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	is paper treats anM/M/1 retrial queue with constant retrial times. If the server is busy at the arrival epoch, the arriving customer
decides to join the retrial orbit with probability � or balk with probability 1 − �. Only the customer at the head of the orbit is
permitted to access the server. Upon retrial, the customer immediately receives his service if the server is idle; otherwise, he may
enter the orbit again or leave the system because of impatience. First, we give the performance analysis for this retrial queue and
give some important performance indices. Second, based on a natural reward-cost structure, we analyze the Nash equilibrium
customers’ joining strategies and give some numerical examples.

1. Introduction

Retrial queueing systems have been extensively used to sto-
chastically model many problems arising in computer net-
works, telecommunication, telephone systems, and daily life.
About comprehensive surveys on retrial queues, readers are
referred to the book of Falin and Templeton [1], the book
of Artalejo and Gómez-Corral [2], the references listed in
Artalejo [3, 4], and the papers of [5, 6] and references therein.
In the majority of the above-mentioned, the interest of the
investigators lies in the transient and/or the stationary distri-
bution of the process of interest.

Recently, Economou and Kanta [7] considered a single-
server M/M/1 retrial queue with constant retrial policy from
an economic analysis viewpoint, in which customers are per-
mitted to freelymake decisions tomaximize their own bene�t
based on some reward-cost structure. Such system can be
analyzed by using the game theoretic analysis, and the funda-
mental consideration is to �nd theNash equilibria; seeHassin
andHaviv [8].	e pioneering work on the economic analysis
of queueing systems can date back to Naor [9]. Naor [9]
considered anM/M/1 queue with a simple linear reward-cost
structure, where each customer observes the queue length

before his decision. Later, Edelson andHildebrand [10] inves-
tigatedNaor’smodel by assuming that there is no information
on the queue length for an arriving customer. Moreover,
several researchers have studied the same problem for various
queueing systems considering diverse characteristics, for
example, retrials, breakdown and repairs, working vacations,
priorities, reneging and jockeying, and schedules.	e funda-
mental results in this area with extensive bibliographical
references can be found in the comprehensive monograph by
Hassin and Haviv [8]. Further studies can be referred to [9–
17] and references therein.

In the present paper, we consider the Markovian single-
server constant retrial queue with joining strategy and impa-
tient retrial customers, which extends the model in Econo-
mou and Kanta [7] by considering the impatient phe-
nomenon of the retrial customers.	e customers observe the
server state upon arrival and not the number of customers in
the orbit and then decide whether to join the orbit or balk.We
consider some performance indices, such as the stationary
distribution and retrial numbers, and the (Nash) equilibrium
balking strategies.

	e rest of this paper is organized as follows. In Section 2,
we give the model description and derive the stationary
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Figure 1: Transition rate diagram of�(�) = {(�(�),�(�)), � ≥ 0}.
distribution and some performance measures and the dis-
tribution of the retrial numbers. In Section 3, we study the
Nash equilibrium joining probability in unobservable case.
Section 4 gives some numerical examples. Section 5 gives
concluding remarks and possible related future research.

2. Model Formulation and
Performance Analysis

We study here a retrial queue with constant retrial times,
where customers arrive according to a Poisson process at
rate �. Upon arrival, the arriving customer will immediately
receive his service and leave the system a�er his service
completion if he �nds the server idle. Otherwise, if he �nds
the server busy, the arriving customer may enter the retrial
orbit with some probability � (0 ≤ � ≤ 1) according to
FCFS discipline ormay leave the systemwith complementary
probability � = 1 − � (called balking customer). 	e service
times are exponentially distributed with rate 
. Only the
customer at the head of the retrial orbit is allowed to retry
to access the server. Upon retrial, the customer begins the
service if the server is idle; otherwise, he may rejoin the
orbit with probability 0 ≤ � ≤ 1 or leave the system
(called impatient customer) with probability � = 1 − �.	e
retrial times are assumed to follow exponential distribution
with parameter �. We assume that all random variables are
mutually independent.

