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Abstract In this paper, we have developed a mathematical
model of alcohol abuse which consists of four compartments
corresponding to four population classes, namely, moderate
andoccasional drinkers, heavydrinkers, drinkers in treatment
and temporarily recovered class. We have discussed about
basic properties of the system. Sensitivity analysis of the
system is also discussed. Next, Basic reproduction number
(R0) is calculated. The stability analysis of the model shows
that the system is locally asymptotically stable at disease free
equilibrium E0 when R0 < 1. When R0 > 1, endemic equi-
librium E∗ exists and the system becomes locally asymptot-
ically stable at E∗ and E0 becomes unstable. We have also
discussed the global stability of the system at E0. It is also
found that a backward bifurcationmay occur at R0 = 1. Next
we have discussed the drinking epidemic model with treat-
ment control. An objective functional is considered which is
based on a combination of minimizing the number of heavy
drinkers and the cost of treatment. Then an optimal control
is obtained which minimizes the objective functional. Our
numerical findings are illustrated through computer simu-
lations using MATLAB, which show the reliability of our
model from the practical point of view. Epidemiological
implications of our analytical findings are addressed criti-
cally.
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1 Introduction

Nowadays alcoholism has become an epidemic disease.
Alcoholism is generally used tomean compulsive and uncon-
trolled consumption of alcoholic beveragewhich affects their
work, health, education and social life. Alcohol abuse and
alcoholism are two different forms of problems of drinking.
Alcohol abuse is when alcohol drinking leads problems, but
not physical addiction. On the other hand alcoholism is when
one has signs of physical addiction to alcohol and contin-
ues to drink, despite problems with physical health, mental
health, family or job responsibilities. In fact alcoholism is a
long term effect of alcohol abuse. Alcohol abuse and alco-
holism can affect all aspects of our life. Long-term alcohol
use can cause serious health complications, damaging nearly
every organ and system in the body including our brain. The
World Health Organization (WHO) estimates that alcohol
is supposed to cause about 60 types of diseases and injury
like 20–30% of esophageal cancer, liver cancer, cirrhosis
of the liver, homicide, epileptic seizures and motor vehicle
accidentsworldwide. Drinking alcohol during pregnancy can
cause an array of physical andmental birth defects and it is the
leading preventable cause ofmental retardation in children all
over the world. The National Institute on Alcohol Abuse and
Alcoholism estimates that 18 million Americans suffer from
alcohol abuse, specially most beginning by their mid teens.
Serious drinking often starts in adolescence; approximately
40% of alcoholics develop their first symptoms between 15
and 19 years of age [1]. Over-consumption of alcohol is now
the third leading cause of death all over the world. Alcohol
related problems cost so much that it affects the economic
structure of the countries [2,3].

Individuals who wish to overcome an alcohol abuse prob-
lem can enter into the treatment programmes. Completely
stopping the use of alcohol is the ideal goal of treatment.
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This is called abstinence. Completely stopping or avoiding
alcohol is difficult for many people with alcoholism. Most of
them seek outside help from treatment centers and therapy
sessions. These programmes usually offer counselling and
therapy to discuss alcoholism and its effects, mental health
support, medical care etc. There are two major forms of
intervention policy of alcohol abuse: (i) prevention initiation
into alcohol abuse and (ii) rehabilitation of alcohol abusers.
Among the many problems confronting these programmes,
themost important is the very high rates of relapse after treat-
ment. The National Institute on Alcohol Abuse and Alco-
holism estimates that up to 70% of treated alcohol abusers
relapse after treatment which is indeed a big problem. There-
fore prevention and control efforts that include treatment and
education programmes should be improved so that the rate
of relapse from treatment can be reduced.

It is obvious that alcohol abuse and alcoholism not only
causes health problems but also has great social and eco-
nomic impacts on the countries. Therefore, it is very impor-
tant to understand the dynamics of alcoholism spread among
the populations and identify the parameters of greater impor-
tance which will help the policy-makers in targeting pre-
vention and treatment resources for maximum effectiveness.
Although drinking is a problem of significant public health
importance, not much has been analyzed in terms of using
mathematical modelling to gain insight into its transmission
dynamics at population level. Most of the existing works on
alcohol abuse and alcoholism are of clinical aspects. Math-
ematical studies can be effective as it guides to the evalua-
tion, testing and implementation of strategies over short or
long time scales for chronic relapsing diseases such as alco-
hol addiction, drug abuse etc. There are many mathematical
models for epidemic diseases like HIV [4–9], SARS [10],
gonorrhea [11,12], dengue [13], cancer [14–16], Chlamydia
[17], HFMD [18–21] etc. But the mathematical models on
alcohol and drug abuse are very small in number though they
have been referred to in terms of epidemics. There are some
research works on drug abuse [22–26]. There is a very inter-
esting model on alcohol abuse proposed by Sánchez et al.
[27]. In this model the total population is divided into three
classes, namely susceptible, alcoholics and alcoholics under-
going treatment. This model has generated useful insights
about the role of basic reproduction number on the trans-
mission dynamics of alcoholism. In this model author con-
sidered a three compartment drinking epidemic model. The
population is divided into three classes, namely, moderate
and occasional drinkers susceptible to drinking epidemic),
heavy drinkers and recovered population. The model is a
simple model which does not incorporate the relapse from
recovered class to susceptible class, which is very unrealistic.
The author did not introduce any treatment or intervention
policy in this model. There must be an additional death rate
for the heavy drinkers. But the authors did not introduce any

additional drinking related death rate in this model, which is
not realistic. A similar kind of work was done byMulone and
Straughan [23]. But in this paper also no treatment is intro-
duced. As drinking is a chronic relapsing disease, the relapse
of drinkers from treatment should be considered to make the
work more realistic, which is missing in [23]. There are also
some recent research works on this field [28–31].

To overcome those limitations we have developed an alco-
hol abuse model by introducing a treatment programme in
the population and considered all possible relapses. We have
divided the population into four classes, namely, moderate
andoccasional drinkers, heavydrinkers, drinkers in treatment
and temporarily recovered class. Introduction of treatment in
the system makes more realistic and significant biologically,
which was missing in the previous works [23,27]. Next we
have found the basic reproduction number R0 [32]. We have
also considered drinking related additional death rate. Sen-
sitivity analysis of R0 identifies the most useful parameters
of the model. Then the stability analysis of the model is dis-
cussed using the basic reproduction number. It is observed
that the model is locally asymptotically stable at the disease
free equilibrium (DFE) E0 when R0 < 1. The system can
undergo a backward bifurcation at R0 = 1 considering R0 as
bifurcation parameter. When R0 > 1, endemic equilibrium
E∗ exists and becomes stable and theDFE becomes unstable.
We have also found the conditions of global asymptotic sta-
bility of E0. It is obvious that alcohol abuse and alcoholism
are not only public health problems but also has great social
and economic impacts on the countries. So, it is a burning
issue to control the spread of this disease by choosing optimal
control strategy. From this aspect we have discussed optimal
control problem relative to the alcohol abuse epidemicmodel
tominimize the heavy drinkers aswell as tominimize the cost
of treatment. This kind of analysis was not discussed in any
previous works [23,27]. We have considered treatment rate
as a function of time and it is representing treatment control in
the drinkingmodel. This part of our research can help policy-
makers and researchers to identify the parameters of greater
interest and tomake an optimal control strategy to control the
epidemic. Next we have illustrated the key findings through
numerical simulations using MATLAB followed by discus-
sions and conclusions. Our comparative diagrams of controls
help us to understand the effectiveness of controls to reduce
the spread of alcohol abuse.

