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ANALYSIS OF A FINITE PML APPROXIMATION

TO THE THREE DIMENSIONAL ELASTIC

WAVE SCATTERING PROBLEM

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND DIMITAR TRENEV

Abstract. We consider the application of a perfectly matched layer (PML)
technique to approximate solutions to the elastic wave scattering problem in
the frequency domain. The PML is viewed as a complex coordinate shift in

spherical coordinates which leads to a variable complex coefficient equation
for the displacement vector posed on an infinite domain (the complement of
the scatterer). The rapid decay of the PML solution suggests truncation to a
bounded domain with a convenient outer boundary condition and subsequent
finite element approximation (for the truncated problem).

We prove existence and uniqueness of the solutions to the infinite domain
and truncated domain PML equations (provided that the truncated domain
is sufficiently large). We also show exponential convergence of the solution of
the truncated PML problem to the solution of the original scattering problem
in the region of interest. We then analyze a Galerkin numerical approxima-
tion to the truncated PML problem and prove that it is well posed provided
that the PML damping parameter and mesh size are small enough. Finally,
computational results illustrating the efficiency of the finite element PML ap-
proximation are presented.

1. Introduction

In this paper, we consider techniques for approximating the solutions of fre-
quency domain elastic wave scattering problems. These problems are posed on
unbounded domains with a far field boundary condition given by the so-called
Kupradze-Sommerfeld radiation condition. This condition prescribes two differ-
ent Sommerfeld conditions on components of the solution at infinity. Specifically,
away from the scatterer, the solution is broken up into a solenoidal and an irro-
tational component. These components satisfy Helmholtz equations with different
wave numbers. The Kupradze-Sommerfeld radiation condition involves using Som-
merfeld radiation conditions with the corresponding wave numbers on the separate
components.

The fundamental challenge posed by this far field boundary condition is that
it appears that one has to break up the field at the discrete level. One possible
way to do this is to reformulate the problem in terms of potentials, keeping the
solenoidal and irrotational components separate [9, 16]. As the potentials satisfy
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the same radiation conditions as their derivatives, classical numerical techniques
for implementing Sommerfeld boundary conditions can be applied to the separate
(but coupled) potential problems. There are, however, two significant drawbacks
to this approach. First, the introduction of potentials adds complexity to the prob-
lem, especially in three dimensional applications where gauge conditions must be
introduced for uniqueness. Second, the resulting field approximations are obtained
by differentiation, and this often results in loss of approximation accuracy.

In this paper, we shall study a so-called perfectly matched layer (PML) reformu-
lation of the elastic wave scattering problem. From an engineering point of view,
PML can be thought of as the introduction of a fictitious material designed to
absorb energy away from the region of interest (usually close to the scatterer). A
perfectly matched layer is one which absorbs all energy sent into it without creating
any reflected waves. In [1], Bérenger showed that for a half plane (and Maxwell’s
equations), such a layer could be constructed which was without reflection of incom-
ing plane waves of any angle. His approach involved the introduction of additional
variables and equations in the “ficticious material” region.

In [5], Chew and Weedon derived the PML model of Bérenger [1] in terms of
complex coordinate stretching. This point of view was very important in that it
allowed one to see that a properly formulated PML approximation could some-
times be constructed which preserved the solution in the region of interest while
decaying exponentially at infinity. Because of this decay, the solution to the PML
problem can be approximated by a problem on a finite domain (with convenient
boundary condition) and subsequently approximated by numerical methods, e.g.,
the finite element method. The complex coordinate stretching point of view was
further applied by Collino and Monk to derive PML models in rectangular and
polar coordinates in [6] for acoustic problems. An analysis of the spherical PML
equations for the three dimensional electromagnetic and acoustic problems (both
on the infinite and truncated domains) was given by Bramble and Pasciak in [2],
where the inf-sup conditions useful for finite element error analysis were proved.

Extensions of Bérenger’s ideas for the elastic waves problem were considered by
Hastings et al. in [9] and independently by Chew and Liu in [4]. The PML model
in [9] is based on a potential formulation of the elastic wave problem. Similar to the
original Bérenger model, additional splitting of the fields was required. Another
PML model based on the stress-velocity formulation of the problem was proposed
by Collino and Tsogka in [7].

In this paper, we apply the complex shift technique in spherical coordinates
to derive and analyze a PML model for the time-harmonic elastic wave problem.
Similar to [2], the complex shift technique leads to a single (variable coefficient)
equation for the displacement vector and, in contrast to the models in [7] and [9],
requires no field splitting or additional unknowns. A PML model similar to ours
was proposed in [20], and limited numerical results were reported.

Also in this paper, we define a PML layer in terms of a fixed parameter σ0

and then allow the size of the computational domain to increase. We shall see,
first, that this technique leads to a PML model on the infinite domain for the
time-harmonic elastic wave problem with the desired properties, i.e., its solution
coincides with the original on the domain of interest (surrounded by the PML
layer) while decaying exponentially inside the layer. Moreover, it takes care of
both wave components simultaneously without field splitting and only requires
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the introduction of special “PML” coefficients in the PML region. We then show
that the solution of the truncated PML problem, although no longer equal to the
original solution, converges exponentially to it (as the size of the computational
domain increases) in the region of interest. To show stability of the truncated PML
solution, we derive H1-based inf-sup conditions.

As far as we know, the H1-based inf-sup conditions cannot, in general, be devel-
oped using a lower order perturbation argument based on the lemmas of [15, 19].
Accordingly, the classical finite element analysis for non-coercive problems [18] can-
not be applied. It is however possible to show that one can derive a stable approxi-
mation in terms of H−1 least-squares, although we shall not do so here. In contrast,
if we limit the size of the PML coefficient, then we shall see that it is possible to
prove an inf-sup condition via perturbation, and classical finite element analysis
implies convergence of the finite element approximation.

We note that all constants, except those in the finite element section, may de-
pend on σ0 (which we take as fixed) but are always independent of Rt, the size of
the computational domain. We make no attempt to analyze PML strategies which
involve simultaneously varying σ0 and Rt. The constants appearing in the finite
element section depend on the constants appearing in elliptic regularity “shift the-
orems.” Although we believe that they too can be bounded independently of Rt,
we have not included a proof. In any event, the regularity constant only effects the
smallness of the approximation parameter h required for stability and approxima-
tion of the finite element method. The numerical results show that this is not a
problem in practice.

The outline of the remainder of this paper is as follows. In Section 2, we formu-
late the elastic wave problem and state some properties of its solution. Section 3
introduces the PML viewed as a complex coordinate shift and derives some proper-
ties of the modified differential operators. Existence and uniqueness of the infinite
domain PML problem and the truncated PML problem are shown in Sections 4 and
5. A convergence result for the solution of the truncated PML problem is also given
in Section 5. Section 6 deals with the numerical approximation of the truncated
PML problem by finite elements. Finally, the results of numerical experiments il-
lustrating the behavior of the method on a model two dimensional problem are
given in Section 7.

