
Rockefeller University
Digital Commons @ RU

Knight Laboratory Laboratories and Research

1962

Analysis of a Four-Layer Series-Coupled
Perceptron. II
H. D. Block

Bruce Knight

F. Rosenblatt

Follow this and additional works at: http://digitalcommons.rockefeller.edu/knight_laboratory

Part of the Life Sciences Commons

This Article is brought to you for free and open access by the Laboratories and Research at Digital Commons @ RU. It has been accepted for inclusion
in Knight Laboratory by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Block, H. D., Knight, B. W., Jr., Rosenblatt, F. (1962) Analysis of a four-layer series-coupled perceptron. II. Rev. Mod. Phys. 34: 135

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/knight_laboratory?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/laboratories_and_research?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/knight_laboratory?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


THE PERC EPTION. I
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simple perceptron of Fig. 4 is no longer adequate. We
shall find certain temporal e8ects in the paper which
follows, but for others it is necessary to introduce time

delays into the system. ' A speech recognizing perceptron
which utilizes such delays is currently being built at
Cornell University.

Other activities now in progress' include quantitative
studies of cross-coupled and multi-layer systems (by
means of analysis and digital simulation), studies of
selective attention mechanisms, the effects of geometric
constraints on network organization, new types of
reinforcement rules, and attempts at relating this
research to biological data. Work is also in progress on
development of electrolytic and other low-cost inte-

grating devices and additional electronic components
necessary for the construction of large-scale physical
models.

It is clear that we are still far from the point of
understanding how the brain functions. It is equally
clear, we believe, that a promising road is open for
further investigation.

REVIEWS OF MODERN PHYSICS VOLUME 34, NUMBER 1 JANUARY, 1962

:.erce &tron.
H. D. BLOCK, B. W. KNIGHT, JR., AND I'. ROSENBLATT

Corrsell University, Ithaca, Sex York

1. INTRODUCTION

HE preceding paper' presented motivation and
background for the general subject of perceptrons

and gave some analysis and results for a simple three-
layer perceptron. While it has been shown there that
it is possible to associate any arbitrary set of responses
to an arbitrary set of stimuli in a simple three-layer
perceptron, such a perceptron characteristically requires
a large representative sample of each kind of pattern
(e.g. , letters "A" and "B"),covering all parts of the
retina, before it will recognize an arbitrarily positioned
stimulus which is similar to one which it has seen before.
In other words, a three-layer perceptron has no concept
of "similarity" based on any criterion other than the
intersections of sets of retinal elements. In a previous

paper, ' Rosenblatt has shown that a "cross-coupled
perceptron, " in which A units are connected to one
another by modifiable connections, should tend to
develop an improved similarity criterion for generalizing
responses from one stimulus to another when exposed
to a suitably organized environment. In this paper a
simpler network, consisting of four layers of units but

*Research sponsored by the Ofhce of Naval Research.
' H. D. Block, Revs. Modern Phys. 34, 123 {1962).
~See, F. Rosenblatt, in Self-Organising Systems, edited by

M. Yovits and S. Carneron (Pergamon Press, New York, 1960).

without cross coupling, is analyzed in a more rigorous
fashion, and is shown to possess the same property.

The perceptron of the present paper is "self-
organizing" in the sense that during the training
period the experimenter does not tell the machine the
category of each stimulus. As the analysis below will

show, the only contact between the experimenter and
the machine is the presentation of the stimuli.
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FIG. 1. Organization of four-layer series-coupled perceptron.

