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Analysis of a high power, resonant DC-DC

converter for DC wind turbines
Catalin Dincan, Student Member, IEEE, Philip Kjaer, Senior Member, IEEE, Yu-hsing Chen, Stig Munk-Nielsen,

Claus Leth Bak, Senior Member, IEEE,

Abstract—This paper is introducing a new method of opera-
tion for a series resonant converter, with intended application
in megawatt high-voltage DC wind turbines. Compared to a
frequency controlled series resonant converter operated in sub
resonant mode, the method (entitled pulse removal technique)
allows the design of the medium frequency transformer for
highest switching frequency, while being operated at lower
frequency without saturation. The main focus of this paper is
to identify and analyse the operating modes of the converter
with pulse removal technique. With the use of variable frequency
and variable phase displacement in sub resonant mode, the
new method of operation promises transformer size reduction
and facilitates soft-switching transition of the IGBTs and line
frequency diodes on rectifier side. Four modes of operation are
identified, while equations for output power, voltage and current
stress are identified. Experimental results are concluded on a 1
kW, 250V / 500V prototype.

Index Terms—resonant converter, medium voltage DC,
medium frequency transformer, offshore wind farm, high voltage
converter

NOMENCLATURE

CCM Continuous conduction mode.

DCM Discontinuous conduction mode.

HVDC High voltage direct current.

LV DC Low voltage direct current.

MVDC Medium voltage direct current.

SRC Series resonant converter.

SRC# Series resonant converter ”sharp”.

Cr Resonant (tank) capacitor.

δ Inverter legs phase displacement.

Fsw Switching frequency.

Fr Resonant frequency.

M Voltage gain.

N Transformer turns ratio

im Transformer magnetizing current.

iout Output current of the converter.

irp Primary resonant current.

irs Secondary resonant current.

ir Rectified current

K Constant.

Lr Resonant (tank) inductor.

Lm Transformer magnetizing inductance.

Pin Input power.

Pout Output power.

Q Converter quality factor.

qs Resonant capacitor stored charge.

All authors are with the Department of Energy Technology, Aalborg
University , Aalborg, Denmark. Email: cgd@et.aau.dk

Vin Input voltage.

Vout Output voltage.

Vg Inverter output voltage.

V ′

g Inverter reflected voltage on secondary.

Vo Rectifier voltage.

V ′

o Rectifier voltage reflected on primary.

VCr Resonant capacitor voltage.

Vt Resonant tank voltage

∆V Voltage difference between V ′

g and Vo.

Tsw Switching period.

Tr Resonant current pulse period.

Trec Rectifier diode reverse recovery time.

ωr Resonant angular frequency.

ωsw Switching angular frequency.

γ Normalized switching frequency.

Zc Resonant tank characteristic impedance

I. INTRODUCTION

PRESENT offshore wind farms use mainly HVAC collec-

tion grids to transmit the energy collected from wind

turbines to onshore, while other solutions use HVAC up to

a large rectifier and then to the mainland through a high

voltage DC (HVDC) transmission line. According to [1]-

[4], HVDC wind farms could operate with higher efficiency

when connected to a MVDC (Medium Voltage Direct Current)

collection grid. A single line diagram for the DC wind farm

is shown in Fig. 1a. The motivation lays in the fact that the

levelized cost of energy (LCOE) could be reduced by as much

as 3%, by improving the efficiency with 2% and reducing the

bill of materials (BoM) costs by at least 1% [1]. It is expected

in the near future, that MVDC grids will be the preferred

solution for energy distribution and collection grids.

A desired, but challenging component of such a system

would be the MV DC/DC converter located in the wind

turbines. A good candidate solution, with more benefits then

deficits, could be a unidirectional series resonant converter

(SRC). The proposed topology is composed of: low voltage

(LV) inverter, one monolithic transformer (with one primary

and secondary winding) and a medium voltage (MV) rectifier

built with series connected diodes. The topology will be

referred as SRC# and it’s shown in Fig. 1b, with the ratings

from Table I.

High availability, efficiency and power density are targets

for the DC/DC converter and they can be achieved through

the use of series resonant converter. Considering the high

voltage specifications, a transformer with high turns ratio
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Fig. 1. (a) Single line diagram of DC wind farm; (b) Series resonant converter with new method of operation (SRC#).
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Fig. 2. Turbine converter with SRC operated in sub-resonant mode at constant
frequency in open loop (a); Concept with DC/DC converter operated at
resonant mode and constant frequency in open loop (b).

should be employed. But, high voltage transformers suffer

from the impact of leakage inductance, which can lead to

high overshoots across the switching semiconductors. Through

the use of a series resonant tank, the leakage inductance can

now be incorporated in the tank and actually help reducing

losses. For high power operation, the topology has been inves-

tigated mainly in traction applications [5]-[9] and in solid-state

transformer [10]-[12]. Operated at constant frequency and in

sub-resonant mode it is known as half cycle discontinuous-

conduction-mode series-resonant converter (HC-DCM-SRC).

For these particular applications, the converter couples two

DC link voltages with a fixed voltage transfer ratio, but has

no control possibilities (cf. Fig.2a).

For a wind turbine on the other hand, the DC/DC converter

must have the functionality of controlling the LV DC bus

voltage, while offering galvanic separation and a high voltage

gain. A candidate solution (cf. Fig. 2b) was proposed in [13]

and it employs a SRC, operated at resonant mode and with

constant frequency, while a front end boost converter controls

the input DC-link, increasing thus number of components,

complexity and losses.

In [26], a per-phase configuration of the series resonant

converter is proposed, with three single phase rectifier series-

connected on the output. The topology is controlled through

variable duty cycle and constant frequency, while being oper-

ated exclusively in super-resonant mode. The drawback of this

mode are hard turn-off losses on both inverter and rectifier side

TABLE I
RATINGS FOR SRC#

Parameter Value

Nominal power, Pn 10 MW
Nominal input voltage Vin ± 2kV

Nominal output voltage Vout ± 50kV
Isolation level ± 75 kV

Inverter 4x3 in parallel IGBT(6500V-x-750A)
Rectifier 4x40 in series diode (6500V-x-750A)

Frequency range Fsw 0-1000 Hz
Resonant capacitor Cr 0.250 uF
Resonant inductor Lr 78 mH

Magnetizing inductance Lm 10 mH
Transformer core weight Fe 800 kg

Transformer winding weight Cu 340 kg
Resonant capacitor energy Ecap 1250 J
Resonant inductor energy Eind 1250 J

switches. No efficiency analysis or measurement was reported

and the circuit would appear to suffer from technical barriers

on implementing 2-3 MVA, 10-kHz monolithic transformers.

