlj are randomly ini-
tialized. Values between are used. The inputs to the 
hidden layer are then transferred as output using the sig-
moid function which limits values between 0 and 1.

The input to the output layer, il, is defined as:

The output of the output layer, ol, is defined as:

3.2.2  Error Back-Propagation

The error measure used to monitor the network’s perfor-
mance is the average summed-squared error per output 
neurode. This error is calculated as the square of the dif-
ference between each input’s network activation and its 
target value, accumulated for one complete epoch, and 
then divided by the number of patterns in the epoch and by 
the number of output neurodes. This measure determines 
network convergence during training.

The error is accumulated for all np inputs in the training 
set, where tpl is input pattern p’s target value. A second set 
of error calculations computes the error signal at the out-
put layer and then at the hidden layer. The error signal is 
used to update the connection weights in the network in 
order to minimize the overall error of the network. This er-
ror minimization is based on the non-linear, continuously 
valued, nature of the sigmoid transfer function used in the 
output equations above, (12) and (14). These characteris-
tics of the sigmoid function are important because the der-
ivation of the error signal involves the first derivative of 

0.3±
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the sigmoid function as a component.[7] The error signal 
at the output layer is defined as:

where  is the first derivative of the sigmoid 
function. The model used in this study updates connection 
weights upon the completion of each training epoch. In 
equation (17),  is the sum of all δl for all patterns used 
in the epoch. Given the accumulated error signals at the 
output layer, updates to the hidden-to-output weights, Wlj, 
are defined as:

where  is the error signal of an output neurode for the 
epoch, η is the learning rate, α is the momentum factor, 

 is the previous epoch’s weight change, 
 is the momentum term, and o0 is the 

bias term = 1. This network utilizes a momentum term 
which is a fraction of the previous epoch’s weight change. 
This term is added to try to keep the back-propagation net-
work from falling into local energy minima by maintain-
ing a portion of the networks previous dynamic change.[7]

The error signal at the hidden layer takes into account the 
error signal from the output layer in the form:

Note that δj in equation (18) is calculated and accumulated 
on a pattern-by-pattern basis and uses the per pattern cal-
culation of δl. Upon completion of an epoch, the accumu-
lated error signal at the hidden layer, ,is used to update 
the input-to-hidden weights, Wji.

The same values of η and α are used for updating both Wlj 
and Wji. When a network is trained on inputs normalized 
to values less than or equal to 1, η is typically assigned a 
value in the range of 0.5 to 0.001 while α can be value in 
the range 0 to 1.

δ
l

ol 1 ol−( ) tl ol−( )= (16)0 l nl≤ ≤
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wlj new( ) wlj old( ) ηδ '
l
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oj 1 oj−( ) wljδl
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∑= (18)0 j nj≤ ≤

δ'
j

wji new( ) wji old( ) ηδ '
j
oi α Δwji old( )[ ]+ +=

(19)0 i ni≤ ≤

3.3  Recall

In order to utilize or test a trained network, the connection 
weights are frozen and new inputs are presented using just 
the feedforward calculations (11)-(14). Real application 
inputs or test patterns are given as input to the network and 
the output neurode generating the greatest output activa-
tion is considered the winner.

4.0  Network Learning

Using back-propagation to solve an application problem 
often involves defining the following: input parameteriza-
tion and normalization, output class representation, net-
work parameters and topology, and training prototypes 
and test sets. The work and results which follow specify 
each of these categories as they relate to the recognition of 
machine printed digits using Gabor feature extraction and 
back-propagation classification.

4.1  Feature Normalization

The features used in this application are the coefficients 
produced from Gabor reconstruction of segmented charac-
ter images. There are 16 coefficients produced for each 
character image, ranging in value from -127 to +127. In 
order to successfully train the network, four different input 
representations were analyzed. The first format studied 
uses no preprocessing so that a network is trained directly 
on the raw Gabor coefficients. This format will be referred 
to as the raw bipolar format. To derive the second format, 
the raw features are translated linearly by adding 127 to 
each coefficient. This results in feature values ranging 
from 0 to 254. The second format is named the raw posi-
tive format. The remaining formats are normalized ver-
sions of the first two. By dividing each feature by the 
maximum possible feature value, raw bipolar values are 
normalized to the range  and called normalized bipo-
lar features, while raw positive values are normalized to 
the range of 0.0 to 1.0 and called normalized positive fea-
tures.

