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We study the position recurrence relation of several existing numerical integrators for the
Langevin equation and use the modified equation approach to analyse their accuracy. We
show that for the harmonic oscillator, the BBK integrator converges weakly with order 1 while
the vGB82 and Langevin impulse (LI)} integrator converge weakly with order 2. We also
study a restricted class of velocity definitions—those that lead to explicit starting procedures.
We show that some recurrence relations exact for constant force, can achieve the exact virial
relation by a proper definition of velocity, extending the result of Pastor ef al. on the analysis

of BBK integrators in 1988.

1. Introduction

The Langevin equation is a popular model for
macromolecular simulations, because it is computation-
ally less demanding than ordinary Newtonian molecular
dynamics (MD). This paper is an analytical comparative
study of several integrators suitable for the Langevin
equation with a diagonal diffusion tensor: the 1982
scheme of van Gunsteren and Berendsen (vGB82) [1],
the Brooks—Briinger—Karplus (BBK) scheme [2], and a
‘Langevin impulse’ (LI) integrator from [3]. The
Langevin equation under consideration is given by

dx =vdt, (1
dv=M""F(x)dr —yvdr + QykgT)' > M~ 2dW (1),

where x is the displacement vector, v is the velocity
vector, ¢ is the time, M is a diagonal matrix of masses,
F(x) is the collective force vector, y is the friction
coefficient, kp is the Boltzmann constant, 7 is tempera-
ture and W(¢) is a collection of independent standard
Wiener processes.

The current work is motivated by an earlier analytical
study [4], which compares various Langevin integrators
of a simple form involving only one set of independent
random variables, with one random variable used per
time step. This excludes the vGBS82 integrator, which is
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iWe put a hat on the I to distinguish LI from the
abbreviation LI for ‘Langevin/Implicit-Euler’ used in [7] and
other papers.

otherwise well regarded because of its accuracy in the
Brownian dynamics limit of zero inertia [5]. The 1988
study [4] was favourable to the BBK integrator and, in
particular, showed that the velocity could be redefined
for BBK so that the virial relation is exactly satisfied in
the case of a harmonic oscillator F(x) = —M. WX,

The vGB82 and LI integrators are examined in a
companion article [6] and shown to be as efficient in
their use of random variables as BBK. Also, both
vGBS82 and LI are exact for constant force unlike BBK
and the other integrators examined in [4].

All three methods are explicit integrators. Another set
of analytical studies [7, 8] compares BBK to several
implicit schemes, which are stable for larger values of
the time step 4. The article [8] also introduces additional
statistical measures of accuracy.

Section 2 of the current article examines the accuracy
of the three integrators for the harmonic oscillator.
This is done by means of the ‘method of modified
equations’ [9, 10] and this paper gives perhaps the first
such analysis for stochastic differential equations. The
idea is to find the nearby analytical problem whose
solution exactly coincides with the numerical solution
for the original problem. For the BBK scheme the
nearby problem has coefficients that differ by O(4)
from those of the original problem; whereas for the
other two schemes this difference is only O(4%). To
confirm the first-order accuracy of BBK, the modified
problem is solved analytically and the variance of the
solution is shown to be in error by O(4). On the other
hand, the vGB82 and LI integrators are shown to
converge with order 2 for the harmonic oscillator.
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The accuracy concept used here is known as ‘weak
convergence’ (see Section 17.2 of [11]).

Section 3 of the current article examines the question
of redefining velocity to exactly satisfy the virial relation
for a harmonic oscillator. It is shown that this is possible
not only for BBK but also for integrators such as vGB32
and LI.

2. Position recurrence relation

If we consider vin the Langevin equation as an auxiliary
variable, the integrator can be developed without
velocity. Consequently, an integrator can be expressed
by two independent components. One is the position
recurrence relation; another is the velocity definition.
We want first to study an integrator in isolation from
its velocity definition so that the conclusions are not
contaminated by the choice of velocity definition.