2. Formulation of the elastic wave problem

Throughout this paper, we shall have to deal with complex valued functions
in various Sobolev spaces. For a domain D, let L2(D) be the space of complex
valued functions whose absolute value is square integrable on D and let L2(D) =
(L2(D))3 be the space of vector valued functions whose components are in L2(D).
We shall use (·, ·)D to denote the (vector or scalar Hermitian) L2(D)-inner product
(sesquilinear). The scalar and vector Sobolev spaces on D will be denoted Hs(D)
and Hs(D), respectively. Sobolev spaces with vanishing boundary conditions are
denoted by Hs

0(D) or Hs
0(D) and can be characterized as the completion of C∞

0 (D)
orC∞

0 (D) (respectively) under the corresponding Sobolev norms. We shall use bold
symbols to denote vector valued functions and operators. When the inner product
is on Ωc (defined below), we will use the simpler notation (·, ·). All forms will be
sesquilinear unless otherwise noted.
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In this section, we formulate the elastic wave problem and its far field boundary
condition. Let Ω be a bounded domain, with boundary Γ, containing the origin,
and let Ωc denote its complement. We seek a vector valued function u ∈ H1

loc(Ω
c)

satisfying

(2.1) Δu+ γ∇∇ · u+ k2u = 0 in Ωc

and

(2.2) u = g on Γ.

Here γ and k are positive real numbers and g is given in H1/2(Γ).
The formulation is completed by imposing the “so-called” Kupradze-Sommerfeld

far field radiation condition. This condition involves decomposing the function u
away from Ω as

(2.3) u = ζ +ψ,

with ζ solenoidal and ψ irrotational. As shown in [3], the components can be
chosen to satisfy Helmholtz equations,

Δζ + k2ζ = 0

and

Δψ + k21ψ = 0,

where k1 = k/
√
1 + γ. The Kupradze-Sommerfeld radiation condition imposes the

corresponding Sommerfeld radiation conditions on the components, i.e.,

(2.4) lim
r→∞

r(
∂ζ

∂n
− ikζ) = 0

and

(2.5) lim
r→∞

r(
∂ψ

∂n
− ik1ψ) = 0.

Let BR denote the open ball of radius R centered at the origin and assume that
Ω is contained in BR. The above decomposition is, in fact, uniquely determined
from the values of u on BR (see, e.g., [3]).

Since the components above satisfy Helmholtz equations and Sommerfeld bound-
ary conditions, they can be expanded in series outside of BR. Indeed,

(2.6) ψ(x) =
∞∑
n=0

∑
|m|≤n

γn,mpn(r)Yn,m(x̂),

with γn,m ∈ R3. Here pn(r) ≡ h
(1)
n (k1r), h

(1)
n is the Hankel function of the first

kind of order n, Yn,m are spherical harmonics, r = |x| and x̂ = x/r. Similarly,

(2.7) ζ =
∞∑

n=0

∑
|m|≤n

αn,mqn(r)Yn,m(x̂),

with αn,m ∈ R3 and qn(r) ≡ h
(1)
n (kr). Hence outside of BR, u may be expanded

in a series of the form

(2.8) u =

∞∑
n=0

∑
|m|≤n

(αn,mqn(r) + γn,mpn(r))Yn,m(x̂).
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As is well known [8], the above series and all of its derivatives converge uniformly
on compact subsets in the exterior of R̄.

The following theorem, which will be essential for this paper, is the main result
of [3].

Theorem 2.1. For any function g in H1/2(Γ), there is a unique solution u in
H1

loc(Ω
c) to the elastic wave problem (2.1), satisfying conditions (2.2), (2.4) and

(2.5). Moreover, for any R, u ∈ H1(Ωc ∩BR) and satisfies

(2.9) ‖u‖1,(Ωc∩BR) ≤ C(R)‖g‖1/2,Γ.

3. PML operators

Throughout this paper, we shall use a sequence of finite subdomains of Ωc with
spherical outer boundaries. Let r−1 < r0 < r1 < r2 be an increasing sequence of
positive real numbers and let Ωi denote (the interior of) the open ball Bi of radius
ri excluding Ω (we assume that r−1 is large enough so that the corresponding ball
contains Ω̄). We denote the outer boundary of Ωi by Γi. The values of r−1, r0, r1 are
independent of the computational outer boundary scaling parameter Rt (introduced
below).

The differential operators involved in PML approximations can be defined in
terms of a formal complex change of variables (or stretching). In this paper, we
consider a “change of variables” of the form

(3.1) Tx = (1 + iσ̃(r))x,

where r = |x| and x ∈ R
3.

Following [10], we use a function σ̃ which results in a constant coefficient problem
outside the transition. Given σ0, r0, and r1, we start with a function σ̃ ∈ C2(R+)
satisfying

(3.2)

σ̃(r) = 0 for r ≤ r0,

σ̃(r) = σ0 for r ≥ r1,

σ̃(r) increasing for r ∈ (r0, r1).

One obvious construction of such a function σ̃ in the transition layer r0 ≤ r ≤ r1
with the above properties is given by the fifth order polynomial,

σ̃(r) = σ0

(∫ r

r0

(t− r0)
2(r1− t)2 dt

)(∫ r1

r0

(t− r0)
2(r1− t)2 dt

)−1

for r0 ≤ r ≤ r1.

A smoother σ̃ can be constructed by increasing the exponents in the above formula.

Let d̃ (r) = 1 + iσ̃(r), d(r) = 1 + iσ(r), σ(r) = σ̃(r) + rσ̃′(r), and

P =
1

r2

⎛⎝ x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

⎞⎠ .

We note that P is the orthogonal projection along the vector x. We introduce the
following matrices (which depend on x ∈ R

3):

Au =
1

d̃ 2
urer +

1

dd̃
(uφeφ + uθeθ) =

1

d̃ 2
Pu+

1

dd̃
(I − P )u,

Bu = durer + d̃ (uφeφ + uθeθ) = dPu+ d̃ (I − P )u.

In the above, (r, φ, θ) denote the spherical coordinates of x.
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We apply a formal change of variable (see, e.g., [11]), and are led to PML oper-
ators:

(3.3)

∇̃w = B−1∇w,

Δ̃ =
1

d̃ 2d
∇ · (A−1B−1∇ ),

Δ̃w =
3∑

i=1

(Δ̃wi)ei,

∇̃ × F = A∇× (BF ),

∇̃ · F =
1

d̃ 2d
∇ · (A−1F ).

Here wi denotes the i’th component of w and ei denotes the unit vector in the i’th
direction.

Examining the form of ∇× and ∇· in spherical coordinates, one finds that

∇̃ × ∇̃× and ∇̃∇̃· involve at most one derivative of d and two derivatives of d̃ ,
and hence they map smooth functions to continuous ones. They also map functions
in H2

loc(R
3) into L2

loc(R
3). A analogous argument shows that similar results hold

for Δ̃ and Δ̃.
We shall require three additional identities involving these operators. For com-

pleteness, we include their proofs in Appendix A. The first identity is

(3.4) Δ̃w = −∇̃ × ∇̃ ×w + ∇̃∇̃ ·w
for w ∈ H2

loc(R
3). The remaining two are the integral identities

(3.5)

∫
R3

d̃ 2d(Δ̃w) · (∇̃φ) dx =

∫
R3

d̃ 2d(∇̃(∇̃ ·w)) · (∇̃φ) dx

and

(3.6)

∫
R3

d̃ 2d(Δ̃w) · (∇̃ × φ) dx = −
3∑

i=1

∫
R3

d̃ 2d(∇̃(∇̃ ×w)i) · (∇̃φi) dx.

