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ABSTRACT:

A trie is a distributcd-key search tree in which records
from a file correspond to leaves in the tree. Retrieval consists
of following a path from the raoot to a leaf, where the choice of
an edge at each node is determined by attribute values of the key.
For full tries, those in which all leaves lie at the same depth,
the problem of finding an ordering of attributes which yields a
minimun size trie is NP-Complete. Since the problem has practical
implications, heuristic solutions are of interest., We consider a
Y'greedy" heuristic and derive a worst case bound on the approximation
it produces. A file is given for which the heuristic performs badly,

producing tries of hiph cost.
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I Introduction

A tric defined by IFredkin (1960), is an implementation of a distributed-
key search tree in which records from a file correspond to leaves in the trce.
Retrieval is carried out by following a path from the root of the tree to
a leaf, the choice of a new edge at each node being determined by attribute
values ot the key. TIf all records in the file have the same number of
attributes, then each path in the trie will be of the same length, and
all leaves will lie at the same depth. This is called a full trie and has
the property that the size of the trie is determined by the order in which

attributes are tested.

Formul definitions of a trie are given in Comer and Sethi (1977).
In the same paper, the problem of finding an ordering of the attributes
which produces the minimum size trie is shown to be difficult in a precise
sense.  More formally, the problem is shown to be NP—Complete.l Since, at
present, there is no known efficient algorithm for problems in this class,
optimal solutions take exponential time, Even for a small file, such
solutions are often too expensive to be feasible. Yet the problem of tric
minimization is of practical interest. Rotwitt and deMaine (1973) and Yao (1976)
consider an alternative: procedures which are computationally efficient but
which yield solutions which are ''close' to the optimal in.some sensc. Such
procedurcs are often derived from "rule of thumb' practices and are called

heuristics.

The focus of this paper will be on the analysis of tries built by

heuristics. We seek a worst case bound on the approximation that the

TAho et al (1973) provides a reasonable introduction to NP-Complete problcms.



given heuristic produces. Such a bound provides an absolute limit on the

size of the tries produced, but warns that they could be that bad.

To measure the performance of a heuristic, let the size of a trie

produced by the heuristic be § Let S0 and Sw denote the sizes of an

I’
optimal (smallest) and worst (largest) trie, respectively. The cost

criterion used to judge the heuristic will be
OST = S /S
¢ h/ 0

Heuristics which have minimum cost are desirable. Although this cost does
not include the computational time of the heuristic itself, we assume that
it is the sole criterion for judging the performance. Only efficient
procedures, those for which the running time is a low-degree polynomial

in the size of the file, will be considered and differences in the amount of
work required between any two heuristic precedures will be considered in-

significaant.

Heuristics for full trie minimization are intended to produce low cost
tries by minimizing the breadth of the trie. Figure 1.1 shows best and worst
possible tries for a file of r records and k attributes. Intuitively, if
a trie has fewer nodes than the worst case, it must have fewer nodes at depths
near the root. The best case has fewer nodes at all depths except the depth

of the leaves.

One way to produce a small trie, then, is to choose attributes in an
order which minimizes the number of nedes at each depth. This optimizes
the trie locally by restricting growth on a level-by-level basis. Of
course, this does not guarantee the minimum size trie; it is only an attempt

to do so. The idea of local minimization is formalized in the following.




DEFINITION 1 The GRLEEDY IIEURISTIC for full trie minimization is given by

the following procedure. While building the trie, select at each
depth an attributc which adds the smallest number of nodes to the

next depth. ' (]

c . 2
Note that the GREEDY heuristic requires at most Q0(rk”) to compute and

therefore, meets the criteria for an efficient procedure defined above.

We will characterize the best and worst case tries, showing thc maximum
improvement that can be expected from any heuristic. The GREEDY heuristic
will then be examined to see how it performs. One might expect that this
heuristic provides a good approximation to minimum tries. We will show,

however, that it can produce high cost tries under certain circumstances.