Let X" ~ x(n4) and define /" = f(x") = M~ F(x")4>.
We consider a general two-step, explicit position
recurrence relationt

anrl :%‘x” +§xn71 te n +d n—1 +QZ . (2)

We assume &, ¢, d, e are dimensionless parameters, {QF}
is a set of Gaussian random variables, with (Q!Q!) =
Ay, (QgQg“) = Ay, (QI0”) =0 for |m —n| > 1. Here,
(-) means ensemble average. All the parameters, &, ¢, d e,
and A4y, A, depend on vy, A4, M and kgT only. The
framework considered by Pastor er al. [4] is a special
case of the above with §+¢=1,d=0and 4, =0.

The BBK, vGB82 and LI integrators are all within the
above framework. For example, the recurrence relation
of the BBK integrator is (g = y4)

n+l _ 2 Y — 1 _g/zxnfl 1 fn
l1+g/2 1+g/2 1+g/2
172
1 2ykgTA*
z" 3
+1+g/2( o , 3)

where {Z"} is a set of independent standard Gaussian
random variables. The starting procedure of BBK is
given by

12
1_ 0 &V, V0 (vhkeTA 0
x_x+(1 2>VA+2f +( o 70 @

The vGBS82 and LI integrators are given in section 2.2.
We give the fundamental formula for the error
analysis in Section 2.1, then give a one-parameter class
of position recurrence relations exact for constant force

F¥To reduce the round-off error, it is recommended that
this be implemented as a pair of first-order difference
equations [12].

in section 2.2, of which vGB82 and LI integrator are two
special cases. In section 2.3, we present the error analysis
of these integrators for the case of a harmonic oscillator.

2.1. Modified equation approach

Our discussion uses the modified equation approach
to analyse the weak convergence order of the numerical
integrators for a model problem—the harmonic oscilla-
tor. This approach is similar to backward error analysis
in that we propose a modified equation which is solved
exactly by the numerical integrator applied to the
original equation. The modified equation resembles the
original Langevin equation, but with different values of
parameters and an extra term. We examine the size of
the modifications. Then, going beyond backward error
analysis, we proceed and calculate the exact solution to
the modified equations. Based on the exact solution, we
calculate the covariance of positions at different times
and make comparison with the same quantity derived
from the original Langevin equations. The error term
provides us with the weak convergence order of the
numerical integrator for the model problem.

Since we focus on the harmonic oscillator model
problem, the modified equation used in this paper takes
the form of

dfx] [0 17x 29ks T\ 2dW (1)
o M ] MR (G B

B dw (1)
=AY()+ B TR (%)

R

where Y = [x,v]T, W(1) is a standard Wiener process, &
and ¥ are the modified frequency and friction coefficient,
and «, B are dimensionless parameters. The original
Langevin equation has ® = w, y =y, «a =0 and g = 1.
We need to add a (small) random term to the first
equation of the Langevin equation, which is reminiscent
of the ‘dynamics driver’ in [13]. The article [8] studies the
modified values @ and y only. Integrating from " to
1 we have

YY) =exp(4A) Y (") + X", (6)

where

ln+l

-

is a pair of Gaussian random variables with mean 0 and
covariances

exp [A("T = )]|BAW (1) (7)

A
(xrxT) = fo exp (tA)BBT exp(tAT)dt (m=n), ®)
0 (m#n).
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In appendix A, we derive a position recurrence relation
from (6):

x("1) = 2 exp (—g/2) cos Wx(1") —exp (—Z)x(I"") + 0",
)

where g=794, w=ad4d, W =&'4 and & =
(@* — 7*/4)'2. Note that when & < 7/2, cos W' becomes
cos (g2/4 —w?)'?. The random terms Q" are Gaussian
random variables with covariances

w2k TA (@ + B
(Q Q >_ M { 1,"1',2
8 |:1 — ex12) (—29) _Fexp(—d) SHZI;},W/}
21 g P
[ o]
(10)
(QnQn+l)
kT A1 IN(CEY %
= Zexp(—g/2){ e
| atr +esp-@I ™5~ 201 —exp (-l cos 7|
a2l __sin W . -,
7 [g[l + eXP(—g)]T +2[1 —exp(—g)] cos w } }

(11)

Other covariances are zero.

