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Properties of biological fitness landscapes are of interest to a wide sector of the life sciences,
from ecology to genetics to synthetic biology. For biomolecular fitness landscapes, the infor-
mation we currently possess comes primarily from two sources: sparse samples obtained from
directed evolution experiments; and more fine-grained but less authentic information from ‘in
silico’ models (such as NK-landscapes). Here we present the entire protein-binding profile of
all variants of a nucleic acid oligomer 10 bases in length, which we have obtained experimen-
tally by a series of highly parallel on-chip assays. The resulting complete landscape of
sequence-binding pairs, comprising more than one million binding measurements in dupli-
cate, has been analysed statistically using a number of metrics commonly applied to synthetic
landscapes. These metrics show that the landscape is rugged, with many local optima, and
that this arises from a combination of experimental variation and the natural structural
properties of the oligonucleotides.
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1. INTRODUCTION

The concept of the fitness landscape or adaptive land-
scape was first developed as a metaphor by Wright in
1932 to describe in geographical terms the relationship
between genotype and phenotype (Wright 1932).
Since then, fitness landscapes have become an integral
part of both evolutionary biology and evolutionary
computation. Though often overly simplistic in rep-
resentation (conventionally two- or three-dimensional
plots), fitness landscapes have become crucial in terms
of our understanding of how an evolving population
will behave relative to a static fitness function. The
fitness function itself describes a property which will
dictate selection; this could plausibly be enzyme
activity or specificity in the case of protein evolution,
or a measure of drag in the design of airfoils in a ‘real
life’ evolutionary optimization problem (Shahrokhi &
Jahangirian 2007). Commonly, the evolving population
is envisaged as a single hill-climber; an algorithm which
crosses the landscape by accepting only genetic modifi-
cations (single-point mutations) that result in an
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improvement in fitness (Kauffman & Levin 1987).
How well the hill-climber performs is strongly dictated
by the topology of the landscape. If the landscape is
rugged it will become trapped at local optima, whereas
if the landscape is a ‘Mount Fuji’ type of peak with a
smooth ascent, the hill-climber can progress to the
global optimum unimpeded.

Despite the origins of fitness landscapes lying in bio-
logical evolution and the wealth of literature describing,
theoretically, the evolution of biological macromol-
ecules, little is actually known about the properties of
real biological fitness landscapes. With the absence of
these data, investigations on landscape properties
have been based predominantly on model systems
such as spin glasses, NK-landscapes (Kauffman &
Levin 1987) and perhaps the more biologically perti-
nent RNA models (Schuster et al. 1994). Less associated
(but equally applicable) with biological fitness land-
scapes are landscape studies considering combinatorial
chemical space (Stadler & Stadler 2002), where rules
associated with neighbourhood and fitness can be
directly applied to guiding chemical synthesis. While
mapping the entire sequence space of an average protein
is intractable owing to the ‘hyper-astronomical’ number
of variants (Voigt et al. 2000), even limited sampling of
the sequence space has previously been prohibitive
This journal is q 2009 The Royal Society
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because of the cost of DNA sequencing and (especially)
of synthesis. With advances in sequencing technology
this is no longer the case, and we can now begin to
fully appreciate the diversity displayed by many
biological fitness landscapes (Poelwijk et al. 2007).

The sampling of sequences from biological fitness
landscapes has often gone hand-in-hand with the
family of methods known as directed evolution (Voigt
et al. 2000; Poelwijk et al. 2007). The procedure works
by iteratively modifying, selecting and amplifying
biological macromolecules to induce phenotypic
improvements. In this manner the repertoires of existing
enzymes have been expanded and de novo biomolecules
have been generated. Aptamers are oligonucleotides
raised to have high affinity and specificity to both
small molecular and large biomolecular targets.
Conventionally, aptamers are developed through the
technique known as SELEX (Ellington & Szostak
1990; Tuerk & Gold 1990), where sequences with high
affinity to a target are enriched iteratively from a vast
library of variants (up to 1016 oligonucleotides). To
study the sequence-binding relationships of the apta-
mers generated, usually only those with the highest
affinity (often from each generation of the process) are
selected and sequenced. Apart from the expense of the
sequencing process, this technique is limited when
studying the sequence-fitness landscape as (i) one has
no a priori choice of the sequences and (ii) information
is generally gained solely on the best aptamers.