2 Mathematical model

In this section we have developed a mathematical model of
alcohol abuse. In this model the adult human population is
divided into four different classes, namely, moderate and
occasional drinkers, heavy drinkers, drinkers in treatment
and temporarily recovered class.
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Fig. 1 Flow diagram of the alcohol abuse model

Figure 1 represents the flow of individuals from one class
to the other.

The model can be presented by the following set of ordi-
nary differential equations:

dS

dt
= � − β1S(t)D(t) − μS(t) + ηR(t)

dD

dt
= β1S(t)D(t) + β2T (t)D(t) − (μ + δ1 + γ )D(t)

dT

dt
= γ D(t) − β2T (t)D(t) − (μ + δ2 + σ)T (t)

dR

dt
= σT (t) − (μ + η)R(t) (2.1)

with initial densities

S(0) > 0, D(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0. (2.2)

Here S(t), D(t), T (t) and R(t) represent the numbers of
moderate and occasional drinkers (susceptible to drinking
epidemic), heavy drinkers, drinkers in treatment and tem-
porarily recovered class respectively at time t. So, N (t) =
S(t)+ D(t)+ T (t)+ R(t) denotes the total number of high-
risk human population at time t.

The model parameters are described below:

�: Recruitment rate of moderate and occasional drinkers,
β1: The transmission coefficient from moderate and occa-

sional drinkers to heavy drinkers,
β2: The transmission coefficient from drinkers in treatment

to heavy drinkers,
μ: Natural death rate of each population class,
δ1: Drinking related death rate of heavy drinkers,
δ2: Drinking related death rate of drinkers in treatment,
γ : The proportion of drinkers who enter in treatment,
σ : Recovery rate of drinkers in treatment,
η: Theproportionof recovered classwho re-enter intomod-

erate and occasional drinkers class.

Clearly the model involves the following assumptions:

(i) All members of the population mix homogeneously.
This means that each individual has an equal chance
of becoming a heavy drinker.

(ii) The heavy drinking is passed to moderate and occa-
sional drinkers by adequate contact with heavy drinkers
not in treatment.

(iii) Heavy drinkers not in treatment are infectious tomoder-
ate and occasional drinkers and to drinkers in treatment.

(iv) Drinkers in treatment are not infectious to moderate and
occasional drinkers.

(v) The drinkers in treatment most commonly relapse due
to contact with heavy drinkers who are not in treatment.

(vi) Those who stop drinking alcohol enter into the tem-
porarily recovered class and one part of which relapse
to the moderate and occasional drinkers’ class.

3 Basic properties

3.1 Non-negativity of solutions

Theorem 3.1 Every solution of system (2.1)with initial con-
ditions (2.2) exists in the interval [0,∞) and S(t) > 0,
D(t) ≥ 0, T (t) ≥ 0, R(t) ≥ 0, for all t ≥ 0.

Proof Since the right hand side of system (2.1) is completely
continuous and locally Lipschitzian on C (space of continu-
ous functions), the solution (S(t), D(t), T (t), R(t)) of (2.1)
with initial conditions (2.2) exists and is unique on [0, ξ),

where 0 < ξ ≤ +∞. From the second equation of (2.1), we
have

D(t) = D(0) exp

[∫ t

0
{β1S(s) + β2T (s)

− (μ + δ1 + γ )}ds
]

≥ 0

From the third equation of (2.1), we have

dT

dt
≥ − [β2D(t) + (μ + δ2 + σ)] T (t) [∵ D(t) ≥ 0]

⇒ T (t) ≥ T (0) exp

[
−

{
(μ + δ2 + σ)t

+
∫ t

0
β2D(s)ds

}]
≥ 0.

Similarly, from the forth equation of (2.1), we have

dR

dt
≥ −(μ + η)R(t) [∵ T (t) ≥ 0]
⇒ R(t) ≥ R(0) exp [−(μ + η)t] ≥ 0.

Finally, it follows from the first equation of the system (2.1)
that,
dS

dt
≥ � − [β1D(t) + μ] S(t) [∵ R(t) ≥ 0].
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We thus have,

d

dt

[
S(t) exp

{
μt +

∫ t

0
β1D(s)ds

}]

≥ � exp

{
μt +

∫ t

0
β1D(s)ds

}
.

Hence

S(t) exp

{
μt +

∫ t

0
β1D(s)ds

}
− S(0)

≥
∫ t

0
� exp

{
μt +

∫ t

0
β1D(s)ds

}
dt,

so that

S(t) ≥ S(0) exp

[
−

{
μt +

∫ t

0
β1D(s)ds

}]

+
[
exp

{
−

(
μt +

∫ t

0
β1D(s)ds

)}]

×
[∫ t

0
� exp

{
μt +

∫ t

0
β1D(s)ds

}
dt

]
> 0.

∴ S(t) > 0, D(t) ≥ 0, T (t) ≥ 0, R(t) ≥ 0, ∀t ≥ 0.
This completes the proof. �	

3.2 Invariant region

Theorem 3.2 The feasible region G defined by

G =
{
(S(t), D(t), T (t), R(t)) ∈ R

4+: 0 < N ≤ �

μ

}

with initial conditions S(0) > 0, D(0) ≥ 0, T (0) ≥ 0,
R(0) ≥ 0, is positively invariant.

Proof Adding the equations of the system (2.1) we obtain

dN

dt
= � − μN − δ1D(t) − δ2T (t)

≤ � − μN [∵ D(t) ≥ 0 and T (t) ≥ 0] (3.1)

The solution N (t) of the differential equation (3.1) has the
following property,

0 < N (t) ≤ N (0)e−μt + �

μ
(1 − e−μt )

where N (0) represents the sum of the initial values of the
variables. As t → ∞, 0 < N ≤ �

μ
. So, if N (0) ≤ �

μ
,

then limt→∞ N (t) ≤ �
μ

. This means that �
μ

is the upper

bound of N . On the other hand, if N (0) > �
μ
, then N (t) will

decrease to �
μ

.Thismeans that if N (0) > �
μ
, then the solution

(S(t), D(t), T (t), R(t)) enters G or approach it asymptoti-
cally. Hence it is positively invariant under the flow induced
by the system (2.1). Thus inG, the model (2.1) is well-posed
epidemiologically and mathematically. Hence it is sufficient
to study the dynamics of the model in G. �	

4 The basic reproduction number R0

Basic reproduction number R0 [32] for drinking epidemic
model is defined as the number of heavy drinkers produced
when a single heavy drinker is introduced into moderate and
occasional drinkers’ population, i.e.,

R0 = (effective contact rate) · (duration of heavy drinkers

spend in the drinking class).