2. THE MODEL

The model to be analyzed here is a four-layer
perceptron of the schematic type S—A' —A' Ry as
indicated in Fig. i.
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There are e possible stimuli to be presented to the
sensory 6eld: Sl, S2, , S;, , S„.The values of
the S to A~ connections do not change with time. The

units are in one-to-one correspondence with the 3
units and have threshold 0. An active A unit g„
delivers a signal of 8 to i.ts corresponding 3 unit p„
and also a signal r&„„ to a.r' for ) =1, 2, , X, Lsee
Eq. (1) below). An inactive unit puts out no signal.
We shall use the indicesi, j, k throughout to designate
various stimuli, while the indices p and v will be used
to designate associator units. The values of v„„are
initially zero and change with time as follows. Stimuli
are presented at times 0, ht, 2ht, 36t, If u„' is
active at time t and a„"is active at time t+At, then
r&„„receives an increment (g At); otherwise it does not
receive this increment. At the same time each v„.„ is
decremented by (6 At)()„„. LSee Eq. (5), below. ]
These two eGects represent a facilitation of used
pathways and a decay, respectively. The A units are
connected to response units with connections whose
weights may be varied according to one of the standard
rules of reinforcement. There is no time delay of
transmission of signals through the system.

3. ANALYSIS

From the viewpoint of the R units we have a simple
three-layer perceptron as described in the preceding
paper' with 3 ' as the associator set. Since the behavior
of such a system is well understood in terms of the sets
of associators in A activated by the various stimuli,
our main concern here is to find the nature of these sets.

The set of associators in 2 responding to S; is
denoted by A'(S,); the set responding to both 5, and
S; is Ar(5, )QAr(5;). The number of associators in

responding to both S, and S, is denoted by e;; and
is equal to the number of elements in Ar(5, )QAr(5;):

where

(1 if a 'CA'(5. )
I 0 if a„rfA'(5, ).

Xone of these quantities change in time.
Let n„&'& (t) denote the total input signal to association

unit a„~ at time t, if stimulus S,. were to be applied to
the sensory Geld at time t. Then

—(S At)~(*)Lt+(m+1)At] J. (S)

We divide by MAt and let At approach zero to
obtain

dy('~
= Z mfn"""'(t)]~' '—~7"'(t)

dt ~0 M
(9)

Suppose that at time to stimulus 5, is presented and
at time to+At stimulus 5&, is presented. Then the
consequent change in e„, will be

v„.(t,y2At) .„—.(t,+At)
= (q At)(e„;)yLn. (»(t,+At)]—(8 At)o„,(to+At), (5)

where

( )
0 if x(8
1 if @~0.

From (3) and (5) we get

q„(') (t,+2At) —q„(') (t,+At)
=Z~ P~~v (to+2At) r&„,(to+—At)]e„;
= (~ At)4I .'"'(to+At)]

&&+„e„;e„, (t)—at) P„~„„(to+At)e„;.
Hence

q(*)(«+2At) —q(') (t,+At)
= (q At)yfn(') («+At)]n, , (t& At—)q(') (to+At), (&))

where, for brevity, we have dropped the subscript v,
and will remember that the p and n refer to any
particular associator u„i~. Now suppose the sequence
of stimuli Sjp Sj1) S,~ is presented at the successive
times t, t+At, . . . , t+MAt. In Eq. (6) we take
to= t+mAt~ Em=0, 1,2, (M 1)] j=j—, k=j +, ,
and obtain

q(') [t+ (m+2)At] —q(') Lt+ (m+1)At]
=- (q At)&t&[n'"+'Pt+ (m+1)At]}e,,

—(S At)q(*)[t+(m+1)At]. (7)

Summing on nz from 0 to M —1, we get the change
in y(" due to the entire sequence of stimuli:

q('&Lt+ (M+ 1)At]—q&'& (t+At)

M—l
= g [(rt At) &t&[n('"+')$t+(m+1)At]}e

and

Then

n„(*&(t)=ee.,+ Z„v„„(t)e„,.

p (o =ee„,. (2)

(3)

I-et Ii;~ be the number of times the pair S;S~ occurs
in the given sequence 5,„$;„,5;~; and let f;q
=F,&/M be the average frequency of the pair 5;5&.
Then from (9) we get

=z z ~f AL "'(t)]~*'—~7"'(t) (1o)

Note that P„(') is 8 or 0 according as a„r is in A'(5, )
or not; it does not change with time. On the other
hand y„(o (t) represents the effect of the variable
(A to A ) connections whose values are r&„,(t).