In contrast to this, a recent paper by Knight et al.
developed aptamers to the fluorescent protein allophy-
cocyanin (APC) on high-density DNA microarrays, by
optimizing affinity using an evolutionary algorithm
(Knight et al. 2009), the so-called CLADE (closed-
loop aptamer-directed evolution) method. As a
consequence of using the ‘on-chip’ procedure, the
sequence-fitness relationships of over 40 000 aptamers
were determined during the optimization process.
From these data, the authors were able to construct a
detailed structure–activity relationship model, which
related aptamer sequence to binding affinity with a
high level of accuracy and with considerable predictive
power. The microarray platform is particularly suited
to the study of DNA–protein interactions because of
its ability to perform highly parallelized analyses.
Such have been the advances in microarray technology
in terms of cost and feature size that it is possible to
probe vast regions of the DNA sequence space systema-
tically and impartially. This ethos was exhibited in a
study by Warren et al. where the interaction profiles
of a transcription factor and a small molecule were
determined with every permutation of a duplex DNA
sequence 8 bp in length (Warren et al. 2006).

In the CLADE system described above, the binding
affinity of the APC aptamer is strongly dictated by
the bases furthest away from the microarray chip sur-
face (Knight et al. 2009). If these bases are determinant
of protein binding, it is feasible that an attenuated
aptamer will be as effective as the longer aptamers. In
this study we interrogate the entire sequence recog-
nition profile of a shortened (10 base) APC aptamer.
The results from this shortened biomolecule may be
just as informative as their longer counterparts; bigger
J. R. Soc. Interface (2010)
is by no means better in the nucleic acid world, where
the specificity afforded by short transcription factor-
binding sites governs transcriptional regulation and
small hairpins termed ‘tetraloops’ form the essential
building blocks of much larger RNA structures
(Woese et al. 1990). We study the properties of the fit-
ness landscape generated from every 10-base variant
using metrics conventionally applied to artificial fitness
landscapes. The implications of these results for the
evolution of biomolecules generally and in the case of
directed evolution are discussed. To arrive at these
predictions we go beyond the raw statistics describing
topology and consider how an evolving population will
interact with the landscape.
2. MATERIAL AND METHODS

Detailed descriptions of chemicals and chip synthesis
can be found elsewhere (Knight et al. 2009). Briefly,
each microarray chip possessed 93 311 individual spots
at each of which a known DNA sequence was syn-
thesized in situ. Initially, 93 311 sequences were
chosen at random from the starting population size of
410 and synthesized onto two replicate chips. Each repli-
cate chip consisted of the same sequences randomized
spatially. The chips were hybridized with the target
protein APC, in 1�phosphate-buffered saline (pH
5.5) for 1 h at 378C, imaged and analysed as described
previously (Knight et al. 2009). The mean scores
across both chips were taken as the overall binding
scores. From these chips, 500 sequences were selected
uniformly from the range of binding scores. These 500
sequences were then synthesized onto all remaining
chips to permit cross-chip normalization. Each
subsequent chip therefore contained 500 controls and
92 811 new sequences, all of which were synthesized
and hybridized in duplicate. The entire sequence
space required just over 11 pairs of duplicate chips,
plus a twelfth pair of chips with 27 655 sequences.
The remaining 65 656 spots on the final pair of chips
were used to re-synthesize any sequences that had
been corrupted, had high standard deviations between
chips or scored highly.

Reproducibility between chips was high with a
correlation between duplicate sequences of 0.88. Nor-
malization was performed across the whole population
using the control sequences present on all chips using
JMP software and univariate analysis to match the
score distributions. This resulted in all sequences
being fitted to the same overall scale to allow direct
comparison. These normalized scores serve as direct
measures of protein-binding affinity upon which further
statistical analysis was based.
3. RESULTS

3.1. Shortening allophycocyanin aptamers

In the study by Knight et al. (2009) into the develop-
ment of APC aptamers, no form of secondary structure
was established to be causal to protein binding (Knight
et al. 2009). Binding was believed to be primarily influ-
enced by three bases at the start of the 50-end of
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the aptamer sequence in combination with a motif com-
posed principally of cytosine residues further down the
chain.

Mapping the complete sequence space of the 30-mer
APC aptamer is intractable, as synthesizing 430

sequences using the Combimatrix technology would
take approximately 3.7 billion years (without repli-
cates); a full 10-mer landscape in contrast requires
only twenty-four 90K chips (as described in §2).
However, simply deleting bases from the 30-end of the
aptamer may have catastrophic unforeseen effects on
aptamer binding, due to the complex combinatorial
nature of nucleic acid structural interactions. In
addition, shortening the aptamer reduces the distance
of the binding region from the microarray surface.
This has previously been shown to have a negative
effect on efficiency in binding assays (Day et al. 1991).
To counteract this effect poly-T linkers are commonly
used to project the binding sequence away from the
chip surface to enhance binding efficiency with minimum
effects on binding mechanism (Day et al. 1991).