In the presentmodel (2.1), �β1
μ

is the effective contact rate and
(μ + δ1 + γ ) is the removal rate of the heavy drinkers from
drinking class. By assumption all rates are constant. This
means that the expected duration of heavy drinkers spend in
the drinking class is simply the inverse of the removal rate,
i.e., 1

(μ+δ1+γ )
Therefore, the basic reproduction number of

system (2.1) is given by

R0 = �β1

μ(μ + δ1 + γ )
. (4.1)

5 Sensitivity analysis of R0

The basic reproduction number (R0) of system (2.1) depends
on four parameters, namely, the transmission coefficient from
moderate and occasional drinkers to heavy drinkers (β1),

drinking related death rate of heavy drinkers (δ1), the pro-
portion of drinkers who enter into treatment (γ ) and the nat-
ural death rate of population (μ). Among those parameters,
we can not control the natural death rate of population (μ).

Therefore, to examine the sensitivity of R0 to the parame-
ters β1, δ1 and γ, normalized forward sensitivity index with
respect to each of those parameters are computed as follows:

Aβ1 =
∂R0
R0
∂β1
β1

= β1

R0

∂R0

∂β1

= β1

{
μ(μ + δ1 + γ )

�β1

} {
�

μ(μ + δ1 + γ )

}
= 1,

Aδ1 =
∂R0
R0
∂δ1
δ1

= δ1

R0

∂R0

∂δ1
= −δ1

μ + δ1 + γ
⇒ |Aδ1 | < 1,

Aγ =
∂R0
R0
∂γ
γ

= γ

R0

∂R0

∂γ
= −γ

μ + δ1 + γ
⇒ |Aγ | < 1. (5.1)

From the above discussion it is clear that the basic repro-
duction number (R0) is most sensitive to changes in β1,

the transmission coefficient from moderate and occasional
drinkers to heavy drinkers. Ifβ1 will increase R0 will increase
in same proportion and if β1 will decrease R0 will also
decrease in same proportion. On the other hand, δ1 and γ

have an inversely proportional relationship with R0, i.e., an
increase in any of them will cause a decrease in R0 and a
decrease in any of them will cause an increase in R0. But the
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increase in δ1, the drinking related death rate of the heavy
drinkers not in treatment, is neither ethical nor practical. So,
it is better to focus either on β1,the transmission rate from
moderate and occasional drinker to heavy drinker or γ , the
proportion of drinkers who enter into treatment. As R0 is
more sensitive to changes in β1 than γ , it seems sensible to
focus on the reduction ofβ1 to control the alcohol abuse. This
sensitivity analysis tells us that efforts to increase prevention
are more effective in controlling the spread of alcohol abuse
in population than efforts to increase the numbers of heavy
drinkers accessing treatment.

6 Equilibrium points: their existence and stability

In this sectionwewill study the existence and stability behav-
iour of the system (2.1) at equilibrium points. The equilib-
rium points of the model system (2.1) are:

1. Drinking free equilibrium: E0(
�
μ

, 0, 0, 0),
2. Endemic equilibrium: E∗(S∗, D∗, T ∗, R∗),

We use the term “drinking free equilibrium” to describe the
state where a drinking culture does not exist as we have
considered moderate and occasional drinkers as susceptible
to drinking epidemic. On the other hand, “endemic equilib-
rium” stands for the state where a drinking culture exists.

6.1 Existence of endemic equilibrium E∗(S∗, D∗, T ∗, R∗)

In this section, we analyze the existence of non-trivial
endemic equilibrium of system (2.1). At an endemic equi-
librium, disease is present and the followings hold:

S > 0, D > 0, T > 0, R > 0,
dS

dt
= dD

dt
= dT

dt
= dR

dt
= 0.

Solving the equations of system (2.1) at equilibrium state we
get,

S∗ = (μ + δ1) (β2D∗ + μ + δ2 + σ) + γ (μ + δ2 + σ)

β1 (β2D∗ + μ + δ2 + σ)
,

T ∗ = γ D∗

β2D∗ + μ + δ2 + σ
,

R∗ = σγ D∗

(μ + η) (β2D∗ + μ + δ2 + σ)
,

Now, putting the values of S∗, R∗ into the second equation
of (2.1) and simplifying we obtain,

a1(D
∗)2 + a2D

∗ + a3 = 0, (6.1)

where

a1 = −(μ + η)(μ + δ1)β1β2,

a2 = �β1(μ + η)β2 − {β1(μ + δ2 + σ)

+β2μ}(μ + η)(μ + δ1)

− γ (μ + η)(μ + δ2 + σ)β1 + β1ησγ,

a3 = (μ + η)(μ + δ2 + σ){�β1 − μ(μ + δ1 + γ )}
= μ(μ + η)(μ + δ2 + σ)

×(μ + δ1 + γ )

[
�β1

μ(μ + δ1 + γ )
− 1

]

= μ(μ + η)(μ + δ2 + σ)(μ + δ1 + γ )[R0 − 1]
Obviously a1 is always negative and a3 is positive if R0 > 1
and negative if R0 < 1. By applying the Descartes’ rule of
signs, we get the following observations:

(i) if R0 > 1, i.e., a3 > 0, one positive equilibria exists,
whatever is the sign of a2.

(ii) If R0 < 1, i.e., a3 < 0 with a2 < 0, then the system has
no positive equilibrium.

(iii) If R0 < 1, i.e., a3 < 0 with a2 > 0, then we get two
or no positive equilibrium, which may provide the back-
ward bifurcation scenario, i.e., in the neighbourhood of
1, for R0 < 1 a stable drinking free equilibrium coexists
with two endemic equilibria: a smaller endemic equilib-
rium (with a smaller number of heavy drinkers) which is
unstable and a large endemic equilibrium (with a large
number of heavy drinkers) which is stable.

Summarizing the previous discussions we come to the fol-
lowing result:

Theorem 6.1 The system (2.1) has a drinking free equilib-

rium E0

(
�
μ

, 0, 0, 0
)

, which exists for all parameter values.

If R0 > 1, the system (2.1) also admits a unique endemic
equilibrium E∗(S∗, D∗, T ∗R∗). If R0 < 1 with a2 < 0 in
(6.1), then the system has no endemic equilibrium. If R0 < 1
with a2 > 0 in (6.1) then we get two or no positive equilib-
rium, which may provide the backward bifurcation scenario.

Observation If we take β2 = 0, then

a1 = 0,

a2 = −β1(μ + η)(μ + δ1)(μ + δ2 + σ)

− γβ1{μ(μ + δ2 + σ) + η(μ + δ2)} < 0,

a3 = μ(μ + η)(μ + δ2 + σ)(μ + δ1 + γ )(R0 − 1).

Then Eq. (6.1) becomes,

a2D
∗ + a3 = 0 (6.2)

Therefore, there exists only one root of the above equation,
which is given by
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D∗ = −a3
a2

.