4.2  Output Representation

There are 10 classes to be recognized by the network. 
Each class corresponds to a unique digit 0 through 9. 
Therefore, 10 output neurodes are defined in the output 
layer, each receiving activation values in the range 0 to 1. 
The target reference values used with the training proto-
types in this study are listed in Table 2.

1.0±
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TABLE 2. List of possible output neurode target values

4.3  Network Parameters
In equations (11)-(19) several network parameters are 
used which must be specified in order to define a complete 
back-propagation network. Among these parameters are 
the learning rate, η, and the momentum factor, α. The val-
ues of these two parameters necessary for successful net-
work training will vary according to the input format used. 
Two different pairs of η and α were tested across the four 
different input formats defined in Section 4.1. The (η, α) 
pairs used were (0.01, 0.75) and (0.001, 0.075).

The topology of the networks used in this study are all 
three-layered architectures with each neurode in one layer 
fully connected to each neurode in the layer above. The in-
put layer is comprised of 16 neurodes, one for each of 16 
Gabor features, and the output layer contains 10 neurodes, 
one for each digit class 0 through 9. Network topologies 
with a varied number of hidden neurodes were studied in 
order to determine the appropriate intermediate structure 
of a back-propagation model trained with Gabor features. 
Hidden layers with as few as 3 and as many as 13 neu-
rodes were trained and examined.

A final set of parameters is required to determine conver-
gence of a back-propagation implementation. The first of 
these termination parameters is a threshold for the average 
summed-square error of the system defined in equation 
(15). In addition, a maximum number of epochs is speci-
fied to terminate training when the network has not con-
verged, i.e. not reached the desired error threshold. The 
majority of networks trained in this study used an error 
threshold of 0.001 and a maximum epoch limit of 1000.

4.4  Training and Test Sets

Training of a back-propagation network requires repeated 
presentations of a select set of input patterns and their tar-
get values. Each output class is represented by multiple 
prototypes in the training set. By providing a sufficient 
number of different input examples for each class, the net-
work is able to effectively identify and learn the relational 
structure between typical inputs and their associated out-

01 0 0 00 00 00
00 1 0 00 00 00
00 0 1 00 00 00

0
1
2

Class Target Neurode Values

……

00 0 0 00 10 009

put classes. Network learning can be hindered by too few 
examples in the training set. Learning can also be inhibited 
if the set of training prototypes does not accurately reflect 
the intrinsic structure of the application problem. In light 
of these considerations, different training set sizes are ex-
amined for back-propagation training of Gabor features.

 Initially training sets were developed from a single font 
size and style, 11-point Courier, and consist of 10, 30, and 
50 examples of each class. Another training set was devel-
oped from multiple font styles of a single font size: 11-
point Courier, Helvetica, and Times-Roman. These train-
ing sets contain either 10 or 30 examples of each font style 
per class, which results in 30 or 90 examples per class re-
spectively.

Test sets are used to evaluate how well a trained network 
learned the input-to-output structure of the application 
problem. It is possible for a network to converge during 
training by merely memorizing its training prototypes. 
Even if the training patterns are not explicitly stored with-
in the connection weights, the information embodied by 
the training set is encoded directly into the network. Any 
fair test must be conducted using input patterns that are 
not part of the training set. All results reported in this pa-
per follow this guideline. Test sets were designed to evalu-
ate a trained network’s ability to recognize machine 
printed digits of varying size, style, and random noise. To 
evaluate size invariance, test sets were created using the 
Courier font style of three different point sizes; 9, 11, and 
14. Test sets of 11-point size were developed from Couri-
er, Helvetica, and Times-Roman font styles to test style in-
variance. Noise tolerance was also tested using the 11-
point Courier test set degraded successively with up to 
20% random binary noise.