By assumption of the retrial queue, the state of the
system under consideration can be described by a continuous
Markov process �(�) = {(�(�),�(�)), � ≥ 0} with state space
S = {(, �),  = 0, 1; � ≥ 0}, where �(�) is the state of
the server at time �. �(�) = 0 or 1 according to the server is
idle or busy; �(�) denotes the number of customers in the
orbit at time �. Transition rate diagram of the Markov chain{(�(�),�(�)), � ≥ 0} is depicted in Figure 1.

From Figure 1, we see that �(�) = {(�(�),�(�)), � ≥0} is a continuous time quasi-birth-death process, and the
in�nitesimal generatorQ of�(�) is given by

Q =(((
(

A0 C

A B C

A B C

A B C... ... d

)))
)

, (1)

where

A0 = (−� �
 − (�� + 
)) ,
C = (0 00 ��) ,
A = (0 �0 ��) ,
B = (− (� + �) �
 − (�� + 
 + ��) ) .

(2)

LetD = A + B + C; we obtain that

D = (− (� + �) � + �
 −
 ) , (3)

and thenD is obviously a generator matrix, and its associated
stationary probability vector � = (�0, �1) can be derived as(�0, �1) = (
/(� + 
 + �), (� + �)/(� + 
 + �)). Now, from the
	eorem 3.1.1 in Neuts [18] which states that the necessary
and su�cient condition for stability of QBD process is �Ce <
�Ae, where e is a 2 × 1 column vector of 1s, we can get that

� = �� (� + �)�
� < 1 (4)

is the stationary condition for our retrial system, where 
� =
+ (�+�)�. Hereina�er, we assume that the inequality � < 1
holds.

2.1. Stationary Distribution. Under the condition � < 1, we
aim to �nd the stationary distribution ��,� = lim�→∞�(�(�) =, �(�) = �),  = 0, 1; � ≥ 0. By our assumption of themodel,
we can get the steady-state equations as follows:��0,0 = 
�1,0,(� + �) �0,� = 
�1,�, � ≥ 1(�� + 
) �1,0 = ��0,0 + ���1,1 + ��0,1,(�� + 
 + ��) �1,� = ��0,� + ���1,�+1 + ��0,�+1+ ���1,�−1, � ≥ 1.

(5)
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From (5), we can obtain that

�0,� = 
� + � (1 − �0,�)���1,0, � ≥ 0,
�1,� = ���1,0, � ≥ 0, (6)

where �0,� = 1 if � = 0 or �0,� = 0 if � ̸= 0.
Using the normalizing condition yields

�1,0 = �
�(� + 
) 
� − ��
 (1 − �) . (7)

Based on the above results, we discuss some performance
measures in the following subsection.

2.2. Performance Measures

2.2.1. Queue Length and the Server State Probabilities. (1) Let�0 and �1 be the probabilities that the server is idle and busy,
respectively; then

�0 = ∞∑
�=0
�0,� = (
� + 
� + � �1 − �)�1,0

= 
 (
� − ��)(� + 
) 
� − ��
 ,
�1 = ∞∑
�=0
�1,� = 11 − ��1,0 = �
�(� + 
) 
� − ��
 .

(8)

(2) Let�� and�	 be the mean numbers of customers in the
retrial orbit and in the system, respectively; then

�� = ∞∑
�=0
� (�0,� + �1,�) = � + � + 
� + � �(1 − �)2�1,0, (9)

�
 = �� + �1. (10)

2.2.2. Waiting Time in the Orbit. In this subsection, we focus
on the analysis of the mean waiting time in the orbit of a
tagged customer, denoted by#�. Let $�,� be the waiting time
in the orbit of the tagged customer in the �-th position given
that the server is currently at state , and %(, �) = &($�,�).
	en we have the following theorem.

