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Abstract. In our paper [3], we considered the acoustic and electromagnetic scat-
tering problems in three spatial dimensions. In particular, we studied a perfectly
matched layer (PML) approximation to an electromagnetic scattering problem. We
demonstrated both the solvability of the continuous PML approximations and the ex-
ponential convergence of the resulting solution to the solution of the original acoustic
or electromagnetic problem as the layer increased.

In this paper, we consider finite element approximation of the truncated PML elec-
tromagnetic scattering problem. Specifically, we consider approximations which result
from the use of Nédélec (edge) finite elements. We show that the resulting finite ele-
ment problem is stable and gives rise to quasi-optimal convergence when the mesh size
is sufficiently small.

1. Introduction

The purpose of this paper is to analyze a finite element approximation of a problem
which results when the time-harmonic electromagnetic scattering problem is approxi-
mated using a truncated PML approach. We shall demonstrate that the finite element
method is stable and convergent provided that the grid size is sufficiently fine.

There are several aspects of the time-harmonic electromagnetic scattering problem
which make it computationally challenging. First, the problem is not uniformly elliptic
since the gradient part of the field is not controlled by the form. In addition, because
of the time harmonic nature of the problem, the zeroth order term appears with a sign
opposite to that of the curl-curl term. This causes the problem to have an indefinite
character. The solvability of the continuous problem is, however, a consequence of
the Silver-Müller radiation condition imposed at infinity. Unfortunately, the resulting
solutions decay very slowly necessitating the use of either some type of artificial boundary
condition or a boundary integral approach.

The so-called PML technique is perhaps one of the most effective of the artificial
boundary condition approaches. This is because accurate solutions on a domain near the
scatterer can be achieved by increasing the size of the computational region by a factor
of only around two. Moreover, implementation of the PML approach in a reasonably
general code developed for the bounded domain problem is quite simple since it involves
only a change in the coefficients.
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Although there are many variants of the PML approach, we consider a version which
coincides with a complex change of coordinates based on a spherical layer. This approach
allows us to define a new problem (the infinite PML Problem) on the complement of the
scatterer which satisfies:

(1) The solutions of the original and PML problems coincide on the interior of a ball
of radius r0.

(2) The solution of the infinite PML problem decays exponentially for large argu-
ment.

Because of the decay property, the solution of the infinite PML problem can be well
approximated by a truncated (bounded domain) PML problem (see, [2, 3]). In particular,
in [3] an inf-sup condition for the truncated domain problem is derived. This is a critical
estimate for the finite element analysis which we provide here.

In this paper, we consider approximating the truncated PML problem using curl-
conforming finite elements [5, 12, 13]. Our analysis uses many of the ideas developed for
curl-conforming finite element approximations to time-harmonic electromagnetic prob-
lems on bounded domains [7, 9, 10, 11]. We use a duality approach reminiscent of
the argument of Schatz [14] with modifications to handle the lack of uniform ellipticity
similar to those used in [6, 9].

The remainder of the paper is outlined as follows. In Section 2, we introduce the time-
harmonic electromagnetic scattering problem and the infinite PML problem. Section 3
defines the truncated PML problem and its Galerkin approximation. The main result
of the paper is stated and proved there.

2. The scattering problem and infinite PML approximation

Let Ω (the scatterer) be a bounded domain in R
3 with Lipschitz continuous boundary.

We will consider the time-harmonic electromagnetic scattering problem. We seek vector
fields E and H defined on the complement Ωc satisfying

(2.1)

−ikµH+ ∇×E = 0, in Ωc,

−ikǫE − ∇×H = 0, in Ωc,

n × E = n × g, on ∂Ω,

lim
ρ→∞

ρ(µH× x̂ − E) = 0.

Here g results from a given incidence field, µ is the magnetic permeability, ǫ is the
electric permittivity, and n is the outward unit normal on ∂Ω. Also x̂ is a unit vector in
the direction of x and ρ = |x|. The last line corresponds to the Silver-Müller condition
at infinity. We assume that the coefficients µ and ǫ are real and positve, bounded away
from zero and constant outside of some ball (of radius r0).

We note that Ωc need not be simply connected and we do not assume that its boundary
is simply connected. We let Γj, j = 1, . . . , p denote the connected components of ∂Ωc.