5.0  Results

In this section, the recognition effectiveness of trained net-
works is evaluated. These results are documented so as to 
reveal the method and strategy used to arrive at our net-
work solutions and do not represent an exhaustive investi-
gation. First, the results and knowledge gained from 
training a back-propagation on Gabor features from a sin-
gle font style and size are reported. Next, the results from 
training and testing a network on multiple font styles of 
the same size are presented. Within these two different 
training strategies, generalization tests are conducted in-
cluding style invariance, size invariance, and noise toler-
ance. Results from a study using activation distributions as 
a potential classifier are discussed. Classification timings 
of the network are then reported.
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5.1  Training on Single Font Style and 
Size

In order to demonstrate the feasibility of successfully 
training a back-propagation network with Gabor features 
as input, initial studies were conducted on a single font 
style and size, 11-point Courier. Desired information to be 
gained from this phase of training and testing included 
which feature representations and normalizations provide 
successful network training and testing responses, the 
learning rate and momentum factors used for each of these 
feature representations, the number of examples per output 
class and the number of hidden neurodes needed to ade-
quately train the network, and how well the trained net-
works generalize when given other inputs.

5.1.1  Raw Feature Training

A survey to find at least one acceptable combination of 
network parameters for this application was conducted in-
volving the testing and comparing of multiple networks 
trained with various parameter combinations. Table 3 dis-
plays the network parameter and input representation com-
binations used to train 48 different back-propagation 
networks on Gabor features from a single font style and 
size. This table from top to bottom includes the maximum 
epochs the network was permitted to train, the error 
threshold used to preempt training if learning converged 
before the allotted number of epochs were completed, the 
learning rate and momentum factors, the number of exam-
ples per output class included in each training set, the fea-
ture representations and normalizations used, and the 
number of hidden nodes used to train each network. The 
abbreviations rbp, rps, nbp, and nps correspond to the fea-
ture normalization formats raw bipolar, raw positive, nor-
malized bipolar, and normalized positive defined in 
Section 4.1.

TABLE 3. Training Table: Network parameter 
combinations used for initial 11-point Courier training 
studies. 

After training, the networks defined in Table 3 were tested 
with features from 200 digits, 20 input examples per out-

Max Epoch

Err Thresh

η

α

Ex/Class

Format

# Hidden

1000

0.02

0.001

0.075

10, 30, 50

rbp,rps,nbp,nps

7, 9, 11, 13

put class, from characters images not included in any of 
the training sets. Table 4 shows the results from three dif-
ferent tests each conducted on a different network. Table 4 
from top to bottom includes the feature format used in 
training the network and in presenting the test set, the 
number of hidden nodes and the number of examples per 
output class used to train the network, the percentage of 
correct network responses given the test set, the mean acti-
vation of the correct responses, the percentage of incorrect 
network responses given the test set, the mean activation 
of the incorrect responses, the number of epochs used to 
the train the network, and the error remaining upon termi-
nation of network training. From Table 4, the first network 
was trained with a training set comprised of 10 examples 
per output class, the second 30 examples, and the third 50 
examples. All three tests exhibit similar recognition per-
centages, but upon comparison of the magnitude of the 
mean activations and the error remaining in the network 
upon termination of training, training sets containing 30 
and 50 examples per output class appear to train better 
than those with only 10 examples per class. 

TABLE 4. Testing Table: Comparison of networks trained 
with training sets comprised of 10, 30, and 50 examples 
per output class. The test set used in each test contained 
features from 200 digits. μ in this table stands for “mean”.

Table 5 shows results from training and testing on the four 
different feature representations: raw bipolar, raw positive, 
normalized bipolar, and normalize positive as defined in 
Section 4.1. Comparison of the recognition percentages 
and the error remaining upon training termination shows 
that raw bipolar is the only input representation which pro-
vides useful results using the training parameters listed in 
Table 3. The networks tested in Tables 4 and 5 were loose-
ly trained for a maximum of 1000 training epochs and an 
error threshold of 0.02. By changing the number of train-
ing epochs, error threshold, learning rate, etc., other suc-
cessful parameter combinations and results are possible. 
Therefore, these results serve only as guidelines for further 
studies. 
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TABLE 5. Testing Table: Comparison of networks trained 
with raw bipolar, raw positive, normalized bipolar, 
normalized positive feature representations. The test set 
used in each test contained features from 200 digits.