Non-isolated topologies have also been proposed in prior art:

[27] and [28] propose a single and three phase topology,

while employing low-cost thyristors. The topology is similar

to a parallel resonant converter, but suffers from high voltage

stress across the semiconductors and resonant tank. In a DC

wind turbine application, galvanic separation is preferred for

protection and safety reasons, by effectively decoupling the

generator and its rectifier from that of the dc/dc converter.

In order to control the LV DC bus voltage, our work

proposes a method of operation for the SRC, where variable

frequency and phase shift control in sub-resonant mode are

applied. The benefits and deficits of the method are discussed

and compared to a SRC operated only with frequency control.

The paper deals with the review of classic SRC and motivates

the need for pulse removal technique, in order to avoid a

bulky transformer. Four modes of operation are identified and

analysed, while experiment results from a 1 kW, 500V setup

are used to validate the expected behaviour.

The paper is organized as follows: in Section II, modes

of operation for the classic SRC are reviewed and preferred

mode of operation for a high power converter is selected. In

Section III, operation principle of the SRC# is introduced and

an explanation of why it’s efficient with tank on rectifier side

is presented. Section IV provides analysis of SRC# modes
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Fig. 3. Series resonant converter (SRC).

of operation, while in Section V, simulation results of steady

state operation with the target converter are shown. In Section

VI, output power, voltage and current stress characteristics are

identified. Section VII provides the experiment results from a

1 kW prototype, confirming SRC# expected behaviour and

Section VIII concludes on the results.

II. REVIEW OF SERIES RESONANT CONVERTER

A. Theory of operation

In order to fully comprehend pulse removal technique, a

review of series resonant converter modes of operation and

control is necessary. Therefore, consider the first SRC design,

with tank on inverter side, as shown in Fig. 3, where initially

the transformer magnetizing inductance Lm is not considered.

When the two complementary switching pairs (S1, S2) and

(S3, S4) are opened and closed alternately, a square wave

voltage Vg of defined frequency Fsw and duty cycle D is

applied to the resonant LC tank while the rectifying bridge is

left uncontrolled, i.e only diodes are in operation. The resonant

frequency Fr, resonant angular frequency ωr and characteristic

impedance of the tank are further defined in eq. (1), (2) and

(3). Vg induces a resonant current irp in the tank circuit,

which when rectified and filtered is fed into the output voltage

network. The magnitude and shape of the output current is

determined by the ratio between Fsw and Fr. This explanation

is valid for all modes of operation [14]-[16].

Fr =
1

2π
√
LrCr

(1)

ωr = 2πFr (2)

Zc =

√

Lr

Cr
(3)

B. Possible modes of operation

For a SRC, three modes of operation are possible: sub-

resonant mode (Fig. 4a and Fig 4b), resonant mode (Fig. 4c)

and super-resonant mode (Fig. 4d). In sub-resonant mode, Fsw

is lower than Fr, while in super-resonant mode it’s higher.

In resonant mode Fsw is equal to that of the resonant tank,

meaning switching occurs exactly at the zero crossing event of

the current. For both sub-resonant and super-resonant modes,

TABLE II
SWITCHING CHARACTERISTICS FOR SRC OPERATING MODES

Switching on Switching off

Frequency Control Sub-resonant DCM ZVS ZCS
Frequency Control Sub-resonant CCM Hard ZCS

Frequency Control super-resonant ZVS ZCS
Resonant mode ZVS ZCS

Phase shift sub-resonant Hard Hard
Phase shift super-resonant ZVS Hard
Dual control sub-resonant ZVS ZVS

Dual control super-resonant ZVS Hard

two states of conductions can exist: continuous and discontin-

uous. Discontinuous conduction mode (DCM-Fig. 4a) for sub-

resonant mode is characterized by the presence of zero current

sub-interval. In that period, all of the rectifier diodes are

reversed biased, until Vg changes sign. Continuous conduction

mode (CCM-Fig. 4b) appears when the resonant current rings

continuously for the full switching period. Regarding control

methods, three different methods are identified in prior art for

sub-resonant and super-resonant mode: frequency control (see

Fig. 4 a, b, c, d), phase shift control (see Fig. 4 e, f) and

dual control (see Fig. 4 g, h). By frequency control of input

voltage, the effective resonant tank impedance varies with the

switching frequency. The phase-shift method is controlling the

applied voltage to the resonant tank by changing the duty cycle

of the inverter (square wave) voltage, while having constant

switching frequency . It can be applied in super-resonant mode

(Fig. 4e) or sub-resonant mode (Fig. 4f). With dual control, a

combination of variable frequency and phase-shift is applied in

order to control transformer primary voltage and the switching

current. Dual control in super resonant mode (Fig. 4h) has

been published in prior art [25], while the dual control in

sub-resonant mode (Fig. 4g) has not been investigated. Pulse

removal technique covers this area. Switching characteristics

at turn on and off for frequency, phase shift and dual control

are further mentioned in Table II.

C. Selection of mode of operation and control method

The mode of operation and control method for the SRC

are in general selected based on the application type. For

example, at low power and high voltage, applications prefer

to employ super resonant and phase shift control [20]-[24].

A three phase variant of the SRC operated in resonant mode

is described in [2] and [18] and promises efficiency above

99% but lacks controllability. On the other hand, constant

frequency and sub-resonant mode are applied in traction and

solid state applications like [19]. Mode of operation and

control method are selected based on inverter side device

selection and application requirements. Considering the high

power and medium voltage application in this case, 6.5 kV

IGBTs will be employed on the inverter side, while 6.5kV

line frequency diodes are used on rectifier side. Most of

the available publications which use a resonant topology are

addressing low power and low voltage applications and are

using MOSFETs with switching frequencies in the range of

hundreds of kilohertz. For those kind of applications, super-

resonant mode is attractive, as it allows ZVS at turn on. But, as
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also stated in [29], the main contributors to the overall losses

with IGBT applications are the turn-OFF losses. According

to [30] and [31] the main reason is that these semiconductors

are characterized by a bipolar power stage, that, in order to

block HV, comprise a considerable large N-base region, which

stores a large amount of charge during the conduction phase

of the semiconductor. When the switch is turned off, this

stored charge is evacuated from the semiconductor, causing

tail currents that overlap with the blocking voltage, generating

high switching losses. Therefore, a mode of operation that

allows ZCS or a small current at turn-off needs to be selected.