To ascertain the consequences of attenuating the
30-mer APC aptamers, we used the binding scores of
the top 3000 sequences obtained from the penultimate
generation of the APC aptamer evolution (Knight
et al. 2009) as a benchmark. These scores were com-
pared with the binding scores of the abridged sequences
containing only the first 10 bases of each aptamer.
In addition, a poly-T linker five bases in length was
added to the 30-end of each aptamer to elevate the
shortened sequences from the chip surface. There is a
correlation coefficient of 0.73 between the original
sequences and their shortened counterparts, indicating
that the binding is primarily determined by the first
few bases of the aptamer chain. While the abridged
sequences do not correlate completely with the
30-mers, the result indicates that these sequences
retain most of the binding characteristics of their
longer equivalents.

The dissociation constant of the strongest binding
10-mer sequence was measured on an independent plat-
form using surface plasmon resonance (see electronic
supplementary material for further details). The
observed Kd of 1.88 mM was lower than that of the
30-mer aptamer. Despite this we have seen through
the correlation between the 10-mer and 30-mer results
that there is strong sequence-dependence on binding.
The shortened sequences are not in the strictest sense
aptamers (we also present no information on the speci-
ficity of these sequences). However, the relationship
between sequence and binding and the possible effects
of structure warrant further investigation.
3.2. Visualizing the fitness landscape

Simply listing all possible base sequence-affinity combi-
nations in the sequence space of our 10-mer landscape
reveals little about its overall or higher level properties.
Visualizing the data is hard because, unlike the spatial
physical world, nucleic acid sequence space exists in
many dimensions and condensing this information
into a form that is interpretable by humans is beset
with difficulties. Dimensionality reduction techniques
J. R. Soc. Interface (2010)
such as multidimensional scaling and PCA cannot be
usefully applied to the landscape since the points in
10-dimensional aptamer space cannot possibly lie on a
hidden, lower-dimensional manifold as the space is
completely filled by them, i.e. every point in the 10-
dimensional space is represented. Wright himself was
aware of the inadequacies of representing high dimen-
sional data using two-dimensional plots and forcing
the data to appear as a classic landscape plot can
often cause misinterpretations (Wright 1932). In
many ways it is better to extract more general features
of the landscape than attempting to display the
landscape as a whole.

Figure 1 displays the logos of the sequences with the
highest binding affinities, indicating the striking depen-
dency of protein binding on the first few residues of
the 10-mer. Particularly prevalent is the retention
of adenine at the first position of the 50-end of the
sequence, exemplified by its presence within every
sequence of the top 10 000 binders. Of note is that in
each instance, with the exception of the top 10 binders,
there appears to be a general decay in the conservation
of bases from the 50- to 30-ends, which would seem to
suggest that the bases at the 30-end are less important
in their interaction with the protein. This decay is
most likely a result of the 30-bases being closer to the
array surface, which will no doubt inhibit interaction
with the protein. Clear from the histogram shown in
figure 1f is the smooth single distribution in terms of
binding affinities, rather than, for instance, partitioning
of good and bad binders.
3.3. Landscape statistics

In the evolutionary optimization field, fitness land-
scapes have been studied for many years as a means
to understand relationships between optimization
problem properties and the success/failure of
evolutionary algorithms in finding and maintaining
global optima. Epistasis, ruggedness, multimodality
and noise all have their effects on an evolutionary
algorithm’s ability to locate a global optimum. There
are now a wealth of metrics to describe these fitness
landscape properties (Kallel et al. 2001), though they
have usually been applied on artificially generated
landscapes, or the landscapes arising from optimization
problems defined by mathematical or algorithmic
structures. Here, we apply a number of these metrics
to a real oligonucleotide landscape. In order to place
our findings within the context of earlier research, we
compare them with results obtained using the most
commonly used class of artificial landscapes for discrete
optimization, the NK-landscape.
3.4. The NK-model

The NK-model was first proposed by Kauffman to
incorporate interactions between component bits in
the binary string (alleles and chromosome in evolution-
ary computing parlance; Kauffman & Levin 1987;
Kauffman 1993) giving rise to landscapes that are tune-
able in terms of epistasis and ruggedness. This model
can be used to describe the epistatic nature of gene
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interactions on an individual’s fitness, or equally the
coupling interactions between amino acids in a protein
molecule (Kauffman 1993). The total fitness F of the
individual in the NK-model arises from the average fit-
ness of all the positions in the chromosome fi

F ¼ 1
N

XN
i¼1

fiðai1;ai2; . . . ;aikþ1Þ a [ f1; 0gN ; ð3:1Þ

where i is the residue assessed and ain are the states (1
or 0) of the Kþ1-coupled residues. When K is zero, the
landscape is additive; that is the fitness function is the
sum of the independent contributions of each position;
this results in a single peak landscape that is easy for
a hill-climber to traverse. With increasing values of K,
the landscape becomes more rugged resulting in many
local optima (Li et al. 2006), making it progressively
more difficult to reach the global optimum (Kauffman
1993).