�eorem 1. #� and %(, �) satisfy the following equations:
#� = �� + � + 
�
� 1(1 − �)2�1,0, (11)

% (1, �) = � + � + 
�
� �, � = 1, 2, 3, . . . , (12)

% (0, �) = � + � + 
�
� � − �
� , � = 1, 2, 3, . . . . (13)

Proof. For %(1, �), we remark that the arriving customer who
�nds the server busy a�er the tagged customer has no e�ect
on %(1, �), but the service time and the impatience of the
customer at the head of the orbit do a�ect the value of%(1, �).
However, %(0, �) depends on arrival rate, because the new
arrival who �nds the server idle immediately receives his
service. We obtain that

% (1, 1) = 1
 + � + 

 + �% (0, 1) + ��
 + �% (1, 1) , (14)

% (1, �) = 1
 + � + 

 + �% (0, �) + ��
 + �% (1, �)
+ ��
 + �% (1, � − 1) , � = 2, 3, . . . , (15)

% (0, 1) = 1� + � + �� + �% (1, 1) , (16)

% (0, �) = 1� + � + �� + �% (1, �) + �� + �% (1, � − 1) ,� = 2, 3, . . . . (17)

It follows from (14) and (16) that (12) and (13) hold for � = 1.
Equation (15) indicates that

% (1, �) = 1
 + �� + 

 + ��% (0, �)
+ ��
 + ��% (1, � − 1) , � = 2, 3, . . . . (18)

Inserting (17) into (18) leads to

% (1, �) − % (1, � − 1) = � + � + 
�
� , � = 2, 3, . . . . (19)

	enwe obtain (12) that holds for � ≥ 2. Substituting (12) into
(17), we obtain that

% (0, �) = � + � + 
�
� � − �
� , � = 1, 2, 3, . . . . (20)

	en by PASTA property, we have

#� = 0 ⋅ (�0 + ��1) + �∞∑
�=0
�1,�% (1, � + 1)

= �� + � + 
�
� �1,0 ∞∑
�=0
�� (� + 1)

= �� + � + 
�
� 1(1 − �)2�1,0.
(21)

	is ends the proof of 	eorem 1.

Using (4) and comparing (11) with (9), we �nd that

#� = � + � + 
� + � �(1 − �)2�1,0 × � (� + �)�
�� = ��� , (22)
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which shows that Little’s law holds for our retrial queue with
impatient customers.

Remark 2. To interpret (14)–(17), we take (15) as an example.
Let * be the length of the service time andΘ be length of the
retrial time. For%(1, �), � ≥ 2, by comparing the length of the
service time of the customer being served and the retrial time
of the customer at the head of the orbit and usingmemoryless
property of exponential distribution, we have

% (1, �) = � (* ≤ Θ) & [* + $0,� | * ≤ Θ]+ �� (* > Θ)& [Θ + $1,� | * > Θ]+ �� (* > Θ)& [Θ + $1,�−1 | * > Θ]= � (* ≤ Θ)& [* | * ≤ Θ]+ � (* > Θ)& [Θ | * > Θ]
+ � (* ≤ Θ)& [$0,�] + �� (* > Θ)& [$1,�]+ �� (* > Θ)& [$1,�−1]= & [min{*, Θ}] + � (* ≤ Θ)% (0, �)+ �� (* > Θ)% (1, �)+ �� (* > Θ)% (1, � − 1)

= 1
 + � + 

 + �% (0, �) + ��
 + �% (1, �)
+ ��
 + �% (1, � − 1) .

(23)

2.2.3. Number of Retrials. De�ne6 as the number of repeated
attempts made by a tagged customer before he departs the
system, either with his service completion or without getting
his service because of his impatience. Obviously, when, upon
arrival, the tagged customer �nds the server idle or the server
busy but the customer chooses to leave the system, then 6 =0. So we mainly focus on the case that the server is busy
when the tagged customer arrives and enters the orbit. In this
case 6 is obviously independent of the customer’s position in
the orbit. Without loss of generality, suppose that the tagged
customer is in the 1st position in the orbit. We de�ne the
following:

(i) 6	(, �): the conditional probability that the tagged
customermakes a total of � retrials, where the last one
�nds the server idle, and the rest � − 1 unsuccessful
retrials are made and the customer enters the orbit,
given that the server is at state  currently.