The rest of this paper is organized as follows: in section 2 a
"restricted file" will be defined. These files have no trivial or isomorpbic
attributes and will be considered when analyzing heuristics. Following this
(r,k)-FAT and (r,k)-THIN trees will he defined in sections 2 and 3. It
will be shown that they are the largest and smallest tries, respectively,
indexing a binary restricted file. Thus, the ratio of the size of an
(r,k)-FAT tree to an (r,k)-THIN tree derived in section 4 is a bound on the

performance of any heuristic. A modified (r,k)-FAT tree will be defined in

section 5 which can be produced by the GREEDY heuristic. It will be shown
that the worst case approximation for the GREEDY heuristic is not bounded by

a constant but grows as the number of attributes, k.




2: A Worst case Trie

The smallest and largest full tries for a file of r records and k
attributes arc shown in Figure 1.1. The best trie has k internal nodes
while the worst trie has r{k-1)+1 internal nodes. The ratio of sizes

of worst to best, Sw/S0 is:
§,/S, = Tk-1)/k) + 1/k
which results in a factor of r for most k.

Files which allow tries as small as k nodes are not realistic because
they have k-1 attributes which contain ne information. Since we seek to
model the filcs one might encounter, let us rule out trivial attributcs --
those which carry no information; and isomorphic attributes -- those which
arc duplicates. IFiles which do not have these two types of attributes will
be called restricted. In the rest of this paper, the term "file" will mean

restricted file. We wish to know the ratio sw/So for full tries indexing

restricted files.

In the analysis which follows we will characterize smallest and largest
tries indexirng a binary restricted file. Attention to the binary case is
motivated by two rcasons. On one hand, since information is represented in
binary in most computers, one can view operations on a binary file as
opcerations on the binary encoding of a more general case. On the other hand,
it is desirable to obtain information about this simple case as a prelude
to understanding files of higher degree such as ternary. Recall that if
one attribute has a ternary value set while all others are binary, then the

file is of degree 3.



The following simple property of binary restricted files will be

used extensively.

LEMMA 1 Let F be a binary restricted file of r records and k
attributes such that there exists a full trie indexing F.

Then

rlogzr] <k < 271 (1)

PROOF: (k 2 [1og2r'])

Suppose k < [iogzr]. Let t be an integer such that 2+t ¢ r< 2.

Then [longl = t. Recall that a binary tree with depth k can have
at most Zk leaves. So any trie indexing F can have at most 2t-l leaves.

1

This is a contradiction since »r > 2t- and therefore k > Iogzr.

(k < 2771

Suppose k 2 2r'1. Think of the binary values in each column as a
binary number of r bits. Clearly, one half of these are isomorphic
up to a renaming of bits. Of the 2]:_1 remaining values, one of them
is all zeroes (or all ones). Therefore there are 2r—1 - 1 nonisomorphic,
nontrivial values. Since by assumption k 2 2r—l’ at least one of the
values must be repeated. This is a contradiction and it must hold

that k < 2571, i '

Since two positive integers t and k which satisfy equation (1) appear

so often throughout the paper, this condition is given a name as follows:

DEFINITION 2 A pair of integers (r,k) is valid iff:

1. r, k > 0, and

2. Iaogzr] < k < Zr_l




of tntegers and the file has r records and k attributes. D

e have commented on the tries shown in Figure 1.1 which are the best
and worst tries for an unrestricted file. We will now consider worst case
tries for binary restricted files. Tor a binary file, trees of the shape
in Figure 1.1 are prohibited since a node may have at most two descendants.
The point to note is that the worst case trie for an unrestricted file
distinguishes the records as early as possible. An early splitting will
also occur in a worst case trie for a binary file but will be slightly slower
due to the binary constraint. Consider the trie shown in Figure 2.1 for
a file of eight records and seven attributes. The first three depths form
a complete binary tree, distinguishing all records as fast as possible.

The remaining levels contain only chains as in the worst trie for an un-
restricted file. Of course, this example is for a2 tree with the number
of leaves a power of two. Tries with this shape are defined for arbitrary

numbeTt of leaves in the following definition.