When K reaches its maximum value of N 2 1, the
landscape is maximally uncorrelated; in fact there is
no correlation between neighbouring sequences at all.
Here, the NK-model is mimicking a random energy
model. The presence of local optima is not an indi-
cation of a correlated fitness landscape on its own;
even uncorrelated fitness landscapes (where K ¼
N21), in which fitness is assigned to each individual
randomly, are crowded with local optima. Such
random energy models have been described by Derrida
where the number of local optima is given by the
expression 2N/(N þ 1) (Derrida 1981). Generalization
to L-ary NK-landscapes yields an expected number
of local optima of LN/[N(L 2 1)þ1] (Li et al. 2006).
These landscapes are far more rugged than those
observed in real-world problems, where even land-
scapes with high levels of noise usually demonstrate
an underlying correlation between neighbouring
sequences.

The NK-model is useful in the study of fitness land-
scapes in that its tuneable nature allows practitioners to
use NK-landscapes as mimics for more complex systems
(Baskaran et al. 1996). The prediction of RNA second-
ary structure is for instance far more costly in terms of
time than the appraisal of fitness in an NK-landscape.
Reciprocally, NK-landscapes are systems that have
well-established properties that provide a bench-
mark against which new landscapes can be evaluated
(Kauffman & Weinberger 1989). We compare the pro-
perties of our 10-mer landscape to those of a series of
quaternary NK-landscapes, where a [ f3, 2, 1, 0gN, i.e.
there are four alleles at each locus of the chromosome.
Quaternary NK-landscapes are employed as they resemble
more closely the quaternary nature of the DNA bases
within the oligonucleotide sequence, even though
they are not commonly applied in the evolutionary
literature.

The noise inherent to the experimentally derived
data means that direct comparison with noise-free
evaluations from the NK-landscapes is not appropriate.
Metrics such as autocorrelation will become artificially
foreshortened by the presence of experimental variance
implying a closer resemblance to NK-landscapes with
higher values of K. To provide a more accurate
J. R. Soc. Interface (2010)
assessment, we attempt to reproduce the level and dis-
tribution of noise observed within our experimental
landscapes based on the discrepancies observed between
replicate chips. Replicating the effect of noise is not
necessarily a straightforward task as the NK-landscapes
and the oligonucleotide landscape have a differently
shaped score distribution. The variation between repli-
cates on different chips has a mean value of 0.38, a
median of 0.27 and an s.d. of 0.36, with an apparent
double exponential distribution (see electronic sup-
plementary material). The first step is therefore to
normalize the score distribution of each of the values
observed within the NK-landscapes, so that the mean
and the variance are equal to those observed in the
experimental evaluations (based on the absolute
binding scores). Noise was then added randomly to
two instances of each point in the NK-landscape such
that the distribution matched that observed in the oli-
gonucleotide landscape (see electronic supplementary
material). The mean was then taken for the two
points as a measure of absolute score. Evaluations were
based on 50 different instances of each NK-landscape.

3.5. Autocorrelation function and
correlation length

Fitness landscapes are not defined merely by the fitness
function but by the relationship between this function
and a neighbourhood defined on the search space. For
continuous spaces, the neighbourhood can be defined
by the Euclidean metric; for discrete spaces the defi-
nition of neighbourhood is often specific to the problem
or algorithm under investigation. In sequence analysis,
the Hamming distance is a metric describing the mini-
mum number of point mutations required to transform
one sequence into another sequence of equal length
(Hamming 1950). The Hamming distance is integral
to the way in which we perceive fitness landscapes.
The relationship between sequence similarity and the
fitness associated with each sequence determines
the properties of the landscapes.

The correlation length of a fitness landscape is a
measure of its ruggedness (Weinberger 1990). In order
to infer a fitness landscape from the measured fitness
levels, we assume a simple Hamming neighbourhood.
Walks on the landscape consist of a series of Hamming
point mutations in which one base is selected uniformly
at random and changed at random to one of the other
three bases.