2.2. Position recurrence relations exact for constant force
Computations similar to (9) give the exact recurrence
relation of the Langevin equations for constant force:

X(#") = (1 +exp (—g))x(1") — exp (—g)x(r" ")

1 _exp (_g)f—‘ar (12)
with
r _ (2T / Lexpl=v(™ = 0] 4
T M m Y ’
(13)
2ykg T) 12 / exp[y(1 — )] — exp (—y4)
R' === dw(e),
( M m-1 Y

(14)

R'=R" +R". (15)

By requiring (2) to be exact for constant force, it
becomes

X = (1 4exp (—g)x" — exp (=¥~
+ (—1 - e’;f’(_g) - d)f” +df" 0" (16)

with
at+c (k=0),
(orort)=1b (k==1), (17)
0 (otherwise) ,
where
o ony 2ksT (3 1
0= (R RY =250 (<3 e 2exp-0) - sexp(-20)
(18)
o ony 2ksT (1 1
b=<R+R_>—Y2M <2 g exp(—g) —5exp( 2g)),
(19)
c=(R'R")
2gT (1 3
T (5-2ew 0+ en 20+ gexn(-20)).

(20)

Note that equation (16) contains one free parameter
d. The position recurrence relation used in LI and
vGB82 integrator are two special cases of (16) with

d;=0, Q1)
1—g/2—(1+g/2) exp(—g)
g’ '

dvgBgy = (22)

Another special case is the method introduced in [14] on
p. 263, for which

g 0= exp(—g))* — g% exp(—g)
_ - ,

(23)
The starting procedure of LI and vGBS82 integrators is

=0t 1 —exp(—g)voA
exp(—g)—1+g
2

g .

+ P+ RY. (24)

The BBK integrator is not exact for constant force.

2.3. Error analysis
The fact that the backward error is O(4%) generally
implies that the (forward) error is O(4%). However, due
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to cancellation, it is possible that the forward error is of
higher order. To make sure that our analysis gives the
precise order of the forward error, it is wise to compute
both errors.

For a harmonic oscillator, the force is linear:
F(x) = —M®x. The BBK integrator gives the following
recurrence relation (w = wA):

172

2
2—w o

n+l __ n__

T

1— 3

g/zx”_l n 2vkgT A

14+g/2 M
(25)

We assume the modified equation is (5), which has
recurrence relation (9). Comparing equation (9) with
(25) and equating the two coefficients and two non-zero
covariances of the random terms, we obtain

7= y(l + 112y2A2 + O(A4)>, (26)
— <1—§(v + %) 4>+ 0(4 4)), (27)
1
o= 61/27414—0( %), (28)
1
B=1-gzv4+ 0(4?). (29)

The computation is performed using Maple [15]. The
values given here for y and @ are consistent with the
values v (A7) and [wZ(41) + v2(41)/4]"/* from table 1T

f [8]F. Note that the error in the parameters is first
order in A.

In appendix B, we solve equation (5) analytically and
derive the position covariance error. The result for
w = 0 (zero force) is

cov (x(11)x(72))ppk — €OV (¥(11)X(12))exact

- 26];315(1 — exp (—ym))(1 — exp(—y12))4 + O(4?).
(30)

This error is first order in 4, meaning that the BBK
integrator converges weakly with order 1 even if the
force is 0. For w # 0, we also obtain a first-order error:

cov (x(11)x(12))ggk — €OV (X(11)X(72))exact
ZkBT Y |:ex <—M> sin @'t] sin w’t2i|A

M 6w? 2
+0(4%). (31)

TNote that there is a typo in paper [8], namely, for the BBK
method, weer(47) = (1/41) cos 1 [(2 — €2)/(4 — §2)1/2].