The obvious mode of operation is therefore sub-resonant mode

for IGBT applications. Another particular reason why sub-

resonant operation is attractive and with reference to Fig. 5a is

that regardless of switching frequency, during every switching

period a full resonant pulse is sent to the load. This means

if the converter operates in DCM mode, intervals of zero

current will appear. Operated below resonant frequency, it

allows the LV and MV side switches to operate with ZCS

at turn off. Further on, if frequency control is implemented,

output power is dependent on the amount of energy transfer

to the output stage, making it a function of number of energy

pulses transferred to the output, as seen in Fig. 5b. For an SRC

operated in DCM mode, an energy pulse is dependent on the

resonant capacitor Cr and its voltage VCr, as it determines the

stored charge qs, shown in eq. (4), where VCr = 2 · Vin.

qs = Cr · (2VCr) (4)

The relation between output averaged current and stored

charge is given by eq. (5):

iout =
2 · qs
ts

= 2 · qs · Fsw (5)

Combining eq. (4) into (5), will give (6):

iout = 8 · Cr · Fsw · Vin (6)
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Considering that Pout = Iout · Vout and V ′

out =
Vout

N
the previous mentioned relation between output power and

switching frequency is determined in (7):

Pout =
8 · Cr · Fsw · Vin · Vout

N
(7)

Thus, if an SRC should be operated only in DCM mode, eq.

(7) provides a simple function, which could be implemented

in a feedforward controller. Low frequency operation means

low power output, while high frequency operation will deliver

a high power output. On the other hand, the disadvantage of

operating the SRC with resonant tank on inverter side in sub-

resonant mode and frequency control, is that the transformer

and output filter now need to be designed for the lowest

frequency point and the magnetizing inductance needs there-

fore to be considered, as seen in Fig. 5c and included in the

schematic. Fig. 5b (top) shows how the magnetizing current im
varies with frequency, being in a direct relation with applied

volt-seconds. Below lowest operational frequency, saturation

and transformer induced oscillations will occur [32], [33].

A means of avoiding this must be implemented, otherwise,

designing medium frequency transformers with SRC operated

in sub resonant mode is not possible.

III. OPERATION PRINCIPLE OF THE SRC#

A. Pulse removal technique

Pulse removal technique was initially described in [17] and

it’s further explained in following paragraphs. As mentioned

previously, sub-resonant operation and frequency control are

optimal for IGBT applications as they allow soft-switching at

turn-off and allow the SRC to control output power. The ques-

tion is now, how can the transformer be operated with variable

frequency and be designed at highest operating frequency,

while avoiding saturation at lower frequency. One possible

way and with reference to Fig. 6a, is to make Vg a function of

square wave pulses, meaning a pulse with determined length

is applied to the inverter, but the distance between pulses

varies as a function of output power. As the length of every

voltage pulse is fixed, the amplitude of magnetizing current

im will be constant. Fig. 6a (top) shows the inverter voltage

Vg operating at highest frequency, providing the maximum

number of voltage pulses per unit time, while im varies

between a maximum and minimum value. Fig. 6a (middle)

and (bottom) indicate that if variable zero voltage periods are

inserted between the pulses, im will not go above or below

maximum and minimum values, but remain constant. Further

on and with ref. to Fig. 6b, if the applied voltage Vg has the

same length as the resonant pulse irs, then frequency control

in sub-resonant mode becomes possible, allowing the design of

the transformer for highest operating point. In particular, Fig.

6b (top) relates to a lower power output (fewer current pulses)

than Fig. 6b (bottom), which relates to higher power output.

Fig. 6c shows transistors switching pattern, inverter voltage Vg ,

secondary resonant current irs and rectifier current ir, where

a pulse removal technique is implemented with a combination

of frequency and phase shift control. Another aspect worthy to

mention is that, the length of one Vg pulse needs to consider

the impact of rectifier diode reverse recovery time Trec, as

seen in Fig. 7c.

B. Resonant tank on inverter or rectifier side

Applying pulse removal technique is successful only if the

resonant tank is placed on the rectifier side of the transformer,

as explained in the following. When LC tank is placed on

inverter side, Vg is the inverter voltage and Vo’ is the rectifier

voltage reflected on inverter side, the main goal is to achieve

zero volts on transformer primary winding, as soon as the

resonant current reaches zero, thus stopping any flux build-up.

Consider the equivalent circuits and corresponding waveforms

of SRC with tank on inverter side (Fig. 7a) and with tank on

rectifier side (Fig. 7b). In the first case, transformer primary

voltage is the rectifier reflected voltage on inverter side,

namely Vo’. Looking at principle waveforms from (Fig. 7a

(top), it is noticed that even if Vg is clamped to zero during

Q1 sub-interval, resonant capacitor voltage VCr
is slowly
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discharged through the magnetizing inductor, not allowing

zero volts on the primary. During sub-interval X, transformer

primary voltage has the same level as capacitor voltage, but

with an opposite sign. In other words, it’s not possible to

get zero volts on primary winding, even if Vg is zero. Fig.

7a (middle) and (bottom) show primary resonant current irp,

magnetizing current im and the magnetic flux Φ, as a function

of Vo’ and time.

In the second case with LC tank on rectifier side, (see Fig.

7b top), will mean that transformer primary excitation voltage

will be controlled directly through Vg , thus limiting the volt-

seconds and allowing for lower magnetizing flux, as seen in

Fig. 7b (bottom). Comparing the shape of magnetizing current

im from Fig. 7b (middle) to the one from Fig. 7a (middle),

it becomes evident why pulse removal technique is efficient

only with the LC tank on rectifier side. The drawback is that

the tank needs to be designed for medium voltage levels,

impacting insulation, clearance and creepage specifications.

With this arrangement, operating in a sub-resonant mode

permits a full resonant cycle of the LC circuit current to pass

within a single switching cycle of the full bridge, allowing

ZVS at turn-on and a low turn-off current for inverter switches,

while the rectifier diodes will experience ZVS at turn-on and

ZCS at turn-off.