The autocorrelation function is a measure of the
correlation of a function with itself. In the case of a land-
scape, it is the expected correlation between points on
the landscape at a distance of s, during a random walk
kx0, x1, . . . l on the landscape, calculated as

rðsÞ¼ E½f ðxtþsÞf ðxtÞ��E½f ðxtÞ�E½f ðxtþsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½f ðxtÞ2��E½f ðxtÞ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½f ðxtþsÞ2��E½f ðxtþsÞ�2

q ;

ð3:2Þ

where the expectations E are taken over the random
walk. In order to calculate the expectations, 30 indepen-
dent random walks were performed from each point in
the landscape, giving rise to approximately 30 million
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fitness pairs, f(xt) and f(xtþs), for each s. A plot of the
autocorrelation for the 10-mer landscape is shown in
figure 2. We calculated the autocorrelation function for
our oligonucleotide landscape and a series of quaternary
NK-models of length N ¼ 10 with varying values of K.
For the 10-mer landscape, the correlation falls off
approximately as r(s) ¼ exp (2s/t), where t is the corre-
lation length. From the plot in figure 2, we can estimate
the correlation length for the 10-mer landscape as 4.5.
This indicates that the experimentally derived landscape
is equivalent to an NK-landscape where K is slightly less
than 1 (table 1).

There is no consensus as to how to use this infor-
mation, but there is a common consensus that the
more rugged a landscape, the more local optima there
are (Kallel et al. 2001). Here, we observe moderately
high ruggedness and a small correlation length (roughly
equivalent to a noise-free NK-model with K ¼ 1). It has
been suggested (Kallel et al. 2001) that mutation rates
J. R. Soc. Interface (2010)
of an evolutionary algorithm should be set so that
mainly points within the correlation length are reached.

The correlation length is affected by the choice of gen-
etic operator used in evolutionary algorithm optimization.
Calculating the correlation length using a Hamming
neighbourhood is the appropriate method for point
mutation, since each mutation takes a single step within
this neighbourhood. Random walks using alternative gen-
etic operators take different types of step and therefore
have different neighbourhoods. Figure 3 shows the auto-
correlation curves for the point mutation and for three
other types of genetic operator: a transposition of any
two bases, an insertion of a random base (with all others
being shifted right and a deletion at the 30-end tomaintain
length), and an insertion–deletion (indel) event. The
correlation lengths under these different move sets are
estimated as: point mutation¼ 4.5, transposition ¼ 4.0,
insertion ¼ 5.0 and indel¼ 3.5. The cause of this vari-
ation is most likely attributable to the number of base



Table 1. Correlation lengths for NK-landscapes where N ¼ 10.

K correlation length

0 5.5
1 4
2 3
3 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12
lag variable

au
to

co
rr

el
at

io
n

Figure 3. Displaying level of autocorrelation within the 10-mer
landscape with increasing step number in a random walk, for
different genetic operators. Filled triangles with a broken line
denote insertion. Filled diamonds with a broken line denote
transposition. Open squares with a continuous line denote
indels.

Table 2. Relationship between K and the measure of
epistasis for an NK-model where N ¼ 10.

K epistatic variance
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Figure 2. Displaying level of autocorrelation with increasing
step number in a random walk (in terms of Hamming point
mutations) for the 10-mer landscape and NK-landscapes
where N ¼ 10. Open circles with a broken line denote NK-
landscape where K ¼ 0. Filled triangles with a continuous
line denote experimental (point mutation). Open squares
with a broken line denote NK-landscape where K ¼ 1.
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changes caused by each genetic event and the likelihood
that these events would disrupt the bases at the 50-end
of the oligonucleotide sequence. For example, indel has
the lowest correlation because two or more bases are chan-
ged in a single instance; however, insertion has a higher
correlation because most alterations are at the 30-end.
3.6. Epistasis

In standard population genetics models, each allele is
considered to make a contribution to fitness against a
background of other alleles, all contributing indepen-
dently. This model is inadequate when genes interact.
Epistasis is a measure of the degree of interaction of
the genes: it measures the nonlinearity in a fitness
function.

Reeves & Wright (1995) measure the epistasis,
h, following Davidor (1991), using the following
equation:

h ¼
P

i[U ð fi � liÞ2P
i[U ð fi � f Þ2

; ð3:3Þ

where fi is the fitness of chromosome i, li the sum total
contribution to fi of the chromosome’s alleles (their
linear effects or contributions) and f the mean fitness
over all chromosomes in the chromosome space U (i.e.
(A, C, G, T )L). This gives a value between 0 and 1,
J. R. Soc. Interface (2010)
which can be interpreted as the amount of variance in
fitness that is explained by nonlinear effects. To calcu-
late li, the individual effect of an allele is first calculated
by measuring the mean fitness of all chromosomes
having that allele and subtracting the mean fitness
over all chromosomes. The value li is then calculated
as the sum of these allelic contributions over the alleles
in the chromosome i, added to f . The value of epistasis
measured over the 10-mer landscape is 0.532, a value
indicating that the genes (i.e. in our case the individual
base positions) interact quite strongly. This figure is
roughly equivalent to a noisy quaternary NK-landscape
where K is slightly less than 1 (table 2).

