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Abstract—A circular waveguide loaded with dielectric and metal discs
was chosen to evaluate its dispersion characteristics and dispersion
shaping with change of structure parameters for wideband coalescence
of beam- and waveguide-mode dispersion characteristics for wideband
gyro-TWT performance. The azimuthally symmetric TE-mode
analysis of the structure was carried out in field matching technique
by considering the propagating wave in cylindrical free-space region
having radius equal to the hole-radius of metal disc, and the stationary
waves in free-space and dielectric regions between two consecutive
metal discs. The dispersion relation and, in accordance, a computer
code were developed. Further, the roots of the dispersion relation
for various sets of the structure parameters were obtained using the
developed computer code; the dispersion characteristics were plotted;
and the dispersion shaping was projected for typically chosen TE01-,
TE02- and TE03-modes. The analytical results were validated against
those obtained for the conventional and earlier published structures,
and also those obtained using commercially available simulation tool.
Finally, a study on azimuthal electric field available over the radial
coordinate was carried out to show the control of structure parameter
on the gyrating electron beam position for the chosen operating mode
of a dielectric and metal discs loaded gyro-TWT.
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1. INTRODUCTION

In photonics and microwave community, the applicability of the
periodic structures, such as, in cylindrical optical fibers with
helical windings [1], photonic band gap structures for solid-
state lasers [2–5], electromagnetic filters [6–10], phase shifters [9–
11], polarizers [10, 11], antennas [3, 9–12], antenna feeds [6, 11–
13], linear/particle accelerators [14, 15], backward-wave oscillators
(BWOs) [9, 16], magnetrons [17], travelling-wave tube (TWT)
amplifiers [18–22], cyclotron masers [23, 24], gyrotron sources [25–27]
and amplifiers [27–42], etc., exert a pull on their analytical study.

During the last three decades, the axial or the azimuthal periodic
structures have shown the applicability in gyro-devices as beam-
wave interaction structures [23–40, 42]. The azimuthal periodicity,
which has been used in interaction-cavity for mode rarefaction in
gyrotron [25–27], predicts a broadbanding in conventional helix-
TWT [20], whereas a higher interaction impedance and in turn
higher gain performance of gyro-travelling wave tubes (gyro-TWTs),
if considered in interaction structure [28, 29]. On the other hand,
the axial periodicity in the interaction structure promises higher gain
performance in conventional helix-TWT [20] and a wider bandwidth
through dispersion shaping of the gyro-TWT [30–40]. In the past,
the non-periodic continuous dielectric, in the form of wall-lining or
coaxial rod, in circular waveguide was proposed for dispersion shaping
to wideband coalescence between the beam- and waveguide-mode
dispersion characteristics that in turn signifies the broadband gain-
frequency response of a gyro-TWT [41]. While the dielectric loading
promises a broadband performance and the attenuator effects for self
and parasitic oscillations, it brings the problem of dielectric charging
and associated heating in case of lossy dielectrics. Therefore, all metal
structures attracts the notice of gyro-TWT developers to play a role
of interaction structure, wherein the corrugations control the shape
of waveguide-mode dispersion characteristics for broadband device
performance.

Choe and Uhm [37] analyzed the infinitesimally thin disc-
loaded circular waveguide considering the lowest order stationary- and
propagating-wave modes in the disc-occupied and disc-free regions,
respectively, while using field matching technique, and showed the
control of the waveguide-mode dispersion characteristics by changing
the structure parameters. Kesari et al. [30–34] improved the analysis
taking higher order stationary- and propagating-wave modes, and first
ignoring [31] and then considering [32] finite disc thickness. Combining
the advantages of metal and dielectric loading, Kesari et al. [34]
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suggested a circular waveguide alternatively loaded with metal and
dielectric discs [34]. Similar structure was also analyzed in [16] for
it dispersion characteristics with and without presence of annular
electron beam, and the instability performance was studied [16].