C. Description of SRC#

The series resonant converter with the new method of

operation (SRC#) is depicted in Fig. 8 and comprises a full

bridge inverter, monolithic 1:N transformer, resonant tank and

medium voltage rectifier. Power flows from Vin to Vout. The

switch pairs (S1/S2) and (S3/S4) as indicated in Fig. 10a,

operate at a 50% duty cycle. Determining (S1,S2) as leading

leg, will generate Q1 and Q2 sub-intervals (Fig. 10b), while

Cf

Cf

iout

Lr Cr

S1 S3

S2 S4

D5 D7

D6 D8

ir

Lm

irp irs

im

Vout

Cin

Cin

VoVg’

Leading leg Lagging leg

Vin Vg

Fig. 8. Series resonant converter with new method of operation: SRC#

Pout

Fsw

DCM 2

DCM 1

CCM 1

CCM 1-hybrid

Fig. 9. Power to frequency relationship, for an SRC#

if (S3,S4) is the leading leg, will determine P1 or P2 sub-

intervals (Fig. 10c). Q and P sub-intervales are explained later

in the paper. For simplicity, in the following paragraphs (S1,

S2) is considered the leading leg. Commutation of switches on

the leading leg is phase shifted with respect to the conduction

of switches on the lagging leg, with a duration δ, equal to a

resonant period, resulting in a quasi-square excitation voltage
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t1=Tr/2t0

T1 Q1 T2 Q2
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b) c)

Lead

Lag

Fig. 10. SRC# switching pattern (a); Switching pattern with (S1,S2) as leading leg (b); Switching pattern as (S3,S4) leading leg (c).

as seen in Fig. 10a. The applied square wave voltage passes

through the transformer (Vg referred to rectifier side is V ′

g )

and excites the tank and a resonant tank current irs starts

to flow. After rectification and filtering it is fed into the

medium voltage network, Vout. Up to this point there is no

operational difference compared to a constant frequency phase

shift control, which is normally applied for operation in super

resonant mode, to achieve ZVS at turn on. As IGBTs are

employed, ZCS or a low current at turn off is necessary, so

SRC# operates in sub-resonant mode. The particular case for

SRC# is that the implemented phase shift has the same length

as the resonant pulse (Tr/2), as seen in Fig. 12a. This means

that as soon as the secondary resonant current reaches zero, V ′

g

is switched to zero, i.e. the pulsed voltage is removed. Now,

because the converter needs to control output power, just like

in the case of frequency control of the classical SRC, also here

output power has a linear relation to the number of resonant

pulses transferred per second, as depicted in Fig. 9. Therefore,

the excitation voltage Vg , becomes a function of frequency and

phase shift angle, with operation in sub-resonant mode. This

means the zero voltage sub-interval has different lengths for

different power levels.

IV. SRC# CONDUCTION MODES

Considering that SRC# is operating in sub resonant mode,

four modes of conduction (two discontinuous and two con-

tinuous) will appear under steady state operation: DCM1,

DCM2, CCM1-hybrid and CCM1. Switching frequency Fsw

and voltage difference ∆V between inverter voltage reflected

on rectifier side Vg’ (where Vg’ = Vg ·N ) and Vo will determine

whether the converter operates in one conduction state or

another. A summary of these conditions is shown in Table

III. Discontinuous and continuous modes are characterized by

the number of half resonant cycles that appear during a half

switching period, with the difference that in DCM modes, a

period of no conduction appears, while in CCM modes the

current never ceases to flow. [14].

DCM1 can occur in the entire operating range (for frequen-

cies from 0 to Fr) during transient states, when the resonant

capacitor voltage is increasing or decreasing to certain values.

DCM2 can occur only for frequencies below Fr/2, as two

half resonant cycles followed by no conduction period are not

possible above half of Fr. Transition from DCM1 to DCM2

will occur, as soon as VCr ≥ Vo, implying energy will flow

towards output voltage network. Transition from DCM1 to

CCM1-hybrid occurs when Fsw ≥ Fr/2. As ∆V determines

peak resonant current and voltage, when VCr ≥ (V ′

g +Vo) and
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Fig. 11. Equivalent circuits for SRC# subintervals : T1 (a); D1 (b); Q1 (c); P1 (d); T2 (e); D2 (f); Q2 (g); P2 (h); X (i).

Fsw ≥ Fr/2, transition to CCM1 mode will occur.

A one-cycle operation of SRC# is (regardless of conduction

mode) composed of a sequence of linear circuits, each corre-

sponding to a particular switching interval, as seen in Table IV.

Every linear circuit is determined by switching certain switch

pairs, as described in Fig. 11(a to i) and in Table V. For even

further clarification, Fig. 12 (a, b, c, d) presents secondary and

primary resonant currents with their corresponding conductive

devices per sub-intervals for every mode of operation.

TABLE III
SRC# CONDUCTION MODES AND BOUNDARY CONDITIONS

Mode of operation Range of switching frequency VCr

DCM1 0-Fr < Vo

DCM2 0-Fr/2 > Vo

CCM1-hybrid Fr/2− Fr < V ′

g + Vo

CCM1 Fr/2− Fr > V ′

g + Vo

A. Equations for subintervals

The time domain approach is used to investigate the be-

haviour of the SRC# operated with variable frequency and
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Fig. 12. Secondary (top) and primary (bottom) resonant currents with their respective conductive devices per sub-intervals in DCM1 (a); in DCM2 b); in
CCM1-hybrid (c) and in CCM1 (d).