The raw bipolar representation achieved 90% correct rec-
ognition when trained for 1000 epochs. To demonstrate 
the feasibility of achieving higher recognition rates using 
Gabor features as input to a back-propagation network, 8 
networks were trained for a maximum of 5000 epochs us-
ing just the raw bipolar representation. The parameters 
used for training are displayed in Table 6. 

TABLE 6. Training Table: Network parameter 
combinations used to determine the feasibility of 
achieving high recognition rates using the raw bipolar 
Gabor feature representation of 11-point Courier digits.

Table 7 displays the results from one of the tests conducted 
on the networks trained from Table 6. Upon 5000 training 
epochs, the error of the network decreased from 0.028534 
to 0.004644 and the network recognition increased from 
90% to 100% correct.
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TABLE 7. Testing Table: 100% correct recognition 
achieved on a network trained for 5000 epochs using 
Gabor features as input. The test set used in this test 
contained features from 200 digits.

5.1.2  Normalized Feature Training

After demonstrating the feasibility of successfully training 
and achieving high recognition using raw bipolar Gabor 
features in a back-propagation network, learning parame-
ters were changed and networks retrained in an attempt to 
effectively learn normalized input patterns. Very small 
values of η and α were successful for training the network 
with raw input features whose values ranged from -127 to 
+127. In an attempt to train the network on inputs normal-
ized to 1, η and α were increased from 0.001 and 0.075 to 
0.01 and 0.75. Based on our experience, as the magnitude 
of the input values decreases, the learning parameters η 
and α, necessary to compute a similar change for updating 
the network’s weights, increase. Table 8 lists the parame-
ters and combinations used to train the network on normal-
ized features. 

TABLE 8. Training Table: Network parameter 
combinations used in an attempt to successfully train on 
normalized Gabor features from 11-point Courier digits.
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Listed in Table 9 are results from training networks from 
Table 8 and testing each of the four feature representations 
defined in Section 4.1. Normalized features, when used to 
trained networks with the parameters listed in Table 8, are 
learned faster than raw input features. Due to increasing 
the learning rate and momentum factor, the normalized 
representations achieve a 100% recognition rate. These re-
sults are obtained within 1000 training epochs whereas the 
100% recognition achieved with raw bipolar features re-
quired 5000 training epochs. This can be partially attribut-
ed to the range of the randomly initialized weights being 
in the range -0.3 to +0.3, for all networks used in this 
study, regardless of the feature representation being used 
to train. Learning with normalized bipolar features will 
converge after 735 training epochs and has a higher posi-
tive activation mean than normalized positive features 
which use all 1000 training epochs. Therefore, the feature 
representation used for the remaining focus of work will 
be normalized bipolar due to its ability to effectively and 
efficiently train under the training configuration shown in 
Table 8. 

TABLE 9. Testing Table: Normalized features achieved 
100% correct recognition when the learning rate and 
momentum factor were increased. The test sets used in this 
test contained features from 200 digits.

5.1.3  Size Invariance Testing

The trained networks described above were trained with 
Gabor features produced from segmented character imag-
es of 11-point Courier digits. One of the networks from 
Table 8, trained with normalized bipolar features, when 
presented 4000 feature patterns not used in the training set, 
achieved 100% correct recognition. Table 10 reports re-
sults from two differently trained networks, one trained 
with 30 examples of each output class, the other with 50 
examples of each output class. These two networks were 
presented input features derived from characters of two 
different font sizes not used in training, 9-point Courier 