We introduce some notation that will be used in the remainder of the paper. For a
domain D, let L2(D) be the space of (complex valued) square integrable functions on D
and L2(D) = (L2(D))3 be the space of vector valued L2-functions. We shall use (·, ·)Ω to
denote the (vector or scalar Hermitian) L2(Ω) inner product and < ·, · >Γ to denote the
(vector or scalar Hermitian) L2(Γ) boundary inner product. For a real number s, the
scalar and vector Sobolev spaces on D will be denoted Hs(D) and Hs(D) respectively.
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Let H(curl;D) be the set of vector valued functions which, along with their curls, are
in L2(D). H0(curl;D) denotes the functions f in H(curl;D) satisfying n × f = 0

on ∂Ω. We assume that n × g above is the trace n × ĝ of a function ĝ ∈ H(curl; Ωc)
supported close to ∂Ω.

For a subdomain D contained in our computational domain Ω∞, by extension by zero,
we identify H1

0 (D) with

{v ∈ H1
0 (Ωc) : supp(v) ⊆ D̄}

and H0(curl;D) with

{v ∈ H0(curl; Ωc)) : supp(v) ⊆ D̄}.

For convenience, we shall take µ = ǫ = 1 in (2.1) as all of our results extend to the
more general case as long as the coefficients are constant outside of a ball of radius r0.
We can reduce (2.1) to a single equation involving E by eliminating H. This gives

(2.2)

− ∇× ∇×E + k2E = 0 in Ωc,

n × E = n × g on ∂Ω,

lim
ρ→∞

ρ((∇×E) × x̂ − ikE) = 0.

As in [3], we introduce bounded subdomains of Ωc with spherical outer boundaries.
Let 0 < r0 < r1 < r2 be real numbers and let Ωi denote (the interior of) the open ball Bi

of radius ri excluding Ω̄. We assume that r0 is large enough so that the corresponding
ball contains Ω̄ and that the origin is contained in Ω. We denote the outer boundary of
Ωi by Γi. The domain Ω2 is contained in our computational domain which we denote
by Ω∞. The outer boundary of Ω∞ is denoted by Γ∞.

As discussed in [4], the PML problem can be viewed as a complex coordinate transfor-
mation. Following [8], a transitional layer based on spherical geometry is defined which
results in a constant coefficient problem outside the transition. Given σ0, r1, and r2, we
start with a function σ̃ ∈ C2(R+) satisfying

σ̃(ρ) = 0 for 0 ≤ ρ ≤ r1,

σ̃(ρ) = σ0 for ρ ≥ r2,

σ̃(ρ) increasing for ρ ∈ (r1, r2).

We define

ρ̃ = ρ(1 + iσ̃) ≡ ρd̃.

One obvious construction of such a function σ̃ in the transition layer r1 ≤ ρ ≤ r2 with
the above properties is given by the fifth degree polynomial,

σ̃(ρ) = σ0

( ∫ ρ

r1

(t− r1)
2(r2 − t)2 dt

)( ∫ r2

r1

(t− r1)
2(r2 − t)2 dt

)−1

for r1 ≤ ρ ≤ r2.

A smoother σ̃ can be constructed by increasing the exponents in the above formula.
Each component, u, of the solution E of (2.2) satisfies the Helmholtz equation with

Sommerfeld radiation condition, i.e.,

(2.3)
∆u+ k2u = 0 for ρ > r0,

lim
ρ→∞

ρ(∇u · x̂ − iku) = 0.
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It follows that the solution of (2.2) can be expanded

(2.4) E =
∞∑

n=0

n∑

m=−n

an,mh
1
n(kρ)Y m

n (θ, φ), for ρ ≥ r0.

Here h1
n(r) are spherical Bessel functions of the third kind (Hankel functions), Y m

n are
spherical harmonics (see, e.g., [10] for details) and an,m are vector valued constants.

The (infinite domain) PML solution is defined by

Ẽ =





E(x), for |x| ≤ r1,
∞∑

n=1

n∑

m=−n

an,mh
1
n(kρ̃)Y m

n (θ, φ), for ρ = |x| ≥ r1.

By construction Ẽ and E coincide on Ω1. Furthermore, the complex shift in the argu-

ment of h1
n above (kρ replaced by kρ̃) guarantees exponential decay of Ẽ as ρ tends to

infinity.
The PML solution defined above satisfies a differential equation involving ρ̃ and dρ̃

dρ
.