The same analysis is carried out for equation (16),
which is exact for constant force and includes both the
vGB82 integrator and the LI integrator. This time, the
parameters in the modified equations (5) are [15]

Y=v—do’ A+ 0(4%), (32)
@:w—i(éd— D’ 4> + 0(4°), (33)
3(101/2)507412 +0(4%), (34)
2
_ hadl 2
ﬁ_1+d2yA+0(A ). (35)

As long as d = 0(4), the errors are O(4%). The

~

LI integrator sets d = 0, while the vGBS82 integrator
sets d = —((1+g/2) exp(—g) — 1 +¢/2)/g> = — {574+
0(4?), so both integrators introduce second- order error
into the parameters. .

The position covariance errors for the vGB82 and LI
integrators are complicated, but the leading term is
O(4?). This means both vGB82 and LI integrators con-
verge weakly with order 2 for the harmonic oscillator
problem.

The fact that the BBK integrator has lower weak
convergence order than LI and vGB82 may not be as
significant as it may seem. This is because for zero force,
the leading term of the position covariance is propor-
tional to ¢, which increases linearly as #; increases, but
the error expressed in equation (30) for the BBK
integrator does not; for the harmonic oscillator case,
the error decays exponentially with time, as can be seen
from (31).

3. Velocity definition

Sometimes, an approximation to velocity is needed
during the molecular dynamics simulation. There are
several ways to define velocity in the numerical inte-
grator. One way is to use the starting procedure, as is
done by the BBK and the LI integrator [6]. They simply
extend equation (4) for BBK, and (24) for LI, by
changing the upper indices 0 to n, and 1 to n+1.
Consequently, these methods are ‘restartable’, meaning
that a restart after step V would be equivalent to one
more use of the position recurrence relation without the
restart. Notice that although vGB82 uses the same
starting procedure as LI does, its velocity definition is
not consistent with its starting procedure [1]. Another
way to define velocity is to impose some requirement,
such as exact virial relation. It is shown in [4] that a
proper re-definition of velocity can give the exact virial
relation for the case of a harmonic oscillator. In this
section, we explore whether the position recurrence
relation (16), which is exact for constant force, can be
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augmented with a proper velocity definition to give the
exact virial relation.

3.1. Virial theorem
For a thermodynamic system, the virial theorem
states, see [14] p. 46,

(prdH /dpr) =kgT , (36)
(qroH /oqi) = kpT , (37)

where H is the Hamiltonian of the system, and ¢ and py
are generalized position coordinates and corresponding
momenta, respectively, and where (-) means ensemble
average. In our discussion, the ‘virial relation” means the
following relation derived from the above equation:

(pr0H /dpi) = (qr0H /9qy) . (38)

For the simple case of a particle moving under the linear
force F(x) = —Mw*x in one-dimensional space, the
virial relation simplifies to

) —*(x?) =0. (39)

In this paper, reference to ‘exact virial relation” means
exact virial relation for the harmonic oscillator.

In [4], it is shown that by changing the velocity
definition to V' = (x" — x"~1)/4, the virial relation for a
harmonic oscillator is observed for BBK:

lim ((VV'") —

n—oo

V) =0 (40)

This property is not held either by the vGB82 or by the
LI integrator. So the question is, can equation (16)
achieve exact virial relation with a proper definition of
velocity?

3.2. Exact virial relation
We start with

= (14 exp (—g))x" —exp (—g)x"!
+H(1 —exp(=g)/g —d)f" +df" '+ 0L, (41)
VA szn +qxl1—1 +an +I‘f”_l +/0Qf ,

with (Q"Q") =Ag=a+c, (Q'O"™)=4,=>b and
(Q"Q"*y = 0 for k> 1. The first equation is (16),
which is exact for constant force. The second equation is
the definition of velocity v'. Here d, p, ¢, s and u are
dimensionless parameters depending on vy, 4, M and
kgT.

For the linear force case, the first equation of (41)
gives

xn+1 — alxn _’_azxnfl + QZ , (42)

with a; =14 exp(—g) — (1 — exp(—g))/g — d)w* and
a, = —exp (—g) — dw?. The recurrence relation has the
solution

= Q"+ a; Q""" +linear combination of Q"2, ..., Q!