These integral identities hold for φ ∈ H1(R3), φ ∈ H1(R3) and w ∈ H2(R3).

4. The elasticwave PML problem

The “stretched” function ũ corresponding to a function u satisfying (2.1) is
defined by
(4.1)

ũ(x) =

⎧⎪⎪⎨⎪⎪⎩
u(x) : if x ∈ Ωc and |x| ≤ r0,

∞∑
n=0

∑
|m|≤n

(αn,mqn(r̃) + γn,mpn(r̃))Yn,m(x̂) : otherwise.

Here r̃ = (1 + iσ̃(r))r, and {γn,m} and {αn,m} are the coefficients appearing in
(2.6) and (2.7), respectively. As pn and qn are essentially just Hankel functions,
their values for complex arguments are well defined provided one stays away from
the branch cut. As the real part of r̃ is greater than zero, pn and qn are well defined

if we take the branch cut defining h
(1)
n (z) to be the negative real axis.

For the proof of our next theorem, we shall require a complex variable argument.
To do this, we consider more general PML operators defined by replacing i by z
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with z ∈ C̃ ≡ {
(z) > −1/σM}. Here σM denotes the maximum value of σ. The
series defining ũ (and all of its derivatives) converges uniformly for z in a compact

subset of C̃ and for r on compact subsets with |r̃| > r−1.
We have the following theorem.

Theorem 4.1. Let ũ be defined by (4.1). Then ũ is in H2
loc(Ω

c) ∩ H1(Ωc) and
satisfies

(4.2) Δ̃ũ+ γ∇̃∇̃ · ũ+ k2ũ = 0 in Ωc.

Proof. Note that r̃0 = r0, so (2.8) implies that the transition in (4.1) is smooth.
As u ∈ H2

loc(Ω
c), ũ ∈ H2

loc(Ω
c) follows from the uniform convergence of the series

in (4.1) and its derivatives.
We consider the complex valued function

F (z) =

∫
Ωc

d̃ 2d(Δ̃ũ+ γ∇̃∇̃ · ũ+ k2ũ) · φ dx.

Here ũ depends on z as r̃ = (1+zσ̃)r and φ ∈ C∞
0 (Ωc) is real valued and fixed. For

real s with s > −1/σM , the transformation Tsx = (1+sσ̃(r))x maps Ωc bijectively
onto Ωc and a change of variables gives

F (s) = (Δu+ γ∇∇ · u+ k2u,φs) = 0.

Here φs(x) ≡ φ(T−1
s (x)). The convergence of the series easily implies that F

is analytic on C̃. This implies that F (z) vanishes for any z ∈ C̃ from which it

immediately follows that Δ̃ũ+ γ∇̃∇̃ · ũ+ k2ũ = 0 for such z.
The uniform convergence of the series and its derivatives and Theorem 2.1 imply

that ũ ∈ H1(Ω2). Outside of Ω1, (4.2) reduces to

Δũ+ γ∇∇ · ũ+ d20k
2ũ = 0.

The corresponding variational problem, find w ∈ H1(Bc
r1
) with w = ũ on Γ1

satisfying∫
Bc

r1

[

3∑
i=1

∇wi ·∇Φi + γ∇ ·w∇ ·Φ− d20w ·Φ] dx = 0, for all Φ ∈ H1
0(B

c
r1),

has a unique solution in H1(Bc
r1) since d20 has a non-zero imaginary part. As w

has a series representation of the form of (4.1) and equals ũ on Γ1, w = ũ. This
implies that ũ ∈ H1(Ωc) and completes the proof. �

We revert to the PML shift, i.e., z = i, in the remainder of this paper (excluding
Appendix A).

For v,Ψ ∈ H1(R3), we define

(4.3)
A(v,Ψ) ≡

3∑
j=1

(A−1B−1∇vj ,∇Ψj)R3

+ γ((d̃ 2d)−1∇ · (A−1v),∇ · (A−1
Ψ))R3 − k2(d̃ 2dv,Ψ)R3 .

Here A−1 denotes the complex conjugate. Note that all terms in the above expres-
sions are non-Hermitian.

We shall use the form A(·, ·) to denote the restriction of the above integrals to
D ⊆ R3 when one of the two arguments is in H1

0(D) and the other is in H1(D).
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Multiplying (4.2) by d̃ 2dΨ̄ for Ψ ∈ C∞
0 (Ωc), using (3.3), and integrating by

parts shows that ũ satisfies the weak equations

A(ũ,Ψ) = 0.

This equality, of course, extends to all Ψ ∈ H1
0(D) by density.

For the first step in our analysis we consider the source problem on all of R3,

(4.4) Δ̃U + γ∇̃∇̃ ·U + k2U = Φ in R
3.

A weak form of this equation is

(4.5) A(U ,Ψ) = (d̃ 2dΦ,Ψ)R3 , for all Ψ ∈ H1(R3).

Let H̃1(R3) denote the weighted Sobolev space of functions defined on R
3 given

by

H̃1(R3) = {u : u(1 + r2)−1/2 ∈ L2(R3) and ∇u ∈ L2(R3)}.
It follows from Theorem 2.5.13 of [12] that ‖∇φ‖L2(R3) provides an equivalent norm

for H̃1(R3). Moreover, C∞
0 (R3) is dense in H̃1(R3) [12].

For the analysis of the above problem, we shall need to decompose a vector
function Φ ∈ L2(R3) as

(4.6) Φ = ∇̃θ +Φ0,

where θ ∈ H̃1(R3). We choose θ so that ∇̃ ·Φ0 = 0; specifically, θ ∈ H̃1(R3) is the
solution of

(4.7) b̃(θ, φ) = (A−1Φ,∇φ)R3 , for all φ ∈ H̃1(R3).

Here

b̃(θ, φ) ≡ (B−1A−1∇ θ,∇φ)R3 .

Since B−1A−1 has a uniformly positive definite real part, b̃ is coercive on H̃1(R3).

It follows that (4.7) has a unique solution θ ∈ H̃1(R3) satisfying

(4.8) ‖∇ θ‖L2(R3) ≤ C‖Φ‖L2(R3).

We shall require the following lemma, whose proof we provide later.

Lemma 4.1. The decomposition (4.6) is stable in H−1(R3); i.e.,

‖Φ0‖H−1(R3) + ‖∇̃θ‖H−1(R3) ≤ C‖Φ‖H−1(R3).

Using the above lemma, we can prove the following theorem.