(ii) 6V(, �): the conditional probability that the tagged
customer makes a total of � retrials, where the last
one �nds the server busy and chooses to leave the
system, and the rest � − 1 vain retrials are made and

the customer enters the orbit, given that the server is
at state  currently.

(iii) �	: the probability that the tagged customer in the
orbit successfully accepts his service.

(iv) �V: the probability that the tagged customer in the
orbit leaves the system without getting his service
because of his impatience.

	en �	 = ∑∞�=1 6	(1, �) and �V = ∑∞�=1 6V(1, �). To �nd
the expressions of &(6), �	, and �V, we need to give the
expressions of 6	(, �) and 6V(, �), � ≥ 1. Following the
similar analysis as Section 2.2.2, we have

6	 (1, 1) = 
� + 
6	 (0, 1) ,
6	 (1, �) = 
� + 
6	 (0, �) + ��� + 
6	 (1, � − 1) ,� = 2, 3, . . . ,
6	 (0, 1) = �� + �6	 (1, 1) + �� + � ,
6	 (0, �) = �� + �6	 (1, �) , � = 2, 3, . . . ,
6V (1, 1) = 
� + 
6V (0, 1) + ��� + 
 ,
6V (1, �) = 
� + 
6V (0, �) + ��� + 
6V (1, � − 1) ,

� = 2, 3, . . . ,
6V (0, �) = �� + �6V (1, �) , � = 1, 2, 3, . . . .

(24)

Solving (24) yields

6	 (1, �) = ( (� + �) �� + � + 
)�−1 
� + � + 
 , � = 1, 2, 3, . . . ,
6V (1, �) = ( (� + �) �� + � + 
)�−1 (� + �) �� + � + 
 , � = 1, 2, 3, . . . ,

(25)

and so, we obtain the distribution of 6 as follows:

� (6 = 0) = �0 + ��1,� (6 = �) = 0 ⋅ (�0 + ��1) + ��1 (6	 (1, �) + 6V (1, �))
= ��1 
�� + � + 
 ( (� + �) �� + � + 
)�−1 ,� = 1, 2, 3, . . . ,

(26)
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which leads to

& (6) = ∞∑
�=1
�� (6 = �) = ��1 � + � + 

�

= �� (� + � + 
)(� + 
) 
� − ��
 .
(27)

From (25), �	 and �V can be expressed as

�	 = ∞∑
�=1
6	 (1, �) = 

� ,

�V = ∞∑
�=1
6V (1, �) = (� + �) �
� . (28)

Remark 3. (1) De�ne #
 as the mean sojourn time in the
system of a tagged customer and then by the PASTA property,
(10) and (12), we have

#
 = 1
�0 + 0 ⋅ ��1 + �∞∑�=0�1,� (% (1, � + 1) + 1
�	)
= #� + 1
 (�0 + ��1�	) = #� + �1� = �� + �1� , (29)

which indicates that Little’s law holds.(2) Let &[#
 | � = 1] be the conditional sojourn time in
the system of a tagged customer given that he �nds the server
busy upon his arrival and decided to enter the retrial orbit.
	en

& [#
 | � = 1] = & [#
, � = 1]� (� = 1)
= ∑∞�=0 �1,� (% (1, � + 1) + (1/
) �	)� (� = 1)
= � + � + 
�
� − �� (� + �) + 1
� .