3.7. Optimization on an oligonuleotide
landscape

Because of the comprehensive nature of the 10-mer
landscape we are not confined to making assumptions
about its properties based purely on statistical measures
from sampling. It is thus possible to enumerate each of
the sequences and determine those that represent local
optima. This can be accomplished using a ‘steepest
ascent hill-climber’ (Kauffman & Levin 1987) which,
starting from a sequence x, considers all the Hamming
neighbours of x and moves to the fittest one, repeating
this procedure until there is no neighbour fitter than
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the current sequence. By starting the hill-climber at
every sequence, we can not only determine the
number of local optima and their properties, but also
the points in the landscape that are attracted to each
optimum. These so-called ‘basins of attraction’ are
useful in characterizing local optima. We are interested
in how they will affect genetic algorithm performance
and how likely they are to have arisen purely from noise.

This hill-climber reveals 6805 local optima within the
complete sequence landscape. Quantitative assessment
of this figure relative to the noisy NK-landscapes is
difficult to obtain. However, there is a smooth decline
in the mean maximum basin sizes observed with
increasing values of K (see electronic supplementary
material for a summary of these data). Within the
experimental landscape, the size of the basins of attrac-
tion varies considerably, from one associated sequence
to nearly 30 000. From the histogram shown in
figure 4 displaying the distribution of binding affinities
of the local optima and the overlaid plot of cumulative
basin size, there is a definite (negative) correlation
between peak height and basin size. The maximum
basin size corresponds most closely to that observed
for an NK-landscape where K ¼ 0. Theory dictates
that landscapes with many inferior local optima with
small basins of attraction will be hard for a genetic
algorithm to optimize, especially if the global optimum
also has a small basin of attraction. In the 10-mer land-
scape, the local optima are far from evenly distributed,
with the top 1 per cent of local optima (68 sequences)
containing 47 per cent of sequences from the landscape
within their basins of attraction.

The diameter of the basins of attraction gives an
indication of how the local optima are dispersed
within the sequence landscape. We take the diameter
as the Hamming distance from each local optimum to
the most dissimilar sequence within the set of local
optima. From table 3, it can be seen that the diameters
for all local optima are maximally dissimilar (a
Hamming distance of 10). When the set of local
optima are reduced to the top 10 and 1 per cent in
terms of binding affinity, they become progressively
J. R. Soc. Interface (2010)
more localized. This localization of high-affinity
optima can be visualized in the classical multidimen-
sional scaling plot shown in figure 5a. From the plot
in figure 5b it can be seen that these clustered sequences
generally possess adenine as the first base at the 50-end.

The landscape presented here represents a static
image in terms of noise. In reality, many of these
points of optima will shift owing to experimental var-
iance with continued resampling and so will not present
permanent fitness barriers to a population evolving on
the landscape. If one were wishing to replicate the
performance of a hill-climbing algorithm on the real
landscape it may be necessary to continually resample
each point with added stochastic variance equal to
that observed in the real landscape.
3.8. Fitness distance correlation

The fitness distance correlation (FDC) is a measure of
search difficulty, which can be used to predict genetic
algorithm performance (Jones & Forrest 1995). While
there have been criticisms of the FDC from a theoretical
point of view (Altenberg 1997), it has practical utility
when comparing classes of problems with common
features. The FDC is a simple statistic describing the
correlation between the fitness function and the dis-
tance to the nearest goal of the search. When available,
this point is taken as the global optimum and the
sequence distance is usually the Hamming distance.
For optimization problems where the objective is to
maximize the fitness function, easy problems have a
negative FDC (approaching 21). With increasing
problem difficulty, the FDC rises until it reaches 1 for
completely deceptive problems. The FDC for the exper-
imental landscape is 20.32. This equates roughly with
our simulations on a quaternary NK-landscape, where
N ¼ 10 and K is slightly less than 1 (table 4).

Correlation is used as a simple metric but there is
much to be gained by analysing a scatter-plot of
sequence and fitness distances. The most striking
feature of the scatter-plot shown in figure 6 is the
drop in binding affinities exhibited by sequences with
a high level of similarity with the global optimum; the
sequence with the next highest binding affinity shares
only five common bases with the global optimum.
To ascertain whether such a feature is indicative of a
highly rugged landscape or merely an anomalous
global optimum (owing to experimental variance), we
studied ‘directed walks’ between the next 10 highest
local optima in terms of binding affinity. This entailed
iteratively mutating each optimum so that the sequence
of the next highest local optimum was produced. (The
order in which the non-coincident bases were changed
was randomly chosen in each instance.) Figure 7
shows a plot of the paths between each of the 11 highest
local optima. It may be noted from this plot that these
sequences are more closely related than random.
However, there can be as many as five dissimilar bases
between sequences. The binding affinities of the
intermediate sequences on these ‘walks’ can drop con-
siderably, although they are still much higher than
the mean of all the sequences within the landscape.



