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ABSTRACT 

In this paper a stability analysis method for unbalance 

compensation system based on AC-Chopper is proposed. 

Employing Ac-Choppers and Steinmetz theory it’s possible 

to obtain a dynamic compensation system. This system’s 

performance and stability are not depending only on the 

cause of unbalance but also on grid parameters such as 

line impedances and other connected loads. If a quasi-static 

sinusoidal steady-state approximation is hypothesized, 

through the multivariable control theory it’s possible to 

study the compensation system stability propriety in 

relation with grid parameters. 

 

INTRODUCTION 

In three-phase power systems the generated voltages are 

sinusoidal and equal in magnitude, with the individual 

phases 120 degree apart. However, the resulting power 

system at the distribution end and the point of utilization can 

be unbalanced for several reasons. The nature of the 

unbalance includes unequal voltage magnitudes at the 

fundamental system frequency (under-voltages and over-

voltages), fundamental phase angle deviation, and unequal 

levels of harmonic distortion between the phases. A major 

cause of voltage unbalance is the uneven distribution of 

single-phase loads, that can be continuously changing across 

a three-phase power system. Example problem areas can be 

traction, where some technical reasons encourage the 

adoption of a single-phase feeding system. The single-phase 

railway system usually causes unbalance problems due to 

large unbalanced traction loads. These unbalance may cause 

extra losses, motor overheating and malfunction of 

electronic devices. The results are unacceptable if they 

affect the power system behaviour significantly. 

International standards give limits for the unbalance ratio < 

2% for LV and MV systems and <1% for HV systems. A 

solution to mitigate the unbalances is the so-called 

“Steinmetz Circuit” [1] [2]that consists of a capacitor and 

an inductor properly rated in order to compensate the 

current inverse-sequence component. This solution is not 

able to compensate a dynamic unbalance. In [3][4] an 

unbalance compensation technique based on Ac/Ac 

regulators has been proposed. Studying the validity range of 

each Steinmetz Circuits it is possible to obtain a variable 

compensation net by employing AC-choppers [5] instead of  

capacitor and inductor. Considering a situation as in Figure 

1, where an ohmic-inductive load cause unbalance in a 

three-phase grid, a control law is defined in order to 

rebalance the line currents system. 
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Figure 1 Compensation Scheme 

In [4], m easuring the rms current value and the current 

phase of the unbalanced RL load a feed-forward action is 

used to compensate the symmetrical inverse component 

generated in the line currents. Due to uncertainties presence, 

the only feed-forward action is not able to completely re-

balance the system current, so in addition, a closed-loop 

control is used. In this work an analysis of the this control is 

performed focusing on the system modelling and on the 

stability study. 

PROBLEM DESCRIPTION 

As shown in Figure 1, the line impedance presence in 

addition to an unbalanced current system leads to 

unbalanced voltage supply. Complete modelling of all 

effects present on the grid is quite complex. Therefore, in 

order to a better comprehension of the results, before 

studying the detailed model of the system, intermediate 

simplified model will be considered and described in the 

next sections. 

SYSTEM MODELING 

The aim of this section is to obtain an equivalent model 

scheme for system in Figure 1. The multivariable system 

obtained is reported in Figure 2. The system’s input are the 

real and imaginary part of the desired inverse component 
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phasor for ia(t), ib(t), ic(t) (normally the two reference values 

are zero but it’s also possible to consider a different value 

that is acceptable for the standard, limiting the Ac-Chopper 

input current). Outputs are real and imaginary part of the 

inverse component present on the three-phase system. Each 

part of the scheme is discussed in the next paragraphs. 

Controller 

In Figure 2, the controller is represented with matrix C  

and Beq .  The first matrix contains the ( )K s  controller 

transfer functions on the principle diagonal. In this paper a 

classic PI controller has been considered as reported in (1) 

( ) i
p

K
K s K

s
= +  (1) 

Matrix Beq explicitly reported in Figure 2 is introduced in 

[4] and it’s a linear combination of the controller output that 

gives references 
*
capI  and *

indI . 