Theorem 4.2. Let Φ ∈ H−1(R3). Problem (4.5) has a solution U ∈ H1(R3)
satisfying

(4.9) ‖U‖H1(R3) ≤ C‖Φ‖H−1(R3).

Proof. We start by analyzing solutions to a scalar PML problem on R3, specifically
the solution u of

(4.10) Δ̃u+ k2u = Φ in R
3

for Φ ∈ L2(R3). A weak form of (4.10) is to find u ∈ H1(R3) satisfying

(4.11) b(u, θ) = (d̃ 2Φ, θ)R3 , for all θ ∈ H1(R3).
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Here
b(u, θ) = (A−1B−1∇u,∇ (d̄−1θ))R3 − k2(d̃ 2u, θ)R3 .

The scattering problem corresponding to (4.10) (for any positive k) was studied
in [2]. There it was shown that the form b(·, ·) satisfied inf-sup conditions on
H1

0 (Ω
c). The arguments there extend to the case in which Ωc is replaced by R

3,
i.e., for w ∈ H1(R3),

(4.12) ‖u‖H1(R3) ≤ c sup
φ∈H1(R3)

|b(u, φ)|
‖φ‖H1(R3)

and

(4.13) ‖u‖H1(R3) ≤ c sup
φ∈H1(R3)

|b(φ, u)|
‖φ‖H1(R3)

.

It follows that there is a unique solution u to (4.11) satisfying

(4.14) ‖u‖H1(R3) ≤ C‖Φ‖H−1(R3).

Here we use the fact that multiplication by d̃ 2 is a bounded operator on H1(R3).
The solution u of (4.11), in fact, is in H2(R3), and so it solves (4.10). Indeed,

since σ̃ ∈ C2(R+) and σ ∈ C1(R+) we see that

(4.15) |b(Dhv, φ) + b(v,D−hφ)| ≤ C‖v‖H1(R3)‖φ‖H1(R3),

where Dh is an arbitrary difference quotient of size h. Using (4.12) gives

(4.16)

‖Dhu‖H1(R3) ≤ C

(
sup

φ∈C∞
0 (R3)

|b(u,D−hφ)|
‖φ‖H1(R3)

+ ‖u‖H1(R3)

)

= C

(
sup

φ∈C∞
0 (R3)

|(d̃ 2Φ, D−hφ)|
‖φ‖H1(R3)

+ ‖u‖H1(R3)

)
≤ C‖Φ‖L2(R3),

uniformly in h. For the last inequality above, we used (cf. Lemma 8.48 of [17])

‖D−hφ‖L2(R3) ≤ C‖φ‖H1(R3).

It follows that

(4.17) ‖u‖H2(R3) ≤ C‖Φ‖L2(R3)

(see, e.g., Lemma 8.49 of [17]).
We next construct a solution of (4.5). We decompose Φ ∈ L2(R3) as follows:

Φ = ∇̃θ + (Φ− ∇̃θ) ≡ ∇̃θ +Φ0,

where θ is the solution of (4.7). By construction, ∇̃ ·Φ0 = 0.
We then define U1 by

(4.18) Δ̃U1 + k2U1 = Φ0.

This equation reduces componentwise to (4.10), with Φ replaced by (Φ0)j , j =

1, 2, 3. Thus U1 ∈ H2(R3) and

(4.19) ‖U1‖H1(R3) ≤ C‖Φ0‖H−1(R3).

Multiplying (4.18) by d̃ 2d∇̃(d−1φ̄), and integrating and applying (3.5) gives us

that ∇̃ ·U1 satisfies

b(∇̃ ·U1, φ) = 0 for all φ ∈ H1(R3).
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It follows from (4.12) that ∇̃ ·U1 = 0, so U1 satisfies

(4.20) Δ̃U1 + γ∇̃(∇̃ ·U1) + k2U1 = Φ0 in R
3.

Next define U2 to be the solution of

(4.21) (1 + γ)Δ̃U2 + k2U2 = ∇̃θ.

This equation also reduces componentwise to (4.10), with k2 replaced by k2(1+γ)−1

and Φ replaced by (1 + γ)−1(∇̃θ)i, i = 1, 2, 3. Thus U2 ∈ H2(R3) and

(4.22) ‖U2‖H1(R3) ≤ C‖∇̃θ‖H−1(R3).

Multiplying (4.21) by d̃ 2d∇̃× (d−1φ̄), and integrating and applying (3.6) shows

that each component of ∇̃ ×U2 satisfies

b((∇̃ ×U2)j , φ) = 0 for all φ ∈ H1(R3),

with b defined using k1. As above, this implies that ∇̃ ×U2 = 0. It follows from
(4.21) and (3.4) that U2 satisfies

Δ̃U2 + γ∇̃(∇̃ ·U2) + k2U2 = ∇̃θ in R
3.

Finally, we define U = U1+U2. Clearly, U satisfies (4.4) and (4.9) follows from
(4.19), (4.22) and Lemma 4.1. This completes the proof of the theorem. �

Proof of Lemma 4.1. It suffices to show that

(4.23) ‖Φ0‖H−1(R3) ≤ C‖Φ‖H−1(R3).

Given Ψ ∈ H1(R3), let η ∈ H̃1(R3) solve the (adjoint) problem

b̃(δ, η) = (∇̃δ,Ψ)R3 , for all δ ∈ H̃1(R3).

Clearly,

(4.24) ‖∇ η‖L2(R3) ≤ C‖Ψ‖L2(R3).

Moreover, for any first difference quotient Dh of size h < 1, it follows easily from
integration by parts and (4.24) that

|b̃(δ,Dhη)| ≤ C‖∇ δ‖L2(R3)‖Ψ‖H1(R3),

with C independent of h. From this it follows that

(4.25) ‖∇ η‖H1(R3) ≤ C‖Ψ‖H1(R3).

We then have

‖Φ0‖H−1(R3) = sup
Ψ∈H1(R3)

|(Φ0,Ψ)R3 |
‖Ψ‖H1(R3)

= sup
Ψ∈H1(R3)

|(Φ0,Ψ− Ā−1∇ η)R3 |
‖Ψ‖H1(R3)

= sup
Ψ∈H1(R3)

|(Φ,Ψ− Ā−1∇ η)R3 |
‖Ψ‖H1(R3)

.

Combining this with (4.25) gives (4.23) and completes the proof of the lemma. �

We have constructed a solution of (4.5) which satisfies (4.9). We next show that
this is the unique solution of (4.5).

Corollary 4.1. Let W ∈ H1(R3) satisfy A(W ,Θ) = 0 for all Θ ∈ H1(R3).
Then W = 0.
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Proof. Let W be as above. By Theorem 4.2, there is a solution x of

A(x,Θ) = (W̄ ,Θ)R3 for all Θ ∈ H1(R3).

Thus

‖W̄ ‖2L2(R3) = A(W , x̄) = 0.

Hence W = 0. �

The above corollary implies the inf-sup conditions of the following theorem.

