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We study the position recurrence relation of several existing numerical integrators for the
Langevin equation and use the modified equation approach to analyse their accuracy. We
show that for the harmonic oscillator, the BBK integrator converges weakly with order 1 while
the vGB82 and Langevin impulse (LÎI)z integrator converge weakly with order 2. We also
study a restricted class of velocity definitions—those that lead to explicit starting procedures.
We show that some recurrence relations exact for constant force, can achieve the exact virial
relation by a proper definition of velocity, extending the result of Pastor et al. on the analysis
of BBK integrators in 1988.

1. Introduction

The Langevin equation is a popular model for
macromolecular simulations, because it is computation-
ally less demanding than ordinary Newtonian molecular
dynamics (MD). This paper is an analytical comparative
study of several integrators suitable for the Langevin
equation with a diagonal diffusion tensor: the 1982
scheme of van Gunsteren and Berendsen (vGB82) [1],
the Brooks–Brünger–Karplus (BBK) scheme [2], and a
‘Langevin impulse’ (LÎI) integrator from [3]. The
Langevin equation under consideration is given by

dx¼ vdt ,
dv¼M�1FðxÞdt� gvdtþ ð2gkBTÞ

1=2M�1=2 dWðtÞ ,

�
ð1Þ

where x is the displacement vector, v is the velocity
vector, t is the time, M is a diagonal matrix of masses,
F(x) is the collective force vector, g is the friction
coefficient, kB is the Boltzmann constant, T is tempera-
ture and W(t) is a collection of independent standard
Wiener processes.
The current work is motivated by an earlier analytical

study [4], which compares various Langevin integrators
of a simple form involving only one set of independent
random variables, with one random variable used per
time step. This excludes the vGB82 integrator, which is

otherwise well regarded because of its accuracy in the
Brownian dynamics limit of zero inertia [5]. The 1988
study [4] was favourable to the BBK integrator and, in
particular, showed that the velocity could be redefined
for BBK so that the virial relation is exactly satisfied in
the case of a harmonic oscillator FðxÞ ¼ �M!2x.
The vGB82 and LÎI integrators are examined in a

companion article [6] and shown to be as efficient in
their use of random variables as BBK. Also, both
vGB82 and LÎI are exact for constant force unlike BBK
and the other integrators examined in [4].
All three methods are explicit integrators. Another set

of analytical studies [7, 8] compares BBK to several
implicit schemes, which are stable for larger values of
the time step D. The article [8] also introduces additional
statistical measures of accuracy.
Section 2 of the current article examines the accuracy

of the three integrators for the harmonic oscillator.
This is done by means of the ‘method of modified
equations’ [9, 10] and this paper gives perhaps the first
such analysis for stochastic differential equations. The
idea is to find the nearby analytical problem whose
solution exactly coincides with the numerical solution
for the original problem. For the BBK scheme the
nearby problem has coefficients that differ by O(D)
from those of the original problem; whereas for the
other two schemes this difference is only O(D2). To
confirm the first-order accuracy of BBK, the modified
problem is solved analytically and the variance of the
solution is shown to be in error by O(D). On the other
hand, the vGB82 and LÎI integrators are shown to
converge with order 2 for the harmonic oscillator.
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The accuracy concept used here is known as ‘weak
convergence’ (see Section 17.2 of [11]).
Section 3 of the current article examines the question

of redefining velocity to exactly satisfy the virial relation
for a harmonic oscillator. It is shown that this is possible
not only for BBK but also for integrators such as vGB82
and LÎI.

2. Position recurrence relation

Ifwe consider v in theLangevin equationas an auxiliary
variable, the integrator can be developed without
velocity. Consequently, an integrator can be expressed
by two independent components. One is the position
recurrence relation; another is the velocity definition.
We want first to study an integrator in isolation from
its velocity definition so that the conclusions are not
contaminated by the choice of velocity definition.
Let xn � xðnDÞ and define f n ¼ f ðxnÞ ¼ M�1FðxnÞD2.