Taking a turn towards coaxial waveguide, Keasri [35, 36] proposed
the coaxial-disc-loaded circular waveguide in two configurations: (i)
metal discs are radially projecting inward from the metallic envelope,
and (ii) metal discs are radially projecting outward from the coaxial
insert, and concluded that the configuration (ii) would be more
promising interaction structure. In his work, he has, not only, analyzed
the beam-absent case [35] but also the beam-present case [36] for both
the configurations. Yue et al. [39] has also analyzed a coaxial circular
waveguide using field matching technique, however, the grooves were
appearing on the wall of the waveguide, only, and the shape of
the groove was chosen arbitrary, which was profiled by a series of
rectangular steps [39].

In the past work [34], the authors have considered the hole-radii
of metal and dielectric discs same, however, for the present study,
alternate dielectric and metal disc-loading has been considered, such
that the inner radius of metal discs is less than that of dielectric
discs (Fig. 1). The present study has been chosen to monitor the
effect of change of amount of dielectric, keeping the metal loading
same. The authors restrict themselves to the beam-absent analysis to
explore the effect of all the structure parameters on the dispersion
characteristics. The analysis (Section 2) starts with writing the
field intensity components for three different regions of the structure,
which may be substituted to the EM boundary conditions, and the
field constants are eliminated to obtain the dispersion relation of the
structure. A computer code is developed to find the roots of the
dispersion relation for plotting the dispersion characteristics and the

Figure 1. Cut-view of circular cylindrical metal waveguide
alternatively loaded with dielectric and metal annular discs.
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effects of structures parameters are studied (Section 3). Finally, the
study is concluded (Section 4).

2. ANALYSIS FOR BEAM-ABSENT DISPERSION
RELATION

Consider a circular waveguide consisting of alternate dielectric and
metal discs, such that the inner radius of metal discs is less than that
of dielectric discs. For the purpose of analysis, one may divide the
structure into three regions. In the cross-section view, one may define
the regions as: i) region I: 0 ≤ r < rMD; ii) region II: rMD ≤ r < rDD;
and iii) region III: rDD ≤ r < rW , where rMD and rDD are the inner
radii of metal and dielectric discs, respectively. rW is the waveguide
radius. One may consider the thicknesses of the metal and dielectric
discs as TMD and TDD, respectively, that makes the axial periodicity
of the structure, as L = TMD + TDD. It is being considered that the
region I (disc free region) supports propagating, and regions II and III
(disc occupied regions) support standing waves. The axial magnetic
and azimuthal electric field intensities are, respectively, as [30–37]:
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where Z0{γIII
m r} = J0{γIII

m r}Y ′
0{γIII

m rW } − J ′0{γIII
m rW }Y0{γIII

m r}; J0

and Y0 are the zeroth order Bessel functions of the first and second
kinds, respectively. Prime with a function represents the derivative
with respect to its argument. AI

n, AII
m , BII

m and AIII
m are the field

constants in different analytical regions, identified by given superscript,
respectively. γI

n [= (k2 − β2
n)1/2], γII

m [= (k2 − β2
m)1/2], and γIII

m [=
(εrk

2 − β2
m)1/2] are the radial propagation constants in regions I, II,

and III, respectively. βn[= β0 +2π n/L] is the axial phase propagation
constant in disc free region I; here, β0 is the axial phase propagation
constant for fundamental space harmonic, and n[= 0,±1,±2,±3, . . .]
is space harmonic number. βm [= mπ/TDD] is the axial propagation
constant in disc occupied regions (II and III); here, m[= 1, 2, 3, . . .] is
the modal harmonic number.