DEFINITION 3 Let (r,k) be valid integers and let t be an integer such that

2t o r S 2t+1. Then an (r,k)-FAT tree is a binary tree such that:

1. Each node at depth d, 0 < d < t, has two sons.
t o t+1
2. T - 2 nodes at depth t have two sons and the remaining 2 -r
nodes have one son.

3. [Cach node at depth d, t+1 < d < k-1, has exactly one son.[]

The following lemma shows that an (r,k)-FAT tree is as large as any

trie indexing a binary restricted file of r records and k attributes.




LEMMA 2 Let F be a valid (r,k) binary restricted file and let T be

a full trie indexing F. If A is an (r,k)-FAT tree then
(Al > 1]
where |T| denotes the size of tree T.

PROOF :

Suppose that |T| > |A]. Since both trces have all leaves at the
same depth, there must be a firsgﬁdepth, d, at which I' has more nodes
than A. Let t be an integer such that 2t < T g 2t+1. Two cases arise.
Case 1: d < t. Since each node in A at depth less than t has two
sons, T cannot have more nodes than A and still be a binary tree.

Now consider case 2.
Case 2: d > t. By the definition of A there are r nodes at depth t
and cach one has one son for all depths d, t < d g k-1. Therefore, if

T has more nodes than A, it must have more than r leaves. This is a

contradiction, and the Lemma holds, []

3: Smallest Tries for Binary Restricted Files

The following defines a binary tree called an (r,k)-THIN tree.
First, an i-STEM is defined which is the slowest growing trie for a binary
file with no isomorphic or trivial attributes. Following this an (r,k) TIHIN
tree will be defined as an i-STEM with a FOREST of binary trees rooted in
its n leaves. Finally, it will be shown that the ratio Sw/So is attained

by an (r,k)-FAT tree and an (r,k)-THIN tree.



Consider a binary restricted file. We wish to characterize the
most slowly growing full trie for such a file. Since there are no
duplicate or isomorphic attributes, only a finite number of attributes
may be selected before a4 new node is added to the trie. A minimum
growth trie for the file shown in Figure 3.la will have a shape as
shown in Figure 3.1b. This trie shows an exponentially increasing

number of levels between the appearance of a new node.

The following gives a formal definition of a tree with this shape
which will be shown to meet the lower bound on the growth of a full trie

for a binary restricted file.

DEFINJTION 4 Let i be a nonnegative integer, and let t be an intcger

+ . . .
such that 2t <1ix 2t 1. An 1-STEM is a binary tree such that:

1. All leaves lie at depth 1i.
2. The rightmost nede at depth 23~I, 0 s j < t, has two sons

and all other nonleaf nodes have exactly one son. []

Examples of i - STEMS are shown in Figure 3.2.

To see how we arrive at the shape of an i-STEM, consider a binary
restricted file. The first selection of an attribute from the file must
split it into two parts. The second attribute tested mﬁst break at least
one of these groups into two or it would be isomorphic with the first.
But the third selection could be such that it did not further divide the
sets of records and yet was not isomorphic to the first two attributes.
Figure 3.3 shows a sample file. Testing left-to-right distinguishes the

first set at depth one, the second set at depth two, and no set at depth

three. Following this at least one set must be distinguished at depth four.



Using thesc itdcas we will show that an i-STEM is as small as the slowest

growing trie indexing a binary rostricted file.

LEMMA 3 Let F be a valid (r,k) binary restricted file and let T be a
full trie indexing F. Then T must have at least [logzil +2 nodes

at depth 1i.

PROOF :

Claim: Tf A is a k-STEM then T has 4t least as many nodes as A at

depths d, 0 ¢ d < k.

PROOF of Claim: From the above discussion, there is only one depth
possible in T with no new nodes after the second record is distinguished.
Now assume that there are 2j-1-1 depths possible with no new nodes after
the jth record has been distinguished, for 2 < j < p. Suppose that the
pth record is distinguished. Think of the assignment of values to records
as assigning bit values to a p-bit binary number. There are only 2P
possible assignments, and one-half of these were used
after the p~15t record was distinguished. Therefore, only 2p-1 assignments
can be made before a duplication occurs, and only Zp-l additional levels
can appear in the trie before another record must be distinguished.
Therefore, T must have an attribute tested which distinguishes the p*lSt

|
- » . - - . - ‘
record at depth 2P 1. Since A meets this criterion, the size of A is |

less thar or equal to the size of T. Ocraim.