(30)

3. Analysis of Nash Equilibrium Joining
Strategy-Unobservable Case

In this section, we aim to analyze the Nash equilibrium
joining strategy under a given reward-cost structure, which
is given in the following, because customers have the right
to decide whether to enter the orbit or not depending on the
server’s state, not on the number of customers in the orbit,
which is called unobservable case.

	e reward-cost structure considered in this paper is as
follows:

(i) R	: each customer receiving a reward ofR	 units for
completing service.

(ii) RV: each customer receiving a reward of RV units
in case that he is forced to leave the system due to a
retrial failure.

(iii) 8: a waiting cost of 8 units per time unit where a
customer remains in the system.

Assume that all customers follow a given joining strategy� and �(� + �)/�
� < 1, which implies that the retrial
queueing system in this paper is also stable because of � < 1
holding for the joining strategy �. Customers are assumed to
be risk neutral and maximize their expected net bene�t and

R	8 > 1
 (31)

which ensures that the customer who �nds the server idle will
join the system because of the positive bene�tR	 − 8/
.

First we introduce some notations about Nash equilib-
rium (see [8, 11] for details).

Assume that all customers are indistinguishable; we can
consider the situation as a symmetric game among them.
Denote the common set of strategies and the payo� function
of a symmetric game by 9 and :, respectively. More con-
cretely, let :(?tagged, ?others) be the payo� of a tagged customer
who adopts strategy ?tagged when all other customers select?others. Strategy ?� is a (symmetric) Nash equilibrium, if and
only if :(?�, ?�) ≥ :(?, ?�), ∀? ∈ 9. 	e intuitive interpretation
of a Nash equilibrium is that an equilibrium strategy is the
best response against itself, so that if all customers agree to
follow it, no one can bene�t by deviating from it. Strategy ?1
is said to dominate strategy ?2 if :(?1, ?) ≥ :(?2, ?), for every? ∈ 9 and for at least one ? the inequality is strict. Strategy ?∗
is said to be dominant if it dominates all other strategies in 9.
We should remark that the notion of a dominant strategy is
stronger than the notion of a Nash equilibrium.

For a tagged customer who �nds the server busy and
decides to join the orbit, under the given reward-cost struc-
ture, he will receive a reward R	 with probability �	 and a
reward R	 with probability �V, and he will be charged total
cost 8&[#
 | � = 1]. 	en from (28) and (30), his net bene�t
is given by9� (1, �) = �	R	 + �VRV − 8& [#
 | � = 1]

= 
R	 + (� + �) �RV
�
− 8( � + � + 
�
� − �� (� + �) + 1
�) .

(32)

	en the expected net bene�t of a tagged customer that enters
the orbit with probability �� given that the system is found
busy, when everyone else follows a strategy �, is given by9� (��, �) = ��9� (1, �) . (33)

In the following theorem, we aim to present the Nash
equilibrium joining strategy.

�eorem 4. In the unobservable retrial queue with constant
retrial times and impatient, assume that �(� + �)/�
� < 1
and R	/8 > 1/
 hold; a unique mixed Nash equilibrium
joining strategy exists: enter the retrial orbit with probability�� whenever �nding the server busy. �� is given by
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�� =
{{{{{{{{{{{{{{{{{{{{{{{

0, 1
 + (� + �) �
 RV8 < R	8 + (� + �) �
 RV8 ≤ � + � + 
�
 + 1
 ,
�∗� , � + � + 
�
 + 1
 < R	8 + (� + �) �
 RV8 < 
� (� + � + 
)
 (�
� − � (� + �)) + 1
 ,
1, R	8 + (� + �) �
 RV8 ≥ 
� (� + � + 
)
 (�
� − � (� + �)) + 1
 ,

(34)

where�∗� = �
�� (� + �)
− (
R	 + (� + �) �RV
�8 − 1
�)−1 � + � + 
� (� + �) .

(35)

Proof. From (32), we can see that the function 9�(1, �) is
strictly decreasing on the interval (0, 1). 	en the unique
maximum of 9�(1, �) is9� (1, 0) = 
R	 + (� + �) �RV
�

− 8(� + � + 
�
� + 1
�) ,
(36)

and the unique minimum is

9� (1, 1) = 
R	 + (� + �) �RV
�
− 8( � + � + 
�
� − � (� + �) + 1
�) .