Table 3. Summary of properties of the local optima within the 10-mer landscape.

min. first quartile median mean third quartile max.

individuals associated with each basin 1 10 19 154.1 39 29 974
maximum diameter between each local optimum 10 10 10 10 10 10
maximum diameter between top 10 per cent of local optima 9 9 10 9.54 10 10
maximum diameter between top 1 per cent of local optima 6 7 8 7.559 8 9
distance from every sequence to local optima 0 3 4 4.101 5 10
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3.9. Separability

Within a sequence, the identity of bases at a particular
position may have a stronger effect on overall fitness
than the identity of bases at other positions. Figure 8
shows a plot of the separability of each base, that is
how each base within the best sequence correlates
with the fitness function. Again this plot demonstrates
that the bases at the 50-end correlate more strongly with
fitness than do those at the 30-end.
3.10. The effect of noise

The existence of noise within the measured affinities is a
source of ruggedness which affects all of the statistics
reported in this section. By using NK-models it is
possible to assess the extent to which observed rugged-
ness arises from noise rather than ‘real’ biochemical
interactions. Table 5 shows the correlation lengths,
epistatic variances and FDC values for noise-free NK-
landscapes. The difference between the values of these
statistics for noise-free and noisy landscapes is small.
When using noisy models, all three statistics suggest
that the measured landscape is equivalent to an NK-
landscape with K between 0 and 1. The statistics
obtained from noise-free models are very similar,
suggesting K values of 1 (autocorrelation), between 0
and 1 (epistatic variance) and just below 2 (FDC).
The similarity in the predictions from noisy and noise-
free models indicates that the level of noise in the
measured data is low and only interferes with
the observed interactions to a limited extent.

Noise is observed to have a strong effect on basins of
attraction, by creating a large number of local optima.
For example, noisy NK-landscapes with K ¼ 1 have
8662 local optima, on average, while their noise-free
equivalents have just 32 local optima, on average.
This implies that optimization methods that rely on
hill-climbing will be strongly (and adversely) affected
by the presence of noise at the level observed here.
3.11. Structure

Underlying each of the metrics that describe the proper-
ties of the landscape is the physical interaction between
the oligonucleotide and the protein. It was postulated
by Knight et al. that the APC aptamers evolved on
the array surface adopt structures free from duplex
formation (Knight et al. 2009). They found that affinity
was highly dependent on the identity of bases at the 50

sequence end, which would be pointed towards the chip
if the chain adopted a hairpin configuration. In
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addition, no correlation was found between minimum
free energy sub-structures and binding affinity.

Mutual information is a measure of the covariance
between positions in a sequence and is commonly used
to determine the common structure within a group of
related DNA motifs. When the level of mutual
information was calculated for the top 100 binding
sequences, no significant covariance was found
(although this may be a result of invariance in many
of the positions). Similarly, the DNA folding algorithm
hybrid-ss-min (Dimitrov & Zuker 2004) could not pre-
dict minimum free energy structures for 82 of these
top 100 sequences that began with the bases ‘ATC’.
This figure is in contrast to only 14 sequences without
predicted structure from the bottom 100 binders that
begin with ‘ATC’ (these sequences all had binding
affinities within the bottom third of those found
within the population). This indicates that duplex for-
mation may in some way be negatively associated
with binding affinity.

The absence of a defined structure does not,
however, mean a smooth landscape. If folding (i.e. sig-
nificant secondary structure of the oligonucleotides) is
in fact detrimental to protein binding, the landscape
will possess many of the features associated with a
structured molecule. Such interdependence between
bases is demonstrated by the measure of epistasis
within the landscape being equal to an NK-model,
where K . 0 (mutual information may not be suitable
for detecting this relationship).
4. DISCUSSION

In this study we reveal the entire sequence-fitness
landscape in terms of binding profile of a 10-mer
oligonucleotide. Unlike previous studies into the study
of biological fitness landscapes of this magnitude, the
data are derived from a real biomolecular system by
experimental evaluation. By using a fluorescent protein
target, we remove the necessity to label using an
additional fluorescent tag, which in previous studies
has been shown to lead to spurious interactions (Platt
et al. 2009). Therefore, the binding profile is based
purely on the interactions between the oligonucleotides
and the protein.