Since the growth of A is a lower bound on the growth of any full trie,
T, the number of nodes at depth i in A is a lower bound on the number of
nodes in T at that depth. We will show that A has llogzéj +2 nodes at depth

1.
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For depths one, two, and three A has two, three, and three nodes,

. L . N . t41
respectively. “Let € be a positive integer such thar 27 - 1 < 2

and assume that for al? j, 02 j - t, A has [JUKqJJ +2 nodes at Jdepths

2) to 22*'-1. Consider i in the range 2% to 2°*1-1. Since only one
' P t

node at depth 2%-1 had an additional son, there must be ([10g22 -{l+2)+1

nodes at each depth. But

llogZZt-lj+3 = t-1+3 = t+2 = [logziJ+2.

Therefore, the lemma holds by induction. []

Since an i-STEM is the most slowly growing full trie, one might think
that it would be a minimum size tree of llog2¥J+2 leaves, each at depth 1.
To see that this 1s not the case, consider the trees shown in Figure 3.4.
The second tree consists of an i-STEM which is shorter than the first
and each node just before a leaf has twe sons which are leaves. Fxtending
this one more level would yield an even shorter tree. A minimum size
full trie will be characterized which uses this idea of continuing an

i-STEM with lower levels which are complete binary subtrees.

Consider an i-STEM in which the leaves have been made the roots of
a forest of binary trees. At each depth there must be at least
n(i) = [}ogZiJ + 2 nodes. If there are to be r leaves at depth k,
where r > n(k), then there must be some depth p at which the tree begins
to grow more rapidly than an i-STEM. Since we wish to delay this splitting
as long as possible, p is to be maximized. To see how the best value for
p is obtained, observe that in a binary tree of q leaves at least [1og2 dl
depths are required to distinguish all q leaves. 1In the case of an i-STEM,

the r leaves can be divided into a forest, F, of n(i) binary trees. Since
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all trees in the forest are of the same depth, we will need

d = max [logz(leaves in t)w depths to distinguish ali leaves. It

is ezzily seen that d can be minimized by distributing the leaves as
evenly as possible among all trees in the forest, The largest tree will
have [r/n(ii] leaves. Thus, at depth i in the i-STEM, the number of

additional depths needed to distinguish all r leaves is [logz[f/n(i}]w =

108, r/n (i) ]

An (r,kK)-THIN tree will be defined in terms of an i-STEM in which
the leaves form the roots of a forest of binary trees. It will then be
shown that the (r,k)-THIN tree is minimized when all trees in the forest

are complete binary trees of equal size.

DEFINITION 5: Let 1, k be a valid pair of integers and let n(i} be defined

by n{i) = |[log, 1 + 2. Let be the maximum integer such that
Y 2 P

P+ [1022(r/n(p) )] =k

Then an (r,k)-THIN tree is a binary tree which consists of a p-STEM in which

the n{p) leaves form the roots of a forest of n(p) binary trees such that the

largest binary tree has [r/n(p{l leaves. I]

Note that the (r,k}-THIN tree defined here is not minimum for arbitrary
r and k since the exact shape of the binary trees in the forest is not
specified. While a minimum size forest can be characterized (see Comer 1976),
we are interested only in a bound on SW/SO. The following lemma shows that
it is sufficient to consider only those cases where the trees in the forest

of the (r,k)-THIN tree are all complete binary trees of the same sizc.



LEMMA 4:  Jet (r,k) be a valid pair of integers, and let T and F be an
(r,k)-TINN and (r,k)-FAT tree, respectively. Then the ratio |1]/]r]
is minimized when all trees in the forest of the (r,k)-THIN tree are

complete binary trees of cqual size.