De6ning the matrix
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FIG. 2. Graph of the
solution of x= (M/b)—e e'L(M/8) —ag.

we have from (10) Fro. 3. Graph of the solution of x= (M/8) —e "L(M/8) —uj
if at time t = t1 we replace M by M1 &ALII.

This is a system of nonlinear differential equations
for y "& (t), , y &"' (t), with initial conditions y&'& (0)=0.

If the fs; vary with t, then E,; are time dependent
but in any case they are non-negative and bounded;
&)&& is non-negative, monotone increasing in y, bounded
and continuous on the right. We shall treat here only
the case in which the E;, are constants.

Before discussing the solution of (11) we consider
the equilibrium equation

p(o= p. jt, .yp(i)+p(i) j (12)

The system of equations (12) may have more than
one solution. However we shall show that there is a
unique minimal solution (by this we mean a solution,
none of whose components y(" exceed the corresponding
components of another solution); and this minimal
solution is obtained in a finite number (at most n) of
iterations of (12), starting with all y(&') =0 on the
right side and then finding the new values of y(&) from
(12), putting these back into the right side and so on.
That is, we take yp("=0 and

(') =-g . Q,,.y['p( )++ ( ')j

We prove first that the process terminates in at
most n iterations. This can be seen from the following
considerations. Since the right-hand side of (13) is
non-negative and pp(') =0, it follows that py~') ~pp(').
Now since the right-hand side of (13) is a nondecreasing
function of the y's, it follows that

Therefore also

that is, successive p's cannot decrease. If, at a particular
step no p increases then we are at a solution. The p's
have only the values zero or one, so even if only a
single @ changes at each step, the process terminates in
at most e steps.

The solution of (12) thus obtained we denote by
y'~*. We now prove that this solution is minimal. Let

f "& be any solution of the equilibrium equation (12).
Clearly f(')~0. Then for the iteration process (13),
we have yp(" ~y"', for all i. Since the right-hand side
of (13) is a monotone function of y('), we have

yl

& (') — p. E, .yfp(~')+~e(f))

(—p,. E', yLp(&')+~ (&')j=&
(&)

taken over a subset 8 of the possible values of j,
(1,2, ,n). We assume that no such sum is equal to 0.
This is not a serious assumption, since by an arbitrarily
small change in t)/i& we can satisfy this requirement.

Now suppose that the y")(t) satisfy the system of
differential equations (11) and the initial conditions
y(')(0) =0. Then we assert that the y(')(t) are non-

decreasing and lim& „t
y'"&(t)j=y"'*. That is, the

solution obtained by the iterative process (13) is
indeed the solution of the differential equation (11),
with initial conditions zero in each case.

First we shall show that dy("')/dt~ 0. Moreover,

if y(') (t))0 then dy(') (t)/dt) 0. (A)

As a preliminary step, consider the nature of the
solution of the equation dx/dt=M 5x, where M—and 5

are positive constants and x(0) = a, where 0+a &M/8.
The solution x= (M/t)) e "$(M/t'&) (Ij,—has the-
appearance of Fig. 2. The solution approaches M/(&

monotonely from below, and dx/dt) 0 for all t) 0. If
at time t=t&, we replace M by M&)M the solution
appears as Fig. 3.

As t goes from 0 to ti the solution approaches M/ti
monotonely from below; as t increases beyond t& the
solution approaches Mt/5 monotonely from below.
The solution is continuous; so is its derivative, except
at t~, where the left- and right-hand derivatives are
not equal; but both are positive.

Similarly, p~ ' p ", hence p(')*~p(". Hence p&')*

is minimal.
To avoid consideration of a special pathological

case, we make a mild assumption. Consider the sum

(n/~) 2
iES
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If instead of 3f&ha~0, we take M=a=0, the
solution x(t) =0 for 0& t& ti.