Variable Impedance 

As reported in [4], the variable impedance control is a rms-

input-current control. Gc contains on the principal diagonal 

the closed-loop transfer function of the variable impedance 

system. It’s possible to consider ( )G s a first order transfer 

function as in (2)  

( ) 1

1
G s

sτ
=

+
 (2) 

on condition that time constantτ is relatively big in order to 

first order system approximation. Next paragraph will show 

that the ( )G s passband  has to be small enough to guarantee 

the validity of the grid used model. 
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Figure 2 – forward path 

Grid modelling 

With aim of obtaining a grid model, the equivalent circuit 

reported in Figure 3 is considered. The variable capacitive 

and inductive impedances are schematized as current 

generators. In this way, the grid can be seen as a system 

with input capI , indI (Ac-Chopper rms input current value)  

and output the real and imaginary part of the inverse 

component invI . In order to define the symmetrical 

component decomposition, a quasi static sinusoidal steady-

state have to be hypothesized. In this way the grid is 

described as a static 2x2 matrix N  with 2 disturbs 1d  and 

2d  acting at the output. 
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Figure 3 – Grid model circuit  

 

This approximation is acceptable if capI , indI variations are 

slow in such a way that the grid behaviour can be 

considered as a succession of sinusoidal steady-states. This 

is true if the Ac-Choppers rms-input current control is slow 

respect to the grid dynamics. Regarding the grid model, 

three cases will be studied. First, in case (a) line impedances 

will be neglected and will not be considered. In this way 

voltage supply is considered always balanced. In case (b) 

the presence of line impedance and the effect of unbalanced 

voltage on three-phase load R is been considered. In case 

(c), a further non-ideality in introduced considering the Ac-

Choppers input currents not perfectly inductive and 

capacitive, with -90° and +90° phase shift respect to the 

voltage, and two phase error α  and β  are introduced.   

   

Case (a) 

Matrix aN and disturbs 1d  and 
2d  are reported in (3) 
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Where s sI I φ= ∠  is the unbalanced load current phasor. 

If (4) is supposed 

( ) ( ) ( )0L s K s G s=  (4) 

 

Forward path matrix of the system is calculated in (5) 

( )
( )

0

0

0

0

a a

c eq

L s
L N G B C

L s

 
= ⋅ ⋅ ⋅ =  

 
 (5) 

It’s important to note that matrix aN outputs are real and 

imaginary parts of the inverse component injected by the 

Ac-Choppers compensation net. Disturbs 1d  and 
2d  are 

real and imaginary parts of the inverse component related to 

the unbalancing. The aim of the control is to reject these 

disturbs.  
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All the theory about the unbalance compensation control is 

reported in [4]. Next cases will present a more complex 

formulation due to the presence of the line impedance and 

the capI and indI phase displacements. Anyway the physical 

sense of the terms remain the same. 

Case (b)  

Considering the line impedance, Matrix N and disturbs 1d  

and 
2d  are function of all grid parameters.  
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Assuming (7), the forward path is reported in (8) 
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( )0

b b

c eq bL N G B C k L s M= ⋅ ⋅ ⋅ =  (8) 

  

It’s possible to note that matrix 
bM  structure is such that it’s 

always non-singular (except in case of all zero element). 

 

Case (c)  

In this case line impedance and unbalanced voltage effect 

are considered. Moreover, input current Ac-Choppers phase 

shift have been introduced. Using particularα and β values 

it’s possible to model power losses in the converters and 

phase deviation due to any input filter. 
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As in the previous case, it’s possible to determine a matrix 

cM  such that the forward path is: 

 

( )0

c c

c eq cL N G B C k L s M= ⋅ ⋅ ⋅ =  (10) 

 

STABILITY ANALYSIS 

In this paragraph a stability analysis methodology for 

systems  (5), (8) e (10) will be proposed. The stability is 

studied considering is the generalized Nyquist criteria [6]. 