Here, a2 is always negative and a3 > 0 if R0 > 1 and a3 < 0
if R0 < 1. Therefore, if R0 > 1 then the above equation has
an unique positive root D∗.When R0 < 1 there is no positive
root of (6.2). This implies that there is a unique endemic
equilibriumpoint of the system (2.1)whenβ2 = 0with R0 >

1. Therefore in this case there is no existence of backward
bifurcation as there is a unique endemic equilibrium of the
system (2.1) when β2 = 0 with R0 > 1.

Therefore, we can conclude that the backward bifurcation
occurs because of the insufficient capacity for treatment poli-
cies. As a result the drinkers in treatment come to the direct
contact of heavy drinkers and they re-enter into the heavy
drinkers class.

6.2 Local stability of drinking free equilibrium E0

In this section we will study the local stability of the system
(2.1) at drinking free equilibrium E0(

�
μ

, 0, 0, 0).

The variational matrix of system (2.1) at E0(
�
μ

, 0, 0, 0) is
given by

V (E0)

=

⎡
⎢⎢⎢⎣

−μ −β1
�
μ 0 η

0 β1
�
μ − (μ + δ1 + γ ) 0 0

0 γ −(μ + δ2 + σ) 0
0 0 σ −(μ + η)

⎤
⎥⎥⎥⎦

Therefore, eigenvalues of the characteristic equation of
V (E0) are

λ1 = −μ, λ2 = β1
�

μ
− (μ + δ1 + γ ),

λ3 = −(μ + σ + δ2), λ4 = −(μ + η).

Here, λ1, λ3 and λ4 are clearly real and negative. Now, E0 is
stable if λ2 < 0 i.e.,β1

�
μ

− (μ + δ1 + γ ) < 0, i.e., R0 < 1.
Therefore the system (2.1) is local asymptotically stability
at E0(

�
μ

, 0, 0, 0) if R0 < 1. So, we arrive to the following
result:

Theorem 6.2 The drinking free equilibrium E0 of the model
system (2.1) is locally asymptotically stable if R0 < 1.

6.3 Global stability analysis of drinking free equilibrium E0

In this section we shall discuss about the global stability of
the drinking free equilibrium E0 when R0 < 1. We consider
the Lyapunov function as follows:

L1(D, T, R) = σD + σT + (μ + δ2 + σ)R.

The derivative of L1(D, T, R) with respect to t gives

dL1

dt
= σ [β1SD + β2T D − (μ + δ1 + γ )D]

+ σ [γ D − β2T D − (μ + δ2 + σ)T ]
+ (μ + δ2 + σ)[σT − (μ + η)R]

≤ σβ1SD − σ(μ + δ1)D

≤ σ

[
β1

�

μ
− (μ + δ1)

]
D

Now, dL1
dt < 0 if β1

�
μ

< μ + δ1.

Furthermore dL1
dt = 0 if and only if D = 0. Therefore, the

largest compact invariant set in {(S, D, T, R) ∈ �: dL1
dt =

0}, when β1
�
μ

< μ + δ1, is the singleton {E0}. LaSalle’s
invariance principle [33] implies that E0 is globally asymp-
totically stable in � when β1

�
μ

< μ + δ1 (which implies
R0 < 1). So, we arrive to the following result:

Theorem 6.3 If β1
�
μ

< μ + δ1 then the drinking free equi-
librium (DFE) E0 of model system (2.1) is globally asymp-
totically stable.

6.4 Bifurcation analysis at R0 = 1

In this section, we discuss the stability of endemic equilib-
rium (E∗) and investigate the possibility of occurring back-
ward bifurcation [13,32,34–37] due to existence of multi-
ple equilibrium. There may exist two distinct bifurcations at
R0 = 1: (i) forward (supercritical) bifurcation and (ii) back-
ward (subcritical) bifurcation [26,34,35,37,38]. A forward
bifurcation happens when R0 crosses unity from below. Then
a small positive asymptotically stable endemic equilibrium
(E∗) appears and the disease-free equilibrium (E0) losses
its stability. On the other hand, in backward bifurcation sce-
nario, in the neighbourhood of 1 when R0 is less than unity, a
positive unstable endemic equilibrium (E1) appears while a
drinking-free equilibrium (E0) and another positive endemic
equilibrium (E∗) are locally asymptotically stable. These
two endemic equilibria disappear by saddle-node bifurcation
when the basic reproduction number R0 is decreased below
the critical value Rc

0 < 1. It means that, though the necessary
and sufficient condition for disease or drinking eradication
is R0 < 1, it is no longer sufficient when a backward bifur-
cation occurs.

To analyze it for the system (2.1), we use the center
manifold theory [39]. To implement this method, we first
change the variables of the model equations (2.1) so that
S = x1, D = x2, T = x3, R = x4 with dx1

dt = f1,
dx2
dt =

f2,
dx3
dt = f3,

dx4
dt = f4.
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Thus system (1) becomes:

f1 = � − β1x1x2 − μx1 + ηx4

f2 = β1x1x2 + β2x3x2 − (μ + δ1 + γ )x2

f3 = γ x2 − β2x3x2 − (μ + δ2 + σ)x3

f4 = σ x3 − (μ + η)x4 (6.3)

We choose β∗
1 = β1 as the bifurcation parameter, par-

ticularly as it has been shown in Eq. (5.1) that R0 is more
sensitive to change in β1 than in its other parameters. If we
consider R0 = 1, then we obtain,

β∗
1 = μ(μ + δ1 + γ )

�
. (6.4)

Now, the Jacobian of the linearized system (6.3) using iden-
tity (6.4) at drinking free equilibrium E0 when β∗

1 = β1 is
given by,

J
(
β∗
1

) =

⎡
⎢⎢⎣

−μ −β∗
1

�
μ

0 η

0 0 0 0
0 η −(μ + δ2 + σ) 0
0 0 σ −(μ + η)

⎤
⎥⎥⎦

(6.5)

The matrix (6.5) has eigenvalues (0,−μ,−(μ + δ2 + σ),

−(μ + η))T , which meets the requirement of simple zero
eigenvalue and the others having negative real parts. We
can thus use the center manifold theory [39] to analyze the
dynamics of system (6.3). The right eigenvector associated
with zero eigenvalue is given by, ω = (ω1, ω2, ω3, ω4)

T ,

where

ω1 = 1

μ

{
η − �β∗

1 (μ + δ2 + σ)(μ + η)

μγσ

}
ω4

ω2 = (μ + δ2 + σ)(μ + η)

γ σ
ω4

ω3 = (μ + η)

σ
ω4

ω4 = 1

with ω4 free. Further, J (β∗
1 ) has a corresponding left eigen

vector ν = (ν1, ν2, ν3, ν4), where

ν1 = 0

ν2 = σγ

(μ + δ2 + σ)(μ + η)

ν3 = 0

ν4 = 0.

The value of ν2 is chosen so that ν.ω = 1. In order to establish
the local stability of E∗, we use the following theorem.