We now proceed to the proof of (A). Let

and the fact that p is nondecreasing we see that at ti

d~ (A:)

Z I&- A I
&"'+ "' (~ )3—8 '"'(~ )

dt

Then (11) can be written

dy &*&/dt ='M &' &(t) —.by "& (/),

where here and in the following paragraph, i is a
generic index of the set (1,2, ,e), while j and k will
refer to specific indices to be defined below.

Each function M &'& (t) can take on at most 2"possible
values. Let k be a specific value of i and suppose first
that M'"&(0))0. The only times at which M&'&(t) can
change its value are when one of the y&'& (indeed one
whose corresponding P&"=0) reaches the value 8.
Suppose the first time at which this happens is t~&0.
Suppose then that y"&(&!&)=8. Since in the interval
0(t(ti all dy&'&/&Et~0, we have M&'&(ti)&'M&" (&'o).

Thus the solution y&"&(f) appears as in Fig. 3; in
particular for all k such that M&~&(0))0, we have
y&~& (&!i) (M&~& (0)/8~ M&"& (ti)/6; and for the others
y&"&(t&) ~M&"'&(t&)/5. Furthermore, since both the left
and right derivatives of y(" at tj are positive we have,
for t) t& and sufliciently close to t&, y&'&(t))8, so that
it will not be until time t2, with t~&t~, that there will
again be a y&" (t) having the value 8. In the interval
t~(t &t2 we have the same pertinent conditions as we
had in the interval 0(t(/&', namely dy&"/dt=M&" (ti)—5y "&(t), with initial values y&" (3&) ~M ' (ta)/8 and
in particular y&"&(ti) (M&"&(ti)/8. Thus in the interval
(ti(t(t2) we again have dy "&/dh~O, and dy&"&/dI) 0
We repeat the same argument for the successive
intervals (&'2, t3), (&!3,t4) and so on. Since the y "(t) are
monotone there are at most e such intervals.

If M&~&(0) =0 then y&"&(t) =0 for 0&t&ti. If
M&"& (ti))0, then we use the previous argument
starting at t=tj, otherwise y(~' remains zero at least
until 32 and so on. In any case we have proved (A).

Next we show that

Since, from the proof of (A) it is clear that each
y&'&(t) is monotone and bounded, lim& „y&"(/) exists;
call it y&"&; it is a sum of the form

(~/8) Z &"
i63

(which was assumed at the outset to be unequal to 8)
and thus y "&r/8. Therefore, PPPo&+y "&$ is continuous
when yo&=y&"r. Letting t~ ~ in Eq. (11) we see
that y&'&r is a solution of the equilibrium equation (12).
Hence y")~~p(')* since y(')* is minimal. We next.
show that for all t) 0 y "& (t) ~y&""

Note that initially y&" (0) ~y&'&". Suppose that ti is
the first time at which some y&"&(t) =y&"&'. From (11)

—8y &»" 8y &&i (~ ) =0

i.e., dy&"&/dt~0 at t=t . If y&~')0, we see from (A)
that dy&"&/dt&0 at t„a contradiction. Suppose that
y&"'*=0, so that also t&=0. Then, as long as no y"'(t)
reaches a nonzero y&"*, we have, since p is a non-
decreasing function of its argument,

M&'&(~) =~ P, K„yfP& &+y& &(t)j
(rl P, +z,aLP&i&+y&~'&"j=8y&&&'=0

Hence over this period y " (t) =0. But no nonzero
y&"" can ever be attained by y"'(&!), since, by the
above argument, we would have dy"&/Ch&0 at the
first time it occurred, in contradiction to (A).