Although the sequence landscape has been attenuated
to only 10 nucleotides, the dependence of protein binding
on the residues furthest away from the chip surface indi-
cates that a shortened sequence is nearly as informative
as a much longer one. The abridged chains should still
be able to adopt conventional structures such as small
hairpins and potentially inter-chain interactions at the
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Table 4. Relationship between K and the fitness distance
correlation for an NK-model where N ¼ 10.

K FDC

0 20.4444
1 20.18721
2 20.05335
3 20.01497
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chip surface can result in more complex configurations.
Although 10-mers are capable of forming hairpins, they
are much less likely to than longer sequences. Oligonu-
cleotides that interact strongly with the protein target
are most probably in a random unpaired configuration.
If the oligonucleotide lacks a defined configuration, struc-
tural interactions within the DNA molecule will be of
importance to protein binding, as any folding may
reduce the interaction with the 50-end.

Statistical measures on the experimental landscape
lead to some interesting results, particularly when com-
pared with those obtained with noisy NK-landscapes.
Autocorrelation, FDC and epistatic variance all
indicate that the experimental landscape resembles a
noisy NK-landscape, where K is between 0 and 1.
J. R. Soc. Interface (2010)
These measures also indicate that the level of noise in
the experimental data is sufficiently low that it does
not prevent the identification of epistasis and
ruggedness arising from ‘real’ physical interactions.
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Noise does, however, affect the number and size of
attractive basins. This makes it difficult to assess the
‘true’ modality of the landscape.

A simple glance at the binding affinities of the DNA
sequences within the dataset indicates that there is no
partitioning of good binders and bad binders, but a con-
tinuous distribution. This is in marked contrast to a
recent study of the protein-binding profile of immunoglo-
bulin E (Katilius et al. 2007). That study found that the
J. R. Soc. Interface (2010)
sequence was highly immutable within the stem region of
the aptamer’s hairpin structure, with permutation of the
bases causing loss of binding affinity. In this example it
would be expected that there would be separate plateaus
within the distribution differentiating the strong binding
sequences from the general background. The continuous
nature of the fitness distribution of the APC landscape,
in addition to the large basins of attraction, will no
doubt have been conducive to the generation of aptamers
to APC through the use of an evolutionary algorithm
with a small population. However, it cannot be dis-
counted that within the immunoglobulin E sequence
landscape there may be multiple regions that elicit
strong interactions with the target protein. For example,
it is well documented that aptamers can bind proteins at
more than one site (Tasset et al. 1997).
5. CONCLUSIONS

We present the entire interaction profile of a real 10-mer
oligonucleotide landscape. Advances in microarray in
situ synthesis technology have made such a study poss-
ible, highlighting the potential to investigate complex
biological interactions in a global unbiased manner.
Analysis has shown that the landscape is rugged, with
epistatic interactions between individual bases. We
have indicated here how it is possible to run random
and adaptive walks on the landscape to obtain infor-
mation about the number and distribution of local
optima; it would equally be possible to use the data
to test and compare population-based genetic algor-
ithms with different parameter settings, e.g. population
sizes, mutation rates and cross-over types. This would
be valuable equally as a model for prior tuning of algor-
ithms for future-directed evolution experiments or as a
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Figure 8. Correlation between sequence position and score.

Table 5. Landscape statistics for noise-free NK-landscapes
with N ¼ 10.

K
correlation
length

epistatic
variance

fitness distance
correlation

0 7 0.0 20.695058
1 4.5 0.372188 20.258208
2 3 0.562138 20.087372
3 2.5 0.746588 20.036625
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model of biomolecular evolution. We suggest that to
model the noise in the data in such a simulation, each
evaluation of a sequence should be perturbed by
adding a random variate from the noise distribution we
observed and described above; this would simulate how
the genetic algorithm would ‘perceive’ the landscape in
an experiment similar to ours.

The data from this experiment are available online at
http://dbkgroup.org/direvol.htm, and will provide a
valuable resource for researchers in the area. An advan-
tage is that these are real data, not a model system and
so offer an interesting alternative to the landscapes pre-
viously studied. While artificial fitness landscapes based
on RNA secondary structure have proved invaluable to
the study of biomolecular evolution, they are by their
nature relatively simplistic. Data derived from real
evaluations contain information from a much greater
range of interactions than purely complementary base
pairings. The chips used during this study are not
limited to a single use, but can be washed and reused
to study the binding profiles of different analytes to
provide a catalogue of different landscapes.

As this article went to press another study was reported that
utilized microarrays to measure the complete 10-mer
interaction profile of duplex DNA with a range of transcription
factors (Badis et al. 2009). Statistical analysis of this corpus of
data (as we have performed here) could provide useful insights
into the evolution of real genomic systems.
J. R. Soc. Interface (2010)
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