TABLE IV
SEQUENCE OF SUBINTERVALS FOR DIFFERENT MODES

Mode of operation Subinterval sequence

DCM1 T1-X-T2-X
DCM2 T1-Q1-X-T2-Q2-X

CCM1-Hybrid T1-X-Q1-T2-X-Q2
CCM1 T1-D1-Q1-T2-D2-Q2

TABLE V
CONDUCTING DEVICES FOR DIFFERENT SUB-INTERVALS

Subinterval T1 D1 Q1 P1 T2 D2 Q2 P2 X
Inverter S1 D1 D1 S2 S2 D2 D2 S1 -

Side S4 D4 S3 D4 S3 D3 S4 D3 -

Rectifier D5 D6 D6 D6 D6 D5 D5 D5 -
Side D8 D7 D7 D7 D7 D8 D8 D8 -

V ′

g sign + + 0 0 - - 0 0 0

Vo sign + - - - - + + + 0
Vt sign + + + + - - - - 0

phase shift modulation. From the equivalent circuits, steady

state equations of resonant inductor and capacitor voltage for

every mode are derived by Laplace transform. Considering

the half wave symmetry of tank variables, the analysis is

performed for half cycle of switching period for every mode

of operation. Similar to [20] the circuit behaviour of the

SRC# under each topological mode can be described using

the following differential equations, for subintervals T1, D1,

T2, D2, Q1, Q2, P1, P2 and X, where Vt is the resonant tank

voltage:

Lr
dirs
dt

+ VCr = Vt (8)

Cr
dVCr

dt
= irs (9)

Vt =



















































V ′

g − Vo , for T1

V ′

g + Vo , for D1

+Vo , for Q1

−V ′

g + Vo , for T2

−V ′

g − Vo , for D2

−Vo , for Q2

VCo, for X

(10)

(11)

For subinterval X:

Lr
dirs
dt

= 0 (12)

Cr
dVCr

dt
= 0 (13)

By solving equations eq. (8) and eq. (9), expressions for irs
and VCr in each subinterval can be derived, with application

of the consistent initial conditions for each subinterval:

irs =
Vt − VCr(t0)

Zc
sinωrt+ irs(t0) cosωrt (14)

VCr = Vt − (Vt − VCr(t0)) cosωrt+ irs(t0)Zc sinωrt (15)

Considering that Vt = V ′

g − Vo, the polarity of Vt is deter-

mined by the specific sub-intervals and conductive devices, as

seen in Table. V.

B. DCM1

With reference to Fig. 14, DCM1 mode can appear in the

full switching range and it’s possible only if ∆V ≈ 0 and

VCr ≤ V ′

g . Fig. 14 shows on top the inverter voltage reflected

on rectifier side V ′

g , rectifier voltage Vo and secondary resonant

current irs. Middle graph describes resonant capacitor voltage
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2ΔV
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6ΔV

+Vg’

-2ΔV)-(Vg’

DCM1 DCM2

-VCr(0)

Tsw +Vg’

-Vg’ -Vg’

Fig. 13. Transition of capacitor voltge VCr from DCM1 to DCM2.

VCr, while lower graph indicates the transistors (S1 to S4)

switching pattern.

This mode of operation is composed of following sub-

intervals: T1-X-T2-X. The sub-intervals equivalent circuits are

shown in Fig. 11 (a), (e) and (i). Due to symmetry of operation

over an entire switching interval, the analysis is performed out

over half the switching interval.

1) Sub-interval T1: t0 ≤ t ≤ t1 This sub-interval starts

when both S1 and S4 conduct, exciting the resonant tank

with positive voltage V ′

g . On the rectifier side, D5 and D8 are

forward biased and the tank will be exposed to the rectifier

voltage Vo. A positive inductor current rises from 0 with di/dt
limited by the resonant tank elements, as long as V ′

g > Vo. At

t0 = 0, the inductor current is zero due to the discontinuous

nature of the inductor current in this mode. Resonant capacitor

voltage rises from a negative VCr towards a positive value.

So, both irs and VCr increase to positive values. This ensures

ZVS turn-on on inverter side switches S1 and S4 and for

rectifier side diodes. During this sub-interval a half resonant

cycle ( of duration Tr/2) is allowed to pass. T1 sub-interval

finishes when S4 is blocked and S3 starts conducting. By this

time, the resonant current has reached zero while capacitor

voltage stabilizes at +V ′

g (considering the initial condition for

VCr(t0) = −V ′

g + 2∆V and t = π, see Fig. 13). Following

equations are expressions for resonant current and voltage in

DCM1 T1 sub-interval:

irs(t) =
V ′

g − Vo − VCr(t0)

Zc
sinωrt (16)

VCr(t) = (V ′

g − Vo)− (V ′

g − Vo − VCr(t0)) cosωrt (17)

As seen in Fig. 13, during transient state, capacitor voltage

is increasing every switching interval with 2 ·∆V from 0 to

+V ′

g . As soon as VCr ≥ V ′

g , transition to DCM2 occurs.

2) Sub-interval X: t1 ≤ t ≤ t2 X sub-interval begins when

S1 and S3 both conduct, while S2 and S4 are blocked. This

means Vg
′ is clamped to zero, inductor current remains at zero

and all rectifier diodes are reversed biased. The equivalent

circuit of this sub-interval can be seen as an open circuit

resonant tank. In this time, Vo drops to VCr level. One half

cycle is finished as soon as S1 is blocked, while S2 and S3

S1

S2

S3

S4

0

1

0

1

0

1

0

1

Lead

Lag

t

V’G(t)

VCr(t)

T1 X T2 X

Vo(t)

irs(t)

t1=Tr/2

t

t2=Tsw/2

VCr(0)

Vpk=

0

Tsw/2

Tr/2

ipk

ir(0)=0

t0

V’G(t)

δ 

Fig. 14. DCM1 characteristic waveforms: top - inverter voltage reflected on
rectifier side V ′

g , rectifier voltage Vo, resonant secondary current irs; middle
- resonant capacitor voltage VCr ; bottom - corresponding switching pattern.

conduct. Following sub-intervals T2 and X are analysed with

similar procedure.

irs(t) = 0 (18)

VCr(t) = V ′

g (19)

3) Power flow: To evaluate how much power is delivered

during DCM1, the average area of current waveforms irs
during T1 and X sub-interval has to be calculated, following

the steps from eq. (20) to eq. (26):

iout = 〈irs(t)〉T sw
=

2

Tsw

∫ t2

t0

irs(t)dt (20)

iout = 2 · Fsw · qs (21)

qs = 2 · Cr · VCr (22)

iout = 4 · Fsw · Cr · VCr (23)

Pout = Vout · iout (24)

VCr = Vg
′ = Vin ·N (25)

Pout = 4 · Fsw ·N · Cr · Vin · Vout (26)

Comparing eq. (26) to eq. (6), they differ by a factor of

2. The main reason is that capacitor voltage on the ”classic”

SRC (with LC tank on inverter side) stabilizes at 2 · Vg . For
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Fig. 15. DCM2 characteristic waveforms: top - inverter voltage reflected on
rectifier side V ′

g , rectifier voltage Vo, resonant secondary current irs; middle
- resonant capacitor voltage VCr ; bottom - corresponding switching pattern.

the classic SRC, there are no Q1 or Q2 sub-intervals (no pulse

removal), but only D1 or D2 sub-intervals. The transition from

T1 to D1 will occur, only if VCr ≥ (Vg + V ′

o).