For each case, the eigenvalues of the system matrix are 

calculated and the Nyquist diagram is evaluated. 

 

Case (a) 

Due to the diagonal structure of 
aL , the eigenvalues are 

easily calculated and reported in (11). 

( ) ( ) ( ) ( )1 2 0

a a as s s L sλ λ λ= = =  (11) 

 

Case (b) 
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Case c) 

( ) ( ) ( )1,2 0 1,2

c

cs k L s Mλ λ= ⋅ ⋅  (13) 

 

In case (a), the eigenvalues 
1
λ  and 

2
λ are coincident and 

equal to ( )0
L s . Therefore, the system characteristic loci’s  

and ( )0
L s  have the same Nyquist diagram. 

In case (b) and (c) eigenvalues can be written as in (14). 
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Due to the complexity, 
cA and 

cφ are not reported here. 

From (14) and (15), it’s possible to affirm that both in case 

(b) and case (c), system’s characteristic loci are an 

amplified and rotated version of ( )0
L s Nyquist diagram as 

shown in Figure 4. 

 

 
Figure 4 - Nyquist diagram of Characteristic Loci  
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In order to verify the system stability, the characteristic 

loci’s phase margins have to be positive. It’s clear that the 

stability is dependent on ( )0
L s  structure and on  the entity 

of A  and φ . In case (b), in (15) it’s shown that A  and φ  

are strongly dependent on R. Therefore it’s interesting to 

study the stability when that parameter is varying. In case 

(c) the analysis is more complicated, and fixed the 

controller structure, line impedances and the unbalance 

entity, the varying parameters are R, α  and β . Therefore 

an iterative algorithm is needed and it’s shown in the next 

session. 
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Figure 5 - Numerical results 

 

Numerical stability analysis 

In order to evaluate numerically the stability  varying R, α  

and β , first a variation ranges have to be chosen. These 

ranges and all parameters considered in the numerical 

analysis are reported in table I. Since ( )0
L s present an 

infinite gain margin, it’s possible to study the stability 

evaluating only the phase margin. The analysis steps are the 

following: 

 

1. Parameters , , , , ,l p iR L R L K Ks s  are fixed 

2. A value of R is chosen 

3. 
max

,
max c

α β
φ φ=  is evaluated 

4. Phase margin  ( )0

C

m A L sψ     in calculated 

5. If max mφ ψ<  then the closed-loop in stable 

6. Repeating from 2, varying R , the numerical 

stability can be performed. 

 

Numerical results are reported in Figure 5. Two controllers 

are considered. The first stable for all R  values, the other 

one stable only for some values. 

It is possible to observe  that increasing R , and so 

decreasing the power drawn by the loads connected to the 

three-phase grid, stability properties are improved. Vice 

versa, low values of R  are critical. In Figure 5, on the x-

axis the values of R is normalized on the line impedance 

module. 

 

 
Parameter Value Unit 

Phase Voltage (RMS) 63 kV 

Line Frequency 50 Hz 

Line Resistance Rl 1.4 Ω  

Line Inductance L 25 mH 

Unbalanced Load Rs 40 Ω  

Unbalanced Load Ls 0.26 H 

AC/chopper control time costant τ 1 s 

Range for grid load R [0 20] Ω  

Range for AC/Chipper phase 

displacement α and β  [0 20] degree 

Controller 1 Kp=0.5  Ki=1 

Controller 2 Kp=1  Ki=10 

Table I 

 

CONCLUSIONS  

In this paper, a method for the stability analysis of an 

unbalance compensation control is been proposed. If a 

phasorial model of the grid can be considered, using the 

generalized Nyquist criteria and an iterative numerical 

analysis, it’s possible to study the compensation control 

stability for a chosen variation range of parameters. This 

iterative analysis strategy is a trial-and-error criteria for the 

controller design. 
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