PROOF :

Suppose they are not complete binary trces. Let p be the depth in T
at which the roots of the forest lie. Then for large enough k, [ will
have 1 nodes at depth p. Now consider a new pair of trees, T' and F'
which are (r+1,k)-THIN #nd {r+1,k)-FAT trees, respectively. T' will still
have the same number of nodes at depth p as T because the trees in the
forest were not complete binary trees., But F' will have r+l nodes at
depth p. Thus the ratios of the sizes of T' to F' is (|T|+q)/(|F|+q+1)
which is smaller than [T|/|F|. This is a contradiction and the trees
must all be complete binary trees.

Now suppose that the forest has two trees of different sizes. Since
M

the samc argument implies that |T|/|F| is not minimum, the Lemma holds. |

THEOREM 1: let (r,k) be a valid pair of integers and let F be a binary
restricted file with r records and k attributes. Let T be an (r,k)-THIN
trec in which the trees of the forest are all complete binary trees of

the same size, and let A be a full trie indexing F. Then
7] <Al
where |T| denotes the size of T.

PROOF: Suppose |A|<|T|. Since A and T both have all leaves at depth k,

there must be a first depth, d, such that A has fewer nodes at depth d
than T. Let p be the depth of the roots of the forest of binary trees in

T. Now two cases arise:

1
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Case 1: ¢ < p. From Lemma 3, a p-STEM is the slowest growing trie
for u binary restricted file. Therefore, A cannot have fewer nodes

than T at depth d.

Cuse 2: d>p. Since T has complete binary trees rooted at depth p,
if A has fewer nodes at depth d, then A would have fewer leaves than

T. But this is a contradiction.

Therefore, the assumption was false and |T{<[A]. (]

4: A Bound on the Ratio §w/§o for Binary Restricted Files

In this section a bound on the ratio of the size of an (r,k}-FAT tree,
SK, to an (r,k)-THIN tree, So' will be derived. This worst case bound will
provide a measurc of the maximum improvement that can be expected from any
heuristic for tries indexing 2 binary restricted file. The bound will be
computed for TIIIN trees in which the forest consists of complete binary
trees of equal size. This will produce the worst case according to Lemma

4, To demonstrate that this bound is achievable, a file will be given in

section 5 for which there exist tries approaching it asymptotically.

The size of an (r,k)-THIN tree can be obtained from the sum of the sizc
of the i-STEM and the forest. The size of an i-STEM of n leaves {including :
the leaves) where 1 = 2p-1 for some p can be obtained by summing the nodes

at cach level. This is

0 1 2

1+ 2027 & 3xad 4 oge2? o L 4 a2

#2172 2 (172) « (/4) * 2™ - e2™ 4
2

n
—
+
LU ot 1

1

Simplifying, we get i

(1/2)*((n-1) 2"+1}+1/2 = (n-1)2" 141
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The size of a forest of n (complete) binary trees of f leaves each
is n{f-1)-n (excluding the n roots and nf leaves). Since f = r/n, the
size of the forest in an (r,k)-TIHIN trec is n(r/n-2) = r-2n. ‘The size

of an (r,k)-TIIN tree, S, 1s then

s, = (m-1)2"1 + 1«1 - (2)
where n is the number of leaves of the i-STEM. To relate this to r and k,
observe that r = n2° for some integer t. t 1s the height of the trees in
+2 = [log24;} leaves.

. . . -1 . -
Thus, it must be true that i §_2n -1. Therefore, k =t + 1 =t + 2n 1. 1.

the forest. From Lemma 3, an i-STEM has Llogzi

The size of an (r,k)-TFAT tree (excluding the leaves) can be easily
computed since it consists of a complete binary tree of Llog,rJ levels.
Following this there are cxactly r nodes at each of the remaining k- Llog,lj -1

depths. Let p = Llogzrl then the size of an (r,k)-FAT tree, Sw’ is

sw=gp*1_1+r(k-1-p)

From the discussion of (r,k)-THIN trees, there are integers t and n such that

T = n2t S0

Sw _ 2t+1+ Llog nl

-1+n2t(2n-1—2— \}ogsz )

2b (2n-1en(2" 1o2- llogsz )

= 2" (2" |1og,n|)-1) (3)
From equations (2) and (3), we can deduce a bound on the worst case

performance of any heuristic. Since "1, log,m,

s, <2t m2"ho1) = r2" ot

=@ ormy = r @ amy < 2™
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thercfore,
n-1 n-1
SW/So < (r2° 7)/((n-1)2° “+r-2n+l1) (4)
This ratio is approximately r/(n-1) for large r and n. Since r/{n-1) > 2t
Sw/So is not bounded above by a constant, but grows as the size of the input

file.