C. DCM2

With respect to Fig. 15, principle waveforms for DCM2

are shown. As the name implies two half resonant cycles

will appear during a half switching period. This conduction

mode can only appear in the interval [0 to Fr/2] and if

∆V > 0. Being very similar to DCM1, DCM2 is a sequence

of following sub-intervals: T1-Q1-X-T2-Q2-X, with Q1 and

Q2 equivalent sub-circuits shown in Fig. 11(c) and (g). Due

to half cycle symmetry only the first three sub-intervals will

be analysed, as the other three are similar but with opposite

voltage and current signs.

1) Sub-interval T1: t0 ≤ t ≤ t1 As S4 is already

conducting, S1 switch is turned on and a full resonant cycle

is delivered to the load, while D5 and D8 are forward biased.

During this interval, as the resonant current irs is increasing

from 0, resonant capacitor voltage increases too from −VCr.

At t1 = Tr/2, T1 sub-interval is finished, having again a zero

inductor current and maximum VCr. Resonant inductor current

and capacitor voltage equations are similar to DCM1 mode.

2) Sub-interval Q1: t1 ≤ t ≤ t2 During Q1 sub-interval,

the inductor current resonates for another half cycle, until t2 =
Tr. During this period, S1 is still on, but S4 is blocked and S3

starts to conduct. Therefore, the negative current flows through

D1 and T3 as seen in Fig. 11(c). On rectifier side, D6 and

D7 are forward biased and due to this rectifer voltage Vo is

negative. Capacitor voltage is slowly discharged, as VCr > Vo.

Resonant current and capacitor voltage are given in Eq. (27)

and (28). Eq. (29) shows where capacitor voltage will stabilize,

when t = t2 = Tr.

irs(t) =
Vo − VCr(t1)

Zc
sinωr(t− t1) (27)

VCr(t) = Vo − (Vo − VCr(t1)) cosωr(t− t1) (28)

VCr(t) = Vo − (Vo − V ′

g)(+1) = Vo −∆V (29)

3) Sub-interval X: t2 ≤ t ≤ t3 When VCr = Vo − ∆V ,

another X subinterval begins as resonant current is zero, while

all rectifier diodes are reversed biased. At t3 = Tsw/2, switch

S1 is off and another half cycle begins. Similar to DCM1,

in this sub-interval, the resonant current is zero and capacitor

voltage stays flat, meaning no power is delivered to Vout.

4) Power flow and peak stress: Equation for power flow

is exactly the same as in DCM1. As in DCM1 and also

according to [14], the SRC# is operating similar to a frequency

controlled current source in DCM2, implying a linear function

between power and frequency. On the other hand, the slope of

the function is slower as compared to DCM1, due to higher

∆V across the LC tank, In DCM2, V out is smaller then in

DCM1. This means output power will also be less, but still

proportional to the frequency. Looking at Fig. 19a, one notices

the slope in DCM2 is proportional to ∆V and also impacts

the resonant peak current (Fig. 19b).

5) Boundary condition: Transition from DCM1 to DCM2

is achieved when:

VCr > Vo (30)

D. CCM1-Hybrid

CCM1-hybrid mode of conduction is described in Fig.

16. The name hybrid is used as very short X sub interval

(characterized by zero resonant current) will appear. First of

all, this mode can appear in the switching interval [Fr/2 to Fr]

and if ∆V ≈ 0. It is composed of following subintervals:T1-

X-Q1-T2-X-Q2. Similar to other modes of operation, only the

first three sub-intervals will be analysed, as the other three are

similar but with opposite voltage and current signs.

1) Sub-interval T1: t0 ≤ t ≤ t1
During subinterval T1, resonant current irs will start at a

low turn on current ir(t0) and for a period equal to δ · Tsw/2
a resonant cycle is delivered to the load, as switches S1 and

S4 conduct both. Capacitor voltage increases from a negative

VC0 towards a positive value. Resonat current and capacitor

voltage are determined as:

(31)irs =
V ′

g − Vo − VCr(t0)

Zc
sinωrt+ irs(t0) cosωrt
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g , rectifier voltage Vo, resonant secondary cur-
rent irs; middle - resonant capacitor voltage VCr ; bottom - corresponding
switching pattern.

(32)
VCr = (V ′

g − Vo)− (V ′

g − Vo − VCr(t0)) cosωrt

+ irs(t0)Zc sinωrt

The sub-interval ends at t1, as for a very short period, VCr is

equal to rectifier voltage Vo and no current is delivered to the

load.

2) Sub-interval X: t1 ≤ t ≤ t2
Next, a different kind of X subinterval appears, as V ′

g is

still applied. The reason for it is that VCr ≤ (V ′

g + Vo). The

length of T1 and X subintervals equals with δ · Tsw/2 which

is the phase displacement between the inverter legs. The sub-

interval ends at t2, when switch S4 is blocked and switch S3

starts conducting.

irs = 0 (33)

VCr = Vt (34)

Vout = V ′

g − VCr (35)

3) Sub-interval Q1: t2 ≤ t ≤ t3
Further on, as soon as phase displacement is implemented,

a Q1 subinterval will begin and negative resonant current will

start to flow. Here, V ′

g is clamped to zero and tank voltage Vt

equals Vo. From switching point of view, the inverter switches

and rectifier diodes turn on at a low current and turn-off

with ZCS. Resonant tank current and voltage are described

in following equations.

irs =
Vo − VCr(t2)

Zc
sinωr(t− t2) + irs(t2) cosωr(t− t2)

(36)

(37)
VCr = Vo − (Vo − VCr(t2)) cosωr(t− t2)

+ irs(t2)Zc sinωr(t− t2)

Following T2, X and Q2 subintervals are complementary,

but with opposite sign.

4) Power flow: Compared to DCM1, the power to fre-

quency relation in CCM1-hybrid is slightly non linear and

described in Eq. 42.