Thus we have shown that: if y&'&*)0, then y"'(/)
(y&'&" and if y&'&"=0, then y&'&(/) =y&'&'. In general

y&&& (f) (y&'&

Hence y&'r=lim, y&'&(t) gy'&' and (B) follows.
From this point on we shall be concerned with the

steady-state values p")*, and, for brevity, we shall
drop the *. In the terminal condition the associator
a„"is activated by S; if P "'+y &"~8. The set of A"
associators which are activated by stimulus 5, will be
denoted by Air(S, ). In the initial state, the set A'r($, )
is denoted by Ao" (S,), and in the terminal state by
A„"(5,). The number of A" associators which are
activated by both S, and S; is called e,, and is equal
to the number of units in A'r(S, )PA "(S;).

Once the n;;" are known, the behavior of the
perceptron can be predicted, as outlined in the preceding
paper. To determine the e,,-' we might proceed a,s
follows. First the set of A' associators is broken into
the smallest subdivisions of the Venn diagram represent-
ing the sets responding to diferent combinations of
stimuli. Each of these cells is characterized by - a
certain P vector. For each such P vector we solve
Eq. (12) for the terminal values of y&'&. Here we
regard n, &,

' and f&,; as given. (In the present paper e;&, '
represents the actual number of A' units responding
to both S, and SI, in the particular perceptron being
studied. In general, if the S to A' connections are
chosen at random, subject to statistical constraints,
then the e,~ represent random variables whose
expected values are Ã Q;&', where Q, &,

' is the probability
that an associator a„ is activated by both S, and S&.
These random variables have been studied rather
thoroughly for several main classes of networks. ')
Initially, tt" =e,;r. Knowing P&'& and y&'& we can
compute the region of the A Venn diagram to which

3 F. Rosenblatt, Princip/es of Xeurodynamics: Perceptrons and
the Theory of Brain Mechanisms (SpaItan Books, Washington,
D. C., 1961).
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each of the A units moves. Then we have the com-
plete terminal distribution in the Venn diagram of A ~~

and hence in particular the e;;".While this program
is simple in principle the actual computations can be
quite formidable. It can be seen in advance that the
motion will be for associators to go into regions of
higher intersections but points which are initially
outside all the A rr(S„) will stay outside all the A rr(S~).

The analysis is approximate, of course, in that we
have replaced the difference equation (8) by the
differential equation (9). For small increments of
reinforcement pAt and small increments of decay
(She)v at each step the behavior of the discretized
system will be approximated by that of the continuous
one.

In this way the performance of these perceptrons
can be analyzed for a variety of particular cases. '4
We shall instead consider here two "training programs"
in which, by a suitable choice of parameters, the
motion of the P vectors can be controlled and the
performance predicted.

where I.=e—E;
'p/E
, (1—p)/L

P/I-.(1—p)/E

for S;in X, Skin X,
for S;in I, Sk in Y,
for S, in Y, Skin Y,
for S;in V, Skinl.

Then we get from (14)

K K K n n K
~"'=- Z 2+2 2 + E Z

j=l k=1 j=l k=K+1 j=K+1 k=1

n n

+ 2 Z {(~+~„)&,~;.~(~'"&+~'"&)},
j K+1 k K+1

+sP, g P „y(P(k)+~(k)) (15)
k=1

q K g n

2 ~(~l'l+~ "&)+—2 ~(~"'+V'"')
5 2Ek-1

4. APPLICATIONS

I.et P, denote the fraction of occurrences of S, in
the given sequence S,„S;„., S;~ and let P;k denote
number of times Sk immediately follows S; divided by
the number of times S, occurs. Then in a long sequence
the equilibrium equation (12) takes the form

I et us now assume that S is one of the stimuli of
class X. Then

(sp+qE)
I & &(~'" +v'"')

S k 2E' i ~=r

(14)

where P; corresponds to the probability of S;, and P;k
corresponds to the transition probability

S,—+ Sg ——Prob(S;SJ,
~
S;).