rbp rps nbp

30

30 10 100

.68 .10 .935

70 90 0

.12 .10 None

1000 1000 735

0.070216 0.089998 0.001000

9

nps

100

.89

0

None

1000

0.003475

% Corr

μ Pos Act

Format

Ex/Class

# Hidden

# Epoch

Err Level

μ Neg Act

% Wrong

9 9 9
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and 14-point Courier. As can be seen from the recognition 
results, the networks are very tolerant to font size varia-
tions with very little difference in performance between 
the two networks. This robust characteristic is attributed 
more to preprocessing than to the network. Each segment-
ed character image is spatially normalized to a 32 by 32 
pixel grid before Gabor features are extracted. Gabor re-
construction then determines the minimum combination of 
uncertainty in position and spatial frequency resolution[6]. 
This process significantly reduces variations in image 
space across characters of similar font style and different 
font size. However, performance was very poor when the 
networks tested in Table 10 were presented with feature 
patterns derived from characters of font styles other than 
Courier. 

TABLE 10. Testing Table: Normalized bipolar networks 
trained with 11-point Courier achieved high recognition 
when tested on 9 and 14-point Courier feature patterns. 
The 9-point Courier test set contained features from 5200 
digits and 14-point Courier test set contained features from 
2640 digits.

5.2  Training on Multiple Font Styles of 
Same Size

A training set strategy was developed in an attempt to train 
a back-propagation network to accurately recognize Gabor 
features derived from character images of multiple font 
styles and sizes. Table 11 lists the network parameters 
combined to train 8 different networks on 3 combined font 
styles, Courier, Helvetica, and Times-Roman. Four of 
these networks were trained with 10 examples from each 
font style for each output class, totalling 300 example pat-
terns. The other four networks were trained with 30 exam-
ples from each font style for each output class, totalling 
900 example patterns. The networks were trained on one 
constant font size, 11-point, due to the size invariant capa-
bilities discovered during the tests described in Table 10.
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TABLE 11. Training Table: Network parameter 
combinations used in an attempt to successfully train on 
multiple font styles: Courier, Helvetica, and Times-
Roman.

5.2.1  Style Invariance Testing

Table 12 displays results of testing a network trained with 
10 examples of three font styles per output class. The first 
three tests in the table correspond directly to the font styles 
used in training. Unlike the networks trained on a single 
font style, the network reported in Table 12 demonstrates a 
network’s ability to achieve greater than 99.9% correct ac-
curacy when presented normalized bipolar Gabor features 
derived from any of the three, Courier, Helvetica, or 
Times-Roman, font styles. It is interesting to report that 
the studies conducted on the networks trained from Table 
11 showed that networks trained with 10 examples per 
font style per output class performed as well as networks 
trained with 30 examples per font style per output class. 

TABLE 12. Testing Table: Results from a network trained 
with multiple font styles. The Courier, Helvetica, and 
Times-Roman test sets each contained features from 4000 
digits. The Dot Matrix test set contained 4800 digits.
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The fourth test reported in Table 12 is the most interesting. 
The test examples used for this test were comprised of 
character images originally produced by a typical dot ma-
trix printer on moderate-quality traction-feed computer pa-
per. All other test and training sets used in this study were 
segmented from images originally produced on a laser 
printer. The font style selected was 10 pitch Courier and 
was printed using a double density, 9 by 11, matrix. This 
test set represents characters from a font style similar to 
those trained, but produced by a different printing technol-
ogy, on a different quality of paper, and of an untrained 
size. With all these added variations not included in the 
training set, the network tested in Table 12 performs with a 
greater than 99.5% accuracy.

5.2.2  Size Invariance Testing

Tests for recognizing feature patterns derived from images 
of different font sizes were conducted in order to deter-
mine if the tolerance to font size variations, which is 
strongly exhibited by networks trained on a single font, 
has been compromised when a network is trained with 
multiple font styles. Table 13 shows the results of testing 
one of the networks trained from Table 11 with 9, 11, and 
14-point font sizes. With correct recognition greater then 
99.8%, the network’s tolerance to font size variations has 
not been impaired in any significant way. 

TABLE 13. Testing Table: A network trained with 
multiple font styles can recognize test examples of varying 
font size with high accuracy. The 9-point Courier test set 
contained features from 5200 digits. The 11-point Courier 
test set contained features from 4000 digits. The 14-point 
Courier test set contained features from 2640 digits.