M =
Vo/N

Vg
(38)

γ =
Fr · π
Fsw

(39)

(40)Φ = 1 +
2 · atan( (Vg+cos(γ)·(2·Vo−Vg))

(sin(γ)·(2·Vo−Vg))
)

γ

(41)A =
(1− cos(Φγ)) · ((2M − 1) · cos(γ) + 1)

cos(γ)− cos(Φγ)

(42)Pout = Vg
2 · ωsw · Cr ·

1

π
·A

5) Boundary condition: Transition from CCM1-hybrid to

CCM1 is achieved when:

VCr > V ′

g + Vo (43)

E. CCM1

Final mode of conduction is characterized by the waveforms

from Fig. 17 and it’s composed of following subintervals: T1-

D1-Q1-T2-D2-Q2, with D1 and D2 equivalent circuits shown

in Fig. 11(b) and (f). This mode appears only above Fr/2 and

if ∆V >> 0, showing a highly nonlinear relation between

power and switching frequency and it should be avoided as it

increases turn-on losses. Only first half cycle is analysed as

the other half cycle is symmetric and complementary.

1) Sub-interval T1: t0 ≤ t ≤ t1 Similar to CCM1-hybrid,

T1 sub-interval starts at a current irs > 0, but with larger

magnitude, impacting turn-on losses. Also in this sub-interval

a resonant cycle is delivered to the load until t = t1, when the

resonant current reaches zero and capacitor voltage is reaching

it’s peak value. Lower equations describes the two parameters.

(44)irs =
V ′

g − Vo − VCr(t0)

Zc
sinωrt+ irs(t0) cosωrt

(45)
VCr = (V ′

g − Vo)− (V ′

g − Vo − VCr(t0)) cosωrt

+ irs(t0)Zc sinωrt
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Fig. 17. CCM1 characteristic waveforms: top - inverter voltage reflected on
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g , rectifier voltage Vo, resonant secondary current irs; middle
- resonant capacitor voltage VCr ; bottom - corresponding switching pattern.

2) Sub-interval D1: t1 ≤ t ≤ t2
As a positive V ′

g is still applied to transformer windings and

VCr > V0, a negative current flows through the resonant tank.

This means on inverter side, diodes D1, D4 are conducting,

while on rectifier side D6 and D7 are forward biased. The

capacitor voltage is slowly discharing. Equations for resonant

current and capacitor voltage are described as follows:

irs =
V ′

g + Vo − VCr(t1)

Zc
sinωr(t−t1)+irs(t1) cosωr(t−t1)

(46)

(47)VCr = (V ′

g + Vo)− (V ′

g + Vo − VCr(t1)) cosωrt

+ irs(t1)Zc sinωr(t− t1)

Sub-interval D1 is ended at t = t2, when switch S4 is turned

off and S3 is turned on.

3) Sub-interval Q1: t2 ≤ t ≤ t3 By turning off switch

S4, applied inverter voltage Vg is clamped to zero. A negative

current is still flowing, but through switch S3 and diode D1,

while D6 and D7 are still forward biased. The capacitor

voltage is still discharging. This sub-interval will end at t = t3,

when switch S1 is turned-off and S2 is turned-on. Equations

for resonant current and capacitor voltage are given below:

irs =
Vo − VCr(t2)

Zc
sinωr(t− t2) + irs(t2) cosωr(t− t2)

(48)

(49)VCr = Vo − (Vo − VCr(t2)) cosωr(t− t2)

+ irs(t2)Zc sinωr(t− t2)

4) Power flow: Considering the power flow equation for

CCM1 mode of operation, eg. (50) is derived. In CCM1, the

relation between power and frequency is highly non-linear,

making this mode of operation not favourable.

(50)Pout = Vg
2 · ωsw · Cr ·M · 2

π
·B

(51)B = [
cos(γ)− 1 + 2M cos(γ(1− Φ))

− cos(γ(1− Φ))− cos(γ)
]

· cos(Φγ) +M · (cosΦγ + 1)

(52)Φ =
δ

2
+

1

λ
·Qs · sinM

F. Resonant tank stress

For proper component selection, the peak stress level has

to be considered. The peak current level will occur in sub-

interval T1 at π/2, while peak voltage at π. Considering Eq.

(53) to (57), following parameters are defined: normalized

output voltage M , converter quality factor Qs, normalized

switching frequency γ, constant K and load resistance Rload.

The equations are valid for all modes of operation.

M =
Vo/N

Vg
(53)

K =
Qs · γ

2
(54)

Qs =
1

ωr · Cr ·Rload
(55)

γ =
Fr · π
Fsw

(56)

Rload =
V 2
out

Pout
(57)

Similar to [14] eq. (58) and (59) will predict the peak

resonant tank voltage Vpk and current stress Ipk in all modes

of operation.

Ipk = ωr · Cr · Vg · (M(K + 1)− 1) (58)

Vpk = M ·K · Vg ·N (59)
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Fig. 18. Simulation results: steady state operation in DCM1 with steps in switching frequency (a); zoomed in windows of principle waveforms (primary
resonant current irp, magnetizing current im, inverter voltage Vg and resonant capacitor voltage Vcr at 900 Hz (b), 450 Hz (c) and 150 Hz (d).

V. STEADY STATE OPERATION

To illustrate the steady state operation of the target con-

verter, a PLECS simulation model was built and runned at

different switching frequencies, in the range 0 to 1000 Hz,

while voltage difference ∆V between input and output voltage

was close to 0.1%, facilitating the operation in DCM1. The

results are shown in Fig. 18 and point out that output power

is related to the applied switching frequency (cf. Fig. 18 a,

b). As the converter operates in DCM1, peak resonant current

and voltage are constant in the whole operating range. Fig.

18 b, c and d are zoomed in windows of the principle current

and voltage waveforms (primary current irp, secondary current

irs, inverter voltage Vg , capacitor voltage VCr, magnetizing

current im) and they also demonstrate how pulse removal

technique impacts the magnetizing current, keeping it constant,

regardless of applied frequency. Another aspect worthy to

mention is that at very low switching frequency Fsw < 50
Hz, the converter output current becomes discontinuous, as

seen in Fig. 18a-(bottom).

VI. PEAK RESONANT CURRENT AND VOLTAGE STRESS

Peak current and voltage will determine the specifications

for semiconductors and resonant tank parameters. Evaluation

of stress is determined through the analytical equations from

previous section and through steady state and dynamic simu-

lations. Fig. 19(a,b and c) shows the good agreement between

analytical values and simulation results, within operation range

of 0 to 1000 Hz and for different ∆V values. Looking at Fig.