We consider a general two-step, explicit position
recurrence relationy

xnþ1 ¼ �xn þ �xn�1 þ e f n þ df n�1 þQn
c : ð2Þ

We assume �, �, d, e are dimensionless parameters, {Qn
c}

is a set of Gaussian random variables, with hQn
cQ

n
ci ¼

A0, hQ
n
cQ

nþ1
c i ¼ A1, hQ

n
cQ

m
c i ¼ 0 for jm� nj > 1. Here,

h�i means ensemble average. All the parameters, �, �, d e,
and A0, A1 depend on g, D, M and kBT only. The
framework considered by Pastor et al. [4] is a special
case of the above with � þ � ¼ 1, d ¼ 0 and A1 ¼ 0.
The BBK, vGB82 and LÎI integrators are all within the

above framework. For example, the recurrence relation
of the BBK integrator is (g ¼ gD)

xnþ1 ¼
2

1þ g=2
xn �

1� g=2

1þ g=2
xn�1 þ

1

1þ g=2
f n

þ
1

1þ g=2

2gkBTD3

M

� �1=2

Zn, ð3Þ

where {Zn} is a set of independent standard Gaussian
random variables. The starting procedure of BBK is
given by

x1 ¼ x0 þ 1�
g

2

� �
v0Dþ

1

2
f 0 þ

gkBTD3

2M

� �1=2

Z0: ð4Þ

The vGB82 and LÎI integrators are given in section 2.2.
We give the fundamental formula for the error

analysis in Section 2.1, then give a one-parameter class
of position recurrence relations exact for constant force

in section 2.2, of which vGB82 and LÎI integrator are two
special cases. In section 2.3, we present the error analysis
of these integrators for the case of a harmonic oscillator.

2.1. Modified equation approach
Our discussion uses the modified equation approach

to analyse the weak convergence order of the numerical
integrators for a model problem—the harmonic oscilla-
tor. This approach is similar to backward error analysis
in that we propose a modified equation which is solved
exactly by the numerical integrator applied to the
original equation. The modified equation resembles the
original Langevin equation, but with different values of
parameters and an extra term. We examine the size of
the modifications. Then, going beyond backward error
analysis, we proceed and calculate the exact solution to
the modified equations. Based on the exact solution, we
calculate the covariance of positions at different times
and make comparison with the same quantity derived
from the original Langevin equations. The error term
provides us with the weak convergence order of the
numerical integrator for the model problem.
Since we focus on the harmonic oscillator model

problem, the modified equation used in this paper takes
the form of

d

dt

x

v

� �
¼

0 1

� ~!!2
�~gg

� �
x

v

� �
þ

�

~gg
�

2
4

3
5 2~ggkBT

M

� �1=2
dWðtÞ

dt

¼ AYðtÞ þB
dWðtÞ

dt
, ð5Þ

where Y ¼ ½x, v�T, W(t) is a standard Wiener process, ~!!
and ~gg are the modified frequency and friction coefficient,
and �, � are dimensionless parameters. The original
Langevin equation has ~!! ¼ !, ~gg ¼ g, � ¼ 0 and � ¼ 1.
We need to add a (small) random term to the first
equation of the Langevin equation, which is reminiscent
of the ‘dynamics driver’ in [13]. The article [8] studies the
modified values ~!! and ~gg only. Integrating from tn to
tnþ1, we have

Yðtnþ1Þ ¼ exp ðDAÞYðtnÞ þXn , ð6Þ

where

Xn ¼

Z tnþ1

tn
exp Aðtnþ1 � tÞ

 �
BdWðtÞ ð7Þ

is a pair of Gaussian random variables with mean 0 and
covariances

XnXmT
� �

¼

Z D

0

exp ðtAÞBBT exp ðtATÞdt ðm¼ nÞ ,

0 ðm 6¼ nÞ :

8<
: ð8ÞyTo reduce the round-off error, it is recommended that

this be implemented as a pair of first-order difference
equations [12].
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In appendix A, we derive a position recurrence relation
from (6):

xðtnþ1Þ ¼ 2 exp ð� ~gg=2Þ cos ~ww0xðtnÞ � exp ð� ~ggÞxðtn�1Þ þQn ,

ð9Þ

where ~gg ¼ ~ggD, ~ww ¼ ~!!D, ~ww0 ¼ ~!!0D and ~!!0 ¼

ð ~!!2 � ~gg2=4Þ1=2. Note that when ~!! < ~gg=2, cos ~ww0 becomes
cos ð ~gg2=4� ~ww2Þ