5: A Worst Case File for the GREEDY Heuristic

Consider a file of the form shown in FFigure S5.1. These files represent
a class of binary restricted files for which there exists a worst case tric.
In addition, the GREEDY heuristic misbehaves when presented with a file from
this class. To help relate these files to our previous analysis, we will use
the parameters n and t as shown and refer to them as (n,t)-WC files. It

should be clear that r = n2° and k = t + 2"_1 - 1.

First it will be shown that tries exist for an (n,t)-WC file which are
(r,k)-THIN trees and (1,k)}-FAT trees. Then the performance of the heuristic

on this file will be analy:zed.

LEMMA 5. CGiven n,t > 1, and F an (n,t)-WC file, there exists full
tries T and A indexing F which are an (r,k)-THIN and (r,k)-FAT tree,

respectively.
PROCF: (for T)

Construct 7 in the following way. By definition of F, all 2t blocks
of n records are identical. Select the 2n-1_1 attributes left to right
from the set Q yielding a (Zn-l—l)-STEM where each leaf in the stem
represents a set of 2t records, one from the first block, one from the

second block, and so on. Select the final t attributes from N
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left-to-right dividing up these sets, doubling the number of divisions
at cach depth. 'Thus, T consists of n subtrees of 2t leaves, each of
which is a complete binary tree, rooted in the n leaves of a (2n-1—1)—STEM.

By definition, T is an (r,k}-THIN tree.
(for A)

Construct A in the following way. Choose the t attributes from set P
left-to-right yielding a4 complete binavy tree of depth t. Associated with
each leaf in this part of the tree will be n records, exactly one for each
of the n blocks. Since these blocks are all identical and contain all
2"_1—1 possible attribute values, select in order attributes which divide
the set in half, then in quarters, and so on. This will place a complete
binary subtree at each of the 2t nodes formed by selections in Q. Following
this, all records will be distinguished and the remaining depths will have

r nodes each. By definition this tree is an (r,k)-FAT tree, and the lemma

holds. D

THEOREM 2. Let n,t be integers greater than one and let F be an (n,t)-WC
file. The GREEDY heuristic can produce a trie for which Sh/SO is

approximately Sw/So'

PROOF:

From Lemma S there exists an (r,k)-THIN trie indexing F, so 50 is the
size of an (r,k)-THIN trie. Now consider the selecticns which lead to
a worst case. Referring to Figure 5.1, form a trie as follows: choose the
t attributes from P, dividing the records into Zt sets. As in the (r,k)-FAT
tree a complete binary subtree will be formed. Following these selections,
continue to select attributes from Q in a left-to-right order. These

n-1

selections yield Zt 2 -1)-STEMS rooted in the Zt nodes at depth t.

Note that the above selections produce a modified (r,k)-FAT tree in which



the first levels agree but in which later depths grow more slowly.

To see that such selections are allowed by the GRELDY heuristic, observe
that any attribute may be selected first. Once the leftmost one has
been selected, any second attribute is allowed because each will add two
new nodes. If any part of set P has been selected left-to-right, it
will always be truec that the next one can be selected since any remaining
attribute choice will split each node. After all selections in P are
complete, the GREEDY heuristic will choose the '"best'" order from set Q

producing a STEM for cach subtree.