5.2.3  Noise Tolerance Testing

A test to determine how tolerant back-propagation net-
works trained with Gabor features are to random noise was 
conducted. The network trained on multiple font styles 
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and reported in Tables 12 and 13 is further tested here. The 
results of degrading character images with increasing per-
centage levels of random noise, deriving Gabor features 
through image reconstruction, and then testing the trained 
network with these resulting feature inputs is reported in 
Table 14.

FIGURE 6. Image degraded with 10% random noise.

 

FIGURE 7. Image degraded with 20% random noise.

Figures 6 and 7 illustrate a segmented image of an 11-
point Courier digit “4” degraded with 10% random noise 
in Figure 6 and the same image degraded with 20% ran-
dom noise in Figure 7. This noise was imposed by flipping 
the color of a percentage number of pixels chosen at ran-
dom. Each of the two figures is a composite of 4 quadrant 

images. The upper-left quadrant is the original segmented 
and scale-normalized image, the upper-right quadrant il-
lustrates the resulting image after the random noise has 
been imposed, and the bottom two quadrants show the re-
sulting Gabor image reconstruction. The bottom-left is the 
resulting gray scale image, and the bottom-right is the re-
sulting binary image after thresholding. Even with the 
original character image drastically degraded by two dif-
ferent percentage levels of random noise, both image re-
constructions produce very similar results. This reinforces 
the fact that Gabor image representations serve as spatially 
localized low-pass filters.

The recognition results in Table 14 show that the network, 
when tested with Gabor features derived from 11-point 
Courier character images, is very tolerant to random noise 
degradations in the range 0% to 10%. Beyond this point 
the network performance decreases substantially. At 15% 
random noise, which is between the two noise conditions 
illustrated in Figures 6 and 7, the network maintains a cor-
rect recognition rate over 88.9%. 

TABLE 14. Testing Table: A network trained with 
multiple font styles can tolerate over 10% random noise 
with high accuracy. The 11-point Courier test set used in 
this test contained features from 4000 digits.

5.3  Activation Distribution Analysis

This section shows initial results on using output activa-
tion statistics from the network as a scoring analysis tech-
nique. The results reported in the previous tables all 
include a mean positive activation value and a mean nega-
tive activation value. These statistics are derived by first 
scoring all winning output neurode activations against 
their target values and then separating them into two dis-
tinct categories or distributions; those network responses 
which are correct and those which are incorrect. Means are 
simply calculated by summing the activations in each dis-
tribution and dividing by the corresponding number of ac-
tivations in each distribution.
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Two general observations can be made from studying the 
mean activations reported above. As the mean positive ac-
tivation increases, the network performance increases. 
Also, as the distance between the mean positive and mean 
negative activations increases, the network performance 
increases. If the positive and negative activation distribu-
tions were Gaussian in shape, then Figure 8 could be used 
to visualize these generalizations. In Figure 8, the negative 
activation distribution is shown on the left with a mean 
value of , and the positive activation distribution is to 
the right with a mean value of . In an ideal system, 
these two distributions would not overlap. However, in our 
example system, the two distributions intersect each other 
with the tail of one distribution overlapping with the tail of 
the other. A threshold, T, is included in Figure 8 which op-
timally separates one distribution from the other and can 
be approximated by calculating the midpoint between  
and . Replacing the a priori knowledge used to gener-
ate the two distributions by this threshold results in deter-
mining all activations to the right of the threshold as 
correct classifications and all activations to the left as re-
jected classifications. The system responses when evaluat-
ed fall into one of four categories, true positive, false 
negative, true negative, and false positive. The term false 
used to define two of these categories implies system clas-
sification errors and the significance of these two types of 
errors depends on the application. These four categories 
are illustrated in Figure 8. 

FIGURE 8. Threshold Classifier based on two Gaussian 
distributions.