1=2. The random terms Qn are Gaussian
random variables with covariances

QnQn
� �

¼
2kBTD2

M

ð�þ �Þ2

~ww2

�

�
1� exp ð�2 ~ggÞ

2
� ~gg exp ð� ~ggÞ

sin 2 ~ww0

2 ~ww0

� �

þ
�2

~gg2
1� exp ð�2 ~ggÞ

2
þ ~gg exp ð� ~ggÞ

sin 2 ~ww0

2 ~ww0

� ��
,

ð10Þ

QnQnþ1
� �
¼
2kBTD2

M

1

4
exp ð� ~gg=2Þ

ð�þ�Þ2

~ww2

�

� ~gg½1þ exp ð� ~ggÞ�
sin ~ww0

~ww0
� 2½1� exp ð� ~ggÞ� cos ~ww0

� �

�
�2

~gg2
~gg½1þ exp ð� ~ggÞ�

sin ~ww0

~ww0
þ 2½1� exp ð� ~ggÞ� cos ~ww0

� ��
:

ð11Þ

Other covariances are zero.

2.2. Position recurrence relations exact for constant force
Computations similar to (9) give the exact recurrence

relation of the Langevin equations for constant force:

xðtnþ1Þ ¼ ð1þ exp ð�gÞÞxðtnÞ � exp ð�gÞxðtn�1Þ

þ
1� exp ð�gÞ

g
f þRn ð12Þ

with

Rn
þ ¼

2gkBT
M

� �1=2Z tnþ1

tn

1� exp ½�gðtnþ1 � tÞ�

g
dWðtÞ ,

ð13Þ

Rn
� ¼

2gkBT
M

� �1=2Z tn

tn�1

exp ½gðt� tnÞ� � exp ð�gDÞ
g

dWðtÞ,

ð14Þ

Rn ¼ Rn
þ þRn

�: ð15Þ

By requiring (2) to be exact for constant force, it
becomes

xnþ1 ¼ ð1þ exp ð�gÞÞxn � exp ð�gÞxn�1

þ
1� exp ð�gÞ

g
� d

� �
f n þ df n�1 þQn

c ð16Þ

with

Qn
cQ

nþk
c

� �
¼

aþ c ðk¼ 0Þ ,
b ðk¼�1Þ ,
0 ðotherwiseÞ ,

8<
: ð17Þ

where

a�hRn
þR

n
þi¼

2kBT

g2M
�
3

2
þgþ2 exp ð�gÞ�

1

2
exp ð�2gÞ

� �
,

ð18Þ

b�hRn
þR

n
�i¼

2kBT

g2M
1

2
�g exp ð�gÞ�

1

2
exp ð�2gÞ

� �
,

ð19Þ

c� hRn
�R

n
�i

¼
2kBT

g2M
1

2
� 2 exp ð�gÞ þ

3

2
exp ð�2gÞ þ g exp ð�2gÞ

� �
:

ð20Þ

Note that equation (16) contains one free parameter
d. The position recurrence relation used in LÎI and
vGB82 integrator are two special cases of (16) with

dLÎI ¼ 0 , ð21Þ

dvGB82 ¼
1� g=2� ð1þ g=2Þ exp ð�gÞ

g2
: ð22Þ

Another special case is the method introduced in [14] on
p. 263, for which

d ¼
ð1� expð�gÞÞ2 � g2 exp ð�gÞ

g3
: ð23Þ

The starting procedure of LÎI and vGB82 integrators is

x1 ¼ x0 þ
1� exp ð�gÞ

g
v0D

þ
exp ð�gÞ � 1þ g

g2
f 0 þR0

þ: ð24Þ

The BBK integrator is not exact for constant force.

2.3. Error analysis
The fact that the backward error is O(D2) generally

implies that the (forward) error is O(D2). However, due
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to cancellation, it is possible that the forward error is of
higher order. To make sure that our analysis gives the
precise order of the forward error, it is wise to compute
both errors.
For a harmonic oscillator, the force is linear:

FðxÞ ¼ �M!2x. The BBK integrator gives the following
recurrence relation (w ¼ !D):

xnþ1 ¼
2�w2

1þ g=2
xn �

1� g=2

1þ g=2
xn�1 þ

2gkBTD3

M

� �1=2

Zn:

ð25Þ

We assume the modified equation is (5), which has
recurrence relation (9). Comparing equation (9) with
(25) and equating the two coefficients and two non-zero
covariances of the random terms, we obtain