C

and x%, x'. (43)
Define

Y— 11m< n n+z),
n— 00

fori=0,1,2. (44)

Equations (42) and (43) give

Yo=aYi+aYr+ Ao +ai A,
Yi=a1Yo+a Y+ A4, (45)
Yo=aY +aY,.

We obtain Y, and Y; by solving the above set of
equations:
_ (1 —ap)Ag+2a; 4,
S+ @) —a) -]’
_aAg+(1+af —a3)A4,
S (+a)(l—a)’ —dl]

(46)

(47)

We do not write down Y; explicitly since we do not need
it in the following discussions. In particular we obtain

me? 12
kB T
mw?

(W), = kBT(l +Lor o )) (48)
(X"x")yGRs2 = (1 +13 4A4+0(A5)>. (49)

The above result can be used to compare with

ksT 1
(X"X") gBK Tt | — 2 A4
kBT<1+1 2A2+0(A3)>, (50)
maw? 4

which is given in [4] as well as in [8]. From the second
equation of (41), we can write V" in terms of x” and x"~!,
square both sides, and obtain

[(p = W) + (g = rw*)] Yo
+p Ao+ 2(p = sw)(g —rw?) Y

+2(p — sw?)pA;. (51)

lim (V'V')A* =

n—0o0

The exact virial relation requires

w? Yy — lim (Vv 4* =0. (52)

n—oo
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With a common denominator, the numerator in the
above equation is a polynomial in w? of degree 4.
Requiring all the coefficients to be zero, we obtain five
conditions. The unknowns in the equation are p, ¢, s, r
and p. The five conditions determine the five unknowns.
Solving equation (52) gives the corresponding param-
eters for defining velocity to give an exact virial
relation. If d = 0 (the choice of the LI integrator), we
have

r=0, (53)
5s=0, (54)
o F(Hexp(—g»}‘”
P D0 —exp(—g))
1
~ Ao[1 —exp(—g)])""
x (—Ai[1 + exp (—g)]'2

424y + 4 +Alexp(—g))])l/2<§) 2 (56)

(35)

P

As long as g =vy4 >0, we have 4y >0 and 4; > 0.
So the above solution is real. For the vGB82 integrator,
the equations are too complicated to solve although
solutions can be shown to exist for small g.

4. Summary

Theoretical evidence given here and in [6] strongly
suggests that the LI and vGB82 [1] schemes are no worse
than and often much better than the BBK [2] scheme in
situations where it is practical to compute the exponen-
tial of the friction tensor, such as in the common case of
a diagonal tensor. It is recommended that for such
situations LI and vGB82 be implemented and tested.

The research is supported in part by NSF Grants
DMS-9971830, DBI-9974555 and DBI-9807882.

Appendix A: Modified equation analysis
Here, we give details of the derivation of the position
recurrence relation (9) from the modified equation (5).
For matrix 4 defined in equation (5), we have

1 0
exp (Af) = exp(—yt/2) cos d/t[o | :|
sin @'t [ v/2 1
—& —y)2

+exp(—yt/2) :| . (AD

CB/
Applying equation (6) twice, we get Y(/"7')=
D2Y("1)+ DX"' 4 X", where D —exp(44). By

Cayley’s theorem, any 2 x2 matrix D satisfies
D? = tr (D)D — det(D)I. Combining the two equations

and using (6) again, we have

Y = tr (D) Y (") — det (D) Y () — tr (D) X!
+ DX 4 X7 (A2)

we obtain the position recurrence relation by multi-
plying both sides by vector [1 0]:

x("Y = tr (D)x(") — det (D)x(""H+ 0",  (A3)
where
0"=1[1 0](X"+(D—tr(D)HX"). (A4)

Since D =exp(A4), equation (A1) gives det(D)=
exp(—g) and tr(D) =2 exp(—g/2) cos w', from which
equation (9) follows. From equations (A 4) and (8), we
use Maple to calculate the covariances between the Q”s.
The non-zero covariances are as given in equations (10)
and (11).