A simple computation shows that

dρ̃

dρ
= (1 + iσ(ρ)) ≡ d

where
σ(ρ) = σ̃(ρ) + ρσ̃′(ρ).

It follows that σ is in C1(R+) and satisfies

σ(ρ) = 0 for 0 ≤ ρ ≤ r1,

σ(ρ) > σ̃(ρ) for ρ ∈ (r1r2),

σ(ρ) = σ0 for ρ ≥ r2

The solution Ẽ satisfies Maxwell’s equations using the spherical coordinates (ρ̃, θ, φ)
[10]. More precisely,

(2.5)

−∇̃ × ∇̃ × Ẽ + k2Ẽ = 0 in Ωc,

n × Ẽ = n × g on ∂Ω,

Ẽ bounded at ∞.

For Ẽ expanded in spherical coordinates,

Ẽ = Ẽρeρ + Ẽθeθ + Ẽφeφ,

we have

(2.6)

∇̃ × Ẽ =
1

d̃ρ sin θ

(
∂

∂θ
(sin θ Ẽφ) −

∂Ẽθ

∂φ

)
eρ

+
1

d̃ρ

(
1

sin θ

∂Ẽρ

∂φ
−

1

d

∂

∂ρ
(d̃ρẼφ)

)
eθ

+
1

d̃ρ

(
1

d

∂

∂ρ
(d̃ρẼθ) −

∂Ẽρ

∂θ

)
eφ.
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3. The truncated PML problem and its Galerkin approximation

Since the solution of (2.5) coincides with that of (2.2) on Ω1 while rapidly decaying
as ρ tends to infinity, it is natural to truncate to a finite computational domain Ω∞ and
impose convenient boundary conditions on the outer boundary Γ∞. We shall always
require that the transitional region is contained in Ω∞, i.e., Ω̄2 ⊂ Ω∞.

The truncated PML approximation is then given as the vector function Ẽt defined on
Ω∞ satisfying

(3.1)

−∇̃ × ∇̃ × Ẽt + k2Ẽt = 0 in Ω∞,

n × Ẽt = n × g on ∂Ω,

n × Ẽt = 0 on Γ∞.

We shall assume that Ω∞ is sufficiently large so that we can apply the results of [3] to
conclude existence and uniqueness of solutions of (3.1).

We can write the derivatives in (3.1) in terms of cartesian coordinates. Following [10],
we define the diagonal matrices (in spherical coordinates)

Av = d̃−2vρeρ + (d̃d)−1(vθeθ + vφeφ)

and

Bv = dvρeρ + d̃(vθeθ + vφeφ).

Then, ∇̃ × Ẽ = A ∇× (BẼ). The matrices A and B have simple representations in
cartesian coordinates, e.g.,

A = (d̃d)−1I +
d̃−2 − (d̃d)−1

ρ2




x2
1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x3x2 x2
3


 .

Here I denotes the 3 × 3 identity matrix.
Following [10], we first define a weak form of the PML problem (3.1) by setting

Ẽt = ĝ − w and setting up a variational problem for Ξ = Bw ∈ H0(curl; Ω∞), i.e.,

(3.2) A(Ξ,Ψ) = A(Bĝ,Ψ) for all Ψ ∈ H0(curl; Ω∞).

Here the sesquilinear form A is given by

A(Θ,Ψ) ≡ (µ−1
∇× Θ,∇×Ψ) − k2(µΘ,Ψ) for all Θ,Ψ ∈ H(curl; Ωc)

and µ = (AB)−1. For convenience, we have used the notation (·, ·) above to denote the
inner product on Ω∞ as inner products on Ω∞ will be used extensively in the remainder
of the paper.

We consider the Nédélec finite element approximation to Problem (3.2) which we
restate as

(3.3) A(Ξ,Ψ) = F (Ψ) for all Ψ ∈ H0(curl; Ω∞).

Here F denotes the functional corresponding to the right hand side of (3.2).
For convenience, let Qh denote the curl conforming approximation subspace of Nédélec

elements on tetrahedra shaped elements consisting of piecewise polynomials of maximum
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degree r [5, 10, 12, 13]). Our results extend to the brick shaped elements. The finite
element approximation to (3.3) is: Find Ξh ∈ Qh satisfying

(3.4) A(Ξh,Φ) = F (Φ) for all Φ ∈ Qh.