~gg¼ g 1þ
1

12
g2D2 þO D4

� �� �
, ð26Þ

~!!¼ ! 1�
1

24
g2 þ!2
� �

D2 þO D4Þ
�� �

, ð27Þ

�¼
1

61=2
gDþO D2

� �
, ð28Þ

�¼ 1�
1

61=2
gDþOðD2Þ: ð29Þ

The computation is performed using Maple [15]. The
values given here for ~gg and ~!! are consistent with the
values geff ðDtÞ and ½!2

eff ðDtÞ þ g2eff ðDtÞ=4�
1=2 from table II

of [8]y. Note that the error in the parameters is first
order in D.
In appendix B, we solve equation (5) analytically and

derive the position covariance error. The result for
! ¼ 0 (zero force) is

cov ðxðt1Þxðt2ÞÞBBK � cov ðxðt1Þxðt2ÞÞexact

¼
2kBT

6Mg
ð1� exp ð�gt1ÞÞð1� exp ð�gt2ÞÞDþOðD2Þ:

ð30Þ

This error is first order in D, meaning that the BBK
integrator converges weakly with order 1 even if the
force is 0. For ! 6¼ 0, we also obtain a first-order error:

cov ðxðt1Þxðt2ÞÞBBK � cov ðxðt1Þxðt2ÞÞexact

¼
2kBT

M

g
6!02

exp �
gðt1 þ t2Þ

2

� �
sin !0t1 sin !0t2

� �
D

þOðD2Þ: ð31Þ

The same analysis is carried out for equation (16),
which is exact for constant force and includes both the
vGB82 integrator and the LÎI integrator. This time, the
parameters in the modified equations (5) are [15]

~gg¼ g� d!2DþOðD2Þ, ð32Þ

~!!¼ !�
1

24
ð6d � 1Þ!3D2 þOðD3Þ, ð33Þ

�¼
1

3ð101=2Þ
!gD2 þOðD3Þ, ð34Þ

�¼ 1þ d
!2

2g
DþOðD2Þ: ð35Þ

As long as d ¼ OðDÞ, the errors are O(D2). The
LÎI integrator sets d ¼ 0, while the vGB82 integrator
sets d ¼ �ðð1þ g=2Þ exp ð�gÞ � 1þ g=2Þ=g2 ¼ � 1

12
gDþ

OðD2Þ, so both integrators introduce second-order error
into the parameters.
The position covariance errors for the vGB82 and LÎI

integrators are complicated, but the leading term is
O(D2). This means both vGB82 and LÎI integrators con-
verge weakly with order 2 for the harmonic oscillator
problem.
The fact that the BBK integrator has lower weak

convergence order than LÎI and vGB82 may not be as
significant as it may seem. This is because for zero force,
the leading term of the position covariance is propor-
tional to t1, which increases linearly as t1 increases, but
the error expressed in equation (30) for the BBK
integrator does not; for the harmonic oscillator case,
the error decays exponentially with time, as can be seen
from (31).

3. Velocity definition

Sometimes, an approximation to velocity is needed
during the molecular dynamics simulation. There are
several ways to define velocity in the numerical inte-
grator. One way is to use the starting procedure, as is
done by the BBK and the LÎI integrator [6]. They simply
extend equation (4) for BBK, and (24) for LÎI, by
changing the upper indices 0 to n, and 1 to nþ 1.
Consequently, these methods are ‘restartable’, meaning
that a restart after step N would be equivalent to one
more use of the position recurrence relation without the
restart. Notice that although vGB82 uses the same
starting procedure as LÎI does, its velocity definition is
not consistent with its starting procedure [1]. Another
way to define velocity is to impose some requirement,
such as exact virial relation. It is shown in [4] that a
proper re-definition of velocity can give the exact virial
relation for the case of a harmonic oscillator. In this
section, we explore whether the position recurrence
relation (16), which is exact for constant force, can be

yNote that there is a typo in paper [8], namely, for the BBK
method, !eff ðDtÞ ¼ ð1=DtÞ cos�1 ½ð2� 
2Þ=ð4� �2Þ1=2�.
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augmented with a proper velocity definition to give the
exact virial relation.