Training Program I
The stimuli are divided into two classes:

{Sj,S2, ,SK) is class X, while {SIr~r, . ,S„) is
class V. There is assumed to be no appreciable di6erence
in the retinal overlaps; we assume n,;r=(q+s5, ,),
where s&0, q~0. Thus the diagonal elements of the
e,;r matrix are all (q+s) and all other elements are q.
(Note that by raising thresholds of the A' units, the
ratio q/s can be made as small as desired. ) We shall
assume that the probability of transition to a member
of the same class is p, nearly unity, and to a member
of the opposite class is (1—p), nearly zero. Inside a
class all members are equally likely. Thus

We now observe the following

(a) If rl(sP+qE)/2bE'~8, then

A„"(S.)~ 'U Ap"(S;).
S~gx

s„ 4m~sx ~

In words, if the stated inequality holds, then,
in the terminal condition, each of the stimuli of
class X activates the union of all sets which were
initially activated by gey of the stimuli of class X.
[See Fig. 4(a).7

The proof follows from the fact that any associator
which originally responded to any of the stimuli in

1/2E for Ss in X
1/2L for S; in I'

H. D. Block, B. W. Knight, Jr. , and F. Rosenblatt, Paper
No. 4. Cognitive Systems Research Project. Cornell University,
Ithaca, New York (July, 1960).

FIG. 4. Superimposed initial and terminal Venn diagrams
f gll-':layer, for two cases.
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class X has P'"&=8 for some k~K. Hence there is a,

nonzero term in P of (16). The postulated inequality
k=1

then guarantees that the associator will be active in
the terminal state.

(b) If rlfs(1 P)+—qKj/2Kb&8, then

A "(5) Q UA o"(5 )
S,gx

In words, if the stated inequality holds, then,
in the terminal condition, no stimulus in class X
activates any associator outside of the union of sets
initially activated by stimuli of class X. LSee Fig. 4(b).$

The proof follows from the fact that, if we were to
solve (16) by iteration, then any associator which is
activated by none of the X stimuli has, on the first
pass, no contribution from the term

P in Eq (16)..

Thus on the first iteration we get from (16)

tr, -s(1—p)+qE-
v *'=I- 2 ~(~'"'+v'")

(8 2EL ~ =x+i

g s(1—p)+qE-
(17)

2E

in virtue of the assumed inequality (b). Similarly, on
the next iteration, the term

Q in Eq (16).
k=1

is again zero for such an associator and, as in (17),
F2&*&(8. Since there are only a finite number (indeed
less than L) iterations we have y&*&(8 for such an
associator and this associator does not become active.

(c) If the inequalities of both (a) and (b) hold then

A„"(5,)= U A,"(5,).
8,:gx

Necessary and sufficient conditions for both (a) and
(b) to hold are easily found. They are

(i) s& qE(E—1),

(ii) p) fKs+ qE (K 1)j/s (K+1), —
(iii) K'/(sp+qK) ~g/288&K/(s(1 p)+qK). —
Condition (i) ensures that a p, (0&p(1) can be

chosen to satisfy (ii). Condition (ii) ensures that p/288
can be chosen to satisfy (iii). The conditions can be
put in the alternative form

(i') p&KI (K+1)

(ii') s) qK(K 1)/Lp(IF+1) —Ej—
and (iii).

If the parameters satisfy the stated inequalities then

2 "(5) = U Ao" (S,).
S,gx

This means that in the terminal state each stimulus
of class X activates the same set of A units. Similarly
there is a second set of A units activated by each
member of class V. If the A" to R connections are
random then, in general, one pattern of activated R
units will respond to all stimuli of class X and another
pattern of activated R units will respond to all stimuli
of class V. Thus the machine has dichotomized the
classes, its output being in terms of this intrinsic code
on the A' units. Alternatively, with a single E unit
and zero initial values on the A' to E. connections, a
single corrective reinforcement applied to one stimulus
of each class will serve to establish the dichotomy,
yielding the correct response for all the stimuli.

The problem in which the stimuli are separated into
more than two categories can be analyzed in a similar
manner. '

%e also assume that no associator is activated by more
than p of the stimuli Si, S2, . Sx, where p(E/L.