Theorem 4.3. Let U be in H1(R3). Then

(4.26) ‖U‖H1(R3) ≤ C sup
V ∈H1(R3)

|A(U ,V )|
‖V ‖H1(R3)

and

(4.27) ‖U‖H1(R3) ≤ C sup
V ∈H1(R3)

|A(V ,U)|
‖V ‖H1(R3)

.

Proof. Let U be in H1(R3). Multiplication by a uniformly bounded bijective C1

function whose inverse is also uniformly bounded is an isomorphism of H1(R3) onto
H1(R3) and hence is also an isomorphism of H−1(R3) ontoH−1(R3). Thus, A(U , ·)
defines an element Φ of H−1(R3) by

〈d̃ 2dΦ,V 〉 = A(U ,V ).

Here 〈·, ·〉 denotes the duality pairing. The above corollary shows that U coincides
with the function constructed in Theorem 4.2. Thus,

‖U‖H1(R3) ≤ C‖Φ‖H−1(R3) ≤ C‖d̃ 2dΦ‖H−1(R3)

= C sup
V ∈H1(R3)

|A(U ,V )|
‖V ‖H1(R3)

.

This is the first inf-sup condition.
The second inf-sup condition follows from the first; indeed,

‖U‖H1(R3) = ‖Ū‖H1(R3) ≤ C sup
V ∈H1(R3)

|A(Ū ,V )|
‖V ‖H1(R3)

= sup
V ∈H1(R3)

|A(V ,U)|
‖V ‖H1(R3)

. �

We next consider the form (4.3) restricted to H1
0(Ω

c) and prove the analogous
theorem.

Theorem 4.4. Let U be in H1
0(Ω

c). Then

(4.28) ‖U‖H1(Ωc) ≤ C sup
V ∈H1

0(Ω
c)

|A(U ,V )|
‖V ‖H1(Ωc)

and

(4.29) ‖U‖H1(Ωc) ≤ C sup
V ∈H1

0(Ω
c)

|A(V ,U)|
‖V ‖H1(Ωc)

.
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Proof. Let Φ ∈ H−1(Ωc). By the Hahn-Banach Theorem we may extend Φ to
H−1(R3) with

‖Φ‖H−1(R3) = ‖Φ‖H−1(Ωc).

By Theorem 4.2, there is a unique solution W of

A(W ,Θ) = 〈Φ,Θ〉, for all Θ ∈ H1(R3).

Now let U0 be the solution of the elastic wave problem satisfying (2.1), (2.4), (2.5)

and (2.2) with g = W on Γ. Also let Ũ0 be the solution of the corresponding PML
elastic wave problem given by (4.1) (with u replaced by U0). By (2.9),

(4.30) ‖Ũ0‖H1(Ω0) = ‖U0‖H1(Ω0) ≤ C‖W ‖H1/2(Γ).

We will show that

(4.31) ‖Ũ0‖H1(Ωc) ≤ C‖W ‖H1/2(Γ).

Let ψ be a smooth cut-off function satisfying ψ(x) = 1 for |x| ≥ r0 and ψ(x) = 0

on Γ. Let V ≡ ψŨ0 in Ωc be extended by 0 to all of R3. Let φ be in H1(R3).
Since

A(Ũ0,Θ) = 0, for all Θ ∈ H1
0(Ω

c),

it follows that

|A(V ,φ)| = |A((ψ − 1)Ũ0,φ) +A(Ũ0, (1− ψ)φ)| ≤ C‖Ũ0‖H1(Ω0)‖φ‖H1(R3).

Applying (4.26) gives

‖V ‖H1(R3) ≤ C‖Ũ0‖H1(Ω0).

We then have

‖Ũ0‖H1(Ωc) ≤ ‖V ‖H1(Ωc) + ‖(1− ψ)Ũ0‖H1(Ω0) ≤ C‖Ũ0‖H1(Ω0),

and (4.31) follows from (4.30).

Now set U = W − Ũ0. We have constructed a vector function U ∈ H1(Ωc)
such that

A(U ,Θ) = 〈Φ,Θ〉, for all Θ ∈ H1
0(Ω

c),

for any Φ ∈ H−1(Ωc). Also,

(4.32)
‖U‖H1(Ωc) ≤ ‖W ‖H1(Ωc) + ‖Ũ0‖H1(Ωc)

≤ C(‖W ‖H1(Ωc) + ‖W ‖H1/2(Γ)) ≤ C‖Φ‖H−1(Ωc).

The arguments proving Theorems 4.1 and 4.3 now complete the proof of the theo-
rem. �

5. The truncated PML problem

In this section, we consider approximating the PML problem on Ωc by a problem
on a truncated domain with a convenient boundary condition on the outer bound-
ary. For convenience, we shall use homogeneous Dirichlet conditions. Let Ω∞ be
a bounded subset of Ωc containing the transition region, i.e., Ω1 ⊆ Ω∞. The size
of Ω∞ is controlled by a parameter Rt; for example, the outer boundary Γ∞ of
Ω∞ could be a cube with edge of length 2Rt. In any event, we assume that Γ∞ is
uniformly Lipschitz with constants that are independent of Rt and that BRt

⊆ Ω∞.
We are interested in studying the truncated variational problem. Find U ∈

H1
0(Ω∞) satisfying

A(U ,φ) = 〈F ,φ〉, for all φ ∈ H1
0(Ω∞).
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One of our main tasks will be to show that this problem is well posed for Rt

sufficiently large. This is a consequence of the following theorem.

Theorem 5.1. Let U be in H1
0(Ω∞). Then, for Rt sufficiently large,

(5.1) ‖U‖H1(Ω∞) ≤ C sup
V ∈H1

0(Ω∞)

|A(U ,V )|
‖V ‖H1(Ω∞)

and

(5.2) ‖U‖H1(Ω∞) ≤ C sup
V ∈H1

0(Ω∞)

|A(V ,U)|
‖V ‖H1(Ω∞)

.

We will need the following two lemmas. These lemmas will be used extensively
throughout the remainder of this paper. The first is a standard application of the
Lax-Milgram Lemma. The second is a decay estimate.

Lemma 5.1. Let D be a domain R3 with a Lipschitz boundary ∂D and let B be a
bounded sesquilinear form on H1(D)×H1(D) satisfying, for u ∈ H1

0(D),

(5.3) ‖u‖H1(D) ≤ C sup
φ∈H1

0(D)

|B(u,φ)|
‖φ‖H1(D)

and

(5.4) ‖u‖H1(D) ≤ C sup
φ∈H1

0(D)

|B(φ,u)|
‖φ‖H1(D)

.

Then given v ∈ H1/2(∂D) there exists a unique u ∈ H1(D) with u = v on ∂D
satisfying

B(u,φ) = 0, for all φ ∈ H1
0(D).

Furthermore,

‖u‖H1(D) ≤ C‖v‖H1/2(∂D).

The next lemma is a decay estimate associated with elastic wave equation. We
will include its proof in Appendix B.

Lemma 5.2. Assume that u ∈ H1(Ωc
1) and satisfies

(5.5) Δu+ γ∇∇ · u+ k2d20u = 0

in Ωc
1. Then,

‖u‖H1/2(Γ∞) ≤ Ce−σ0k1Rt‖u‖H1(Ω∞).