3.1. Virial theorem
For a thermodynamic system, the virial theorem

states, see [14] p. 46,

hpk@H=@pki ¼ kBT , ð36Þ

hqk@H=@qki ¼ kBT , ð37Þ

where H is the Hamiltonian of the system, and qk and pk
are generalized position coordinates and corresponding
momenta, respectively, and where h�i means ensemble
average. In our discussion, the ‘virial relation’ means the
following relation derived from the above equation:

hpk@H=@pki ¼ hqk@H=@qki : ð38Þ

For the simple case of a particle moving under the linear
force FðxÞ ¼ �M!2x in one-dimensional space, the
virial relation simplifies to

hv2i �!2hx2i ¼ 0 : ð39Þ

In this paper, reference to ‘exact virial relation’ means
exact virial relation for the harmonic oscillator.
In [4], it is shown that by changing the velocity

definition to vn ¼ ðxn � xn�1Þ=D, the virial relation for a
harmonic oscillator is observed for BBK:

lim
n!1

ðhvnvni �!2hxnxniÞ ¼ 0 : ð40Þ

This property is not held either by the vGB82 or by the
LÎI integrator. So the question is, can equation (16)
achieve exact virial relation with a proper definition of
velocity?

3.2. Exact virial relation
We start with

xnþ1 ¼ ð1þ exp ð�gÞÞxn � exp ð�gÞxn�1

þðð1� exp ð�gÞÞ=g� dÞf n þ df n�1 þQn
c ,

vnD¼ pxn þ qxn�1 þ s f n þ r f n�1 þ Qn
c ,

8><
>: ð41Þ

with hQn
cQ

n
ci ¼ A0 ¼ aþ c, hQn

cQ
nþ1
c i ¼ A1 ¼ b and

hQn
cQ

nþk
c i ¼ 0 for k > 1. The first equation is (16),

which is exact for constant force. The second equation is
the definition of velocity vn. Here d, p, q, s and u are
dimensionless parameters depending on g, D, M and
kBT .
For the linear force case, the first equation of (41)

gives

xnþ1 ¼ a1x
n þ a2x

n�1 þQn
c , ð42Þ

with a1 ¼ 1þ exp ð�gÞ � ðð1� exp ð�gÞÞ=g� dÞw2 and
a2 ¼ � exp ð�gÞ � dw2. The recurrence relation has the
solution

xnþ1 ¼Qn
c þ a1Q

n�1
c þ linear combination of Qn�2

c , . . . ,Q1
c

and x0,x1: ð43Þ

Define

Yi ¼ lim
n!1

hxnxnþii , for i ¼ 0, 1, 2: ð44Þ

Equations (42) and (43) give

Y0 ¼ a1Y1 þ a2Y2 þA0 þ a1A1,
Y1 ¼ a1Y0 þ a2Y1 þA1,
Y2 ¼ a1Y1 þ a2Y0:

8<
: ð45Þ

We obtain Y0 and Y1 by solving the above set of
equations:

Y0 ¼
ð1� a2ÞA0 þ 2a1A1

ð1þ a2Þ½ð1� a2Þ
2
� a21�

, ð46Þ

Y1 ¼
a1A0 þ ð1þ a21 � a22ÞA1

ð1þ a2Þ½ð1� a2Þ
2
� a21�

: ð47Þ

We do not write down Y2 explicitly since we do not need
it in the following discussions. In particular we obtain

xnxnh i
LÎI

¼
kBT

m!2
1þ

1

12
!2D2 þOðD3Þ

� �
, ð48Þ

xnxnh ivGB82 ¼
kBT

m!2
1þ

1

48
!4D4 þOðD5Þ

� �
: ð49Þ

The above result can be used to compare with

xnxnh iBBK ¼
kBT

m!2

1

1�!2D2=4

¼
kBT

m!2
1þ

1

4
!2D2 þOðD3Þ

� �
, ð50Þ

which is given in [4] as well as in [8]. From the second
equation of (41), we can write vn in terms of xn and xn�1,
square both sides, and obtain

lim
n!1

vnvnh iD2 ¼ ½ðp� sw2Þ
2
þ ðq� rw2Þ

2
�Y0

þ 2A0 þ 2ðp� sw2Þðq� rw2ÞY1

þ 2ðp� sw2ÞA1: ð51Þ

The exact virial relation requires

w2Y0 � lim
n!1

hvnvniD2 ¼ 0: ð52Þ
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With a common denominator, the numerator in the
above equation is a polynomial in w2 of degree 4.
Requiring all the coefficients to be zero, we obtain five
conditions. The unknowns in the equation are p, q, s, r
and . The five conditions determine the five unknowns.
Solving equation (52) gives the corresponding param-
eters for defining velocity to give an exact virial
relation. If d ¼ 0 (the choice of the LÎI integrator), we
have