Appendix B: Error analysis
Here, we give details of the derivation of equations
(30) and (31). For zero force, we assume the modified
equation is (5) with @ = 0. Taking the limit w — 0 in
equations (9), (10) and (11), we obtain the recurrence
relation for equation (5) (g = yA):

X =(1+exp(—@)x" —exp (=¥ + 0" (BI)
with

2kpTA* 1
(0"0") == 8@+ B(1 +exp(-29)
— BRa+ B)(1 —exp(—29))] (B2)
2kpTA* 1
(Q'Q") = s [BCa-+ (1 —exp (<20)
—2g exp(=@)e+ B)’]- (B3)

For zero force, the BBK integrator gives

ntl _ 2 X' — 1 _g/zxnfl
1+g/2 1+g/2

1/2
1 2ykg T A3
z". B4
+1+g/2( M (B4)

Comparing equations (B1)—~(B3) with (B4) and solving
for «, B and g, we have

. 1+g/2 150 4
g_lnl_g/z_g(l+12yzl +0(4%) ), (B5)
£\g18]"” 1
3
e={[1-(1-5)f} =grarro) o
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i 1/2 1
5:<§> —azl—myzl—i-O(Az). (B7)

Note the error is of first order in 4.
If " = 0 and "*! = ¢, equation (6) gives the analytical
solution to the modified equation:

x(1) =exp (—;?r) (cos 't + 2%5/ sin c?/t) x(0)

1. \sin&'t
+ exp <—§yt) SH;;O v(0)

27ks T\ * [ 1.
+(—Yj‘}3 ) foexp[—iy(t—s)]

x [ﬁ (cos (1 —5)+ =1 sin @/(1 — s)>
Y 2@

sin @'(t — s)

I
w

] dw(s). (B8)

For zero force, @ = 0, the solution simplifies to

27ks T\
M

() = x(0) + I_%M ¥(0) + (

X/fa+ﬁ—ﬂexp[—~7(z—s>]
0 7

dw(s).  (BY)

In a position recurrence relation, we know x(0) and
x(4) instead of x(0) and v(0). We assume that
x(4) — x(0) = O(4). This is because the original
Langevin equation has a continuously differentiable
solution x(#). Using equation (B9) for t = 4, we obtain

N Y 2’W€BT 1/2
”(°>—1—em<—m[x(“)"“(°)‘< )

X/Aa+/3—ﬁexp[—?(A—S)]
0 7

dW(s)}. (B10)

This gives

e
,x(t)zx(0)+$m(x(ﬁ)—x(o))
I —exp(=71) (27T
_l—exp(—?ﬁ)< M )
X/“a+ﬁ—ﬁexy[—?(ﬂ—s‘)]
0 Y
X/’aJrﬂ—ﬁexP[—?(t—S)]
Y

0

27k T) 172

dW(s)+< 7

dw(s). (B11)

For the BBK integrator, o, 8 and ¥ are given in (B6),
(B7) and (B5), respectively. For the original Langevin
equation, @exact =0, PBexact =1 and Yo = y. From

equation (B 11), we use Maple to compute the covar-
iance of positions at two different times (assume
0<n < [2)2

cov(x(11)x(12))
= ([x(r1) = (x(E)][x(72) = (x(22))])

_ 2¥ksgT
===
y {(exp(—?ﬁ)—exp(—?tl))(exp(—w)—exp(—?tz))
7(1—exp(—74))*

x [(a+ﬂ)2A 28+ pP (7;')‘ Lip

Lexp(2y4)—1
2y

+% [(a +B)’ (11 — 4) — Bla+ B)(exp(—711)

exp(y11) —exp(y4)

+exp(—712)) -
Y
- exp(2yt) —exp(2y4
+ B expl—i(t) + 1) 2R 1)2? Py )“ (B12)
Note equation (B 12) implies
2 2
lim <x (l)>BBK — 2kBT: lim (X (l»exacl' (813)
1—>00 t '\{M 1—00 t

From equation (B 12), we obtain the error of the BBK
integrator, which is given by equation (30).

Carrying out similar computations for @ # 0, we
obtain equation (31) [15].
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