A stimulus 5, from (Si, . ,Sx) is picked at random
and the next stimulus is the transform T(S,). Then
another is picked at random from (Si, . ,Sx) and this
is followed by its transform, and so on.

Then

1/2E, j~2E,
0 j&2E,

I',g= ' 1/E
.0

j~E, k=E+j,
j&E) k~E)
otherwise.

Training Program II
Consider the stimuli S~, S2, , S~ and their trans-

forms Sx~i= T(Si), Sa+2 = T (52), , 52' ——T(Sx)
under some one-to-one transformation T of the retinal
points. For example S&, . , Sz may be in the left half
of the 6eld and T a transformation which moves them
to the right half. S,(x=2E+1) is not shown during
the training but is a test stimulus to be applied after
the perceptron is trained. S,=T(S,), y=2E+2=n.
I.et us assume 5, intersects Si, , Si,(L(E) to a
larger extent than it does the others and hence S„
intersects mostly with Sz+&, , Sz+&. Specifically
(cf. Fig. 5)

(q+s8.;) j)L
(q+r) j&L,

g j&fg

ey,'=» (q+r) E+1~j~K+L
.(q+8„) ~&E+L
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FIG. 5. Stimuli and their transforms on the retina,

From Eq. (14) we obtain

L
p(*)— . (q+r) Q y(p(rr+i)+p(rr+j))2'

+q Q y (p (rr+r) +p (rr+i))

K
&(*)= p z .ry(p(ran+i)+~(rr+i))2'

2Z

+—p Z rr, 'y(p(»+ ~(»)
E j.=%+I, k=1

(18)

and

(a)
E(K+@ 1)—r) g-

(K—Lp,)

2E22E
(b)

(q+r) eb pKq(E+IJ)+Lrjj, ]

then A„'(S„)=Ao (S„).If all three inequalities hold
then the stimulus S, generalizes to T(Si), but the
transform T(S,) =S„does not generalize to the
stimulus S,. Thus, when the machine has reached its
terminal state the stimulus sequence S followed by S„
is characterized by a decreasing amount of activity,
while the sequence S„ followed by S would yield an
increasing pattern of activity. By connections having
a time delay to the response units the machine can
thus distinguish between a motion to the left (decreasing
activity) and a motion to the right (increasing activity).

Of course the above asymmetry between LS,T(S)]
and LT(S),S] is due to the training method. If a
symmetrical training is applied, the generalization goes
both ways. '

Necessary and suKcient conditions that all three
inequalities hold are easily found, Lwith r 0, condition
(iii) implies (ii)] and are:

+q Z ~(p"'+~"') .

Hence if

then

~(q+r)/2K&~0

A "(S) A()"(S )+ U Ao"LT(S;)].
2(L

Consider next y("). Equation (18) applies (with g
replaced by y) and

K
p(w) — p qy(p(rr+i)+p(x+r))

2Eb &=I

Thus if

Lr+Kq
y(p(i)+&(i))

E
L1'p

2EB
q(E+p)+ &8,

E

In words, if the stated inequality holds then, in the
terminal state, S activates all those elements originally
excited either by itself or by any of the transforms
T(Si) T(S~)

(ii) If re(K+y L)/2Ko &8, th—en

A rr(S )( Aorr(S )+ U AorrL-T(S;)].
3(L

If both inequalities hold, then

A "(S) =A()"(S,)+ U Ao"LT(S;)].

and

A rr(S ) A, rr(S )+AorrLT(S, )]

A-"LT(S*)]=A o"LT(S*)].