Proof of Theorem 5.1. We will prove (5.1). Inequality (5.2) follows from (5.1) as
in the proof of (4.27). For U ∈ H1

0(Ω∞), we apply (4.28) to conclude

‖U‖H1
0(Ω∞) ≤ C sup

V ∈H1
0(Ω

c)

|A(U ,V 0) +A(U ,V 1)|
‖V ‖H1(Ωc)

,

where we have decomposed V = V 0 + V 1 with V 1 satisfying V 1 = V on Ωc
∞,

V 1 = 0 on Ω1 and

(5.6) A(φ,V 1) = 0, for all φ ∈ H1
0(Ω∞ \ Ω1).
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The above problem is well posed. Indeed, for φ ∈ H1
0(D), where D is any

subdomain of Ωc
1,

|A(φ,φ)| = |d0|2|A(φ, d̄−2
0 φ)|

≥ −|d0|2Im(A(φ, d̄−2
0 φ)) ≥ σ0 min(1, k2)‖φ‖2H1(D).

It follows from Lemma 5.1 that V 1 is unique and satisfies

(5.7) ‖V 1‖H1(Ω∞\Ω1)
≤ C‖V ‖H1/2(Γ∞) ≤ C‖V ‖H1(Ω∞\Ω1)

.

Let Ũ solve Ũ = U on Ω1 and

(5.8) A(Ũ ,φ) = 0, for all φ ∈ H1
0(Ω

c
1).

As above, from Lemma 5.1, Ũ is unique in H1(Ωc
1) and satisfies

(5.9) ‖Ũ‖H1(Ωc
1)

≤ C‖U‖H1/2(Γ1)
≤ C‖U‖H1(Ω∞).

We also define U1 by U1 = U on Γ1, U1 = 0 on Ωc
∞, and

A(U1,φ) = 0, for all φ ∈ H1
0(Ω∞ \ Ω1).

Again, from Lemma 5.1, U1 is unique in H1(Ω∞ \ Ω1), and we have that

(5.10) A(U1 − Ũ ,φ) = 0, for all φ ∈ H1
0(Ω∞ \ Ω1).

Since V 1 ∈ H1
0(Ω

c
1) and U −U1 ∈ H1

0(Ω∞ \ Ω1), (5.8) and (5.6) imply

|A(U ,V 1)| = |A(U1 − Ũ ,V 1)|
≤ C‖U1 − Ũ‖H1(Ωc

1)
‖V 1‖H1(Ω∞\Ω1)

.

Because of (5.10) and Lemma 5.1,

‖U1 − Ũ‖H1(Ω∞\Ω1)
≤ C‖Ũ‖H1/2(Γ∞).

Also because of (5.9) and Lemma 5.1,

‖U1 − Ũ‖H1(Ωc
∞) = ‖Ũ‖H1(Ωc

∞) ≤ C‖Ũ‖H1/2(Γ∞).

Combining the last three inequalities, (5.7) and Lemma 5.2 gives

|A(U ,V 1)| ≤ C‖Ũ‖H1/2(Γ∞)‖V ‖H1(Ω∞) ≤ Ce−σ0k1Rt‖U‖H1(Ω∞)‖V ‖H1(Ω∞).

Thus,

‖U‖H1(Ω∞) ≤ C sup
V 0∈H1

0 (Ω∞)

|A(U ,V 0)|
‖V 0‖H1(Ω∞)

+ Ce−σ0k1Rt‖U‖H1(Ω∞).

Inequality (5.1) follows by taking Rt sufficiently large. This completes the proof of
the theorem. �

We finally prove that the truncated elasticwave PML solution ũt converges ex-
ponentially to the elasticwave solution in H1(Ω0).

Theorem 5.2. Assume that Rt is large enough that Theorem 5.1 holds. Let ũ be
in H1(Ωc) and satisfy

A(ũ,φ) = 0, for all φ ∈ H1
0(Ω

c).

Let ũt be in H1(Ω∞) and satisfy

A(ũt,φ) = 0, for all φ ∈ H1
0(Ω∞)
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and ũt = u on Γ and ũt = 0 on Γ∞. Then

(5.11) ‖ũ− ũt‖H1(Ω∞) ≤ Ce−σ0k1Rt‖u‖H1/2(Γ),

and hence

(5.12) ‖u− ũt‖H1(Ω0) ≤ Ce−σ0k1Rt‖u‖H1/2(Γ).

Proof. Since

A(ũ− ũt,φ) = 0, for all φ ∈ H1
0(Ω∞),

Theorem 5.1, Lemma 5.1, Lemma 5.2 and Theorem 4.4 give

‖ũ− ũt‖H1(Ω∞) ≤ C‖ũ‖H1/2(Γ∞) ≤ Ce−σ0k1Rt‖ũ‖H1(Ω∞)

≤ Ce−σ0k1Rt‖u‖H1/2(Γ).

Thus (5.11) follows and, since ũ = u on Ω0, (5.12) also follows. This completes the
proof of the theorem. �

6. Analysis of the Galerkin approximation

For simplicity, we assume that ∂Ω is polyhedral and choose Γ∞ so that Ω∞ is

also polyhedral. For a triangulation Th of Ω∞, let Ṽ h be a finite element space of
continuous piecewise polynomial complex valued vector functions which vanish on

Γ∞. We further simplify by assuming that g coincides with a function in Ṽ h on Γ.

The Galerkin approximation of ũt is the function uh ∈ Ṽ h satisfying

(6.1)
B(uh,ψh) = 0 for all ψh ∈ V h,

uh = g on ∂Ω.

Here V h denotes the set of functions in Ṽ h which vanish on Γ and B(u,v) denotes
the scaled form defined by

B(u,v) = A(u, d̄−1v).

We note that Theorem 5.1 is obviously valid for the form B as well.
Our goal is to apply the so-called “Schatz finite element duality argument [18]”

to show that, for sufficiently small mesh size h, the solution to (6.1) exists and
is unique. Unfortunately, to obtain this result we shall have to put a smallness
constraint on our PML function σ̃. To this end, we fix σ̃1 to be a function satisfying
(3.2) with σ0 = 1 and set σ̃ = σ0σ̃1. We start by proving a G̊arding type inequality
for the form B(·, ·).

Lemma 6.1. There exists Sγ > 0 and a positive constant C (depending on Sγ),
such that whenever σ0 ≤ Sγ ,

(6.2) ‖w‖2H1(Ω∞)≤C(|B(w,w)|+‖w‖H1(Ω∞)‖w‖L2(Ω∞)) for all w∈H1(Ω∞).
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Proof. The sesquilinear form A can be rewritten as

A(w,ψ) =
3∑

i=1

∫
Ω∞

((
d̃ 2

d
P + d(I − P )

)
∇wi

)
·∇ ψ̄i dx

+ γ

∫
Ω∞

(d̃ 2d)−1∇ ·
((

d̃ 2P + d̃d(I − P )
)
w
)
∇

·
((

d̃ 2P + d̃d(I − P )
)
ψ̄
)
dx

− k2
∫
Ω∞

d̃ 2dw · ψ̄ dx.