r¼ 0 , ð53Þ

s¼ 0 , ð54Þ

p¼�q¼
gð1þ exp ð�gÞÞ

2ð1� exp ð�gÞÞ

� �1=2
, ð55Þ

¼
1

A0½1� exp ð�gÞ�1=2

� �A1½1þ exp ð�gÞ�1=2
�

þ ½A1ð2A0 þA1 þA1 exp ð�gÞÞ�
�1=2 g

2

� �1=2
: ð56Þ

As long as g ¼ gD > 0, we have A0 > 0 and A1 > 0.
So the above solution is real. For the vGB82 integrator,
the equations are too complicated to solve although
solutions can be shown to exist for small g.

4. Summary

Theoretical evidence given here and in [6] strongly
suggests that the LÎI and vGB82 [1] schemes are no worse
than and often much better than the BBK [2] scheme in
situations where it is practical to compute the exponen-
tial of the friction tensor, such as in the common case of
a diagonal tensor. It is recommended that for such
situations LÎI and vGB82 be implemented and tested.

The research is supported in part by NSF Grants
DMS-9971830, DBI-9974555 and DBI-9807882.

Appendix A: Modified equation analysis

Here, we give details of the derivation of the position
recurrence relation (9) from the modified equation (5).
For matrix A defined in equation (5), we have

exp ðAtÞ ¼ exp ð�~ggt=2Þ cos ~!!0t
1 0

0 1

� �

þ exp ð�~ggt=2Þ
sin ~!!0t

~!!0

~gg=2 1

� ~!!2 �~gg=2

� �
: ðA1Þ

Applying equation (6) twice, we get Yðtnþ1Þ ¼
D2Yðtn�1Þ þDXn�1 þ Xn, where D ¼ exp ðDAÞ. By
Cayley’s theorem, any 2� 2 matrix D satisfies
D2 ¼ tr ðDÞD� det ðDÞI . Combining the two equations

and using (6) again, we have

Yðtnþ1Þ ¼ tr ðDÞYðtnÞ � det ðDÞYðtn�1Þ � tr ðDÞXn�1

þDXn�1 þXn; ðA2Þ

we obtain the position recurrence relation by multi-
plying both sides by vector ½1 0�:

xðtnþ1Þ ¼ tr ðDÞxðtnÞ � det ðDÞxðtn�1Þ þQn , ðA3Þ

where

Qn ¼ ½1 0� ðXn þ ðD� tr ðDÞIÞXn�1Þ: ðA4Þ

Since D ¼ exp ðADÞ, equation (A 1) gives det ðDÞ ¼

exp ð� ~ggÞ and tr ðDÞ ¼ 2 exp ð� ~gg=2Þ cos ~ww0, from which
equation (9) follows. From equations (A 4) and (8), we
use Maple to calculate the covariances between the Qns.
The non-zero covariances are as given in equations (10)
and (11).

Appendix B: Error analysis

Here, we give details of the derivation of equations
(30) and (31). For zero force, we assume the modified
equation is (5) with ~!! ¼ 0. Taking the limit ! ! 0 in
equations (9), (10) and (11), we obtain the recurrence
relation for equation (5) ( ~gg ¼ ~ggD):

xnþ1 ¼ ð1þ exp ð� ~ggÞÞxn � exp ð� ~ggÞxn�1 þQn ðB1Þ

with

QnQn
� �

¼
2kBTD2

M

1

~gg2

~ggð�þ �Þ2ð1þ exp ð�2 ~ggÞÞ

� �ð2�þ �Þð1� exp ð�2 ~ggÞÞ
�
, ðB2Þ

QnQnþ1
� �

¼
2kBTD2

M

1

2 ~gg2

�ð2�þ �Þð1� exp ð�2 ~ggÞÞ

� 2 ~gg exp ð� ~ggÞð�þ �Þ2
�
: ðB3Þ

For zero force, the BBK integrator gives

xnþ1 ¼
2

1þ g=2
xn �

1� g=2

1þ g=2
xn�1

þ
1

1þ g=2

2gkBTD3

M

� �1=2

Zn: ðB4Þ

Comparing equations (B1)–(B3) with (B4) and solving
for �, � and ~gg, we have

~gg¼ ln
1þ g=2

1� g=2
¼ g 1þ

1

12
g2D2 þO D4

� �� �
, ðB5Þ

�¼ 1� 1�
g2

4

� �
~gg

g

� �
~gg

g

� �1=2

¼
1

61=2
gDþþO D3

� �
, ðB6Þ
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�¼
~gg

g

� �1=2

��¼ 1�
1

61=2
gDþO D2

� �
: ðB7Þ

Note the error is of first order in D.
If tn ¼ 0 and tnþ1 ¼ t, equation (6) gives the analytical