Suppose the perceptron has zero initial values on the
A to R connections. Let it be shown S and let all
active A" to R connections be given a positive incre-
ment. Then let it be shown S, and let all active A' to
R connections be given a negative increment. Now if
the perceptron is shown T(S,), (a stimulus it has never
seen before) the input to the response unit is the
number of associators in

A„"I T(S,)]A~A„(T(Sr)]UA„"(S.))
minus the number of associators in

A„"LT(S,)]QfA„"(T(S,)]UA„"(S.)),
which, in general, is positive. Similarly if the machine
is shown T(S,) the response is negative. LNote that

In 'particular let L=1. Then A„r(S,)=Ao (S )
+A rLT(S )], and A rrLT(S )] A rrLT(S )]. Thus
due to the intersection between A o"(S„) and
Ao 'LT(Sr)] the test stimulus S, generalizes to its
transform, even though neither one has occurred
during the training sequence. This is the effect which
was originally predicted for cross-coupled perceptrons, '
and has since been demonstrated in digital simulation
experiments. Specifically, supp'ose that we have another
test stimulus S„analogous to S, but its chief inter-
section is with So, say also q+r Then, i.f (a) and (b)
are satisfied (with L= 1 and p &E),
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the same result is obtained if the final training is done
in the opposite order; that is, show T(S,) and increment
positively; then show T(S,) and increment negatively;
now ask for the responses to S, and to S,.j

Thus in the terminal state, after training with the
transformation applied to unrelated stimuli, the
machine, when taught the response to S and to S„
automatically gives the same response to T(S,) as to
S, and to T(S,) as to S,. It has learned to identify
stimuli as equivalent under the transformation T
(and similarly T ').

It has been noted' that this ability to identify objects
equivalent under a transformation is greatly enhanced
by using random blobs, rather than completely random
pepper and salt patterns during the initial training
period. The reason for this is clear from the fact that
the intersection of the pepper and salt patterns with
the test letters are all approximately equal, so that
r/g is small and condition (a) is violated.

S. CONCLUSIONS

We have shown that for the model described,
autonomous learning is possible. In particular, from
the analysis, the following types of performance are
possible.

(a) The perceptron is shown a random sequence of
letters of the alphabet, each letter occurring in various
forms, fonts, and positions. The sequence is composed
in such a way that a given letter "A," is more likely
to be followed by another form or position of the same
letter, A, than by a different letter. Ultimately, the
perceptron will have seen a number of "runs" of each
letter of the alphabet, each such run consisting of a
sample of possible positions and variations. At the
end the machine should assign a distinctive response
to any letter presented; one response for "A" 's another
for "8"'s etc. Of course, the particular assignment of
responses cannot be specified in advance, since at no
time does the experimenter give the machine any
instructions based on his knowledge of what the letters
are; he merely shows it one letter at a time, distorting

and transforming it. It is not the topological similarity
of the "A" 's with each other, nor the point-set overlap
that is crucial here, but rather the fact that the "A" 's
occur contiguously in time. Thus any set of objects
that occur contiguously in time can be classified
separately from any other sets whose members have
the same property.

(b) The machine is shown blobs which jump from
the left to the right half of the retina. It is then shown
an "A" and a "8"on the right and taught to give the
response E» to "A" and E~ to "3".Then, shown an
"A" on the left, it gives response E», and, for "8"on
the left, E2. It can also be designed so that on being
shown any object moving to the right it gives one
response; for all objects moving to the left the opposite.

6. CROSS COUPLED SYSTEMS

The more general cross-coupled systems of Fig. 2
of the previous paper' present several additional
complications.

(a) Closed-loop reverberations are possible. Activity
can go on indefinitely, independent of the stimuli
presented. The question of whether these reverberations
die out, stabilize, or spread to activate all units is
crucial to the design.

(b) The sets A'(S, ) are no longer constant in time.
This complicates the analysis. Moreover they depend
on the sequence of stimuli preceding S; rather than on
only S; itself. However with suitable modifications, an
analysis analogous to that given here has been carried
through and equations analogous to (12) obtained. '
The application of these results to particular problems
is being studied.

Cross coupled systems with feedback from the E to 3
units are now being studied both analytically and by
simulation, with the belief that such systems or related
models might be capable of dealing with the problems
of figure-ground discrimination, relations of figures in
complex visual fields, selective attention and recall,
and temporal pattern recognition. '
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