Theorem 6.4 [40] Consider the following general system of
ordinary differential equations with a parameter ϕ,

dx

dt
= f (x, ϕ), f : Rn × R→R and f ∈ C2(Rn × R),

(6.6)

where 0 is an equilibrium of the system that is f (0, ϕ) =
0, ∀ϕ and assume:

A1. A = Dx f (0, 0) = (
∂ fi
∂x j

(0, 0)) is linearization matrix

of the system (6.6) around the equilibrium 0 with ϕ

evaluated at 0. Zero is a simple eigenvalue of A and all
other eigenvalues of A have negative real parts;

A2. Matrix A has a right eigenvector u and a left eigenvector
ν corresponding to the zero eigenvalue.

Let fk be the k-th component of f and

a =
n∑

k,i, j=1

νkui u j
∂2 fk

∂xi∂x j
(0, 0),

b =
n∑

k, j=1

νkui
∂2 fk
∂xi∂ϕ

(0, 0). (6.7)

The local dynamics of (6.6) around 0 are totally governed
by a and b.

(i) a, b > 0. When ϕ < 0 with | ϕ |� 1, 0 is locally
asymptotically stable, and there exists a positive unsta-
ble equilibrium; when 0 < ϕ � 1, 0 is unstable and
there exists a negative and locally asymptotically stable
equilibrium.

(ii) a < 0, b < 0.When ϕ < 0with | ϕ |� 1, 0 is unstable;
when 0 < ϕ � 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium.

(iii) a > 0, b < 0. When ϕ < 0 with | ϕ |� 1, 0 is unstable,
and there exists a locally asymptotically stable negative
equilibrium;when0 < ϕ � 1, 0 is stable, andapositive
unstable equilibrium appears.

(iv) a < 0, b > 0. When ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable. Cor-
respondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

Now, we calculate the values of a and b to apply the Theo-
rem 6.4.

In particular, since ν1 = ν3 = ν4 = 0,

a = ν2

4∑
i, j=1

ωiω j
∂2 f2

∂xi∂x j
(0, 0)

and b = ν2

4∑
i=1

ωi
∂2 f2

∂xi∂β1
(0, 0)

For the system (6.3), the associated non-zero partial deriva-
tives at the drinking free equilibrium are given by:
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∂2 f2
∂x1∂x2

= ∂2 f2
∂x2∂x1

= μ(μ + δ1 + γ )

�
,

∂2 f2
∂x2∂x3

= ∂2 f2
∂x3∂x2

= β2,

∂2 f2
∂x2∂β1

= �

μ
.

It thus follows that,

a = 2ν2ω2

�σγ
(X − �), (6.8)

where

X = γ {ησ(μ + δ1 + γ ) + �β2(μ + η)}, (6.9)

� = (μ + η)(μ + δ1 + γ )2(μ + δ2 + σ), (6.10)

and b = ν2ω2
�

μ
> 0. (6.11)

Hence the sign of a depends on the values of X and �, i.e.,
if X > �, then a > 0 and if X < �, then a < 0 while b > 0
always. Thus, we have the following result:

Theorem 6.5 If X > �, then the system (2.1) has a back-
ward bifurcation at R0 = 1, otherwise if X < �, then it
undergoes forward bifurcation and the endemic equilibrium
is locally asymptotically stable for R0 > 1, but close to one.

7 Epidemic model with control

In the context of mathematical modelling in epidemiology,
it is essential to frame an optimal control problem so that the
total amount of drug is minimized. We have considered the
epidemic model (2.1). We now let treatment rate be given
as a function of time by u(t). So, u(t) is the rate of heavy
drinkers entering in the treatment per unit time at t. Thus
u is representing treatment control in the drinking model.
Therefore our epidemic model with this treatment control
becomes:

dS

dt
= � − β1S(t)D(t) − μS(t) + ηR(t)

dD

dt
= β1S(t)D(t) + β2T (t)D(t)

− (μ + δ1)D(t) − u(t)D(t)
dT

dt
= u(t)D(t) − β2T (t)D(t) − (μ + δ2 + σ)T (t)

dR

dt
= σT (t) − (μ + η)R(t) (7.1)

satisfying

S(0) = S̄0, D(0) = D̄0, T (0) = T̄0, R(0) = R̄0. (7.2)

The objective functional [41–44] is defined as

J (u(t)) =
∫ t f

0

[
B1D + 1

2
B2u

2
]
dt (7.3)

where B1, B2 are positive constants to keep a balance in the
size of the terms. The square of the control variable reflects
the severity of the side-effects of the treatment. Our aim is
to minimize the objective functional or cost function J (u(t))
given in (7.3) so that the heavy drinkers as well as the cost of
treatment can be minimized. So, we seek an optimal control
u∗ such that

J (u∗) = min{J (u): u ∈ U }, (7.4)

where U = {u: u is measurable, 0 ≤ u ≤ 1, t ∈ [0, t f ], } is
the admissible control set.

7.1 Existence of an optimal control

Lemma 7.1 Every solution of system (7.1)with initial condi-
tions (7.2) exists in the interval [0,∞) and S(t) > 0, D(t) ≥
0, T (t) ≥ 0, R(t) ≥ 0, for all t ≥ 0.

Proof Since the right hand side of system (7.1) is com-
pletely continuous and locally Lipschitzian onC , the solution
(S(t), D(t), T (t), R(t)) of (7.1) with initial conditions (7.2)
exists and is unique on [0, ξ), where 0 < ξ ≤ +∞. From
the second equation of (7.1), we have

D(t) = D(0) exp

[∫ t

0
{β1S(s) + β2T (s)

− (μ + δ1 + u(s))}ds
]

≥ 0

From the third equation of (7.1), we have

dT

dt
≥ − [β2D(t) + (μ + δ2 + σ)] T (t)

[∵ D(t) ≥ 0 and 0 ≤ u ≤ 1]
⇒ T (t)≥T (0) exp

[
−

{
(μ + δ2+σ)t +

∫ t

0
β2D(s)ds

}]
≥0.

Similarly, from the forth equation of (7.1), we have

dR

dt
≥ −(μ + η)R(t) [∵ T (t) ≥ 0]
⇒ R(t) ≥ R(0) exp [−(μ + η)t] ≥ 0.

Finally, it follows from the first equation of the system (7.1)
that,

dS

dt
≥ � − [β1D(t) + μ] S(t) [∵ R(t) ≥ 0].

We thus have,

S(t) ≥ S(0) exp

[
−

{
μt +

∫ t

0
β1D(s)ds

}]

+
[
exp

{
−

(
μt +

∫ t

0
β1D(s)ds

)}]

×
[∫ t

0
� exp

{
μt +

∫ t

0
β1D(s)ds

}
dt

]
> 0.
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Similarly, therefore, we can see that S(t) > 0, D(t) ≥
0, T (t) ≥ 0, R(t) ≥ 0, ∀t ≥ 0. This completes the proof.

�	
Lemma 7.2 The feasible region G defined by

G =
{
(S(t), D(t), T (t), R(t)) ∈ R

4+: 0 < N ≤ �

μ

}

with initial conditions S(0) > 0, D(0) ≥ 0, T (0) ≥
0, R(0) ≥ 0, is positively invariant.