Let D denote the matrix (d̃/d− 1)P . Using the equalities(
d̃ 2

d
P + d(I − P )

)
=d

((
d̃

d
+ 1

)
D+I

)
and

(
d̃ 2P + d̃d(I − P )

)
= d̃d(D + I)

gives

B(w,ψ) =
3∑

i=1

∫
Ω∞

(((
d̃

d
+ 1

)
D + I

)
∇wi

)
·∇ ψ̄i dx

+ γ

∫
Ω∞

(∇ · (D + I)w)
(
∇ · (D + I)ψ̄

)
dx+ L.O.

(6.3)

Here we have used the notation “L.O.” to denote terms which have at least one
undifferentiated component of w or ψ so that

(6.4) |L.O.| ≤ C(‖w‖H1(Ω∞)‖ψ‖L2(Ω∞) + ‖ψ‖H1(Ω∞)‖w‖L2(Ω∞)).

A key point in our proof will be the fact that we can make various quantities
involvingD arbitrarily small by decreasing σ0. We note that the coefficient (d̃/d−1)
is supported only in the transition region and that

(6.5)

∣∣∣∣∣ d̃d − 1

∣∣∣∣∣ ≤ Cσ0.

Indeed,

(6.6)

∣∣∣∣∣ d̃d − 1

∣∣∣∣∣ =
∣∣∣∣1 + iσ̃

1 + iσ
− 1

∣∣∣∣ = ∣∣∣∣ i(σ̃ − σ)

1 + iσ

∣∣∣∣ ≤ σ0 max
r

|σ̃1(r)− σ1(r)| .

We clearly have

3∑
i=1

∫
Ω∞

(((
d̃

d
+ 1

)
D + I

)
∇wi

)
·∇ ψ̄i dx

=
3∑

i=1

∫
Ω∞

∇wi ·∇ ψ̄i dx+
3∑

i=1

∫
Ω∞

(((
d̃

d
+ 1

)
D

)
∇wi

)
·∇ ψ̄i dx.

(6.7)

In addition,

∇ · (Dw) = tr(D∇w) + divDt ·w,
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where the divergence divDt of the matrix function Dt is defined to be the vector
whose components are the divergences of the rows of Dt. We can then rewrite

γ

∫
Ω∞

(∇ · (D + I)w)
(
∇ · (D + I)ψ̄

)
dx

= γ

∫
Ω∞

∇ ·w∇ · ψ̄ dx+ γ

∫
Ω∞

tr(D∇w) tr(D∇ ψ̄) dx

+ γ

∫
Ω∞

tr(D∇w) ∇ · ψ̄ dx+ γ

∫
Ω∞

∇ ·w tr(D∇ ψ̄) dx

+ L.O.

(6.8)

Combining (6.3)-(6.8) and applying the Schwarz and arithmetic-geometric mean
inequalities gives

B(w,w) ≥ a(w,w)− Cγσ0a(w,w)− C0‖w‖H1(Ω∞)‖w‖L2(Ω∞).

Here

a(w,ψ) =
3∑

i=1

(∇wi,∇ψi) + γ(∇ ·w,∇ ·ψ) + (w,ψ).

The lemma immediately follows, taking Sγ < 1/Cγ . �

Remark 6.1. It should be noted that, in addition to being independent of σ0, the
constants Cγ and C0 (and consequently Sγ and C) in the proof above are also
independent of the diameter of the region Ω∞.

In order to apply the duality argument, we shall also need the following regularity
result.

Proposition 6.1. There exists an s > 1
2 and a constant Creg > 0 such that for

any f ∈ L2(Ω∞), the solution w ∈ H1
0(Ω∞) of

B(ψ,w) = (ψ,f) for all ψ ∈ H1
0(Ω∞)

is in H1+s(Ω∞) and satisfies

‖w‖H1+s(Ω∞) ≤ Creg‖f‖L2(Ω∞).

Remark 6.2. Full interior regularity of the solution w to this problem follows from
the C2 smoothness of the PML coefficients. Regularity near the boundary follows
from known results for the regularity of solutions to the constant coefficient equation
(2.1) on polyhedral domains (see for example Theorems 2.3 (2D) and 4.5 (3D) of
[13]).

We are now ready to state the main result of this section, i.e., the unique solv-
ability for the Galerkin approximation.

Theorem 6.1. Assume that σ0 ≤ Sγ . There exists an h0 > 0 such that whenever

h < h0, there is a unique solution uh ∈ Ṽ h of (6.1) and

(6.9) ‖ũt − uh‖H1(Ω∞) ≤ C inf ‖ũt − vh‖H1(Ω∞).

The infimum above is taken over vh ∈ Ṽ h with vh = g on Γ.
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Proof. Given Lemma 6.1 and Proposition 6.1, the theorem essentially follows from
the well known argument given by Schatz ([18]), which we sketch. For w ∈
H1

0(Ω∞), let wh ∈ V h be a solution to

B(wh, θ) = B(w, θ) for all θ ∈ V h.

By finite element duality [14] and Proposition 6.1, one shows that eh ≡ w − wh

satisfies

‖eh‖L2(Ω∞) ≤ Chs‖eh‖H1(Ω∞).

It follows from Lemma 6.1 that for h sufficiently small,

(6.10) ‖eh‖2H1(Ω∞) ≤ CB(eh, eh).

Taking w = 0 implies that the (square) discrete system has unique solutions from
which existence also follows. Finally, the error estimate is an easy consequence of
(6.10) and Galerkin orthogonality. �

7. Computational results

We illustrate the performance of the PML technique on a problem in the case of
two spatial dimensions. We rig up a problem with known solution. Specifically, we
take γ = 3 and k = 1 in equation (2.1) and consider the function

(7.1) u(x, y) = u(r, θ) = ∇×
(
h1
1(kr) cos(θ)

)
+∇

(
h1
1(k1r) cos(θ)

)
.

It is clear that the above function satisfies (2.1)-(2.5). The first term is solenodial
while the second is irrotational, and so both wave components are present.

We now consider approximating the solution of (2.1) with Ω = [−1, 1]2 and
g = u (given by (7.1)) on Γ. By construction, the solution is just the function u
given by (7.1).

To define the PML approximation, we take r0 = 3, r1 = 4 and σ0 = 1. We
truncate the domain so that Ω∞ = (−5, 5)2 \ [−1, 1]2. Although it is not clear that
this choice of σ0 satisfies the smallness assumption of our theorem, it nevertheless
appears to work (as we shall see below). In all of our reported experiments, we
shall compare the difference between the Galerkin solution uh defined by (6.1) and
u defined above.