(37)

	erefore, we consider the following three cases.

(i) If 1/
 + ((� + �)�/
)(RV/8) < R	/8 + ((� +�)�/
)(RV/8) ≤ (� + � + 
)/�
 + 1/
, that is,9�(1, 0) ≤ 0, which leads to 9�(1, �) ≤ 0 for any� ∈ [0, 1], the best response of the tagged customer
who �nds the server busy is balking, and the unique
equilibrium joining probability is �� = 0.

(ii) If (�+�+
)/�
+1/
 <R	/8+((�+�)�/
)(RV/8) <
�(�+�+
)/
(�
� −�(�+�))+1/
, then 9�(1, �) =0 has a unique solution in (0, 1), which is given by�∗� , which leads to 9�(1, �) > 0 for � < �∗� and9�(1, �∗� ) = 0 and 9�(1, �) < 0 for � > �∗� . So the best
response is �∗� . As a result, the joining strategy with
probability �∗� is the unique equilibrium strategy.

(iii) IfR	/8+((�+�)�/
)(RV/8) ≥ 
�(�+�+
)/
(�
�−�(� + �)) + 1/
, that is, 9�(1, 1) ≥ 0, then the net
bene�t given by (32) is always positive forR	/8+((�+�)�/
)(RV/8) > 
�(�+�+
)/
(�
�−�(�+�))+1/
;
that is, the best response for the tagged customer who
�nds the server busy is joining the retrial orbit; that
is, �� = 1.

4. Numerical Illustration

To illustrate the e�ect of some parameters on the equilibrium
joining probability ��, we give some numerical examples.

In Figures 2 and 3, we present the in�uence ofRV andR	
on �� formodel with (�, �, 
, �,R	, 8) = (2, 3, 4, 0.5, 2, 3) and(�, �, 
, �,RV, 8) = (2.5, 3, 3.5, 0.5, 2.25, 2.5), respectively.
Figures 2 and 3 show that the equilibrium joining probability�� is increasing as rewards RV and R	 increase. 	e reason
is that the higher the reward that the customers receive, the
greater the willingness that customers take to enter the orbit.

In Figures 4 and 5,we present the curves of �� versus
 and� for models with (�, �, �,R	,RV, 8) = (2.5, 3.5, 0.5, 4, 2.25,2.5) and (�, 
, �,R	,RV, 8) = (2, 0.25, 0.25, 3, 1, 2.5), respec-
tively. Customers can getmore pro�t as the service rates
 and� increase, because the mean sojourn time decreases with 

and � increasing and then customers prefer to enter the orbit,
so �� is increasing as 
 and � increase.

In Figures 6 and 7, we examine the e�ect of � and � on ��
for models with (�, 
, �,R	,RV, 8) = (2, 2, 0.5, 4, 2.25, 2.5)
and (�, 
,R	,RV, 8) = (0.5, 2, 3, 3, 0.75, 2.5), respectively.
Figures 6 and 7 indicate that �� increases with the values of� and � increasing. 	e reason is that the larger the values of� and � are, the longer the customers sojourn in the system,
and then the less pro�t the customers can get, which leads to
customers being less willing to enter the orbit.

5. Conclusions

	is paper has �rst presented the performance analysis of
an M/M/1 retrial queue with impatient customers. Second,
adopting a linear reward-cost structure, we have provided
customer Nash equilibrium strategies from an economic
viewpoint. However, we considered two di�erent types of
reward: one is the reward received by the customer who
leaves the system a�er his service completion; the other is
the reward received by the customer who is forced to leave
the system due to a retrial failure. As an extension of this
study, one can generalize the queue to the case that the server
may take Bernoulli vacation. For this generalized model, one
could study the observable and unobservable cases.
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