In order to characterise the structure, one may write the
relevant boundary conditions, stating the continuity of the tangential
components of electric and magnetic field intensities at the interface,
r = rMD, between the free-space disc-free region (I) and disc-occupied
free-space region (II) (Fig. 1) as well as the vanishing tangential
component of electric field intensity at the metal inner circumferential
edge of the discs, r = rMD, those may be written as

EI
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{
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0 TDD ≤ z ≤ L
(r = rMD) (7)

HI
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and at the interface, r = rDD, between the free-space (II) and
dielectric-filled (III) disc-occupied regions (Fig. 1) may be put as:
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One may substitute the field expressions from (3)–(6) into (9) and
(10) to represent BII

m in terms of AII
m while eliminating AIII

m from the
resulting relations, as:
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Now, one may express the field constants AII
m (m = 1, 2, 3, . . .), in

terms of a series involving AI
n (−∞ < n < ∞). For this purpose, one

may substitute the field expressions (1) and (3), where in later BII
m is

represented in terms of AII
m using (11), into the boundary condition (8),
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multiply it by sin(βmz), then integrate it between z = 0 and z = TDD,
to obtain:

AII
m =

∞∑
n=−∞

AI
n Un m (12)

where
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Similarly, one may obtain another series expression, similar to (12), for
AII

m , but now with the help of the field expressions (2) and (4), instead
of (1) and (3), respectively, and the boundary condition (7), instead of
(8), and by changing the integration limits to z = 0 and z = L, instead
of z = 0 and z = TDD, as follows:
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Then, the following relation results by equating the right hand sides
of (12) and (13):

∞∑
n=−∞

AI
n (Unm − Snm) = 0. (14)

Choosing to take the same number υ, say, of the values of the
stationary-wave modal number (m) as that of space harmonic number
(n) (typically, υ = 7, n = 0,±1,±2,±3, and m = 1, 2, 3, 4, 5, 6, 7), one
can form υ number of simultaneous equations in the field constants AI

n

(typically, seven equations in AI
0, A

I
±1, A

I
±2, A

I
±3) with the help of (14).

The condition for the non-trivial solution, that the determinant formed
by the coefficients of the filed constants occurring in these equations is
zero, yields the following dispersion relation of the circular waveguide
loaded with dielectric and metal discs:
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3. RESULTS AND DISCUSSION

In order to validate the dispersion relation (15) through (16) with
reference to the special cases of the structure, one may consider rDD =
rMD, which passes (15) as that published for alternate dielectric and
metal discs loaded circular waveguide [34]. Further, one may consider
either rDD = rW or εr = 1, in both the cases the radial propagation
constant in region II becomes same as that in region III (γII

m =
γIII

m ), which in turn gives a relation J0{γII
m rMD} + ξ Y0{γII

m rMD} =
Z0{γII

m rMD} that passes (15) as that published for all metal disc-loaded
circular waveguide [32] (Fig. 2). For the special case of TDD = L and
εr = 1, (15) passes to that published for infinitesimally thin disc-
loaded circular waveguide [31], which further for the case of ignoring
the harmonics passes to that published by Choe and Uhm [37]. For
the very basic special case, considering either rMD = rDD = rW or
rMD = rW with εr = 1, the dispersion relation passes to that for
smooth-wall circular waveguide.

The dispersion characteristics of the structure for the various
combinations of structure parameters may be obtained by solving the
dispersion relation (15) through (16). For the purpose, a computer
code is developed in MATLAB in accordance with (15). In general, due
to the axial periodicity of the structure, it shows a periodic dispersion
characteristics such that it shows points of zero group velocity at
β0L = vπ, where v = 0, 1, 2, . . . showing alternate stop- and pass-
bands (Figs. 2–7). Here, it is necessary to validate the analytical
results obtained using the present analysis with those obtained using

Figure 2. Validation of dispersion characteristics of the considered
structure against that of all metal disc-loaded circular waveguide [32]
for the modes TE01 (solid curve) and TE02 (broken curve).
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(a) (b)

(c)

Figure 3. Dispersion characteristics of the considered structure for the
modes (a) TE01, (b) TE02, and (c) TE03, taking relative permittivity
of dielectric disc as the parameter. (Broken curve: all metal structure;
Star markers: HFSS results).