Figure 1 gives a surface plot representation for the real part of the second compo-
nent of the exact solution and the finite element PML approximation. As suggested
by the theory, the PML solution appears to be close to the exact solution in the
inside of the PML layer and goes to zero quickly in the PML region. The effect of
the transition region is further illustrated from the overhead view given in Figure 2,
where we can clearly see the “cut-off” annulus B4 \B3.
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Figure 1. The real part of the second component in the exact
and the PML solutions

Figure 2. The imaginary part of the second component in the
exact and the PML solutions

To more precisely gauge the behavior of the method, we compute the norms of the
error between u and uh near ∂Ω (of course, this is the only meaningful computation,
as u and uh are significantly different in the PML region). Specifically, we report
errors on Ω∗ ≡ (−2, 2)2 \ [−1, 1]2. Table 7.1 gives the L2(Ω∗) and H1(Ω∗) errors as
a function of the mesh size. The H1(Ω∗) results clearly exhibit the expected first
order of convergence. The L2(Ω∗) results show a convergence rate less than second
order, which is consistent with the fact that the domain Ω∞ has re-entrant corners.

It is interesting to note that in the above calculations we have not yet seen the
pollution effect of the domain truncation come into play. This is not surprising, as
this error is exponentially small in the size of the domain and it appears that we
have not yet made h small enough to see its effect.
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Table 7.1. L2− and H1− norms of the error

h # dofs L2(Ω∗)−error H1(Ω∗)−error
1
2 1728 0.384539 1.990330

1
4 6528 0.274241 1.025252

1
8 25344 0.092068 0.482071

1
16 99840 0.029358 0.232628

1
32 396288 0.010079 0.114665

8. Appendix A

In this appendix, we prove the identities (3.4), (3.5) and (3.6) by a complex
variable analyticity argument. To do this, as in the proof of Theorem 4.1, we

replace i by z in the definition of the PML operators for z ∈ C̃. The main parts of
the arguments are standard and we only sketch them here.

We first prove (3.4). Fix w ∈ H2
loc(R

3) and φ ∈ C∞
0 (R3). For z ∈ C̃, we set

F (z) =

∫
R3

d̃ 2d(Δ̃w + ∇̃ × ∇̃ ×w − ∇̃∇̃ ·w) · φ dx.

To show that F is analytic, we apply the dominated convergence theorem to the dif-
ference quotients. That the difference quotients can be dominated by an integrable

function follows from the properties of σ̃, namely σ̃, σ, d̃ , d, d̃−1, d−1 ∈ L∞(R).

Next, for real s ∈ C̃, a change of variables gives

(8.1) F (s) =

∫
R3

[Δws +∇×∇×ws −∇∇ ·ws] · φs dx.

Here ws(x) = w(T−1
s x) and φs(x) = φ(T−1

s x). This is because σ̃ ∈ C2(R), ws ∈
H2

loc(R
3) and the bracketed quantity in (8.1) vanishes. It follows that F (z) = 0

identically. As this holds for all φ ∈ C∞
0 (R3), (3.4) immediately follows.

Remark 8.1. It is possible but tedious to verify (3.4) directly. The complex variable
viewpoint simplifies this calculation as well as the dervation of the remaining two
identities.

For (3.5), we fix w ∈ H2(R3) and φ ∈ C∞
0 (R3) and set

F (z) =

∫
R3

d̃ 2d(Δ̃w) · (∇̃φ) dx−
∫
R3

d̃ 2d(∇̃(∇̃ ·w)) · (∇̃φ) dx.

The analyticity of F is concluded as above. Changing variables for real s ∈ C̃ gives

F (s) =

∫
R3

(Δws) · (∇φs) dx−
∫
R3

(∇(∇ ·ws)) · (∇φs) dx.

That the two integrals in F (s) are equal follows by integration by parts, first moving
derivatives from ws to φs and subsequently moving derivatives from φs back to ws.
This makes sense since φs ∈ C2(R3) and has compact support. Thus, F (s) = 0
extends to F (z) = 0. This identity extends to φ ∈ H1(R3) by density.

The argument for showing (3.6) is completely analogous to that used for (3.5)
and will be omitted.
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Remark 8.2. The proofs critically depend on the smoothness of σ̃, i.e., σ̃ ∈ C2(R).
It is by no means clear if these results hold for less smooth σ̃, e.g., σ̃ leading to
piecewise constant σ.

9. Appendix B

In order to prove Lemma 5.2 we first state two propositions. The first is a
classical interior estimate for the solution of an elliptic equation whose proof is
elementary. The second was proved in [2]. Note that, in this section, we use
additional expanding domains Ωi, i = 3, . . . , 6, corresponding to r2 < r3 < · · · < r6
in this section.

Proposition 9.1. Suppose that w satisfies the equation

(9.1) Δw + βw = 0

and v satisfies the equation

(9.2) Δv + γ∇∇ · v + βv = 0

in a domain D with a (possibly complex) constant β. If D1 is a subdomain whose
closure is contained in D, then

(9.3) ‖w‖H2(D1) ≤ C‖w‖L2(D)

and

(9.4) ‖v‖H1(D1) ≤ C‖v‖L2(D).

Proposition 9.2. Assume that w is bounded at infinity and satisfies (9.1) in Ωc\Ω1

with β = k2d20 or β = k21d
2
0. Set Sα = {x : dist(x,Γ∞) < α} with α fixed

independent of Rt > r6 and small enough that S̄α is in Ωc \ Ω6. Then

‖w‖L2(Sα) ≤ Ce−σ0k1Rt‖w‖L2(Ω5\Ω3)
.

Proof of Lemma 5.2. We use the decomposition given in (2.3). As seen in [3],
φ ≡ k−2

1 ∇ · u is a scalar potential for the irrotational part ψ, and it, along with
each Cartesian component of ψ = ∇φ, satisfies (9.1) with β = k21d

2
0. Hence by

Proposition 9.1, Proposition 9.2 and a trace inequality, we see that

(9.5)

‖ψ‖H1/2(Γ∞) ≤ C‖ψ‖H1(Sα/2) ≤ C‖ψ‖L2(Sα) ≤ Ce−σ0k1Rt‖ψ‖L2(Ω5\Ω3)

≤ Ce−σ0k1Rt‖φ‖H1(Ω5\Ω3)
≤ Ce−σ0k1Rt‖φ‖L2(Ω6\Ω2)

≤ Ce−σ0k1Rt‖∇ · u‖L2(Ω6\Ω2)
≤ Ce−σ0k1Rt‖u‖L2(Ω∞).

For the last inequality we used the second part of Proposition 9.1, since u satisfies
(9.2) with β = k2d20. Similarly, each Cartesian component of ζ satisfies (9.1) with
β = k2d20, so that by Proposition 9.1, Proposition 9.2 and a trace inequality we
have
(9.6)

‖ζ‖H1/2(Γ∞) ≤ C‖ζ‖H1(Sα/2) ≤ C‖ζ‖L2(Sα) ≤ Ce−σ0kRt‖ζ‖L2(Ω5\Ω3)

≤ Ce−σ0kRt(‖ψ‖L2(Ω5\Ω3)
+ ‖u‖L2(Ω5)) ≤ Ce−σ0kRt‖u‖L2(Ω∞).

Combining (9.5) and (9.6), and noting that k1 < k, completes the proof of
Lemma 5.2. �
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