solution to the modified equation:

xðtÞ ¼ exp �
1

2
~ggt

� �
cos ~!!0tþ

~gg
2 ~!!0

sin ~!!0t

� �
xð0Þ

þ exp �
1

2
~ggt

� �
sin ~!!0t

~!!0
vð0Þ

þ
2~ggkBT
M

� �1=2Z t

0

exp �
1

2
~ggðt� sÞ

� �

�
�

~gg
cos ~!!0ðt� sÞ þ

~gg
2 ~!!0

sin ~!!0ðt� sÞ

� ��

þ �
sin ~!!0ðt� sÞ

~!!0

�
dWðsÞ: ðB8Þ

For zero force, ~!! ¼ 0, the solution simplifies to

xðtÞ ¼ xð0Þ þ
1� exp ð�~ggtÞ

~gg
vð0Þ þ

2~ggkBT
M

� �1=2

�

Z t

0

�þ �� � exp ½�~ggðt� sÞ�

~gg
dWðsÞ : ðB9Þ

In a position recurrence relation, we know xð0Þ and
xðDÞ instead of xð0Þ and vð0Þ. We assume that
xðDÞ � xð0Þ ¼ OðDÞ. This is because the original
Langevin equation has a continuously differentiable
solution xðtÞ. Using equation (B9) for t ¼ D, we obtain

vð0Þ ¼
~gg

1� exp ð�~ggDÞ
xðDÞ � xð0Þ �

2~ggkBT
M

� �1=2
"

�

Z D

0

�þ �� � exp ½�~ggðD� sÞ�

~gg
dWðsÞ

�
: ðB10Þ

This gives

xðtÞ ¼ xð0Þþ
1� exp ð�~ggtÞ
1� exp ð�~ggDÞ

ðxðDÞ�xð0ÞÞ

�
1� expð�~ggtÞ
1� exp ð�~ggDÞ

2~ggkBT
M

� �1=2

�

Z D

0

�þ��� exp ½�~ggðD� sÞ�

~gg
dWðsÞþ

2~ggkBT
M

� �1=2

�

Z t

0

�þ��� exp ½�~ggðt� sÞ�

~gg
dWðsÞ: ðB11Þ

For the BBK integrator, �, � and ~gg are given in (B 6),
(B 7) and (B 5), respectively. For the original Langevin
equation, �exact ¼ 0, �exact ¼ 1 and ~ggexact ¼ g. From

equation (B 11), we use Maple to compute the covar-
iance of positions at two different times (assume
0 < t1 � t2):

covðxðt1Þxðt2ÞÞ

¼ h½xðt1Þ�hxðt1Þi�½xðt2Þ�hxðt2Þi�i

¼
2~ggkBT
M

�
ðexpð�~ggDÞ�expð�~ggt1ÞÞðexpð�~ggDÞ�expð�~ggt2ÞÞ

~gg2ð1�expð�~ggDÞÞ2

�

� ð�þ�Þ2D�2�ð�þ�Þ
expð~ggDÞ�1

~gg
þ�2

expð2~ggDÞ�1

2~gg

� �

þ
1

~gg2

"
ð�þ�Þ2ðt1�DÞ��ð�þ�Þðexpð�~ggt1Þ

þexpð�~ggt2ÞÞ
expð~ggt1Þ�expð~ggDÞ

~gg

þ�2 exp ½�~ggðt1þ t2Þ�
expð2~ggt1Þ�expð2~ggDÞ

2~gg

��
: ðB12Þ

Note equation (B 12) implies

lim
t!1

hx2ðtÞiBBK
t

¼
2kBT

gM
¼ lim

t!1

hx2ðtÞiexact
t

: ðB13Þ

From equation (B 12), we obtain the error of the BBK
integrator, which is given by equation (30).
Carrying out similar computations for ~!! 6¼ 0, we

obtain equation (31) [15].
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