Proof Adding the equations of the system (7.1) we obtain

dN

dt
= � − μN − δ1D(t) − δ2T (t)

≤ � − μN [∵ D(t) ≥ 0 and T (t) ≥ 0] (7.5)

The solution N (t) of the differential equation (7.5) has the
following property,

0 < N (t) ≤ N (0)e−μt + �

μ
(1 − e−μt )

where N (0) represents the sum of the initial values of the
variables. As t → ∞, 0 < N ≤ �

μ
. So, if N (0) ≤ �

μ
,

then limt→∞ N (t) ≤ �
μ

. This means that �
μ

is the upper

bound of N . On the other hand, if N (0) > �
μ
, then N (t)

will decrease to �
μ

. This means that if N (0) > �
μ
, then the

solution (S(t), D(t), T (t), R(t)) enters G1 or approach it
asymptotically, where

G1 =
{
(S(t), D(t), T (t), R(t)) ∈ R

4+: 0 < N ≤ �

μ

}
.

Hence it is positively invariant under the flow induced by the
system (7.1). Thus in G1, the model (7.1) is bounded and
well-posed epidemiologically and mathematically.

Theorem 7.1 Given the objective functional

J (u(t)) =
∫ t f

0

[
B1D + 1

2
B2u

2
]
dt,

where U = {u: u is measurable, 0 ≤ u ≤ 1, t ∈ [0, t f ], }
subject to the system (7.1) with (7.2), then there exists an
optimal control u∗ such that J (u∗) = min{J (u): u ∈ U }, if
the following conditions are satisfied:

1. The class of all initial conditions with a control u(t) in
the admissible control set along with each state equation
being satisfied is not empty.

2. The admissible control set U is closed and convex.
3. Each right hand side of the state system (7.1) is continu-

ous and is bounded above by a sumof the bounded control
and the state and can be written as a linear function of u
with coefficients depending on time and the state.

4. The integrand of J (u) is convex on U and is bounded
below by c1u2 − c2 with c1, c2 > 0.

Proof In order to verify the first condition, we use a result by
Lukes [45, Theorem 9.2.1] for the system (7.1) with bounded
coefficients. The control set U is convex and closed by defi-
nition, which gives the condition 2.

Therefore, the right hand side of the state system (7.1)
satisfies condition 3 as the state solutions are a priori bounded
(see Lemmas 7.1 and 7.2).

For the fourth condition we need to show:

g((1 − p)u + pv) ≤ (1 − p)g(u) + pg(v),

where g(x) = B1D + 1
2 B2x2. Now,

g((1 − p)u + pv) − [(1 − p)g(u) + pg(v)]
= B1D(t) + B2

2

{
(1 − p)u + pv}2 − [(1 − p){B1D(t)

+ B2

2
u2

}
+ p

{
B1D(t) + B2

2
v2

}]

= B2

2
(p2 − p)(u − v)2

Since p ∈ (0, 1) implies (p2 − p) ≤ 0 and (u − v)2 > 0,
the expression B2

2 (p2 − p)(u − v)2 ≤ 0, which implies that

g((1 − p)u + pv) ≤ (1 − p)g(u) + pg(v).

Lastly,

B1D(t)+ 1

2
B2u

2(t)≥ B2

2
u2(t)≥B2

2
u2(t)−c2≥c1u

2(t)−c2,

which gives c1u2(t)− c2 as a lower bound of g(u), for some
c1 > 0, c2 > 0.

Therefore, we can conclude that there exists an optimal
control u∗ such that

J (u∗) = min{J (u): u ∈ U }.
�	

7.2 Characterization of the optimal control pair

In order to derive the necessary conditions for the optimal
control pair the Pontryagin’s Maximum Principle [46] is
used.

The Hamiltonian is defined as follows:

H =
(
B1D + 1

2
B2u

2
1

)
+ λ1[� − β1SD − μS + ηR]

+ λ2[β1SD + β2T D − (μ + δ1)D − uD]
+ λ3[uD − β2T D − (μ + δ2 + σ)T ]
+ λ4[σT − (μ + η)R], (7.6)

where λi (t), i = 1, 2, 3, 4 are the adjoint functions to be
determined suitably.

The forms of the adjoint equations and transversality con-
ditions are standard results from Pontryagin’s Maximum

123



Analysis of a drinking epidemic model 297

Principle [46]. The adjoint system can be obtained as fol-
lows:

dλ1

dt
= −

(
∂H

∂S

)
= (λ1 − λ2)β1D + λ1μ

dλ2

dt
= −

(
∂H

∂D

)
=λ1β1S − λ2{β1S + β2T−μ−δ1−u}

−λ3(u − β2T ) − B1

dλ3

dt
= −

(
∂H

∂T

)
=(λ3−λ2)β2D + λ3(μ + δ2 + σ)−λ4σ

dλ4

dt
= −

(
∂H

∂R

)
= λ4μ + (λ4 − λ1)η (7.7)

The transversality conditions (or boundary conditions) are

λi (t f ) = 0, for i = 1, 2, 3, 4. (7.8)

By the optimality condition, we have

∂H

∂u
= B2u

∗ − (λ2 − λ3)D̄
∗ = 0 at u = u∗(t) (7.9)

By using the bounds for the control u(t), we get

u∗ =

⎧⎪⎪⎨
⎪⎪⎩

(λ2−λ3)D̄∗
B2

, if 0 ≤ (λ2−λ3)D̄∗
B2

≤ 1

0, if (λ2−λ3)D̄∗
B2

≤ 0

1, if (λ2−λ3)D̄∗
B2

≥ 1

(7.10)

In compact notation:

u∗ = min

{
max

{
0,

(λ2 − λ3)D̄∗

B2

}
, 1

}
(7.11)

Using (7.11), we obtain the following optimality system:

dS

dt
= � − β1SD − μS + ηR

dD

dt
= β1SD + β2T D − (μ + δ1)D

−min

{
max

{
0,

(λ2 − λ3)D̄∗

B2

}
, 1

}
D

dT

dt
= min

{
max

{
0,

(λ2 − λ3)D̄∗

B2

}
, 1

}

D − β2T D − (μ + δ2 + σ)T
dR

dt
= σT − (μ + η)R

dλ1

dt
= (λ1 − λ2)β1D + λ1μ

dλ2

dt
= λ1β1S − λ2{β1S + β2T − μ − δ1} + λ3β2T

+(λ2 − λ3)min

{
max

{
0,

(λ2 − λ3)D̄∗

B2

}
, 1

}
− B1

dλ3

dt
= (λ3 − λ2)β2D + λ3(μ + δ2 + σ) − λ4σ

dλ4

dt
= λ4μ + (λ4 − λ1)η (7.12)

subject to the following conditions:

S(0) = S̄0, D(0) = D̄0, T (0) = T̄0, R(0) = R̄0

and

λi (t f ) = 0, f or i = 1, 2, 3, 4.