commercially available simulation software, such as HFSS. For the
purpose, the model of the structure is created in HFSS workspace and
the analysis is carried out. It is fascinating to note that the results
obtained by two independent methods, for typically chosen modes and
the structures parameters, are within 3% (Fig. 3). For both the TE01

and TE02 modes, with the increase of the relative permittivity of the
dielectric discs, the lower and upper cutoff frequencies shift to lower
value. Quantitatively, for the TE01 mode, the shift in upper cutoff
frequency is higher than that of lower cutoff frequency, which in turn
shortens the passband (Fig. 3(a)); whereas, for the TE02 mode, the
shift in lower and upper cutoff frequencies are almost equal, effectively
the passband does not change (Fig. 3(b)). It is interesting to note that
in absence of the dielectric discs, the group velocity takes zero value
follows by negative values to reach again zero and further positive over
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the propagation constant axis, whereas, in presence of the dielectric
discs, it takes zero value follows by positive values to reach again
zero and further negative (Fig. 3(b)), i.e., the inclusion of dielectric
turns the negative dispersion into positive. For the TE03 mode, for the
both cases of absence and presence of the dielectric discs, the group
velocity takes zero value follows by negative values to reach again
zero and further positive, however, with the increase of the relative
permittivity of the dielectric discs, quantitatively the shift of lower
cutoff frequency is higher than that of upper cutoff frequency, which
in turn widens the passband. It has been observed that in presence
of dielectric discs upper cutoff frequency shifts to lower value, whereas
the lower cutoff frequency remains unchanged with the increase of the
relative permittivity of the dielectric discs and shortens the passband
(Fig. 3(c)).

For the TE01 mode, with the increase of dielectric disc radius,
for constant metal disc radius, the lower and upper cutoff frequencies
shifts up, however, quantitatively the shift in lower cutoff frequency is
less than that of upper cutoff frequency, which increases the passband
(Fig. 4(a)). Similarly, for the TE02 mode, the passband increases with
the increase of dielectric disc radius. Here, it has been observed that
the shift in frequency is very specifically defined for the dielectric disc
radius, for example, for the taken structure parameters (rMD/rW =
0.6, L/rW = 1.0, TDD/rW = 0.3, and εr = 5.0) the frequency shift is
maximum for rDD/rW equal to 0.8 to 0.9, and minimum for 0.7 to 0.8,
where as for rDD/rW equal to 0.6 to 0.7 is found in between (Fig. 4(b)).
For the TE03 mode, for the lower values of inner dielectric disc radius,
the group velocity takes zero value follows by positive values to reach
again zero and further negative, whereas for higher values of inner
dielectric disc radius, it takes zero value follows by negative values to
reach again zero and further positive over the propagation constant
axis. Interestingly, in the process of changing the inner dielectric disc
radius, the frequency corresponding to the point of β0L = vπ, where
v = 1, 3, 5, . . ., remains almost unchanged (Fig. 4(c)). The change of
group velocity close to β0 = 0 (operating point of a gyro-TWT) due
to rDD/rW may be utilized to avoid the negative group velocity close
to β0 = 0, that may be the reason for oscillation in the device.

In general, with the increase of periodicity of the structure, both
the lower and upper cutoff frequencies shift down and shorten the
passband with higher relative shift in upper cutoff frequency than that
of lower. Clearly, the reflection of the change of the periodicity of the
structure may be observed as the change in period of the dispersion
characteristics, for all the three modes considered. For the TE01 and
TE02 modes, the group velocity takes zero value follows by positive
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(a)

(b)

(c)

Figure 4. Dispersion character-
istics of the considered structure
for the modes (a) TE01, (b) TE02,
and (c) TE03, taking inner radius
of dielectric disc as the parameter.

(a)

(b)

(c)

Figure 5. Dispersion character-
istics of the considered structure
for the modes (a) TE01, (b) TE02,
and (c) TE03, taking periodicity
as the parameter.
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values to reach again zero and further negative, whereas for the TE03

mode, it takes zero value follows by negative values to reach again
zero and further positive over the propagation constant axis (Fig. 5).
Similar to the all metal disc-loaded waveguide without dielectric discs,
the shape of the dispersion characteristics and the passband is not
very sensitive to the change of dielectric disc thickness, however, with
the decrease of the dielectric disc thickness or with the increase of
metal disc thickness, the passband shifts to lower frequency side for
the TE01 and TE02 modes (Figs. 6(a) and 6(b)). For the TE03 mode,
the shape of the dispersion characteristics and the passband is least
sensitive to the change of dielectric disc thickness, if very precisely
seen, the lower cutoff frequency is insensitive and the upper cutoff
frequency first decreases and then increases with decrease of dielectric
disc thickness or with increase of metal disc thickness (Fig. 6(c)).