Analysis in the next section shows that the size of the madified (r,k)-TFAT
tree described here is such that Sh/SO is approximatelyASw/So. Therefore,

the theorem holds. E}

We now consider the size of the modified (r,k)-FAT tree produced by the
GREEDY heuristic. As shown in Figure 5.2, the difference between the tree
in question and an (r,k)-FAT tree is that at some depth t, the modified trie
stops cxponential growth and has Zt i-STEMS as subtrees. The (r,k)-FAT
tree, however, continues at this depth with complete binary subtrees until
all T records have been distinguished. So there are 2t subtrees which differ
in the two trees. The point to note is that the subtrees of the (r,k)-FAT
tree are themselves (r/n,k-t)-FAT trees and the subtrees produced by the
GREEDY heuristic are (k~t)-STEMS. We will show that the ratio of a (r,k)-FAT
tree to a k-STEM is approximately equal to one for large t and k. Thus, the
tries produced by the GREEDY heuristic are '*close to" (r,k)}-FAT trees in size.

The next lemma establishes this.

LEMMA 6. Let (r,k) be a valid pair, let T be an (r,k)-FAT tree, and let

S be a k-STEM. Then |[T|/|S| is approximately one for large r and k,
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where |T|denotes the size of T.

PROOF:
From the preceding analysis, we have that
Is| = (r-1)2771+1, and
1| = r(k- (10g2r1 -1)+r-1 = r(k- [longl )-1

. . . T-1
and since 1in this case k = 2 -1,

IT|] = r(2r-1- [1og2r] -1)-1

So

IT171s] = (r@" - |rogyr | -1-1/Cn2 e

(r(2r-1— [iogzr]]/((r-ljzr_l)

| A

and since T >> 1, 2r—1_ (1Dg2I1 is approximately 2%-1 ,
- r-1 r-1
ITl/71s] = (x2° )/ ((x-1)2°77) = 1/{r-1)
which, for large r, is one. E

Illaving shown that the k-STEM produced in a modified (f,k)—FAT tree
are approximately the size of an (r,k)-FAT tree, we conclude the analysis
of the GREEDY heuristic by stating that it allows tries which are close
to the worst possible for Dbinary restricted files. This result may be
intuitively unappealing. In a sense it claims that for binary trees of r
leaves at depth k, the slowest growing binary tree, a k-STEM, and the fastest
growing tree, an (r,k)-FAT tree, are approximately the same size. To see why
this happens, think of the k-STEM. The last k/2 depths have r nodes. So
for large k, it is at least one half of the size of an (r,k)-FAT tree. Of

the remaining depths, k/4 of them have r-1 nodes, k/8 have r-2, and so on.
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Thus, a k-STEM grows slowly but has many levels which are almost the sizc
of an (r,k)-FAT tree. It is the large portion of levels at which many

nodes appear that account for the size.

6:  Summary

We have defined an (r,k)-THIN tree which is a binary tree that is as
small as any full trie indexing a binary restricted file. Furthermore, we
demonstrated an (r,k)-FAT tree which is a binary tree that is as large as
any full trie for a binary restricted file. An upper bound on the ratio
SW/S0 was obtained from the sizes of an (r,k)-FAT and (r,k}-THIN trece. It
was shown that this bound was attainable by demonstrating a file far which

both an (r,k)-FAT and (r,k)-THIN trie existed.

The GREEDY heuristic for full trie minimization was introduced for the
approximation of minimum tries. This heuristic operates by choosing attributes
which produce minimum splitting in a local sense. It was shown that there
existed files for which this heuristic could produce tries such that the

Tation Sh/S0 was not bounded by a constant.
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set 1.7
set 2:: 0

set 3::4

QOO
QOO =2 a—d
DO4220000

(2)

Part of a binary restricted file (a) and a
slowest growing full trie for that file (b)
obtained by testing attributes left—to-right.

Figqure 3.3
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(a) {b)

An i-STEM with six leaves (a) and an i-STEN
with three leaves, each of which is the root
of a binary tree.

Pigure 3.4
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R ;/n,k-t)-FhT trees /,gt{t)-STEHS
s |l
\
n nodes C
X
*Elunuu-..uuc iooo0 ---000
r r
(r,X) ~PAT tree r-GREEDY tree

The shape of a worst case trie for the GREEDY heuristic.
Note that it differs from an (r,k)=-PAT tree in that there
are n subtrees which are (k-t)-STEMS instead of PAT trees.

Figure 5.2