The previous analysis can be summarized in the following
theorem:

Theorem 7.2 There exists an optimal control u∗ and corre-
sponding solutions S̄∗, D̄∗, T̄ ∗, R̄∗ of the system (7.1) with
the initial conditions (7.2) that minimizes J (u(t)) over U.
The explicit optimal controls are connected to the existence of
continuous specific functions λi (t), i = 1, 2, 3, 4, the solu-
tions of the following adjoint system:

dλ1

dt
= (λ1 − λ2)β1D + λ1μ

dλ2

dt
= λ1β1S − λ2{β1S + β2T − μ − δ1}

+ λ3β2T + (λ2 − λ3)u − B1

dλ3

dt
= (λ3 − λ2)β2D + λ3(μ + δ2 + σ) − λ4σ

dλ4

dt
= λ4μ + (λ4 − λ1)η

subject to the transversality conditions:

λi (t f ) = 0, f or i = 1, 2, 3, 4.

Furthermore, the following property holds:

u∗ = min

{
max

{
0,

(λ2 − λ3)D̄∗

B2

}
, 1

}

8 Numerical simulations

In this section, we first consider the case when R0 = 0.56 <

1 using the parameter values given in Table 1. Using these
parameter values, for different initial conditions, the dynam-
ics of the model (2.1) is presented in Fig. 2a–d. These figures
show that only moderate and occasional drinkers (S) per-
sists and heavy drinkers (D), drinkers in treatment (T ) and
temporarily recovered class (R) decline to zero (extinct), i.e.,
the population approaches to the drinking free equilibrium or
disease free equilibrium (DFE) E0(1.6, 0, 0, 0). This numer-
ical verification supports the result stated in Theorem 6.2 on
the stability of DFE (E0).

Next, we consider the case when R0 = 2.24 > 1 using the
parameter values given in Table 2. Using these parameter val-
ues, for different initial conditions, the dynamics of themodel
is presented in Fig. 3a–d. These figures show that moderate
and occasional drinkers (S), heavy drinkers (D), drinkers
in treatment (T ) and temporarily recovered population (R)

123



298 S. Sharma, G. P. Samanta

Table 1 Parameter values for Fig. 2(a)–(d)

Parameter Values

� 0.4 population/year

β1 0.35/population/year

β2 0.3/population/year

μ 0.25/year

σ 0.1/year

η 0.1/year

γ 0.4/year

δ1 0.35/year

δ2 0.3/year

all persist, i.e., the population tends to endemic equilibrium
E∗(1.16469, 0.445752, 0.227504, 0.0650011) when R0 >

1. These figures imply that the endemic equilibrium E∗ is
locally asymptotically stable and the DFE E0(2.8, 0, 0, 0)
becomes unstablewhenever R0 > 1. In this case X = 0.0334
and � = 0.2275, i.e., X < �, so a < 0 (see Sect. 6.4).
Therefore, it also shows the forward bifurcation of system
(2.1) which is good agreement with Theorem 6.5.

After that, we consider the case when R0 = 0.833333 <

1 using the parameter values given in Table 3. In this
case for different initial conditions, the dynamics of the
model is presented in Fig. 4a–d. These figures show that
in this case, there exists three equilibria of the system (2.1),
among them DFE E0(20, 0, 0, 0) and an endemic equilib-
rium E∗(1.71634, 6.76286, 0.90035, 0.072028) are stable
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Fig. 2 Time series plot of amoderate and occasional drinkers (S), b heavy drinkers (D), c drinkers in treatment (T), d temporarily recovered class
(R) respectively for R0 = 0.56 < 1 with various initial conditions, parameter values are given in Table 1
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Table 2 Parameter values for Fig. 3(a)–(d) and Fig. 5(b)

Parameter Values

� 0.7 population/year

β1 0.8/population/year

β2 0.3/population/year

μ 0.25/year

σ 0.1/year

η 0.1/year

γ 0.4/year

δ1 0.35/year

δ2 0.3/year

and the other endemic equilibrium E1(19.5514, 0.0161807,
0.179743, 0.0143795) is unstable. Here X = 0.0566 and
� = 0.0075, i.e., X > �, so a > 0 (see Sect. 6.4). There-
fore, it also shows the backward bifurcation of system (2.1)
which is also in good agreement with Theorem 6.2.

From the above analysis it is clear thatwhen forward bifur-
cation occurs, for R0 > 1, there are only two equilibria: the
unstable disease free or drinking free equilibrium DFE (E0)
and a stable endemic equilibrium (E∗). It is also clear that
in this case, the condition R0 < 1 is a necessary and suf-
ficient condition for disease eradication. But the condition
R0 < 1 is no longer sufficient when backward bifurcation
occurs. In backward bifurcation scenario, when R0 < 1, a
positive unstable endemic equilibrium (E1) appears while
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Fig. 3 Time series plot of amoderate and occasional drinkers (S), b heavy drinkers (D), c drinkers in treatment (T), d temporarily recovered class
(R) respectively for R0 = 2.24 > 1 with various initial conditions, parameter values are given in Table 2
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Table 3 Parameter values for Fig. 4(a)–(d) and Fig. 5(a)

Parameter Values

� 0.5 population/year

β1 0.04/population/year

β2 0.99/population/year

μ 0.025/year

σ 0.01/year

η 0.1/year

γ 0.9/year

δ1 0.035/year

δ2 0.03/year

a DFE (E0) and another positive endemic equilibrium (E∗)
are locally asymptotically stable. These two endemic equi-
librium disappear when the basic reproduction number R0 is
decreased below the critical value Rc

0 < 1. The qualitative
bifurcation diagrams for backward bifurcation and forward
bifurcation taking the bifurcation parameter R0 are depicted
in Fig. 5a, b respectively.

Next, the optimality system (7.1) has been solved numer-
ically and the results have been presented graphically. This
optimality system is a two-point boundary value problem
with separated boundary conditions at times t = 0 and
t = t f . Here, we have solved this two-point boundary value
optimality problem for t f = 10. The value is chosen to rep-
resent the time in months at which treatment is stopped. To
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Fig. 4 Time series plot of amoderate and occasional drinkers (S), b heavy drinkers (D) , c drinkers in treatment (T), d temporarily recovered class
(R) respectively for R0 = 0.833333 < 1 with various initial conditions, parameter values are given in Table 3
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Fig. 5 Qualitative bifurcation diagrams for a backward bifurcation for
R0 = 0.833333 < 1 with parameter values given in Table 3 and b for-
ward bifurcation for R0 = 2.24 > 1 with parameter values given in

Table 2 respectively. The bifurcation parameter is the basic reproduc-
tive number R0.The solid linesdenotes stability; thedashed linedenotes
instability

Table 4 Parameter values for Figs. 6–12

Parameter Values

� 5.5 population/year

β1 0.1/population/year

β2 0.01/population/year

μ 0.3/year

σ 0.1/year

η 0.1/year

δ1 0.35/year

δ2 0.3/year

solve our BVP, we have used collocation method with col-
location code solver BVP4c in MATLAB. It is a powerful
method to solve the two-point BVP resulting from the opti-
mality conditions.