The main result of this paper is contained in the following theorem. Its proof will be
given in the remainder of this section.

Theorem 3.1. There exists h0 > 0 such that if h ≤ h0, Problem (3.4) has a unique

solution Ξh which satisfies

‖Ξh − Ξ‖H(curl;Ω∞) ≤ C inf
V∈Qh

‖V − Ξ‖H(curl;Ω∞).

The proof of the above theorem is based on a perturbation argument and duality.
Such arguments have been applied to uniformly elliptic problems [14] as well as time
harmonic Maxwell problems on bounded domains [9, 10].

In spherical coordinates, the matrix function µ is represented by multiplication by a

diagonal matrix with complex diagonal entries {D11, D22, D33} ≡ {d̃2/d, d, d}. Because
of the assumptions on σ̃ it follows that there are constants c0, c1 satisfying

(3.5) c0 ≤ Re(Djj) ≤ c1 and c0 ≤ Re(D−1
jj ) ≤ c1.

Setting

Â(W ,V) = k2(µW ,V) + (µ−1
∇× W ,∇×V)

for W ,V ∈ H(curl; Ω∞), it follows that

(3.6) ‖W ‖2
H(curl;Ω∞) ≤ CRe(Â(W ,W ))

and

(3.7) ‖θ‖2
H1(Ω∞) ≤ CRe(µ∇θ,∇θ) for all θ ∈ H1

0 (Ω∞).

We will first prove the inf-sup condition corresponding to Problem (3.2), namely that
for V ∈ H0(curl; Ω∞),

(3.8) ‖V‖H(curl;Ω∞) ≤ C sup
Θ∈H0(curl;Ω∞)

|A(V ,Θ)|

‖Θ‖H(curl;Ω∞)

.

This will be a consequence of an inf-sup condition proved in [3].
We follow [3] and set

XN(Ω∞) = H0(curl; Ω∞) ∩ H0(div; µ,Ω∞),

where H0(div; µ,Ω∞) = {U ∈ L2(Ω∞) : ∇ · (µU ) = 0}. It was shown in [3] that for
v ∈ XN(Ω∞),

(3.9) ‖v‖H(curl;Ω∞) ≤ C sup
φ∈XN (Ω∞)

|A(v,φ)|

‖φ‖H(curl;Ω∞)

.

Let V be in H0(curl; Ω∞) and set V = v + ∇ψ where ψ ∈ H1
0 (Ω∞) solves

(µ∇ψ,∇ θ) = (µV ,∇ θ) for all θ ∈ H1
0 (Ω∞),
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so that v is in XN(Ω∞). Thus,

(3.10)

‖v‖H(curl;Ω∞) ≤ C sup
φ∈X(Ω∞)

|A(V ,φ)|

‖φ‖H(curl;Ω∞)

+ C‖∇ψ‖L2(Ω∞).

≤ C sup
Θ∈H0(curl;Ω∞)

|A(V ,Θ)|

‖Θ‖H(curl;Ω∞)

+ C‖∇ψ‖L2(Ω∞).

Now
‖∇ψ‖2

L2(Ω∞) ≤ C|A(∇ψ,∇ψ)| = C|A(V ,∇ψ)|,

from which it follows easily that

(3.11) ‖∇ψ‖H(curl;Ω∞) = ‖∇ψ‖L2(Ω∞) ≤ C sup
Θ∈H0(curl;Ω∞)

|A(V ,Θ)|

‖Θ‖H(curl;Ω∞)

.

The inf-sup condition (3.8) then follows from the triangle inequality, (3.10) and (3.11).

Because of (3.6), we can define a Galerkin projector: P̂h : H(curl; Ω∞) → Qh satis-
fying

(3.12) Â(Φ, P̂hV) = Â(Φ,V), for all Φ ∈ Qh.

Clearly, P̂h is bounded and gives rise to quasi-optimal convergence. We then have the
following lemma which we shall prove at the end of this section.

Lemma 3.1. Let P̂h be defined by (3.12). Then, for Vh ∈ Qh, Θ ∈ H0(curl; Ω∞), and

for some s > 1/2,

(3.13) |(µVh,Θ − P̂hΘ)| ≤ Chs‖Θ‖H(curl;Ω∞)‖Vh‖H(curl;Ω∞).

Using the above lemma, we can now prove Theorem 3.1.