19a, a power to frequency characteristic in DCM1 is shown on

the black line, with a linear characteristic. As soon as a ∆V is

increased, the characteristic starts to be non-linear at the end

point. In Fig. 19(b and c), if operation in DCM1 is considered,

the peak current and voltage are the same in full switching

interval. Applying a ∆V , will impact both current and voltage

peak. It is observed in Fig. 19e, how ∆V is impacting current

waveform and it’s peak, while the converter operates at the

same frequency of 900 Hz. For this case, the converter can

operate close to DCM1, while having a ∆V of 5%. Further

on, Fig. 19f concludes the fact that capacitor voltage is output

power dependent. Assuming a max.∆V of 10%, with relation

to Fig. 19a, nominal power is now being delivered at ≈ 825

Hz. At the same frequency, it is noticed that peak current has

increased from 1.8 p.u. to 2.1. p.u, while capacitor voltage

from 1.0 p.u. to 1.25 p.u. . This means, when designing the

converter LC tank, one has to consider a variation of +25%

above nominal voltage and current specifications, to allow a

safe margin with a 10% output voltage variation. Another

aspect necessary to mention is that the converter efficiency

will decrease for a ∆V higher then 5%.

Fig. 20 (a, b, c, d) indicates the trajectories of resonant

capacitor voltage VCr in relation to resonant secondary current

irs for every mode of operation.
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VII. EXPERIMENT AND DISCUSSIONS

A. Experimental setup

The SRC# has been built and tested at relatively low

power ratings (see Table VI), to confirm modes of operation,

control principles and basic protection based on voltage and

current monitors. Loss model validation will be performed on a

higher power and voltage demonstrator and presented in future

publication.

The circuit diagram is shown in Fig. 21a and experimental

setup in Fig. 21b. The transformer (1:2 turns ratio) is designed

for a maximum frequency of 1000 Hz, which is the same

as the target component, and uses an amorphous core and

windings with round wires. The low scale setup was tested

with two different ∆V and variable switching frequencies. The

measuring equipment was a Lecroy HDO4054 oscilloscope,

with high voltage differential probes (ADP305) and current

probes. Fig. 22 show the SRC# characteristic waveforms for

DCM1 mode, where ∆V ≈ 0.

Looking at principle waveforms from Fig. 22 (right col-

umn), it can be noticed that regardless of switching frequency,

the magnetizing current is stable and there is no saturation

phenomenon. As the transformer windings resistance is high

in this case, as compared to the magnetizing inductance Lm,

the magnetizing current shows a slow decline during the

zero voltage period. im was recorded, while the transformer

secondary was in open circuit and afterwards overlapped

across the irp measured data.

Fig. 22 shows the secondary resonant current (left column)

and primary resonant current (right column) (irp and irs)

and applied inverter voltage Vg for three different switching

frequencies (200, 500 and 800 Hz). It is noticed in fig. 22 (right
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Fig. 22. Experimental results with ∆V ≈ 0. (Left column) Measured secondary side resonant current irs, resonant capacitor voltage VCr and inverter
voltage Vg . (Right column) measured primary side resonant current irp, magnetizing current im and inverter voltage Vg for different switching frequencies.
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Fig. 23. Experimental results with ∆V ≈ 10%. (Left column) Measured secondary side resonant current irs, resonant capacitor voltage VCr and inverter
voltage Vg . (Right column) Measured primary side resonant current irp, magnetizing current im and inverter voltage Vg (right side) for different switching
frequencies.

column), that during the zero voltage periods, on inverter side

the current flowing through one pair of transistor and diodes

(D1, S3 for positive current and D2, S4 for negative current)

is the magnetizing current. Now, observing the secondary

resonant current at turn-off in Fig. 22 (left column), the impact

of diodes reverse recovery is shown. As mentioned earlier

in the design process, a certain holding time Trec needs to

be taken in consideration to allow reverse recovery process.

Another phenomenon observed during the experiments, is

the acoustic noise generates, as the converter operates from

very low frequency up to 1000 Hz. For elevated power, it is

expected the noise to increase and it will require a system to

damp the noise.

Fig. 23 presents the same waveforms (Vg , VCr, irp and irs)

as in Fig. 22, but for a ∆V ≈ 10%. The top and middle graphs

show operation in DCM2, while bottom graphs in CCM1-

hybrid. As the voltage drop between V ′

g and Vo is 10%, there

is no longer a linear relation between switching frequency Fsw

and output power Pout. E.g, the peak in irs at 800 Hz is ≈ 4A,

while at 200 Hz it is 3.3A, meaning a difference of ≈ 20%.

B. Discussions

Beside the benefits from controlling LV DC bus link, from

soft-switching commutation, from compact transformer size

and from a high voltage rectifier assembled with line frequency

diodes, the SRC# circuit also presents its drawbacks: only

single circuit configuration seems possible, preluding the use

of a three-phase, three-limb transformer. Moving the resonant

tank to the rectifier side, the transformer risks saturation. This

is due to imbalanced (dc offset) from the inverter, caused

by the secondary effects like differences in inverter phase-leg

voltage drops and commutation time characteristics. Options

to mitigate this dc offset include asymmetric duty cycle control

or on-line monitoring of the magnetizing flux with a ”magnetic

ear”, as proposed in [34].

.
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VIII. CONCLUSION

The series resonant converter with resonant tank on high

voltage side is proposed as a candidate for megawatt high-

voltage DC wind turbines, due to high efficiency and low

transformer size. In order to control output power and increase

efficiency, frequency control in sub resonant is identified as an

optimal control method for high power resonant topologies.

But the drawback is that the transformer needs to be designed

for lowest operating point. In order to solve this issue, a

new method of operation, entitled pulse removal is introduced.

Variable frequency and phase shift in sub resonant mode are

used to control output power and the main principle is to clamp

the applied voltage to zero as soon as the resonant current

becomes zero, limiting the flux build-up on transformer core.

The paper has focused on the analyse of SRC# and discusses

the conduction modes the topology might experience, for

different output voltage drops. For every mode, resonant

current and voltage equations were presented, together with

predictions of output power, peak voltage and current stress.

Pulse removal technique and the expected conduction modes

were examined on a 1kW, 500V prototype. Loss segregation

and closed-loop control will be investigated experimentally

and presented in future publication, on a higher power and

voltage ratings demonstrator.
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