The different variables (population and control function)
in the objective functional given in (7.3) have different
scales. Hence they are balanced by choosing weight con-
stants B1 = 70, B2 = 20 in the objective functional given in
(7.3). The numerical results for the optimality problem are
obtained by using the parameter values given in Table 4. At
first we search for the optimal control function u, the treat-
ment control. This optimal control function u is designed
in such a way that it minimizes the objective functional (J )
given by (7.3). In Fig. 6, we have presented the comparative
time series diagram of heavy drinkers (D), with no control
and treatment control. From this diagram, it is clearly seen
that use of treatment control is more effective to control the
disease than the case without any control. From these obser-
vations, we can conclude that this treatment control yields
the best result to control the spread of the disease.
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Fig. 6 The control diagrams for the heavy drinkers (D) using the para-
meter values given in Table 4 with B1 = 70, B2 = 20

The optimal control graph for the treatment control u is
presented in Fig. 7. In perspective, one could conclude from
the optimal control diagram (Fig. 7) that we should give full
effort in this treatment control at the beginning of the disease.
Thismeans that this control is very important at the beginning
of disease outbreak than when the disease prevails. From
Fig. 8, we observe that the treatment control function (u)
minimizes the cost function J given in (7.3).

We have presented the time series plot of the adjoint vari-
ables (λ1, λ2, λ3, λ4) in Figs. 9, 10, 11 and 12.We know that,
the time derivatives of the adjoint variables are negative of the
corresponding partial derivatives of the Hamiltonian H with
respect to the state variables. So, from those figures, we can
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Fig. 7 The optimal control graph for the treatment control (u) using
the parameter values given in Table 4 with B1 = 70, B2 = 20

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

t

J

Fig. 8 The optimal control graph for the objective functional (J ) using
the parameter values given in Table 4 with B1 = 70, B2 = 20

clearly conclude that the adjoint variables are directly related
to the change of the value of the Hamiltonian H. Also, in
these figures it is observed that λ1, λ2, λ3, λ4 are decreasing
slowly to zero as time increases. These phenomena ensures
that to get the minimum value of the objective functional J,
the rate of change of Hamiltonian H must increase with the
changes of the state variables (S, D, T, R).

9 Discussions and conclusions

In this paper we have considered an alcohol abuse consist-
ing of four population classes, namely moderate and occa-
sional drinkers (S), heavy drinkers (D), drinkers in treatment
(T ) and temporarily recovered class (R) and investigated the
dynamical behaviour of this model. We have found
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Fig. 9 The control diagrams for adjoint variable λ1, using the para-
meter values given in Table 4 with B1 = 70, B2 = 20
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Fig. 10 The control diagrams for adjoint variable λ2, using the para-
meter values given in Table 4 with B1 = 70, B2 = 20

R0 = �β1

μ(μ + δ1 + γ )

as basic reproductionnumber of the system (2.1),whichhelps
us to determine the dynamical behaviour of the system.Sensi-
tivity analysis of R0 identifiesβ1, the transmission coefficient
from moderate and occasional drinker to heavy drinker, as
the most useful parameter to R0. Then we have discussed the
stability analysis of the model using the basic reproduction
number.The system (2.1) is locally aswell as globally asymp-
totically stable at disease free equilibrium (DFE) E0 when
R0 < 1 under some conditions. When R0 > 1, the endemic
equilibrium E∗ exists and the system becomes unstable at
E0 and locally asymptotically stable at E∗. The system can
undergo a backward bifurcation at R0 = 1. In this case, when
R0 < 1 a positive unstable endemic equilibrium (E1) appears
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Fig. 12 The control diagrams for adjoint variable λ4, using the para-
meter values given in Table 4 with B1 = 70, B2 = 20

while a drinking free or disease free equilibrium DFE (E0)
and another positive endemic equilibrium (E∗) are locally
asymptotically stable. These two endemic equilibrium dis-
appear when the basic reproduction number R0 is decreased
below the critical value Rc

0 < 1.
The next focus of this paper is to set up an optimal control

problem relative to the alcohol abuse epidemicmodel so as to
minimize the heavy drinkers as well as to minimize the cost
of treatment.We have considered treatment rate as a function
of time by u(t). So, u(t) is the rate of heavy drinkers entering
in the treatment per unit time at time t. Thus u is representing
treatment control in the drinkingmodel. The control function
u is designed in such a way that it minimizes the objective
functional (cost function) J as given in (7.3).

The important mathematical findings for the dynamical
behaviour of the alcohol abuse model are also numerically
verified using MATLAB. The dynamical behaviour of sys-
tem (2.1) for R0 < 1 and R0 > 1 are clearly depicted through
those numerical simulations. The situations in which back-
ward and forward bifurcations may occur are also discussed
very nicely through graphical representations. A comparison
among the dynamical behaviour of heavy drinkers with no
control and treatment control is presented graphically, which
shows the effectiveness of the treatment control very clearly.
It is observed that the optimal control is much more effec-
tive for reducing the number of heavy drinkers which implies
that the treatment controls the spread of the drinking habit in
population successfully. It can also be noticed that treatment
programme is very important at the beginning of the outbreak
to control the spread of the alcoholism.

Our model is not a case study. So, it is difficult to choose
parameter values from quantitative estimation.We have used
hypothetical sets of parameter values to verify our analytical
results. Our analysis and simulations using these parameter
values satisfy our analytical results and indicate that the opti-
mal control is efficient to reduce the spread of the alcoholism.

The mathematical model presented in this paper shows
backward bifurcation which occurs because of the insuffi-
cient capacity for treatment policies. As a result the drinkers
in treatment come to the direct contact of heavy drinkers
and they re-enter into the heavy drinkers’ class. It shows that
the prevention and control efforts that include treatment and
education programmes should be improved so that the rate
of relapse from treatment can be reduced. Alcoholism is one
of the most common psychiatric disorders with a prevalence.
The incidence of alcoholism is still more common in men.
But it has been increasing in women. The female to male
ratio for alcohol dependence has narrowed to one to two [3].
So an important effect that we want to include in our future
work is the male/female distribution of alcohol abusers.

The mathematical model presented in this paper should
be treated with circumspection like other papers due to the
assumptions made and the difficulty in the estimation of the
model parameters. Parameters are dependent on the envi-
ronmental conditions, so they are rarely constant. But for
the simplification of our model we have assumed that these
parameters are constant. There may be a time lag as a mod-
erate and occasional drinker may take some time to become
heavy drinker and also a heavy drinkermay take some time to
become recovered through treatment. Therefore, as a part of
the future work, the model considered here can be refined to
incorporate time delays in the system to make it more realis-
tic. Controlling the spread of alcoholism is now a challenging
and important issue to study. So, to predict and identify the
cost-effective strategies to control the spread of the habit of
drinking and minimize the cost of the control programme are
the primary goal of health administrators, policy-makers and
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researchers. Our model study is a small step towards the goal
by which we want to identify the parameters of interest for
further study.
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