Figures 9 and 10 display real positive and negative activa-
tion distributions from a network trained on multiple font 
styles with 7 hidden neurodes. Figure 9 plots activation 
distributions generated from character images degraded 
with 15% random noise and Figure 10 plots activation dis-
tributions generated from character images degraded with 
20% random noise. These distributions are not Gaussian in 
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shape and yet they can be used for scoring analysis. The 
positive activation distribution in both figures has maxi-
mum activation values on the right with activations de-
creasing from right to left. Comparing the negative 
activation distributions between the two figures demon-
strates that as the uncertainty of the network increases 
(random noise increases), the negative distribution activa-
tions increase with a greater rate on the left and decrease 
from left to right. This causes the interior tails of the posi-
tive and negative distributions to overlap similarly to those 
of the Gaussian model illustrated in Figure 8.

FIGURE 9. Positive and Negative Activation 
Distributions from a network presented features derived 
from character images degraded with 15% random noise.

FIGURE 10. Positive and Negative Activation 
Distributions from a network presented features derived 
from character images degraded with 20% random noise.

Results from applying the activation classification tech-
nique on a network are reported in Table 15. The table in-
cludes the random noise imposed for each test, the number 
of hidden neurodes in the network, the mean positive acti-

0 0.25 0.5 0.75 1

300

200

100

0

Activation

Fr
eq

ue
nc

y

15% Noise
Dotted Line - Negative Responses
Solid Line - Positive Responses

0 0.25 0.5 0.75 1

200

0

Activation

Fr
eq

ue
nc

y

20% Noise
Dotted Line - Negative Responses
Solid Line - Positive Responses

100

174



vation value and the mean negative activation value, the 
threshold used, and the four categories of evaluated re-
sponses: true positive, true negative, false positive, and 
false negative. The test using 10% random noise achieves 
a substitution error rate of 0.25% corresponding to the re-
ported false positive value. The substitutional error rate 
obtained without using the threshold technique equals 
2.08% and can be calculated by adding TN and FP entries 
from Table 15. Therefore, through using this classification 
technique, substitutional errors by the system have effec-
tively been reduced from 2.08% to 0.25%. 

TABLE 15. Testing Table: Results of reclassification. The 
test set used in these tests contained features from 4000 
11-point Courier digit images degraded with 3 different 
percentage levels of random noise.

5.4  Classification Timings

The time to classify an input pattern ranged on average 
from 1.5 milliseconds to 2.5 milliseconds using a serial 
computer, Sun 3/470. This range represents timings taken 
from networks with different numbers of hidden neurodes. 
A network with 7 hidden neurodes takes an average of 1.8 
ms to classify while a network with 9 hidden neurodes 
takes 2.0 ms. 

6.0  Conclusions

This study documents the strategies, methods, and results 
used and gained from training a back-propagation network 
with Gabor features for character recognition. These net-
works effectively combine the biological properties of Ga-
bor image reconstruction with the generalization power of 
back-propagation learning. Tests reported in this paper uti-
lize the parallel system illustrated in Figure 1 for recogni-
tion of machine printed digits. This recognition is shown 
to be invariant to changes in font style and font size while 

μp .781 .673 .639

.250 .267 .297

# Hid 7

% Noise 10 2015
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being tolerant to random noise degradations. A network 
trained with multiple font styles achieved greater than 
99.8% accuracy when presented large test sets varying in 
font style and font size. A test set representing characters 
from a font style similar to those trained, but produced by 
a different printing technology, on a different quality of 
paper, and of an untrained size performed with greater 
than 99.5% accuracy. This network also maintained great-
er than 88.9% accuracy when presented features derived 
from character images degraded with up to 15% random 
noise and classified inputs with an average time of 2 ms. 
Through examining the network’s winning activations, a 
simple analytic scoring method was proposed. This tech-
nique is based on the relationship between positive and 
negative activation distributions illustrated in Figure 8 and 
plotted in Figures 9 and 10. Applying this method to net-
works exhibiting poor overall results, for example a net-
work presented with very noisy inputs, minimizes 
substitutional errors. Using this technique, a network pre-
sented with features derived from images degraded with 
10% random noise had substitutional errors reduced from 
2.08% to 0.25%.
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