Proof of Theorem 3.1. It is clear that the theorem will follow if we verify the discrete
inf-sup condition: For Vh ∈ Qh,

(3.14) ‖Vh‖H(curl;Ω∞) ≤ C sup
Θ∈Qh

|A(Vh,Θ)|

‖Θ‖H(curl;Ω∞)

.

Applying (3.8) with V = Vh ∈ Qh, we have

C‖Vh‖H(curl;Ω∞) ≤ sup
Θ∈H0(curl;Ω∞)

|A(Vh,Θ)|

‖Θ‖H(curl;Ω∞)

≤ sup
Θ∈H0(curl;Ω∞)

|A(Vh,Θ − P̂hΘ)|

‖Θ‖H(curl;Ω∞)

+ sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|

‖Θ‖H(curl;Ω∞)

= sup
Θ∈H0(curl;Ω∞)

2k2|(µVh,Θ − P̂hΘ)|

‖Θ‖H(curl;Ω∞)

+ sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|

‖Θ‖H(curl;Ω∞)

.

Applying the lemma and stability of P̂h in H0(curl; Ω∞), we have that

C‖Vh‖H(curl;Ω∞) ≤ hs‖Vh‖H(curl;Ω∞) + sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|

‖P̂hΘ‖H(curl;Ω∞)

= hs‖Vh‖H(curl;Ω∞) + sup
Θh∈Qh

|A(Vh,Θh)|

‖Θh‖H(curl;Ω∞)

.

Thus, (3.14) follows for h sufficiently small. �
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We need an additional result for the proof of the lemma. To this end, we introduce

XT (Ω∞) = H(curl; Ω∞) ∩ H0
0(div; µ,Ω∞),

where H0
0(div; µ,Ω∞) = {U ∈ H0(div; Ω∞) : ∇·(µU ) = 0}. The following proposition

was proved in [3] for XN(Ω∞). The proof for XT (Ω∞) is similar.

Proposition 3.1. XN(Ω∞) and XT (Ω∞) are contained in Hs(Ω∞) for some s > 1/2.
Moreover,

(3.15) ‖V‖Hs(Ω∞) ≤ C‖V‖H(curl;Ω∞) for all V ∈ XN(Ω∞) ∪ XT (Ω∞).

We will now prove the lemma.

Proof of Lemma 3.1. For i = 1, . . . , p, define ψ̂i to be the function in H1(Ω∞) satisfying

−∆ψ̂i = 0, in Ω∞,

ψ̂i = 0, on Γj (j = 1, . . . , p,∞, j 6= i),

ψ̂i = 1, on Γi.

Let Wd be the p-dimensional space spanned by {ψ̂i} for i = 1, . . . , p and set H̃1
0 (Ω∞) =

H1
0 (Ω∞) +Wd. It is an easy consequence of Theorem 3.17 and Corollary 3.16 of [1] that

the sequence

H̃1
0 (Ω∞)

∇
−−−→ H0(curl; Ω∞)

∇×
−−−→ H0(div; Ω∞).

is exact.
On the discrete level, we introduce the space S̃h which is defined to be the H1(Ω∞)

conforming space consisting of functions which are piecewise polynomials of degree r,
are constant on Γi, i = 1, . . . , p and vanish on Γ∞. It is an easy consequence of Lemma
5.3 (Chapter 3) of [5] that if q ∈ Qh satisfies ∇×q = 0, then q = ∇p for some p ∈ S̃h.

For Θ ∈ H0(curl; Ω∞), set e = Θ − P̂hΘ and let Vh be in Qh. We decompose e as

e = e0 + ∇ψ, where ψ ∈ H̃1
0 (Ω∞) satisfies

(3.16) (µ∇ψ,∇ Φ) = (µe,∇ Φ) for all Φ ∈ H̃1
0 (Ω∞).

Note that e0 is in XN(Ω∞).
We then decompose Vh as Vh = V0,h + ∇ψh, where ψh ∈ S̃h satisfies

(3.17) (µ∇ψh,∇ Φ) = (µVh,∇ Φ) for all Φ ∈ S̃h.

Thus, since ∇ψh ∈ Qh,

(µVh,e) = (µV0,h,e) + (µ∇ψh,e) = (µV0,h,e) + k−2Â(∇ψh,e) = (µV0,h,e).

Hence

(3.18) (µVh,e) = (µV0,h,e0) + (µV0,h,∇ψ).