Further, for the constant difference between the radii of metal and
dielectric discs, the lower and upper cutoff frequencies shift to higher
value and passband increases with increase of metal disc radius for the
TE01 and TE02 modes (Figs. 7(a) and 7(b)), where as a major change
of dispersion characteristics and the passband has been observed for
the TE03 mode (Fig. 7(c)). It should also be noted here that for the
TE03 mode the dispersion characteristics is very specific for each set
of structure parameters considered (Fig. 7(c)).

In order to estimate, qualitatively, the available azimuthal electric
field for interaction with gyrating electron beam, one may plot the
azimuthal electric field intensity (EI

θ ) distribution over the radial
coordinate of considered structure within the free-space region inside
the metal-disc-hole for the operating mode. For the purpose, one has
to substitute roots of the dispersion relation (15) into the field intensity
component (2). For simplicity, J ′0{γI

nr}, which is directly proportional
to EI

θ , is plotted against normalized radial coordinate r/rW close to
the waveguide cut-off frequency at β0 = 0 where the gyro-TWT is
operated to reduce the effect of velocity spread and pulse distortion.
The gyrating electron beam will be positioned at the maxima of EI

θ in
free-space region of the considered structure, taking this into account,
distribution of azimuthal electric field intensity has been considered
over the horizontal axis running up to r/rW = rMD/rW (Fig. 8).
For a particular mode considered, with the decrease of rDD/rW , the
possible beam position shifts away from guide axis. On the other
hand, in order to study the effect of change of the modes for constant
rDD/rW , the possible beam position shifts closer to guide axis with
increasing azimuthal mode number of the operating mode (Fig. 8).
Here, it is interesting to note that the structure provides a control over
the position of the gyrating electron beam.
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(a)

(b)

(c)

Figure 6. Dispersion character-
istics of the considered structure
for the modes (a) TE01, (b) TE02,
and (c) TE03, taking thickness of
dielectric disc as the parameter.

(a)

(b)

(c)

Figure 7. Dispersion character-
istics of the considered structure
for the modes (a) TE01, (b) TE02,
and (c) TE03, taking radius of
metal disc as the parameter such
that rMD/rW − rDD/rW = 0.1.
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Figure 8. Azimuthal electric field intensity distribution over the radial
coordinate (r/rW ) of the considered structure for the TE01, TE02, and
TE03 modes taking inner radius of dielectric disc as the parameter.

4. CONCLUSION

The dispersion characteristics of the alternately dielectric and metal
discs loaded circular waveguide has shown a control over the shape and
the passband, as well as over the position of the gyrating electron beam
(in case of a gyro-TWT), with the change of structure parameters for
the typically chosen three modes. For the sake of present study, the
dispersion characteristics of the considered structure and the effect of
structure parameters on its shape have been evaluated for the purpose
of getting a straight line portion of the dispersion characteristics over
a wideband frequency range, which in turn tells the wideband gyro-
TWT performance. The authors are aware that the study of dispersion
shaping can only qualitatively predicts the possibility of broadbanding
a gyro-TWT. For getting a realistic picture of broadbanding, as
was earlier done for metal vane-loaded [28] or annular metal disc-
loaded [30, 32] or coaxial-disc-loaded [36] or dielectric-loaded [41] or
helix-loaded [42] gyro-TWTs, one has to substitute the propagation
constant predicted by the cold/beam-absent analysis of the loaded
structure into the beam-present dispersion relation of a gyro-TWT,
which will be subsequently interpreted for the small-signal device gain.
However, the related study is kept out of the perimeter of the present
study.
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