We will estimate the two terms in (3.18) separately. To estimate (µV0,h,e0) note that
(µV0,h,V0,h) = (µV0,h,Vh). Thus, it follows from (3.5) that

‖V0,h‖L2(Ω∞) ≤ C‖Vh‖L2(Ω∞).

Hence

(3.19) |(µV0,h,e0)| ≤ C‖Vh‖L2(Ω∞)‖e0‖L2(Ω∞).
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To estimate the right hand side above, we will use a duality argument. The bound
for (3.19) is similar to an argument in [10] modified to take into account a multiply
connected boundary and complex coefficients appearing from the PML operator.

Let z ∈ H0(curl; Ω∞) satisfy

(3.20) Â(z,Φ) = (µe0,Φ) for all Φ ∈ H0(curl; Ω∞).

Because of (3.6), this problem is well posed. In addition, the solution satisfies (µz,∇ θ) =

0 for all θ in H̃1
0 (Ω∞) and thus z is in XN(Ω∞) so the proposition implies that it is in

Hs(Ω∞) for some s > 1/2. Also, v = µ−1
∇× z is in XT (Ω∞) and the proposition

implies that it, too, is in Hs(Ω∞). As µ is smooth, this implies that ∇×z is in Hs(Ω∞)
and

(3.21) ‖z‖Hs(Ω∞) + ‖ ∇× z‖Hs(Ω∞) ≤ C‖e0‖L2(Ω∞).

For any zh ∈ Qh,

(3.22) ‖e0‖
2
L2(Ω∞) ≤ C|(µe0,e0)| = C|Â(z,e0)| = C|Â(z,e)| = C|Â(z − zh,e)|.

By the approximation properties of the Nédélec spaces,

(3.23)
inf

zh∈Qh

|Â(z − zh,e)| ≤ C inf
zh∈Qh

‖z − zh‖H(curl;Ω∞)‖e‖H(curl;Ω∞)

≤ Chs‖e0‖L2(Ω∞)‖e‖H(curl;Ω∞).

Combining the above gives a bound for the first term of (3.18), i.e.,

|(µV0,h,e0)| ≤ Chs‖e‖H(curl;Ω∞)‖Vh‖L2(Ω∞).

We finally bound the last term in (3.18). Let Ψ ∈ H̃1
0 (Ω∞) solve

(µ∇ Ψ,∇ θ) = (µV0,h,∇ θ) for all θ ∈ H̃1
0 (Ω∞)

and set V0 = V0,h − ∇ Ψ. Then,

(3.24) (µV0,h,∇ψ) = (µ(V0,h − V0),∇ψ) for all ψ ∈ H̃1
0 (Ω∞).

The above proposition shows that V0 is in Hs(Ω∞). Moreover, its curl is contained
in Rh, the corresponding conforming H0(div; Ω∞) approximation subspace appearing
in the discrete De Rham sequence, and so is piecewise polynomial. It follows that the
natural interpolation operator rh (onto Qh) is well defined on V0 and satisfies

‖V0 − rhV0‖L2(Ω∞) ≤ C(hs‖V0‖Hs(Ω∞) + h‖ ∇× V0‖L2(Ω∞))

(see, e.g. Theorem 5.41 in [10]).
The natural interpolation operators rh and πh for Qh and Rh, respectively, along with

the curl operator satisfy a commuting diagram property. It follows from this that

∇×(rhV0 − V0,h) = 0.

The above discussion implies that rhV0 −V0,h = ∇φh for some φh ∈ S̃h. It follows that
(µ(V0 − V0,h), rhV0 − V0,h) = 0. Hence

(3.25) (µ(V0 − V0,h),V0 − V0,h) = (µ(V0 − V0,h),V0 − rhV0).

The estimate

‖V0 − V0,h‖L2(Ω∞) ≤ C‖V0 − rhV0‖L2(Ω∞) ≤ Chs‖V0‖H(curl;Ω∞)

≤ Chs‖Vh‖H(curl;Ω∞)
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follows easily. Combining the above gives

(µV0,h,∇ψ) ≤ Chs‖Vh‖H(curl;Ω∞)‖∇ψ‖L2(Ω∞)

≤ Chs‖Vh‖H(curl;Ω∞)‖e‖L2(Ω∞).

This gives the desired bound for the second term of (3.18) and completes the proof of
the lemma. �
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